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Predicting stress, strain 
and deformation fields in materials 
and structures with graph neural 
networks
Marco Maurizi *, Chao Gao  & Filippo Berto 

Developing accurate yet fast computational tools to simulate complex physical phenomena is a long-
standing problem. Recent advances in machine learning have revolutionized the way simulations are 
approached, shifting from a purely physics- to AI-based paradigm. Although impressive achievements 
have been reached, efficiently predicting complex physical phenomena in materials and structures 
remains a challenge. Here, we present an AI-based general framework, implemented through graph 
neural networks, able to learn complex mechanical behavior of materials from a few hundreds data. 
Harnessing the natural mesh-to-graph mapping, our deep learning model predicts deformation, 
stress, and strain fields in various material systems, like fiber and stratified composites, and lattice 
metamaterials. The model can capture complex nonlinear phenomena, from plasticity to buckling 
instability, seemingly learning physical relationships between the predicted physical fields. Owing 
to its flexibility, this graph-based framework aims at connecting materials’ microstructure, base 
materials’ properties, and boundary conditions to a physical response, opening new avenues towards 
graph-AI-based surrogate modeling.

In the ever-growing attempt to discover and design high-performing mechanical materials and structures, defor-
mation, stress, and strain distributions are the essential information from which every other mechanical property 
or function can be deduced. With the recent explosion of additive manufacturing technologies, morphologically 
and physically sophisticated materials and structures with superior mechanical properties and functions, such as 
hierarchical composites1–3, geometrically interlocked structures4–6, and architected metamaterials7–10, can now 
be easily manufactured. Because of their geometric complexity11 and the intricate arrangement of constitutive 
materials with different mechanical properties12, predicting the physical response of such material systems with 
traditional methods, such as analytical models and numerical simulations, becomes easily intractable, especially 
when fast yet accurate screening of astronomically large datasets has to be carried out for materials discovery 
and design13. In addition, even traditionally manufacturable materials and structures involving highly nonlinear 
characteristics, such as hyperelasticity, plasticity, and post-buckling instability, require computationally expensive 
simulations, limiting materials research and discovery14,15. More generally, predicting deformation and stress 
fields of material and structural systems is a recurrent task in materials science and engineering and finding a 
fast yet accurate approach to it is an open challenging problem. Motivated by the limits of analytical models to 
efficiently predict the physical behavior of solid materials and structures, physics-based computational simula-
tions, particularly finite element (FE) modeling, have so far represented the key factor to solve complex physical 
initial and boundary value problems, often involving highly nonlinear partial differential equations16. Emergence 
and growth of the machine learning (ML) field in the recent years has though demonstrated the possibility to 
outperform traditional numerical solvers, greatly speeding up simulations of physical systems17–22, from the use of 
physics-informed neural networks to extract velocity and pressure fields from flow visualization23 to the inverse-
design of architected materials with extreme elastic properties using generative adversarial networks24. Given 
the importance of materials discover and design, linking materials’ micro- and meso- structure to mechanical 
properties (structure-to-property)25–30 and inverse-designing (i.e., given targeted properties, finding optimal 
designs) high-performing architected metamaterials10,13,24,31–39 have recently dominated the research scene. In 
both cases, materials performance is essentially dictated by local mechanical fields, such as stress and strain 
distributions, because of the effect of geometry, base materials’ behavior, and boundary conditions. Gaining 
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advantage from the pixel-based convolutional neural networks, mechanical fields have been mainly studied on 
“digital” (i.e., discretized in the form of grids) material and structural systems40–46, as in47 where stress and strain 
fields were predicted on digital hierarchical composites, or in48 where heterogenous material microstructures 
were considered as images. One of the most popular and utilized numerical methods, such as FE modeling adopts 
mesh- instead of regular grid- representations to solve the underlying partial differential equations. With the 
intuitive extension of mesh information to graph representation, graph neural networks (GNNs)49 inherit all 
the advantages of using meshed domains. Furthermore, an efficient ML general framework capable of linking 
not only a material’s microstructure but also the constitutive materials’ properties (e.g., in a composite material) 
and boundary conditions to the physical response is still lacking.

Inspired by recent developments on GNNs for physical field predictions50–52, we propose a general method 
based on meshed geometries to predict stress, strain, and deformation fields in material and structural systems. 
The benefits of using deep GNNs instead of image-based models (such as convolutional neural networks) are 
potentially the following: (i) refined mesh close to stress/strain concentrators, like notches (i.e., defects) and 
material discontinuities, and curved smooth surfaces, allows for more accurate local predictions with less com-
putational costs increase; (ii) unstructured mesh-based models allow to learn system’s behavior independently of 
resolution, meaning that different mesh size can be used at run time; (iii) Given their graph nature, architected 
truss metamaterials can more efficiently be represented by GNNs.

Here, harnessing the mesh-to-graph mapping, we propose a graph-based ML general method to predict 
deformed shapes, stress and strain fields in material and structural systems. To demonstrate the flexibility and 
generality of the proposed approach, we focus on three different material systems undergoing different complex 
mechanical phenomena, namely, plasticity of single-fiber composites, wrinkling of layer interfaces, and buckling 
instability of lattice metamaterials. We show that GNNs can learn loading conditions correlating deformed shape 
and stress field as well as physical relationships between material’s structure, and stress (strain) and deformation 
field. While image-based ML models, such as convolutional neural networks, variational autoencoders, and gen-
erative adversarial networks have been widely used to predict physical fields in hierarchical composites53, perfo-
rated structures54, additively manufactured microstructures with defects45, and heterogenous microstructures42,48, 
the current work presents a more flexible and general ML framework for the prediction of deformed shapes, 
stress and strain fields with GNNs.

Results
Mesh to graph representation.  Mesh domains used in FE modeling are collections of connected geo-
metrical elements (such as lines, triangles, quadrilaterals, tetrahedra) defining solids, surfaces, or lines. The 
boundary value problem is often defined by the physical quantities of interest (such as displacement and stress) 
at specific locations on the boundary of the elements, namely, nodes (usually coincident with vertices). Con-
sidering the mesh only composed of nodes connected through edges, we identify mesh domains with compu-
tational graphs G = (V ,E) , where V represents a set of N nodes connected to each other through M edges (E). 
The i-th node (in V) brings n features in the vector vi (such as nodal coordinates, and base material properties); 
similarly, the edge (in E) connecting the i-th and j-th node has a m-dimensional feature vector eij (such as dis-
tance between nodes). As illustrated in Fig. 1, our model addresses the problem of predicting displacement ( ui ), 
stress ( σi ), and strain ( εi ) fields (at the graph nodes) in material and structural systems, such as representative 
volume elements (RVEs) and finite-size lattice structures. Given the flexibility of the graph representation, all the 
factors that determine the material’s mechanical response, i.e., geometry/topology ( g ), base materials behavior 
( m ), and boundary conditions ( BC ), can be encoded into the node and edge features, and graph connectivity (as 
next shown for three material systems).

Model description.  GNNs is a class of deep neural networks that operate directly on graph data (i.e., non-
Euclidean data), instead of vