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Abstract

For a sum of squares domain of finite D’ Angelo 1-type at the origin, we show that
the polynomial model obtained from the computation of the Catlin multitype at the
origin of such a domain is likewise a sum of squares domain. We also prove, under
the same finite type assumption that the multitype is an invariant of the ideal of holo-
morphic functions defining the domain. Both results are proven using Martin Kolai’s
algorithm for the computation of the multitype introduced in Kolaf (Int Math Res Not
(IMRN) 18:3530-3548, 2010). Given a sum of squares domain, we rewrite the Kolaf
algorithm in terms of ideals of holomorphic functions and also introduce an approach
that explicitly constructs the homogeneous polynomial transformations used in the
algorithm.

Keywords Sum of squares domains - Catlin multitype - Finite type domains in C" -
The Kolaf algorithm

Mathematics Subject Classification Primary 32F18 - Secondary 32T27; 32T25

1 Introduction

Domains defined by sums of squares of holomorphic functions constitute a very impor-
tant class in the field of several complex variables as they connect in a very natural way
complex analysis with algebraic geometry. This class of domains was introduced by
Kohn in his Acta paper [12] under the term special domains. Kohn’s novel introduction
of the technique of subelliptic multiplier ideals to address the local regularity prob-
lem paved the way for significant discoveries in several complex variables. In [5,6],
D’ Angelo studied the local geometry of real hypersurfaces by assigning to every point
on the hypersurface an associated family of ideals of holomorphic functions and explor-
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ing various invariants in commutative algebra and algebraic geometry. He established
a close connection between the geometry of sums of squares domains and complex
algebraic geometry. Further work by Siu in [16] and [17] on sums of squares domains
introduced new approaches for generating multipliers for general systems of partial
differential equations. Owing to his initial work on sums of squares domains, Siu gave
an extension of the special domain approach to real analytic and smooth cases. Kim
and Zaitsev in [9] proposed a new class of geometric invariants called the jet-vanishing
orders and used them to establish a new selection algorithm in the Kohn’s construction
of subelliptic multipliers of sums of squares domains in dimension 3. Also, in a recent
paper by the same authors [10], they provide a solution to the effectiveness problem
in Kohn'’s algorithm for generating multipliers for domains including those defined by
sums of squares of holomorphic functions in all dimensions. Other important results
pertaining to sums of squares domains can be found in [3,4,7,8,14].

A key motivation for this paper is to introduce some important tools and techniques
necessary for the study of the multitype level set stratification of sums of squares
domains. We will focus here on the multitype computations for such domains. Our
main tool is an algorithm devised by Kolaf in [13] for the computation of the Catlin
multitype when it has finite entries. In order to ensure this condition is satisfied, we
will assume finite D’ Angelo 1-type throughout since the latter bounds from above the
last entry of the multitype; see [2].

Owing to the connection between the properties of the associated family of ideals
of holomorphic functions and the geometry of sums of squares domains, a natural
question is whether or not the multitype could be computed from the corresponding
ideals of holomorphic functions. We provide an answer to this question by showing
that the multitype of a sum of squares domain can be computed from the related ideal
of holomorphic functions via the restatement of the Kolar algorithm at the level of
ideals. Besides the fact that working with ideals aligns better with complex algebraic
geometry, this restatement also reduces significantly the amount of work involved in
computing the Catlin multitype for sums of squares domains.

A sum of squares domain Q C C"*! is one of which boundary-defining function
r(z) is given by

N
r@) =2Re(zay1) + ) Ifi G a1 (1.1)
j=1
where fj(z1,...,2y41) forall j,1 < j < N are holomorphic functions vanishing

at the origin in C"*!. We shall denote by M C C"*! the hypersurface defined by
{zeCr(z)=0).
The model hypersurface associated to M at the origin is defined as follows:

My ={zeC""': H(z,2) =0}, (1.2)
the zero locus of the homogeneous polynomial H(z, z) consisting of all monomials
from the Taylor expansion of the defining function that have weight 1 with respect to

the multitype weight. We refer to H(z, z) as the model polynomial.
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Our first main result concerns the form of the model polynomial H(z, z):

Theorem 1.1 Let M C C"t! be a hypersurface of which defining function is given as
follows:

N
r@) =2ReGui1) + Y _1fiG1n - znp DI
j=1

where f1, ..., fn are holomorphic functions defined on a neighborhood of the origin
and assume that the D’Angelo I-type of M at the origin is finite. Then the model
associated to M is also a sum of squares domain.

In other words, the model polynomial

N

H(z.7) = 2Re(zp41) + ) 1hjz1, ... z0)% (1.3)
j=1

where /; is a polynomial consisting of all terms from the Taylor expansion of f; of
weight 1/2 with respect to the multitype at the origin, j = 1, ..., N. Note that the
corresponding model hypersurface My = {z € C"*! : H(z,Z) = 0} is a decoupled
sum of squares domain since variable 7,11 has weight 1, sono /; can depend on it. By
Catlin’s results in [2], M g has the same multitype at the origin as the original domain.
In fact, with respect to multitype computations, every model polynomial is decoupled.

Our second main result answers in the affirmative a question posed by D. Zaitsev
during a discussion with the author:

Theorem 1.2 Let 0 € M C C"*! be a hypersurface of which defining function is
given as follows:

N
r(2) =2Re(ar) + ) _IfiG1 s 2D
j=1

where f1, ..., fn are holomorphic functions defined on a neighborhood of the origin
and assume that the D’Angelo 1-type of M is finite at the origin.

Then the Catlin multitype is an invariant of the ideal of holomorphic functions
defining the domain.

Computing the multitype via the Kolar algorithm requires one to use weighted
homogeneous polynomial transformations at each step in order to generate an inter-
mediate weight and a partial model polynomial that depends on a minimal number of
variables. How these homogeneous polynomial transformations are obtained was not
explicitly described in [13], however. In this paper, we characterize these weighted
homogeneous polynomial transformations and explicitly construct them by relating
them to elementary row and column operations on the Levi matrix associated to
the domain. More specifically, we devise an algorithm for the construction of these
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homogeneous polynomial transformations, the row reduction algorithm. We call a
polynomial change of variables at step j of the Kolaf algorithm allowable with respect
to variable z if it eliminates the occurrence of variable z; from the leading polynomial
P; and reduces the number of variables in P; by at least one. For the correspondence
between polynomial changes of variables and elementary row and column operations
on the Levi matrix associated to the domain, we introduce a variant of the notion of
dependence compared to the standard one in linear algebra as follows: Let Ap; be the
Levi matrix of the leading polynomial P; at step j of the Koldf algorithm. For a given
k, denote by Ry and Cy the kth row and the kth column of the matrix A p; respectively.
Let Z be the set of all rows of the matrix A p;- We call arow Ry of X dependent if it
satisfies the condition:

n
Ry = ZO‘IRI’

=1
1#k

where o7 € C[z], oy # O for at least one /. In other words, the row Ry is dependent if it
can be written as a linear combination of the other rows with polynomial coefficients.
The set Z is said to be dependent if at least one of the rows is dependent.

Since the matrix A P; is Hermitian, a similar definition holds for the kth column Cy
of Ap; namely

n
Cr = Z&[C’[.

=1
I#k
Hence, we prove the following:

Proposition 1.3 Assume that the D’Angelo I1-type of the hypersurface M in C"*! at
0 is finite. At step j of the Koldr algorithm for the computation of the multitype at
0, let A; be an intermediate weight, P; the leading polynomial, and let Q ; be the
leftover polynomial, which consists of monomials of weighted degree greater than 1
with respect to A j. Let k be given, 1 < k < n. There exists an allowable polynomial
transformation on Pj with respect to the variable zj if and only if the kth row of Ap;
is dependent.

Using this characterization of the polynomial transformations and the restatement
of the Kolar algorithm in terms of ideals of holomorphic functions, the row reduction
algorithm connects nicely the notion of simplifying the Jacobian module associated
to a sum of squares domain with elementary row operations on the complex Jacobian
matrix of the same domain. By employing this algorithm at every step of the Kolar
algorithm for the computation of the multitype, we are able to construct the weighted
homogeneous polynomial transformations needed in the Kolar algorithm.

This paper is structured in the following manner: Sect. 2 describes some notation
and provides definitions that are pertinent to our discussions in subsequent sections.
Section 3 defines the Catlin multitype and provides a thorough description of the Kol4f
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algorithm as introduced in [13]. Section 4 presents a key lemma for the characterization
of the multitype entries of the sum of squares domain. Specifically, we establish the
fact that each multitype entry can be realized by the modulus square of some monomial
of vanishing order at least one in the multivariate ring of polynomials over C. Section 5
contains the proofs of Theorems 1.1 and 1.2. Section 6 presents a modified version
of the Kolar algorithm in terms of ideals of holomorphic polynomials. In the same
section, a corollary to Theorem 1.1 is stated and proven. Finally, Sect. 7 contains the
proof of Proposition 1.3 and also provides a detailed description of the row reduction
algorithm for the construction of the weighted homogeneous polynomials required in
the Kolar algorithm.

This article constitutes part of the author’s Ph.D thesis at Trinity College Dublin
under the supervision of Andreea Nicoara.

2 Definitions and Notation

We present some definitions that we use in the article following the setup of Kolai in
[13]. Let M be a hypersurface in C"*! and p € M be a Levi-degenerate point. We will
assume that p is a point of finite D’ Angelo 1-type. Let (z, w) be local holomorphic
coordinates centered at the point p, where w = u 4 iv is the complex non-tangential
variable and the complex tangential variables are in the n-tuple z = (z1, ..., Zn)
with zx = x; + iyg. Throughout this paper, we will compute and define weights by
considering only the complex tangential variables z1, ..., z, as in [13].

Definition 2.1 A weight A = (u1, ..., i,) is an n-tuple of rational numbers with
0<u; =< % satisfying

Lpj>pjprforl <j<n-—1;
ii. For each ¢, either u, = 0 or there exists a sequence of nonnegative integers
ai, ..., a; satisfying a; > 0 such that

t
Zaj,uj =1.
j=1

Let A beaweight. If« = (a7, ..., «,) is a multiindex, then we define the weighted
length of « by

n
le|a = Zajl‘l/j'
j=1

Also if ¢ = («q,...,a,) and & = (&1, ..., &,) are multiindices, then the weighted
length of the pair («, @) is defined by

(. @)l =Y () + @),

j=1
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l

Definition 2.2 A monomial A,z z%z%u’ is said to be of weighted degree « if

=1+ |(a,@)|a.

Similarly, we define the weighted order of the differential operator D¢ DD to equal
tok =1+ |(a, &)|a, where

gl . 3\54 FL
D= —(——, D'=——— and D' = —.
021 928 azo1 .. gz du

A polynomial P(z, Z, u) is said to be A-homogeneous of weighted degree « if it is
a sum of monomials of weighted degree «.

We shall set the variable w as well as the variables u and v to have a weight of one.

Definition 2.3 A weight A = (i1, ..., iy) is said to be distinguished if there exist
local holomorphic coordinates (z, w) mapping p to the origin such that the boundary-
defining equation for M in the new coordinates is of the form:

v = P(z,2) +oa(l), 2.1)

where P(z, z) is a A-homogeneous polynomial of weighted degree 1 without pluri-
harmonic terms and o (1) denotes a smooth function of which derivatives of weighted
order less than or equal to 1 vanish at zero.

We order the weights lex1cographlcally This means that for the pair of welghts
Ay = (1, ..., 1uy) and Ay = (ul,...,un) Ay > Ao if for some t, u; = M] for

j<tandu,>,u,.

Definition 2.4 Let A = (Aq, ..., A,) be a weight and
W=w+g(1,...,zn,w)and z; = z; + fi(z1, ..., 20, W),

for 1 < j < n, be aholomorphic change of variables. We say that this transformation
is
i. A-homogeneous if f;is a A-homogeneous polynomial of weighted degree A ; and

g is a A-homogeneous polynomial of weighted degree 1,

ii. A-superhomogeneous if f; has a Taylor expansion consisting of monomials that
have weighted degree > A ; and g consists of terms of weighted degree > 1,

iii. A-subhomogeneous if the Taylor expansion of f; consists of terms of weighted
degree < A; and g consists of weighted degree < 1.

J. J. Kohn introduced the notion of type of a point on a pseudoconvex hypersurface
in CZin [11]. In [1], Thomas Bloom and Tan Graham generalized Kohn’s notion to C”
and gave a geometric characterization of type of points on real hypersurfaces in C”".
There is the definition given by Bloom and Graham: Let A/ be a real C* hypersurface
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defined in an open subset U C C" with defining function r. Let .Z; for k > 0
an integer, be the module, over C*°(U), of vector fields generated by the tangential
holomorphic vector fields to A/, their conjugates, and commutators of order less than
or equal to k of such vector fields.

Definition 2.5 A point p € N is of type m if (Br(p), F(p)) =0forall F € %1
while <8r(p), F(p)) # 0 for some F € .%,.

Here, we denote the contractions between a cotangent vector and a tangent vector
by (, ) We shall refer to the type at a point p as defined above as the Bloom-Graham

type.

3 Catlin Multitype and the Kolaf Algorithm

In this section, we describe the Catlin multitype and the Kolatr algorithm for the
computation of the multitype at the origin in [13]. The notion of weights, distinguished
weights, and the multitype was introduced by Catlin in [2]. We will follow the notation
and definitions as given by Kolaf in [13] and further describe some of the tools that
M. Kolér introduced:

Definition 3.1 Let M be a hypersurface in C"*!, and let p € M. Let A* =
(1, ..., un) be the greatest lower bound with respect to the lexicographic order-
ing of all the distinguished weights at p. The multitype .# at p is defined to be the
n-tuple (my, ..., my,), wherem; = coif u; = Oand m; = ul, if uj # 0. We call
the multitype .# at p finite, if the last entry m, < oo.

The next theorem from [2] clarifies the relationship between the multitype and the
D’ Angelo type for a pseudoconvex domain:

Theorem 3.1 (Catlin). Ler @ € C"*! be a pseudoconvex domain smooth boundary.
Let py € b2 be a boundary point. If # (po) = (my, ..., my) is the multitype at
Do, then foreach g = 1,...,n, myy1—gq < Ay(bR2, po), where Ay (b2, po) is the
D’Angelo g-type at po.

For the purposes of this paper, we shall assume finite D’ Angelo 1-type at any point
p € M, since this assumption by Theorem 3.1 ensures that all the entries of the
multitype are finite, which is the exact setting in which the Kol4f algorithm works.

For a weight A, we say the local coordinates on M at p are A-adapted if M is
described locally to have the form in (2.1), where P is A-homogeneous. We shall
refer to A*-adapted coordinates as the multitype coordinates given such that P is
A*-homogeneous.

Lety;,j =1,...,c, bethelengthof the jth constant piece of the multitype weight

given such that ¢ is the number of distinct entries in the multitype. Let Zijzl vi =kj,
then we have

M1 = = ey > gl = = kg > = kg > = kg1 = =
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where n = k.. We define a monotone sequence of weights Ay, ..., A, which are
ordered lexicographically as follows. A is a constant n-tuple (1, ..., 1) and A, =
A* is the multitype weight. We then define the weight A; = (kj, ey )L,J;) for 1 <
Jj < c, by A{ = p; fori < kj_; and )‘}'/ = Mk;_i+1 fori > kj_j. Note that this
construction yields a finite sequence of weights even if A* has some zero entries.

Definition 3.2 Fix A*-adapted local coordinates. The leading polynomial P is defined
as follows:

P(z.D)= Y Coazi%. 3.1)

(e, @) px=1

The polynomial defined in (3.1) is exactly the polynomial that only retains the terms
of weight 1. Put differently, it is a A*-homogeneous polynomial of weighted degree
1 with no pluriharmonic terms, where A* is the multitype weight. Following Kolaf
in [13], we will also denote by leading polynomial the polynomial consisting of all
terms of weight 1 with respect to each intermediate weight A ; in the Kolaf algorithm.

Theorem 3.2 (Koldt) A biholomorphic transformation takes A*-adapted coor-
dinates into A*-adapted coordinates if and only if this transformation is A*-
superhomogeneous.

We will now describe the Kol4f algorithm for the computation of the multitype and
apply this theorem under the assumption that all entries of the multitype are finite.
The Kolar Algorithm We start by considering local holomorphic coordinates in which
the leading polynomial in the variables z and z contains no pluriharmonic terms. The
degree of the lowest order monomial in this polynomial is then equal to the Bloom-
Graham type of M at p as defined in [1]. This gives the first multitype component m1;
see [2]. By our assumption, 1 < m < 400.Letm; = % andset Ay = (U1, ..., L1).
We then consider all A j-homogeneous transformations and choose one that will make
the leading polynomial P to be independent of the largest number of variables. We
denote this number by d;. So for such coordinates, we get the defining function of M
to be of the form:

V= Pl(Zlv ~~-»Zn—dlvzla "-721‘1—11'1) + Ql(zv Z) +0(M)7

where P; is Aj-homogeneous of weighted degree 1 and Qg is op,(1). We use the
result that for any weight A which is lexicographically smaller than A, A-adapted
coordinates are also A -adapted coordinates and the fact that A j-homogeneous trans-
formation is linear, to conclude that yt; = - - - = pwy—g, and py—g,+1 < p1. We define
the following important tools:

n—dj
O =1 (@.&)|Chy#0and Y (; + &) < 1},

i=1

and also
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01z = Y Ch"3%

(@.@)[a,>1

For every (y,y) € O,

- 27;1[1. Vi + Vi
Y-y Vi + 70

Wiy, p) = (3.2)

We define the next weight A, by letting

A?: max Wi (a, &)
(a,0)€0

for j > n —d; and )»? = 1 for j < n — d;. We then complete the second by letting
P, be the new leading polynomial corresponding to the weight A,. P> depends on
more than n — d; variables.

We proceed by induction. At the jth step, for j > 2, using coordinates from the
previous step, we consider all A j_j-homogeneous transformations and choose one
that makes the leading polynomial P; | to be independent of the largest number of
variables. We fix such coordinates, and let ¢;_; be the largest number of variables,
which do not show up in P;_; after this change of variables. By Theorem 3.2, the
transformations taking A ; _i-adapted coordinates into A ; _j-adapted coordinates are
always A ;_i-superhomogeneous. The number of multitype entries that are added at
each step of the computation depends on the difference (d; > — d;_1). Hence, we
consider two cases in this step:

Case I Assume thatd;_» > dj_1. Also recall that for any weight A that is smaller
than A ;_; with respect to the lexicographic ordering, A-adapted coordinates are
also A j_j-adapted. This implies that we get (d;—» — d;—1) multitype entries

_ _ _ 51
Kn—dj_r+1 = = Hn—d;_; = )‘nfdj_erl

and let )»‘l./ = p; fori <n—d;_; — 1. To obtain )\{ forj >n—dj_1 —1, we
consider

v= Pj—l(zlv R Zn—dj,p Zlv R Zl‘l—djfl) + Qj—l(z9 Z) + 0(”)!

where Q1 is 0p; (1) and Pj_; is A j—j-homogeneous of weighted degree 1.
We define Q 1, ®;_1, and W;_; in a similar way as in step two. Thus,

n—dj_
Q-1 =1 (o, @) Cé;@l # 0 and Z (o +api <1¢,

i=1
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and also

Qj-1(z,2) = Z Cé;z"‘i&.

(@@)la;_;>1

For every (y,y) € ©,_1,

—dj_
L= i+ P
Wi_i(y. p) = nZz:] (vi Vlz,ufz . (3.3)

Zi:n—djfl-Fl(yi + )/l)

So for the remaining multitype entries of A ;, we let

A{: max W;_i(a,a),
(a,&)e@)j,l

fori >n—dj_;.
Case 2 Assume that d; 1 = d;_;. There are zero multitype entries computed in

this case and so we only determine )»‘l./ for j > n—d;_y using (3.3). This completes
the jth step of the computation.

The process terminates after a finite number of steps to give all the entries of the
multitype weight A*. It is clear that case 1 advances the process. We just need to show
that the number of times case 2 occurs where no multitype entries are determined can
only happen finitely many times. We claim case 2 can take place at most f%] n—dj-1+1
times, where [ is the ceiling for the rational number —. Indeed, it comes down to
the number of different values that (3.3) can have. The upﬁer bound for the numerator
is given by {t]”‘dﬁl as the u; entries are decreasing, whereas the upper bound for

the denominator is given by [”LHW.
Example 1 Let M C C* be a real hypersurface near the origin given by r = 0 with
r =2Re(z4) + |21 — 22 + 3% + 1z} — 3%

Using the Kolar algorithm, we proceed as follows: The Bloom-Graham type is 2,

which implies that ;1] = % and A| = (%, % %). Thus, P; = |z1 — zg|2. We consider

all A-homogeneous transformation and choose

Z1=z1—2, and Zj=zj,
for j = 2,3, 4, to obtain a leading polynomial P; independent of the variables z
and z3. We write r in the new variables and ignore ~ when no confusion arises. Then
Py = |z1|? with d; = 2. The leftover polynomial is

01 = |231> + 2Re(2123) + |23 1* + 4Re(z37172) + 4lz1 22/

@ Springer



On the Catlin Multitype of Sums of Squares Domains Page 110f43 155

Ay = (%, 4—1‘, %), where the maximum number max(W;) = 4—11. We consider all Aj-
homogeneous transformations and choose

Hi=an+BZandz; =z

for j = 2, 3, 4, which makes the leading polynomial independent of the variables z»
and z3. In the new variables, P, = |z} |2 with dp = 2 and

0> = 221> + 421231 + 4Re(237123) + I2317 + 2Re(2]23)
+ 4Re(z12223) + 41z1221> + 4Re(237122)
+ 8Re(z1237172) + 4Re(z32172) + 41222317 — 4Re(z37223) — 8Re(21237223)

— 4Re(237273) — 8Re(z1222273).-

A3 = (%, %, %) with max(W,) = %. Here, no Az-homogeneous transformation can
make P; to be independent of any variables and so d3 = 0. Hence,

2 2,2
P3 = |z1|” + 4|z223]".

4 Squares of Monomials and the Multitype Entries

We will show in this section that the set of monomials that give the maximum W-
value at each step of the Kolaf algorithm always consists of both squares of moduli of
monomials and cross terms. Since the entries in the multitype depend on the maximum
We-values, it will suffice to establish that for each entry of the multitype, there is always
a square that gives the corresponding multitype entry.

As hinted in the introduction, we rely on the Kolat algorithm for the computation of
the multitype in [13] to develop tools to study the stratification by multitype level sets
of the boundary of a domain given by a sum of squares of holomorphic functions. We
seek a tool that will enable us to effectively interpret our results both geometrically
and algebraically. As such, we resort to reducing the problem to the study of the ideal
of the holomorphic functions in the sum. For the transition to be effective, we need to
establish that a natural modification of the Kolaf algorithm still holds at the level of
ideals.

The ensuing lemma gives the foundational result we need in order to transition from
the sums of squares case to the case of ideals of holomorphic functions in C". We use
the result from this lemma to prove Theorems 1.1 and 1.2.

Lemma 4.1 Let f and g be monomials with nonzero coefficients from the Taylor expan-
sion of h, where h is a generator from a sum of squares domain in C"*'. Let P, for
t > 1 be the leading polynomial at step t of the Koldr algorithm, and let W; be the
number computed at the (t + 1)th step.

A IFW 12 = Wi(Ig1?), then Wi (f8) = Wi (I f17) = Wi(Ig]?).
B. If Wi (If1>) < W,(Ig|?), then W, (| f1>) < Wi (f3) < Wi(Ig|).
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C. If W;(|f|?) cannot be computed, then

i Wi(fg) < Wt(|g|2)f0r any monomial g for which both Wt(|g|2) and W:(f g)
can be computed.

ii. W,(fg) cannot be computed for any monomial g for which Wy (|g|?) cannot
be computed.

D. If f is such that | f|? is in the leading polynomial P;, then

i. For any monomial g for which W,(|g|2) canbe computed, W;(fg) = Wl(|g|2).
ii. For any monomial g for which W,(|g|?) cannot be computed, W,(f§) cannot
be computed as well.

Here W;(f) := Wi (a, &) where («, &) is the pair of multiindices corresponding to
the monomial f.

Remark 4.1.1 We shall say the quantity W;(f) “cannot be computed” if the pair of
multiindices («, &) corresponding to the monomial f is not an element of ®,. In other
words, W;(f) cannot be computed if the numerator of the fraction giving W, (f) is
not positive; see (4.1) below.

Remark 4.1.2 We note here that W, (f g) and W, ( f g) corresponding to the cross terms
fgand fg, respectively, are equal.

Proof Letzi, ...,z be the variables in the leading polynomial P;, and let the weight
At = (U1y oy Hey et s - - - » Un). We begin by recalling that

N 1 =Y (a; + @) i

W(a, &) = LmL G OOM @1
Z,':C_H(ai + ;)

where (o, @) = (ay, ..., Qy, &1, ..., 0y) is the multiindex of the monomial of which

W; is being computed.

Let I'y be the set of all nonzero monomials that consist of only variables not in P,
let I'; be the set of all nonzero monomials which consist of variables both in P; as well
as variables not in P;, and let I'3 be the set of all nonzero monomials which consist of
only variables in P;. If W, (| f |2) can be computed, then f € I'y or f € I'; only. We
will now prove f cannot belong to I'3. We assume the opposite, namely that f € I'3
and that W, (] f|%) can be computed. The monomial | f|> has weight > 1 with respect
to Ay, and since f € I'z, it follows that the numerator of W; (| f |2) is < 0. Therefore,
W, (] f]?) cannot be computed, which is a contradiction. Without loss of generality,
we now specify to f € I'; or f € I'; for all parts of the lemma pertaining to the case
when W, (| f|?) can be computed (and similarly for g).

Since f € 'y or f € I'>, we can write f = f] f, where f and f> are monomials
satisfying f1 €Tzand f> € T'j.Let f; = 27" ...z¢, wherezy, . .., z are the variables

in the leading polynomial P;, and f> = szf_‘:’l' e zg” forCy e C.If W, (| f|*) canbe
computed, by our definition of f, the multiindices « and 8 corresponding to monomials
f1 and f7, respectively, must satisfy |o| > 0 and |B| > 0. If |«| = O, then f € I'y,

and if |¢| > 0, then f € I';. Here |a| = o1 + - - - + «, as the rest of the entries are
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zero, and |B| = i1 + - -+ + B, for the same reason. Now, \fI12 = fififofr with
|| = |@| and |B| = |B]|. Hence,

— i (o + ) _ 3= Yo i
18] + 18] 1Bl

1
W, (%) = 4.2)

Similarly, let g = g1g2,where g1 € I'3and g» € I". Let y and t be the multiindices
corresponding to monomials g1 and g», respectively. Here g = z)l’l ...z0and g =
Cyz.| ... 24" for C4 € C. By a similar computation as carried out above for f,

y = Y i Vilki

Wi(lg?) = 2 - 4.3)

A. Suppose that W; (| £1?) = W;(|g|*) and consider

L= i — D iy Vilki

Hite = FEa
_ 3 = i itk 5 — Yy Vilki
N Bl + 7]
= BIW (1S 1) + 121 W) from (4.2) and (4.3) by cross multiplication.
1Bl + Il
= W:(IfI*) = W:(lg|*) by our hypothesis. 4.4

B. Suppose that W; (| f|?) < W;(|g|?). Then from (A.) we get that

Wi(f3) = 3= it by — Y ViMi
' 1Bl + Iz

_ BIWS) + Iz IWe(1gl?)

from (4.2) and (4.3)

1Bl + 17| 4.5)
2 2
BIW8P) + [T WillgP) vy w12y
18l + ||
= W, (1g).
Again

2 2
1Bl + ||

since W; (| f1%) < W;(|g|?). Thus, from (4.5) and (4.6), we obtain

W (IfI1?) < Wi (f&) < Wi(lgl).
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C. i. Suppose that W; (| f|?) cannot be computed. Then clearly f ¢ I';. We know that
f = fif> and that || > 0 and |B| > 0. If W;(|f|?) cannot be computed, then
we get that ) ;_ (o + @) > 1. Thus, Y 7 o > 1/2 since o = &; for all
i, 1<i<ec.

Letg = g1g2, where g, € T'zand g, € I'y. W;(|g|*) and W, (fg) canbe computed,
and so g cannot belong to I'3, which implies the multiindex corresponding to g»
must satisfy |t| > 0. Therefore,

3= i il 3 — Dy Vil

1% o) —
(/&) B+ Il
1 c 2
3= Dim1 Qifti + T W,
_ 2 Zz_l‘l)‘/;:;/v;l ||T| +(1gl7) from (4.3)
T
o | . “4.7)
< ———W(lg|*) since = — Y aip; <0
Bl+ 1zl 2 ; T
2 . IT|
< W:(gl) smcem <

ii. From (C.i.) we know that f = fif, ¢ I'; and also that ) ;_, ojju; > 1/2 since
a; = @; foralli, 1 <i < c.Similarly, for g = g1 g it means that g ¢ I'| and that
Yoy viki = 1/2.Thus, Y5, (e; + )i > 1, and so the pair of multiindices
corresponding to the cross term f g is not in the set ®;. Hence, the number W;(f g)
cannot be computed.

D. i. Suppose that f is such that | f|? is in the leading polynomial P;. Then f € I's,
which implies that f = f1 f, with || = 0, thatis, f = Cf; for C a nonzero
constant. Let g = g1g» be any monomial such that W;(|g|?) can be computed.
Clearly, g ¢ I's, and so |7| > 0 whereas |y| > 0. We know from (4.3) that

1 Zc o
7 7 2ui=1Yik
Wi(Igl?) = %ﬁ”

Given that |f|2 isatermin P, Zle (a; +@;)u; = 1since P;isa A;-homogeneous
polynomial of weighted degree 1. Thus, Y ¢_; o;ju; = 1/2 since o; = &; for all
i, 1 <i <c.Now

% — D i1 ifki + % — D i1 Vitki

Wl(fg) =

1Bl + I
— % — i il |+|% — Xizi Vit since || =0
- (4.8)
_ Xk choeiﬂi =3
kq i=1 2

W (Ig1®).
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ii. Letg = g1g2 be any monomial such that W;(|g |2) cannot be computed. From (D.i.)
we know that ) {_, o;ju; = 1/2 and from (C.ii.) we know that Y {_, yiu; > 1/2.
Thus,

c c c
A 1
E (i +y)pi = E (@i +yui =7+ E : Yiki = 1.
=

i=1 i=1

Hence the pair of multiindices corresponding to the cross term f g does not belong
to the set ®;, and so the number W;( f g) cannot be computed.

O

Remark 4.1.3 The terms that are added to the leading polynomial P; at step ¢ of the
Kolar algorithm are the terms needed to compute the multitype. Clearly, the maximum
W; at every step is always assumed by a square of a monomial. All the cross terms
that are added to the leading polynomial could be eliminated without changing the
multitype. Most importantly, the multitype of M at the origin will not change if:

i. Allthe cross terms are eliminated from the expansion of |2|2, where / is a generator
of a sum of squares domain and

ii. All the squares that do not appear in the final leading polynomial are added to our
data.

5 Proofs of the Main Results

We give the proofs of the two main theorems in this section. As hinted in the intro-
duction, we shall use the result from Lemma 4.1 to prove Theorems 1.1 and 1.2. By
our convention in this paper, we assume without loss of generality that the domains
we work with are decoupled as mentioned in the introduction. We start by proving a
more general result than Theorem 1.1.

Theorem 5.1 Let 0 € M C C'"*! be a hypersurface of which defining function is
given as

N
r(2) =2Re(ar) + )1z 2l

J=1

where fi1,..., fn are holomorphic functions near the origin and assume that
the D’Angelo I-type of M at the origin is finite. Then the leading polynomial
Pi(z1, ..., 2n—d,» 215 - - -, Zn—d,) Obtained at step t of the Koldr algorithm, fort > 1,
is a sum of squares of holomorphic polynomials. In particular, the final leading poly-
nomial P(z1,...,2n, 21, ---,2n) corresponding to the multitype weight is likewise a
sum of squares.

Proof We order the generators f; by vanishing order. We truncate each generator fx
up to order B = [A1(M, 0)], the ceiling of the D’ Angelo 1-type of M at the origin,
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and denote it by f,f . Since a sum of squares domain is pseudoconvex, by Theorem 3.1,
no terms of higher order than 8 ought to come into the computation of the multitype.
We order the terms in the truncated generator f,f by vanishing order and also use

the reverse lexicographic ordering to reorder the monomials with the same combined
ki

ki
degree. Now let f;; = Ck,,-z‘f' ...Z3" be the ith monomial in the generator fk’S
after ordering by vanishing order. Let the number of distinct combined degrees in the
Taylor expansion fkﬂ be ki, and let 1 ; be the number of nonzero monomials with

the same combined degree v ; in f,f . Thus,

Kk
PP = 1 fea + -+ fen 2. where i = an,]w
j=l

Here ny is the total number of monomials with nonzero coefficients in the power series
expansion of the generator f; up to order §. In the expansion of | f,f |2, we have two
types of terms: squares | fi ; |> and cross terms 2Re( S j fk,,-). For simplicity sake, for
each monomial fi ; in the generator fk’3 , we write the terms from the expansion of

| fkﬂ 12 into an expression of the form:

i—1
|feil? 4+ 2Re(fij fri), (.1)

j=1

fori =1,2,..., n.

Define P;  for ¢ > 1 to be the sum in the leading polynomial P; at step ¢ consisting
of terms from the expansion of | f,f |2. We could have P; ; = Oforsomek, 1 <k <N,
and for some ¢ > 1 if there are no terms from the expansion of | fkﬁ | in the leading
polynomial P; after the rth step. Thus, P, = lec\/:l Py k. In order to show that the
final leading polynomial P; is a sum of squares, it will suffice to show that each P;
obtained at each step of the Kolaf algorithm is a sum of squares. Note that trivially 0
is a sum of squares.

The Bloom-Graham type is 2v;, where v; := minj<x<y{Vk,1} = v1,1 since the
monomials from the expansion of each | fkﬁ |2 as well as the generators f; are ordered
by vanishing order. Thus, the leading polynomial P consists of all terms of combined
degree 2v;. Clearly, P11 # 0, but P; x = O for every k such that vt 1 > v;. Let k
be such that P; x # 0, and denote by my > 1 the number of monomials from the
Taylor expansion of f,f that have combined degree v;. By writing the terms from the

expansion of | fkﬂ |2 into the form given in (5.1), it is easy to see that the first m; squares

| fr.il* fori =1,..., my as well as the (n;k) cross terms 2Re( fx, ; fi.;) for j < i all

have combined degree 2v;. Thus,

Pii=fix+-+ foml (5.2)
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which is obviously a sum of squares. If d; = 0, then we are done and P; becomes the
leading polynomial with multitype weight A ;. On the other hand, if dj = n — ¢ for
¢ < n, then we proceed to the next step.

In the second step, we assume without loss of generality that the W value of at least
one square in Q; can be computed. Then the maximum W value exists, which further
implies that some terms from the expansion of | f,f | for some k will be added to the
leading polynomial P; in order to obtain P,. P> ; might be O for some k if no terms
from the expansion of | ff |> end up in P, after this step. Obviously, the interesting
case is when P, ; # 0. Consider k such that P, x # 0. Suppose that uy squares from

the expansion of | f,f |2 give the maximum W value, and let | f Zforl=1,...,ux
be these squares. Here ¢; for/ = 1, ..., uy is some positive integer between 1 and ny,
and ¢; < ¢j41 forl =1, ..., ur — 1. The argument now splits into two cases:

Ui
2
2Re( fx.c, fk,q), which give the maximal value for Wy and ¢, < ¢; for 1 <e,l <

U
2

Case 1 P1y = 0. By Lemma 4.1, part A, we get exactly ( ) cross terms

u. Combining the uy squares with the ( ) cross terms gives

Prk = |fier + -+ frey I°- (5.3)

Case 2 Py i # 0. Then from Lemma 4.1, part D(i), we know that for each square
|fk,c,|2 there are exactly my cross terms 2Re( fx, j fk,¢;) forall j < ¢; and j =
1,...,mpaswellasl = 1, ..., uy that give the maximal value for W;. We also

2
the maximal value for W1, and so we obtain the result that

u = .
know from the first case that there are ( k) cross terms 2Re( fx,¢, fk,¢;) that give

Pog=fir 44 fim + foer + o+ frey I (5.4)

In the (¢ + 1)th step, we begin by first assuming that the sum P; ; for some k is
a sum of squares because if P, = 0 the argument is identical to the one given
in Case 1. Thus, let P, be given as Py = |fip, + -+ + fk,buk |2, where vy is
the total number of squares from the expansion of | fkﬂ > in P, after step ¢ with
bj <bjyiforj=1,..., v — 1. Let’s assume that the W; value of at least one
square in Q; can be computed. This implies that the maximal value for W, exists.
Assume that s squares from the expansion of | fk’3 | give the maximum W; value,
and let | fi 4 |2 forl =1, ..., s be these squares.
From Lemma 4.1, part D(i), we know that for each square | fi 4, |? there are exactly
Uk Cross terms 2Re(fk,jfk,a,) for all j < a; where j = by,..., by, and [ =
1, ..., s, which give the maximal value for W;. By Lemma 4.1, part A, there are
Sk
2
obtain the result that

cross terms 2Re( fi 4, fk,al) which give the maximal value for W;, and so we

Pryri = fepy -+ fiby + frar + -+ fray |- (5.5
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Hence, P41 is a sum of squares. Since the leading polynomial P; at each step is
a sum of the P; s, the leading polynomial at each step and subsequently the final
leading polynomial is a sum of squares.

Since every change of variables that is allowed in the Koldf algorithm sends each
square to a square and keeps the weight of terms in the leading polynomial P; the
same, it is easy to see that the leading polynomial is still a sum of squares after any
change of variables.

Our assumption of finite D’ Angelo 1-type implies that the last entry of the multitype
is bounded, and so all entries of the multitype weight will be finite. This means that
the Kolar algorithm will definitely terminate after a finite number of steps, and so
the above procedure can only occur finitely many times. We conclude, therefore that
the final leading polynomial corresponding to the last weight in the procedure, the
multitype weight, is always a sum of squares, too. O

Proof of Theorem 1.1 We know that the final leading polynomial in the Koléf algo-
rithm for computing the multitype at the origin is the model polynomial. Thus, from
Theorem 5.1, we conclude that the model of a sum of squares is a sum of squares. O

Before we proof Theorem 1.2 we shall consider the following lemma:

Lemma5.2 Let M C C"™! with 0 € M be a hypersurface of which defining function
is given by

N
r(2) = 2Re(@us1) + 3 1@tz
j=1

where fi, ..., fy are holomorphic functions near the origin. Let M' C C't! be
another hypersurface of which defining function is given as

-1 N
u(z) = 2Reur1) + Y _Ifi15 + hifi =D hefel>+ D 1fi1%
j=1 c#l j=l+1

for some fixed |, where hj is a holomorphic function near the origin for every j =
1,..., N. Assume that the D’Angelo I-type of M is finite at the origin. Then the
multitype obtained by applying Koldr algorithm to both r(z) and u(z) is the same
provided that (f1, ..., fn) and

<f1, oo S hifi =Y e fe, fiens ...fN>
c#l
represent the same ideal in the ring O.

Remark 5.2.1 Modifying only one generator at a time makes the bookkeeping in the
computation of the multitype easier to follow.
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Remark 5.2.2 Assume that there exist some / such that 1 </ < N and holomorphic

functions near the origin Ay, ..., hj—1, hi41, ..., hy such that f; = thfc. It is
c#l

clear that (f1, ..., fy) and (f1,..., fi—1, fi+1, ... fn) represent the stlme ideal in

O. Therefore, applying Lemma 5.2 with /; = 1 shows that adding in the square | f;|?

or taking it away makes absolutely no difference as far as the multitype computation

goes. This observation will be crucial in the proof of Theorem 1.2.

Proof We will show that the multitype obtained by applying the Kolaf algorithm to
both r(z) and u(z) is the same. Let 8 = [A1(M, 0)] be the ceiling of the D’ Angelo
1-type of M at the origin. We truncate each generator f; as well as each holomorphic
function Ay at the order 8 and denote them by fk’S and hf , respectively. Denote by fi i
the ith monomial from the Taylor expansion of fkﬁ after ordering by vanishing order
and reverse lexicographic order for the monomials with the same vanishing order.
By Lemma 4.1, we know that each entry of the multitype is realized by a square. If
no square from the expansion of | f[ﬂ |? contributes to the entries of the multitype, then
the multitype entries for both defining functions r(z) and u(z) are the same, and there is
nothing to prove. We, thus, assume that there exists at least one square from the expan-
sion of | fl’3 |? that contributes to the entries of the multitype and that no nonzero multiple
of that square exists in any of the expansions 0f|f1ﬂ|2, e, |f1’3_1 12, |fli-l 1., |f/€|2.
Next, we claim that if #;(0) = 0, then no square from the expansion of |hf fl'S |2
can contribute to the entries of the multitype. Indeed, let /;; be the ith monomial
from the Taylor expansion of hf after ordering by vanishing order and reverse lexico-
graphic order for the monomials with the same vanishing order. For every monomial
f1,j in flﬂ , the monomial %, ; fi ¢ in hf flﬁ has greater combined degree than that
of f1,; for every i > 1. As a result, |h; f7 ; |> cannot give the Bloom-Graham
type since the combined degree of | f; ; |2 is strictly less than the combined degree
of |h1,if17j|2. Furthermore, Wl(|h1,,-fl,j|2) cannot be computed if W,(|f1,j|2) gives
the maximum W;-value. By the same argument, if f; = )", 21 8c fe, for g. with
c=1,...,1—1,1+1,..., N holomorphic functions near the origin, then no square
from the expansion of | f/8 | can contribute to the entries of the multitype unless it is
the square of the nonzero constant term of some g. multiplied by a monomial of f,
that in itself gives that same multitype entry. Since we assumed the contrary, f; cannot
be written in terms of the other generators. By our hypothesis, however, (f1, ..., fn)

and (f1,..., fi—1, i fi — ZC# fehe, fi+1, ... fn) represent the same ideal in the
ring O. Putting these two facts together along with our assumption that there exists

at least one square from the expansion of | f/6 | that contributes to the entries of the
multitype and that no nonzero multiple of that square exists in any of the expansions of

PP PO fE P L FR12, we conclude that Ay (0) # 0. Without loss of
generality, assume /s; = 1. We shall show that modifying the function fl’3 in the sum
of squares by the sum ) ol ff h’f does not alter the multitype. We further assume
thatthesum ., rEn? +o. By Lemma 4.1, it suffices to focus on how the omission
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of some squares of monomials from the term | fl’3 - £l hf ff |> in the defining
function u(z) affects our results. We now break our argument into two cases:

Case 1 Assume that there exists a monomial m in fl‘tj of which square |m|? from the

expansion of | fl’3 |? gives the Bloom-Graham type. We consider two subcases
here:
i. Assume that m is in the expression f/3 =D e hf fc‘3 . Then no monomial in

the sum ), oy hf fcﬁ cancels out m. Clearly, the weights obtained at the first
step of the Kolaf algorithm are the same for both r(z) and u(z) since Im|?
belongs to both defining functions.

ii. Assume that m is not in the expression flﬂ - oy hf ff . Hence, m gets
canceled out in the expression flﬁ - £l h’f ff and so does not appear in
u(z). Let ¥ be the monomial in the sum ZC# h’f ff that cancels out m, and
write ¥ = he; f, j for some ¢ # [, where h.; is some monomial in hcﬁ and
fe,j 18 some monomial in ff . By our assumption, ¥ equals m, and its square
|¥/| gives the Bloom-Graham type as well. The monomial 4.; cannot have
vanishing order 1 or higher; otherwise, f. ; must have combined degree less
than that of v, which contradicts the fact that [1/|> gives the Bloom-Graham
type. Thus, he; = he1 € Candm = h 1 fe, j. Hence, the square |fc’j|2 gives
the Bloom-Graham type as well. Even though there is the cancellation in u(z),
the weight obtained at the first step having applied the Kolaf algorithm to r(z)
and u(z) is the same. More specifically, the squares | fc ; |> and |m|? appear in
the expansions of | fcﬂ |2 and | fl’8 12, respectively.

Case 2 Assume that there exists a monomial m in flﬂ of which square |m|? from the
expansion of | flﬁ 12 gives the maximum W;-value at the (# 4 1)th step for ¢ > 1.
i. Assume that m is in the expression flﬂ - ZC# hc'8 fcﬁ . Then no monomial in

the sum ) £l h? ff cancels out m, and so the weights obtained at the (4 1)th

step are the same for both r(z) and u(z) since |m|2 belongs to both defining
functions.
ii. Assume thatm is notin the expression flﬁ -3 £l hf fc’8 . Then m gets canceled

out by some monomial ¥ in the sum ) _, £l ff h’f .Let ¢ = he s fe,j for some

s and j, where k. s is some monomial in hf and f, ; is some monomial in ff .
This implies that m = v and || gives the maximal W;-value at step ¢ + 1
as well. Now let’s assume that /. ; ¢ C. Then the combined degree of f, ; is
less than that of /.

If W, fe,; |2) cannot be computed, then W, (| |2) cannot be computed, which
gives a contradiction. Therefore, we assume that W, (| f¢, ; |2) can be computed.

At this point let us recall the definition of I'y, I'2, and '3 as given in the proof of
Lemma 4.1. Let I'y be the set of all nonzero monomials that consist of only variables
not in P;, let I'» be the set of all nonzero monomials which consist of variables both in
P; as well as variables not in Py, and let I'3 be the set of all nonzero monomials which
consist of only variables in P;. Also, recall that for any monomial f if W;(| f|?) can
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be computed, then f € I'; or f € I'> only. Again, we shall write any monomial f in
the form f = y; y» where y; and y» are monomials satisfying y; € 'z and y» € T'y.
Recall that

— > (i @i
Z?:K_H (aj + &z)

1
Wi (| f1?) =

where (a1, ..., 0, &1, ..., &,) is the multiindex of the monomial | f|? of which W,
is being computed, « is the number of variables in the leading polynomial P, and
W, (| f|?) is the W,-value of the term | f|?.

We shall now consider the number W, (|v/|%) given that W, (| fc ; 12) can be com-
puted. From Lemma 4.1, f. ; € I'y or I';. Since the monomial /. ; can belong to I'y,
'z, or I'3, we shall consider three subcases below and assume that f. ; € 'y or [z in
each case:

a. Assume that iy € I'1. Clearly, Wt(|fc,j|2) and Wt(|1//|2) both have the same
numerator and the denominator of Wt(|1p|2) is greater than that of W;(|f, j|2)
because /. s € I'y. Thus, W,(|fc,j|2) is greater than Wt(|1//|2), which is a contra-
diction to our hypothesis that W; (| 1) is maximal at stept + 1.

b. Assumethatf. € I'2. Here, the numerator of W; (| |2) is smaller than the numer-
ator of W, (| fe,; 1) since hc.s contains a monomial in I'3. Also, the denominator
of Wt(|1ﬂ|2) is greater than the denominator of W, (| f,; |2) because /. s contains
a monomial in I'y. Thus, Wt(|fc7j|2) is greater than Wt(|1//|2), which is again a
contradiction.

c. Assumethath. € I's. Then W, (| fc ; 12)is always greater than W, (| |2) for fej €
['1 or ', since the denominators of both numbers are equal and the numerator of
W (| |2) is less than that of W, (| f¢ ; |2). This gives a contradiction since W; (|y |2)
is maximal at step ¢ + 1.

From cases (a), (b), and (c) we can see that if . ¢ ¢ C, then W, (|¥|%) cannot be
the maximum at step 7 + 1, and so we have a contradiction to our hypothesis in all
three cases. Hence, h. s € C and som = hc s f. j. Clearly, W;(| fc ; |2) gives the
maximal value at step ¢ + 1, too. This implies that if we apply the Kolar algorithm
to both r(z) and u(z), then the multitype entry at the (¢ + 1)th step will be the same
for both defining functions. The squares | fc ; | and |m|? appear in the expansions

of | fcﬁ |> and | flﬁ |2, respectively. We see that regardless of the cancellation in u(z),
the weight obtained at the (¢ 4+ 1)th step remains unchanged.

Clearly, the case when £;(0) # 0 combines the analysis for the cases when i; = 1
and /#;(0) = 0. O

Proof of Theorem 1.2 Let M C C"*! with 0 € M be a hypersurface of which defining
function is given by

N
r@@) =2Re(zni1) + D _1fi 1zl (5.6)
Jj=1
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where fi, ..., fx are holomorphic functions near the origin. We begin by letting
M’ c C™*! be another hypersurface of which defining function is given as

S
u(z) = 2Re(zup) + Y _ 18 (@1s - n )l (5.7)
j=1

where g1, ..., gs are also holomorphic functions near the origin, and show that the
multitype obtained by applying the Kolar algorithm to both r(z) and u(z) is the same
provided that ( fi, ..., fn) and (g1, ..., gs) represent the same ideal in the ring O.

Let the ideals associated to the hypersurfaces M and M’ be given by (f) =
(f1,..., fn) and (g) = (g1,...,gs), respectively, and suppose that () = (g).
By Remark 5.2.2 following the statement of Lemma 5.2, we know that adding in the
square of any element of the ideal { f1, ..., fn) does not modify the multitype because
that element can be written in terms of the generators fi, ..., fy with coefficients in
O. Since (f1,..., fN) = (g1,...,&s), each g; is an element of (fi, ..., fy) and
can be written in terms of f1, ..., fy with coefficients in O. Therefore, (5.6) has the
same multitype at the origin as

N
r1(2) = 2Re(zu) + Y 1fiG1 - )P+ 181G 2l
j=1

and inductively, the same multitype at the origin as

N N
rs(@) = 2Re(znt) + D 1fi @1 )P+ Y lgk (@ -zl

j=1 k=1
Now, we apply the argument in reverse. Since (g1, ..., &s) = (f1, ..., fn), each fjis
an element of (g1, ..., gs) and can be written in terms of g1, ..., gs with coefficients

in O. Therefore, by Remark 5.2.2, (5.7) has the same multitype at the origin as

S
w1 (2) = 2Re(zn41) + Y 1@t o 2P + [ filzn, s 2l
k=1
and inductively, as
S N
rs(2) =2Re(znp) + D18k (@t 2P+ Y £zl
k=1 j=1

We conclude that 7 (z) and u(z) have the same multitype at the origin, namely that the
multitype is an invariant of the ideal of generators. O
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6 An Ideal Restatement of the Kolar Algorithm

In this section, we give the ideal restatement of the Kolaf algorithm for the multitype
computation for sum of squares domains in C"*!. Before that, we shall consider the
following:

Let M C C"*! be a hypersurface given by = 0 with

N
r=2Re(zut) + Y1 fizt -zl
k=1

where f1, ..., fy are holomorphic functions defined on a neighborhood of the origin.
Assume that the D’ Angelo 1-type is finite at the origin and that § = [A (M, 0)],
the ceiling of the D’ Angelo 1-type of M at the origin. We truncate each holomorphic
function f; at the order B and let f;; be the ith monomial of the generator fk’g
after ordering by vanishing order. The ideal corresponding to the defining function
ris given as 7 = (zp+1, flﬂ, '-~vf1€)- We know that the term z,,41 has weight 1.
Following the original algorithm of Kolaf, we shall ignore the term z,,41 and work
with the corresponding ideal Z = ( flﬁ v f 16 ).

From Theorem 1.1 we know that all leading polynomials produced are sums of
squares. Therefore, any leading polynomial P; can be written in the form:

Vi 2

N
Pj =Z‘ka,ai

k=1 i=1

: 6.1)

where the f; 4, ’s are the monomials from the generator fkﬂ of weighted degree % with
respect to A ;. We will associate to every leading polynomial P; the ideal Zp; given
by

V] UN
Ip; = <Zfl,ai7~'-»ZfN,a,-)~ (6.2)
i=1 i=1

It is convenient to introduce notation for each square in P;. Let Pj ; = ) Zlv": 1 Jra;
Then its associated ideal Zp, , can be expressed as

Uk
IPj’k = <Z fk,al‘) = (fk,al +--- 4+ fk,avk) (63)
i=1
Clearly,
N
Ip, =Y Ip,,. (6.4)
k=1

@ Springer



155  Page 24 of 43 N. Aidoo

Recall also that each monomial in every leading polynomial is of weighted degree
one with respect to the corresponding weight. As a result, the weighted degree of any
monomial f; 4, is exactly one half with respect to the corresponding weight.

Thus, given Zp; , = (fiay +---+ fk,a%), the fx 4 s are exactly the monomials

from the generator f,f of weighted degree % with respect to A ;.
Set the ideal Z = 7. For j > 1, the ideals 7 P Zj, andZ Pj; can be described as
follows:

1. Zp; is the ideal of which generators are premsely the terms from the generators of

the ideal Z; 1 having weighted order exactly 5 with respect to the weight A ;. We
refer to the ideal Zp; as the leading polynomial ideal.

2. The ideal Z; is the ideal obtained after applying the chosen A j-homogeneous
transformatlon which makes the generators of Zp; to be 1ndependent of the largest
number of variables, to Z;. Simply put, /; is the ideal obtained after changing
variables in the ideal Z; ;.

3. Zp;, is the principal ideal of which generator is the sum of monomials in the

generator fkﬂ with weighted degree exactly % with respect to the weight A ;. The

ideal Zp, , is the zero ideal if no monomial in the generator fk’g has weighted degree
X J.

5 with respect to the weight A ;.

The Kolar Algorithm (Ideal Version) Set the ideal Z = 7, and compute the van-
ishing order at the origin of Zy, which is the same as the degree v; of the lowest order
monomial in Zy. We define the Bloom-Graham type as twice the vanishing order of Z.
This gives the first entry of the multitype m| and so let m; = 1/, where ;1 = 2vy.
Set the first weight to be A1 = (11, ..., K1).

In the second step, consider all Aj-homogeneous transformations, and choose
one that will make the set of all generators of the leading polynomial ideal Zp, to
be independent of the largest number of variables. Denote this number by d;. In
the local coordinates after such a Aj-homogeneous transformation, we obtain that
Ip, is the ideal of which generators consist of those monomials in the variables
21, ..., Zn—d,» Which are of weighted degree 1/2 with respect to A . Apply the chosen
A1-homogeneous transformation to the ideal Z to obtain the ideal Z;. The rest of the
terms from the generators in 7, which are not in Zp,, have weighted degrees strictly
greater than é with respect to Aj.

We shall now give a slightly modified version of Koldf’s © and W;. If o/ =
(a e, kj ) is the multiindex of a monomial fi ; from any generator of Z;, which
is not in I p,» then fi ; is of the form:

k.j : 1
fej=Cl2%" and | [y, > <.

2
Let
0= {ak‘j

n—dj 1

C,l,j # 0 and Zaf’jm <3
i=1
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For every o/ € ©1,
1 Zn*dl k,j
i 7 T 2ui=1 % M
W (ki) = 2 i=l i = (6.5)

n k,j
Zi:nfd1+l o;

The next weight A5 is defined by letting

A?: max Wl(ak’j)
akie®;

fori > n—d;,and k% = w1 fori < n—d. To complete the second step, we let Zp, be
the second leading polynomial ideal corresponding to the weight Aj. The generators

of Zp, depend on more than n — d; variables.

We proceed by induction. At the step 7, for + > 2, we consider all A;_1-
homogeneous transformations and choose one that makes the generators of the leading
polynomial ideal Zp, , to be independent of the largest number of variables. Denote
this number by d,_;. Apply this A;_j-homogeneous transformation to the previous
ideal Z,_» in the (f — 1)th step to obtain the ideal Z;_;. We know from the Kolaf
algorithm that the number of multitype entries that are added at each step of the

computation depends on the difference (d;—> — d;—1). We consider two cases:

Case 1: Assume thatd;_» > d;_1. Againrecall that for any weight A that is smaller
than A;_; with respect to the lexicographic ordering, A-adapted coordinates are
also A;_j-adapted. This implies that we get (d;—» — d;—1) multitype entries

o S|
Mn—di—a41 = """ = Mn—d_ = My_g 41

and let Af = u; fori <n —d;—>. Here, Tp, , is the ideal of which generators are
sums of monomials in the variables z1, ..., z,—q, , that are A;_j-homogeneous
of weighted degree % To obtain A} fori > n — d,_1, we consider the rest of the
monomials from the generators in Z; _; thatare notin Zp, ,. Using these monomials
that have weighted degree strictly greater than % with respect to A;_1, we define
®;_1 and compute W;_1 in a similar way as in step two. Such monomials are
of the form f; ; = C,’(’_jlz“k‘j for multiindex of/ = (a]f”, el aﬁ’]) satisfying
|otk’j|AH > % Thus,

n—d;_ ) 1
C,i’_jl # 0 and Z af"/ui <=

O, = ki
: 2
i=1

For every o/ € ©,_1,

n—di—1 _k,j
_Zi:1 o T K

1

k,j 2

Wl‘—](a ’j) = n k,j
Zi:n—d,,lﬂ q;

(6.6)
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So for the remaining multitype entries of A j, we let

M= max W@,
akie®,_

fori >n—d;_;.

Case 2 Assume that d;_; = d;_». There are zero multitype entries computed in
this case, and so we only determine A for# > n—d;_; using (6.6). This completes
the step ¢ of the algorithm.

We can, thus, establish a one-to-one correspondence between the leading polyno-
mial P, for ¢t > 1 and the intermediate ideal Z p, introduced above. Since working with
ideals of holomorphic functions is often easier than with real-valued polynomials,
the restatement of the Kolaf algorithm simplifies multitype computations for a sum
of squares domain. We work with considerably fewer terms in the case of the ideals
as compared to sums of squares. In particular, for each modulus square of a genera-

z

tor consisting of m monomials, Kolai’s original algorithm involves working with m

squares plus cross terms, whereas this restatement in terms of ideals involves

m

2

computations for only m monomials.
We give a corollary to Theorem 1.1:

Corollary 6.0.1 Let M C C"t! be a hypersurface given by r = 0 with

N
r=2Re(u1) + Y 1fj (a1 2l
Jj=1

where f1, ..., fn are holomorphic functions defined on a neighborhood of the origin
and assume that the D’Angelo 1-type of M at the origin is finite. Then for £ > 1, each
monomial from every generator of the leading polynomial ideal Zp, obtained at the
Lth step of the Koldr algorithm has weighted degree % with respect to the weight Ay.

Proof Let fkﬁ be the Taylor expansion of the holomorphic function fj to the order g,
where 8 is the ceiling of the D’ Angelo 1-type. We order the generators by vanishing

order and let Z = ( flﬂ e, 16). Now assume that the vanishing order of the ideal Z
is v > 0. Then the Bloom-Graham type is precisely 2v and the weight p; = % with
Al = (21_\;’ R 21_\))' Thus, Zp, is not the zero ideal.

For every k such that Zp, , is not the zero ideal,

IPl,k = (fk,la R fk,mk)v

where each monomial fi ;, for 1 <i < my, has weighted degree % with respect to the
weight A 1. Next, assume that in the second step, the ideal Z Pix is the same as the ideal
Zp, . Weknow that the entries corresponding to each variable in the monomial f ;, for
1<i<m k. are the same in both weights A1 and A». Therefore, each monomial from
the generator Z:":"l fk.i has weighted degree % with respect to As as well. Assume
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that the principal ideal Zp, , is generated by the sum }-7" fi; + 37, fip;. Since
the new sum Z’]/A: 1 Jx, b corresponds to the new weight A, each monomial fj, b has
weighted degree % with respect to A,. Therefore, every monomial in the generator of

the ideal Zp, , has weighted degree % with respect to Aj.
Next, we assume that for £ > 2

IP/,k = (fka +--+ fk,avk),

where each monomial fi 4, for 1 <i < v, has weighted degree exactly equal to %
with respect to the weight A,.
Now, assume that at step £ + 1, the ideal Zp,, , is the same as the ideal Zp, , . Every

monomial in the generator of Zp, | , also has weighted degree equal to % with respect
to the weight Ay because even though Ay is not the same as Ay, the weight
corresponding to each variable in fk,auk is the same in both weights Ay and Ay 1.

Next, assume that at step £+ 1 the sum Y% | fi p, isadded to the sum Y% | fi q,,
to obtain the generator of the ideal

IP@+1_k = (fk,al +---+ fk,avk + fk,b] +---+ fk,buk)'

This implies that each monomial fk,buk has weighted degree % with respect to the

weight Agy1. Again, each monomial fi q, is of weighted degree % with respect to
the weight A ¢ since the weight corresponding to each variable in fi 4, is the same
in both weights Ay and Ay 1. Thus, every monomial from the generator of the ideal
Zp,,,, has weighted degree % with respect to the weight Ay . O

The example that follows is the ideal restatement of the Kolar algorithm applied to
the defining function given in Example 1.

Example2 Let M C C* be a sum of squares domain given by the defining function
r=2Re(zs) +lz1 — 2+ B3I + Iz} — 5
The associated ideal then becomes
IT=@—-2+2.72-23) =1.

The vanishing order here equals one, and so the Bloom-Graham type is 2, which
implies that u; = % and A| = (%, % %). Hence,

IP| = (Zl - 12) =IP|11~

So Zp,, is the zero ideal. We consider all Aj-homogeneous transformations and
choose
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to make Zp, independent of the largest number of variables. We shall ignore ~ where
no confusion arises. Thus, in the new coordinates,

IP] - (Zl) - IPL]

with di = 2, and so Zg becomes Z; = (z1 + z%, Z% + 2z1z2). The maximum of
W1 obtained by computing W; for each monomial in the generators of Zj is ‘l‘ and
Ay = (%, 4—1‘, }1). Hence,

Ip, = (21 +23),

where Zp, | = Ip, and Zp, , is the zero ideal. Next, consider all A;-homogeneous
transformations and choose

Hi=a+2 =z, j=23.4

which makes Zp, to be dependent on only the variable z;. Again, we shall ignore ~
where no confusion arises. In the new coordinates,

Ip, = (z1)

withd = 2. Theideal Zp,, = Zp,, and Zp, , is the zeroideal. Z; in the new coordinates
becomes

I = (21,23 + 22123 + 2§ + 22120 — 22223).

Computing W, for each monomial in the generators of 7, yields the set of numbers
{é, %} of which maximum, max W, is %, and so Az = (%, %, %). Also,

Ip, = (21, —22223) = (21, 22223).
Here Zp,, = (z1) and Zp,, = (2zgz§). No Ajz-homogeneous transformation can
make Zp, to be independent of any variables, and so d3 = 0. Thus, the multitype

weight A* = A3, and the final leading polynomial ideal is

2
Ipy = (21, 2223).

7 Changes of Variables in the Kolaf Algorithm

We now give an explicit construction of the polynomial transformations that are
performed in the Koldr algorithm. We begin this construction by first relating the
weighted homogeneous polynomial transformations to pairs of row-column opera-
tions on the Levi matrix of a sum of squares domain. More specifically, we show
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that each polynomial transformation corresponds to some finite sequence of row and
column operations. Lemma 7.1 below establishes this correspondence.

Throughout this section, we shall assume the following:

Let M C C"*! be the boundary of a sum of squares domain defined by {r < 0},
where

N
r=2Re(zut1) + ) IfiGr .zl
j=1

and f1, ..., fy are holomorphic functions in the neighborhood of the origin. Let

ro = 2Re(zn+1) + P(z, 2)

be the defining function of the model hypersurface My of M, where P(z,z) is a
polynomial of weighted degree 1 with respect to the multitype weight at the origin A*
of M. Let A be the n x n Levi matrix of the model My C C"*!, where we ignore the
contribution of the (n + 1)*' coordinate as the holomorphic polynomials in the sum
of squares do not depend on it as mentioned in the introduction.

Lemma 7.1 Assume that the D’Angelo I-type of the hypersurface M in C"! ar 0 is
finite. Leti € {1, ..., n} be fixed, and let h € C[z] for z = (z1, ..., 2n) be a nonzero
monomial independent of z;. Let hy denote the derivative of h with respect to the
variable zy, which is 9;,h with | € {1, ..., n}\ {i}. Furthermore, let hy(t) denote hy
with every factor of z; replaced by a factor of T. Performing the elementary row and
column operations Ry — hyR; — Ry and Cy — heC; = Cy on the Levi matrix A of ro
for all variables z, in h corresponds to the polynomial transformation

ze
Zi=Zi+/ he(r)dt =z +h;  Zp =2eforow #i
0

in the sense that the new matrix A obtained after these elementary operations is
Hermitian and is the Levi matrix of the new defining function of the sum of squares
domain after the change of variables z, — Zy, forw = 1, ..., n + 1 has taken place.

Remark 7.1.1 The reader should note that while only variables zy, ..., z, play a role
in the behavior of the Levi matrix, C"*! is the underlying space, so all changes of
variables described in this section will take place in C"*! and leave z,, 41 unchanged.

Proof Suppose that the defining function ry of the model hypersurface My is of the
form:

N
ro =2Re(zur1) + Y &l

=1

where P(z,2) = ZtN=1 lg:|%and g; = Zzbtzl m; ; is a polynomial consisting of mono-
mials m; ; in the variables z1, . . ., z, since P (z, Z) cannot depend on the variable z,,41.

@ Springer



155  Page 30 of 43 N. Aidoo

1l
Letm;; = Cy ngl zg‘s with C;; € C. Foreacht andfor/y,lr € {1, ..., b;}, every
monomial from the expansion of |g; |2 can be written as

n RUNP
— ral s %
my g, = Coi Cry | |Z(S s
5=1

By writing each term m; ;,m; ;, for all ¢ in the new coordinates, we obtain P(z, z) in
the new coordinates. Hence, it suffices to show that applying the specified elementary
row and column operations to the Levi matrix of the monomial m; ;,m; j, corresponds
to the polynomial transformation z; = z; + h; Zp = 2, for w #i.

Denote by D the (i, j, k, u) submatrix of the Levi matrix of the monomial m; j, 71, 1, ,
and let D = (deg)e =i, j k,u, Where de is given by

— 1l Wty Ll Aty tlp st
t,h sty ot —12& al st =1 a5 = O
del? = Cl,ll Ctvlzaf lalc zzee Z,° ZKK ZKK 1_[ s L5
=1
S#e,k

Let h = ngi”, e, zf;“, where C € C, 8 = (B1, ..., By) is a multiindex, and
a,...,ay € {1,...,n}\ {i}. Now, assume that j,k € {ay,...,as} with j # k
and u ¢ {ay, ..., as}. Perform the elementary operations Ry — A/R; — R, and
C; — hyC; — Cy for all variables z; in i on D to get

diy dij — hjdii dip — ediz dii
dj,’ —/’ljd,'; djj —h_jdij —hjdj,’ + |_hj|2d,'; dﬂ; —/’ljdi]; —f_lkdj,’ ~|—/’lj/’lkd,',’ dj[, —]’ljd,',;
dii — hidiy dyy — hjdic — hidiy + hjhedip dyp — hedip — hidig + \he|?dir diia — hrdia
dyz duj - hjdui du]z — hidy; dyi

The matrix above is the Levi matrix for the monomial in the new coordinates

1l 1.l Ll sth
~ = = = AL AN a0
i, = ConCon G — % G —h% [z %

S£i

which is obtained after applying the polynomial transformation z; = z; +h; Z, = 2
forw # i tomy my .

We now prove that the matrix A is Hermitian. Since the matrix A is Hermitian, we
will show that applying the operation Ry —h;R; — Ry and C,— heC; — Cpto A gives
amatrix thatis Hermitian as well. Let A = (a;j)1<,1<» be the Levi matrix. Apart from
row £ and column ¢, there is no change to A, which is Hermitian. Let a,; be an entry
in row £. Then the entry a,; is in column ¢ and satisfies the property that a,; = a;;.
Performing the elementary operations R; — h¢R; — Ry and C; — hyC; — Cyon A
gives a new matrix A with a,; — hea, in row € and a,; — hyay; in column £. Now

g — hea;p = ap g — heags = agg — heagg.
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Thus, the new matrix A is Hermitian as well. O

Proposition 1.3 stated in the introduction provides a general condition for the exis-
tence of an allowable polynomial transformation via the elementary row and column
operations performed on the Levi matrix of a leading polynomial at some step of the
Kolar algorithm. It turns out that the restrictive definition of dependency mentioned in
the introduction is a necessary and sufficient condition for the existence of allowable
polynomial transformations. At this point, we give the proof of Proposition 1.3 and
remark that the proof is constructive in the sense that we will show the allowable poly-
nomial transformation on P; arises as a composition of polynomial transformations
corresponding to elementary row and column operations on Ap; .

Proof of Proposition 1.3 Let k be given, and denote by Ry and Cy, the kth row and kth
column of the matrix A p;, respectively. Suppose that the kth row of A p; is dependent.
This implies that Cx must also be dependent since Ap; is Hermitian. Hence, we can
write both Ry and Cy, respectively, as follows:

n n
Re=Y p'RandC =) BC. (7.1)
2k %k
where ,61 € Clz] for every [, 1 <[ < n. As proven in Theorem 1.1, the leading
polynomial P; is a sum of squares, and so we write P; = > ", [¢° |>, where each
¢* is a nonzero polynomial with vanishing order greater than or equal to 1. Denote by
ai; the entry in the (k, f) position of the matrix A p;, fort =1, ..., n. Therefore, for
k # [ the entries in Ry and R; are given by

m m
ag =Yy oid and aj=Y_¢¢}, (7.2)
s=1 s=1
and the entries in Cy and C; are given by
m m
ag=Y 6, and a;=) ¢ (71.3)
s=1 s=1

g’
azj

We will show that there exist some elementary row and column operations that make
Ry to be identically zero and also make every monomial in A p; to be independent of
the variable zj.

To that end, we see from (7.1) that every pair Ry — ,31 R;; Cr — ,31C1 for which
the polynomial g is nonzero requires corresponding elementary row and column
operations in the exact form expressed in the pair. If 8/ = 0 or R; = 0, then no
elementary row or column operation is required. Therefore, assume that 8! is nonzero
and that R; is not identically zero. Let 8% (¢x) be B! with each factor of z; replaced by

respectively, where q&j =
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%k
a factor of ¢;. Then / ,81(51() d¢; must contain the variable z; together with all the
0

other variables in A'. Recall that 8! € C[z], so ' does not depend on any variable z,,.
Hence, we shall investigate all monomials in A P; containing the variable z.

We recall at this point that by applying the operator d,, 0z, to P;, we obtain in row
Ry the derivatives of all monomials containing the variable zz. Let a;7 be an entry in
row Ry. Now, because Ry is dependent, every monomial u in a,; arises as the product
of a monomial p in B! for some / with a monomial ¢ in entry ;7. So u = pq, but
since u comes from differentiation by 9, dz,, P; must contain a monomial m = uz;z;.
If u € C, then no entries in A P;, except for those in Ry, contain derivatives from m.
If u has positive vanishing order then u depends on at least one variable z,, or z,, for
some v. Since P; is real valued, it contains both m and m. Therefore, without loss
of generality, we can assume u depends on z,; otherwise, we work with u. Since u
depends on z,,, the entry a,; in the vth row R, contains the monomial d,,9dz,m # 0,
which has at least one factor of z;. We seek to eliminate all such monomials containing
variable z; from the matrix A P;-

%
Set yl = / Bl (k) dgx, and let y! = P m!? where m!"? is a nonzero

monomial containing the variable z; for all » > 1. We recall from Lemma 7.1 that
for any nonzero monomial m in the leading polynomial, if we perform the pair of
elementary operations R, — 9, mR; — R, and C,, — 9; mCy — C, for all variables

zy in m, then this pair corresponds to the polynomial transformation z, = z¢ +
v

0cm(t) dt = z¢ + m; Z, = Z, for w # £, where 9, m(t) is 9,,m with each
fa(t)ctor of z, replaced by a factor of 7.

Now, for each monomial m’? in yl, b=1,...,e, weperform the elementary row
and column operations R, — 3, m"*R; — R, and C, — 3; m"*C; — C, for every
variable z, in m’?. The composition of all of these polynomial transformations S is
givenby z; = z; + yl for every / such that ,31 # 0 and z,, = z,, for all w # [, where
1 < w < n+1. Note that (7.1) implies that yl has the same weight as z; in A ; because
P; only contains terms of weight 1 with respect to A j, so S is A j-homogeneous as
needed.

After all the elementary row and column operations corresponding to the polyno-
mial transformation S have taken place, the entries in Ry are

a; =" ¢i¢; - Zﬂ(Z@«ﬁ,)—akt Zﬁlazr‘EO (7.4)
s=1

=1

as a consequence of (7.1). A similar argument holds for the entries in Cy, which we
denote by a " namely (7.1) implies that a i = = 0. Therefore, all entries in the kth row
and column of the matrix Ap; are 1dent1(:ally zero after the change of variables S has
been performed. Now, assume that the leading polynomial P; still contains the variable
zi after the given change of variables has been performed on it and some cancellation
occurs. Since the leading polynomial P; is a sum of squares, in the expansion of P;
besides the cross terms, which could possibly cancel each other, we would have at least
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two squares of monomials containing zx. From the above discussion, it is clear that
by performing these elementary row and column operations on Ap;, all monomials
containing the variable z; in any of its entries will have been eliminated including
any contribution from those squares. Thus, P; could not possibly have contained the
variable zx, so S is an allowable polynomial transformation with respect to the variable
k-

Conversely, suppose that there exists an allowable polynomial transformation on
P; with respect to the variable zx, and let 7 be this polynomial transformation, which
we shall express as follows:

Zi=zi4yl (7.5)

fori =1,...,n+1, where some of the yi may be zero. We note here that the transfor-
mation 7 is a A j-homogeneous transformation, and so ! has the same weight with
respect to A ; as z;. Furthermore, we note that any A j-homogeneous transformation
can be written in this form.

We will prove that the kth row Ry is dependent by showing that it satisfies the
condition given in (7.1). Assume that the variable z; is contained in y’ for some
i €{l,...,d} withd < n. We know that each z; corresponds to the row and column
operations:

Ry — y{R; = Ry and Cx — 7/C; — Cy, (7.6)

respectively, fori = 1,...,d, where y,f =3,y #0.Let I3j be the leading poly-
nomial P; after the polynomial transformation 7 is applied to it. Since f’ ; does not
contain the variable zi, the entries fzk; of Ry and fzt,; of Cy of the matrix A 3 for all
t =1,...,n are zero entries.

Now, by simply reversing the signs involved in the elementary operations in (7.6),
we can restore Ry and Cy to their previous forms before the transformation 7~ was
applied to P;. Hence, by performing the elementary row and column operations

Ry —|—y,§R,~ — Rr and Cy +)7,fC,< — Cr

foralli =1, ..., d on the matrix A B the entries in R; and Cj become
d d
i = vihii and b= pihi, (7.7)
i=1 i=1

where h;; and h; are the entries in the ith row R; and ith column C;, respectively.
Finally, we obtain that

n n
hkl_ = Z J/léhlf and hll; = Z f;ihnﬂ (78)

i=1 i=1
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where y,ﬁ =O0foralli =d+1,...,n. Thus, both R; and Cj are dependent, proving
the statement. O

It is important to note that for any k, if the diagonal (k, k) entry of A p; is the only
nonzero entry in its kth row, then the kth row cannot be dependent, where A P; is
the Levi matrix of the leading polynomial P;. This statement holds because we are
working with a sum of squares domain and A p; is Hermitian.

Lemma 7.2 Let T be the set of n x n matrices with coefficients in the ring C[z, z]. Let
H € T be Hermitian. For some giveni and k, let B be the matrix obtained from H after
the elementary row and column operations Ry + «R; — Ry and Cy +aC; — Cy, for
some a € C|z], are performed on it. Then det(B) = det(H).

Proof Let E be the matrix obtained from H by the elementary row operation Ry +
aR; — Ry. Then B is the matrix obtained from E by the elementary column operation
Cr + aC; — Cy. It is obvious from the properties of the determinant that det(H) =
det(E) and that det(E) = det(B). O

Lemma 7.3 Assume that the D’Angelo 1-type of M C C"+! at 0 is finite. At step j of
the Koldr algorithm for the computation of the multitype at 0, let P be the leading
polynomial and let Q ; be the leftover polynomiall.

If the determinant of Ap; is nonzero, then Pj is independent of the largest number
of variables, and no polynomial transformation needs to be performed on it before the
next step in the Koldr algorithm.

Proof We shall give a proof of the contrapositive of the statement of this lemma, which
states that if there exists an allowable transformation, and hence, one of the rows of
Ap; is dependent by Proposition 1.3, then the determinant of Ap; is zero. Suppose
that Z = {Ry, ..., R,}, the set of all rows of the matrix A P is dependent and that
none of the rows is identically equal to zero. Thus, for some k, we can write

n

Ry = ZOHRI,
1=1
Ik

where «; € C[z] and Ry is the Ith row of A p; - From the proof of Proposition 1.3, we
know that there must exist some elementary row and column operations that transform
A P; into the matrix A P; of which kth row and column have all zero entries. Since the

matrix A p ; has at least one row with all entries equal to zero, its determinant is equal

to zero. From Lemma 7.2, we know that det(A pj) = det(A pj).
Thus, det(A p].) = 0, which is the result we need. O

Given the way the leading polynomial P; and its Levi matrix Ap; are constructed,
itis possible that P; could be independent of at least one of the variables. If that is the
case, then the determinant of the Levi matrix corresponding to the leading polynomial
P; will always be zero since it will have at least one row that is identically zero.
Therefore, we need a way to determine when a subset of all nonzero rows of A P; is
independent. To address this situation, we shall consider the following:
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Let A P = (a;1)1<i,1<n be the Levi matrix of the leading polynomial P; at step j of
the Koldr algorithm. Let m be the number of nonzero rows of the matrix Ap;. Denote
by Ap;|;m the principal submatrix obtained from Ap; by removing all zero rows and
columns to get precisely m rows and columns, for some m < n. Put differently, A p i m
is the submatrix consisting only of all nonzero rows and columns of Ap,. If m = n,
then none of the rows and columns are identically zero.

Also, via the elementary row and column operations, A Pjlm can be transformed
into a leading principal submatrix of Ap;, where the first m rows and columns are the
ones that remain. In this case, Apj|m = (@;D1<i,l<m-

Let Z = {Ry, ..., R,} be the set of all rows of the matrix Ap; and let Y =
{Rp,, ..., Ry, } be asubset of Z, for b, € {1,...,n}, e =1, ..., m such that each
element Rj, is not identically zero. Then .7 is the set of all non zero rows of the
submatrix Ap; .

We now restate Proposition 1.3 and Lemma 7.3 as follows:

Proposition 7.4 Assume that the D’Angelo 1-type of M C C"t! at 0 is finite. At step j
of the Koldr algorithm for the computation of the multitype at 0, let P; be the leading
polynomial, and let Q ; be the leftover polynomial.

There exists an allowable polynomial transformation on P; with respect to the
variable zj via the elementary row and column operations if and only if the kth row
of Apjm is dependent.

Lemma 7.5 Assume that the D’Angelo 1-type of M C C"! at 0 is finite. At step j of
the Koldr algorithm for the computation of the multitype at 0, let P; be the leading
polynomial, and let Q ; be the leftover polynomial.

If the determinant of A p; | is nonzero, then Pj is independent of the largest number
of variables, and no polynomial transformation needs to be performed on it before the
next step in the Koldr algorithm.

The proofs of Proposition 7.4 and Lemma 7.5 are identical to the proofs given for
Proposition 1.3 and Lemma 7.3, respectively, since the latter do not depend on rows
being identically equal to zero. We also note here that the converses of Lemmas 7.3
and 7.5 do not hold. The reason is that the notion of dependency given in (7.1) is more
restrictive than the standard notion of dependency in linear algebra, so there might
not exist a row that is dependent according to our definition, but the set of rows may
satisfy the standard notion of dependency, in which case the determinant of the Levi
matrix would be identically equal to zero.

Now, the natural question to ask at this point is this: Given a Levi matrix of a leading
polynomial with zero determinant, how can we tell whether or not it has dependent
rows? Also, if there exist dependent rows, how can we identify such rows in order to
determine the allowable polynomial transformations corresponding to these dependent
rows? The answers to these questions lie in the formulation of an algorithm, which
we will describe in the next subsection.
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7.1 Jacobian Modules and Gradient Ideals

A study of the elementary row and column operations on the Levi matrix reveals
that a row (column) operation on the Levi matrix is performed by a multiplication on
the left (right) of the Levi matrix by an elementary row (column) matrix. The Levi
matrix of a sum of squares domain can always be decomposed as the product of the
complex Jacobian matrix of the holomorphic functions that generate the domain and
its conjugate transpose. Therefore, every row operation on the Levi matrix could be
performed on the complex Jacobian matrix, while every column operation on the Levi
matrix is performed on the conjugate transpose of the complex Jacobian matrix. Let
A be an n x n Levi matrix of a domain given by the sum of squares of N holomorphic
functions. Then elementary matrices are n x n matrices, while the complex Jacobian
matrix and its conjugate transpose must be n x N and N x n matrices, respectively.

In our study of elementary row and column operations performed on the Levi
determinant of a sum of squares domain, one particular property of the Levi matrix
of a square of one of the generators drew our attention: All entries of any given
column (row) have the same anti-holomorphic (holomorphic) parts, and so a study
of the relationship between these entries narrows down to a study of the relationship
between their holomorphic (anti-holomorphic) parts. In other words, we expect that
the study of the Levi matrix will be much easier if we transition from the sum of
squares to the underlying ideal of holomorphic functions that generate the domain as
we already saw was the case for the computation of the multitype.

We start with a couple of definitions that we specialize to complex polynomials
since those are the objects that appear in the Koldr algorithm when it is applied to a
sum of squares domain instead of the full holomorphic generators:

Definition 7.1 Let f € C[zy, ..., z,] be polynomial in the variables z1, ..., z, with
coefficients in C. As in [15], we define the gradient ideal of f as the ideal generated
by the partial derivatives of f :

07 ) > (7.9)

Zgrad(f) =(Vf)= <_

aZl,...,azn

Definition 7.2 Given the ideal (f) = (fi,..., fa) C Clz1, ..., z,], we define the
Jacobian module of f as

of af :|
Jn=|=—,..., , 7.10
(f) [811 0zZn ( )
where each ;%_ is a vector. J( y is a module over the polynomial ring C[z1, ..., z4].
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To every Jacobian module J sy, we associate the complex Jacobian matrix J(f)
given by

0ft 9fa . Ofn
dz1 0z 9z)
IH=| + - . (7.11)
0fi 92 .. 9fn
0zp 0zn 0z

Likewise, to each gradient ideal Zgpaq(fi) = (g—{", A %) of the generator f; €

Clz1, ..., zn] of (f), we associate the ith column of J(f) for I < i < n. The reader
should note that row operations on J( f) are precisely operations on the module Jf).

Now, let (f) = (f1,..., fn) C Clzy, ..., z4] be the leading polynomial ideal at
some step of the Kolar algorithm. Then we are particularly interested in simplifying the
Jacobian module sy such that it is generated by the minimal number of generators.
Every generator that is eliminated is a linear combination of some partial derivatives
of f with coefficients in C[zy, ..., z,]. Since every generator of the Jacobian module
represents arow of the complex Jacobian matrix, every eliminated generator represents
a dependent row in the complex Jacobian matrix. Owing to this connection, from every
eliminated generator, we can construct a sequence of elementary row operations that
corresponds to the linear combination of some partial derivatives of f as described in
Proposition 1.3. Hence, we obtain polynomial transformations corresponding to these
row operations.

It is easy to observe this relationship if N = 1. Then reducing the number of
generators of ), if possible, reduces the number of nonzero rows of the associ-
ated complex Jacobian matrix. Thus, the minimal number of generators required to
generate the Jacobian module is precisely the number of independent rows of the
complex Jacobian matrix, which is the same as the number of variables on which
the corresponding leading polynomial ideal ( f) is dependent by Proposition 1.3 after
the corresponding change of variables. Hence, the number d; at step j of the Kolaf
algorithm is given by d; = n — #f, where #f is the minimal number of generators
generating the Jacobian module J 7y, 7 is the number of variables in the polynomial
ring C[zy, ..., z,], and d; is the largest number of variables of which the leading
polynomial at step j is independent. This gives an algebraic characterization of the
number d; in the Koldf algorithm.

In the more general case where N > 1, reducing the number of generators of the
Jacobian module implies reducing the generators of all gradient ideals by the same

operations. Thus, Ta0 for some £, is a generator that is eliminated in the Jacobian

module Jsy if and only if the generator % of the gradient ideal Zy,q(f;) for all
i =1,..., N is eliminated, namely reduced to 0.

Clearly, if there exists at least one gradient ideal Zg,q( f;) with minimal number
of generators equal to n, then the Jacobian module J sy cannot have fewer than n
generators, i.e., no reduction via row operations is possible.

In this setup, all elementary pairs of row-column operations on the Levi matrix
reduce to just elementary row operations on the complex Jacobian matrix.
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7.2 Row Reduction Algorithm

We shall now devise an algorithm that constructs explicitly the polynomial transfor-
mations required at each step of the Kolar algorithm when applied to the complex
Jacobian matrix of the leading polynomial ideal.

The algorithm gives the conditions for characterizing the required elementary row
operations that correspond to the polynomial transformations needed in the Kolaf algo-
rithm. The application of the algorithm to the complex Jacobian matrix corresponding
to a given leading polynomial ideal will eliminate all dependent rows, if they exist,
from the complex Jacobian matrix.

Now, forany j > 1, letJ P; be the complex Jacobian matrix corresponding to the
leading polynomial P; at step j of the Kolaf algorithm.

Let P; = ZINZI |hi|?. Then the leading polynomial ideal is given by 7. p; =

(h) = (h1.....hy). and the gradient ideal of h; is Zyraq (h;) = <% o %) i=
1, ..., N.Note that the complex Jacobian matrix of P; is givenbyJp; = J(Zp;) = J(h)

and the Levi matrix Ap; of P; is the product of the complex Jacobian matrix of P;
with its conjugate transpose J*(h) : A P = J(h)T*(h). We shall reduce, if possible, the
number of generators of each gradient ideal one at a time and control the changes that
occur in other gradient ideals as a result of these reduction operations. By control, we
mean setting appropriate conditions on the reduction operations used.

If det Ap; = det J(h)J *(h)) is nonzero, then no change of variables is required by
Lemma 7.3. Thus, assume that det (J(h)J*(h)) = 0. Then:

1. We begin the process by first considering the gradient ideal Zgpg(h;) =
ohi Ohi
dz1’ """ Ozp

sists of the minimal number of generators. Assume that

for any i. Simplify the gradient ideal Zyaq(h;) such that it con-

B T— dh;

it L 7.12

0 ; Yoy (7.12)
for some k, ¢, # k, v < n, and y,, anonzero polynomial in C[z1, ..., z,]. Then

perform the following elementary row operations on the complex Jacobian matrix
I(h) :

0
Ry — o R., — Ry, (7.13)
0z¢
forallu =1, ..., vand for all variables z; in {,, = OZ" Ve, (t) dt. By Lemma 7.1,

the row operations in (7.13) correspond to the polynomial transformation given
by

Tk
ZCu = Z¢y +/ Yey (t) dt; Za) = Zw> (714)
0
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for all  # ¢, and forallu = 1, ..., v. The generator % vanishes in Zgaq(h;)
after the row operations in (7.13) are performed on J(h).
We say row R, is used as a central row in the sequence of row operations and the

generator aah is used as a central generator in the simplification of the gradient

ideal Zgq(h;) for all i. We remark here that for all subsequent row operations
performed on the complex Jacobian matrix, the row R., cannot be used as a
central row and 3 -—¢ cannot be used as a central generator in the simplification

of any other gradlent ideal Zgaq(h,) for e # i. This condition is imposed due
to Proposition 1.3, which is an equivalence. Reusing a central row or a central
generator might reintroduce a variable that has been eliminated from the leading
polynomial.

2. Next, consider another gradient ideal Zgraq(hy) = <%, e, g’%> for s # i.

Clearly, the kth generator of this gradient ideal is

— 7.15
920 Z Yeu 0z, ( )

due to the row operations given in (7.13). We simplify the ideal Zgraq(hs) such

that it has the minimal number of generators while ensuring that the generators

;’Zhs foru = 1,..., v are not used as central generators in the simplification of
»

Zorad (hs). Perform the related row operations.

3. Proceed similarly by considering other gradient ideals different from the previous
ones. Since there are only finitely many gradientideals and finitely many generators
that generate each of them, the process will terminate after a finite number of steps.

We will show in the lemma that follows that the polynomial transformation in (7.14)
corresponding to the row operations given in (7.13) is A j-homogeneous. Thus, we
state the following:

Lemma 7.6 Assume that the D’Angelo 1-type of M C C"t! at 0 is finite. At step j of
the Koldr algorithm for the computation of the multitype at 0, let A j be the weight,
Pj the leading polynomial, and Lp; the corresponding leading polynomial ideal. Let
Zorad (Y) be the gradient ideal of some generator  of the ideal Zp;. Assume that

aZk Z “a (7.16)

for some k, where k # cy, v < n, and y,, is a nonzero polynomial in Clzy, ..., z,].
Let ¢, = 0 ycu (t) dt.
Then the polynomial transformation given by Z., = z¢, + Cc,i Zo = Zo for all

w # ¢, corresponding to the elementary row operations Ry — G;Z"Z R¢, — Ry for all
variables zy in ¢, and forallu = 1, ..., v performed on the complex Jacobian matrix
Jpj is A j-homogeneous forallu =1, ..., v.
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Proof We start the proof by recalling from Theorem 1.1 that the leading polynomial is
a sum of squares at every step of the Koldf algorithm. Hence, P; is a sum of squares.
Let Aj = (A1, ..., A,). Since variables are not ordered in increasing weight order,
weleto : {1,...,n} — {1,..., n} be the bijection ¢ = (¢1, ..., ¢,) such that the
variable z;, 1 <i < n, has weight A4,

We will show that the term y,, in the polynomial transformation is of weighted
degree (Ag,, — Agy). Let v be the weighted degree of ch with respect to the weight

A j. By our hypothesis, the weighted degrees of Y and 2% az are 5 2 — Ay, and 4 7 = A

respectlvely, since all generators of the leading polynom1al ideal Zp; are of weighted
degree % with respect to A j. The weighted degree of the right hand side of the expres-
sion given in (7.16) is v + % — Ag,, - Hence solving the equation in (7.16) for v gives
v = Ag,, — Mg - Thus, the weighted degree of ¢, = fozk Ve, (1) dt is Ag,, as required.

O

Remark 7.6.1 The polynomial y,, cannot depend on the variable z., because if it were
to depend on z., , then its weighted degree would satisfy v > A4, , butv = Ay, —Ag,,
which gives a contradiction because A4, > 0.

Lemma 7.7 Assume that the D’Angelo I-type of M in C*! ar 0 is finite. At step
J of the Koldr algorithm for the computation of the multitype at 0, let P be the
leading polynomial, and let ij = (h) C Clz1, ..., zn] be the corresponding leading
polynomial ideal.

If the Row Reduction algorithm is applied to the complex Jacobian matrix J(h),
then every dependent row of J(h) vanishes. In other words, the leading polynomial
ideal Ip; is independent of the largest number of variables after the Row Reduction
algortthm is applied to J(h).

Proof From Theorem 1.1 the leading polynomial P; is a sum of squares, and so let
Pj = va 1 1A |2. Then the leading polynomial ideal Zp, is (h) = (hi, ..., hy), and
let the gradient ideal of each generator h; be Zgraq(h;) = <az1 e, gh ).

Now, assume that Ry, the kth row of J(h) is dependent We will show that the
generator d— of the Jacobian module given by J [(?Zhl . %] vanishes after

applying the Row Reduction algorithm on the complex Jacobian matrix J(h). Since

Ry is dependent, we can write the generator 3 ﬂ as

= 7.17
aZk ;yua (7.17)

ey

forsomek, ¢, Zk, v < n and Ye, anonzero polynomial in C[zy, ..., z,] for every
u. Hence, every generator of the gradient ideal Zgr,q(f2;) can be written as

= 7.18
3Zk X_:a (7.18)
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fori =1, ..., N and the same polynomial coefficients y,,. Thus, it suffices to show
that vanrshes at the termination of the algorithm for every i=1,..., N.Consider
the 1dea1 Zoraa(h;) for some i € {1, ..., N}. If the generator k is zero, then there is

nothing to be done, and so we move to a different gradient 1deal Hence, suppose that
gi is nonzero. Then at least one of the generators % is nonzero for some u. Suppose
that L £ Oforallu € {1, ..., w}forw < v. Since it satisfies the condition in (7.18),
3c£‘u

we perform the elementary row operations R, — Rcu — Ry, for all variables z; in

le, = OZ “ve () drandforallu = 1,..., w. ThlS ehmlnates the term Y, ve, ;Zh

from the ideal Zgraq(h;). The generator - ah of the Jacobian module becomes

oh b oh
o _ Z Ve, —— (7.19)

after the row operatlons have been performed on J(%). Note here that the generator
, w cannot be central in any simplification process

in the gradient ideal Igrad(he) after the row operations.
Next, consider another gradient ideal Zgraq(h.) for e # i. Then its kth generator
after the reduction operation is

Z ey ohe = (7.20)

aZk u=w+1
If the expression in (7.20) equals zero, then there is nothing left to be done. If the
expression in (7.20) is nonzero, then - i # Oforsomeu = w+1,...,q withg <.

;Z‘lf‘ R., — Ry, for all variables z; in
ohe

te, = Jo* Ve, () drandforallu = w+1, ..., gtoeliminatetheterm Y1 _ | v, 57< To
where ¢ < v. We follow this process through in each of the distinct gradient 1deals
until all gradient ideals have been considered. The expression in (7.19) becomes zero
at some point; otherwise, we get a contradiction to Ry being dependent. O

Perform the elementary row operatlons Ry —

Example 3 Let the hypersurface M C C> be given by r = 0 with

r=2Re(zs) + (21 +2224)> + 3 ° + (21 + 2223 1> + |97 + 2301 + 2421
Let B = 2(z1+22z4), C = 2(11 +zgz§) and let the ideal associated to the domain
M be (h) = ((z1 + 2224)% + 23, (21 + 2223)2, 23, 230, 2}?). The complex Jacobian

matrix is given by

B c 0 0 0
4B +4z3 3C 9285 0 0
0 22523C 0 10z 0
2B 0 0 0 127}

J(h) =
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The Bloom-Graham type is 4, Zp, = (z%, zl) and A| = (4 }1) The maximum
W, = é, the leading polynomial ideal Zp, = ((z1 + z2z4)2 + zz, zl), and Ap =
(4—1‘ % % é) The maximum W, = 116’ Ipy = ((z1 + 2224)* + 227 (z1 + Z2Z3) ), and
A3 = (JT 3 8, i 6) The complex Jacoblan matrix corresponding to Zp, is given by
B C
B +4z3 Z2C
J(hy, hp) = 2.3
(h1, h2) 0 22525C
2B 0

Consider the gradient ideal Zyraq (h1) = (B, z4B + 413, 0, zpB). Since 3}2” =22 g?ll

its simplification is Zgraq(h1) = (B, 413). We perform the elementary row operations
Ry — z4R;1 — Ry and R4 — z20R; — Ry on the matrix J(#). The matrices above
become

B C 0 0 0 B C
|43 (B -zwC9% 0 0 1483 3 —z)C
IW=10 25uc 0103 o | @ IGnh)=14"" c
0 -zC 0 0 127! 0 -—zC

These operations correspond to the polynomial transformation | = z1 42224 : Zo» =
Zwforw # 1,andnow B = 2Z;and C = 2(Z1+2» (Z% —Z4)). The generator gLle cannot
be a central generator in the simplification of Zg,q(h2), and row 1 cannot be used as a
central row in any subsequent elementary row operations. Consider the next gradient
ideal Zgraq(h2) = (C, (Z% — 24)C,27273C, —7C). Here the generator —7Z,C in the

fourth component is the only central generator in Zgaq(f22). Thus —-273 ‘;?Z

’ az =
and its simplification is (C, (z3 —74)C, —22C).
We perform the elementary row operations R3 + 2z3R4 — R3 on the matrix J(4).

The matrices become

B c 0 0 0 B C
483 @G —zwc9d 0 0 148 @ -zC
m=1 0 0 10z 24232} and J(hi ho) =1 0
0 -zC 0 0 127} 0 -zC

This operation corresponds to the polynomial transformation z4 = 74 — Z%; 2w = Zw
for w # 4, and now B = 211 and C = 2(z1 — z224). The leading polynomlal ideal

Ip, = (3] + 23, (21 — 2224)%). The maximum W = 55, and As = (3, g §» 20) -
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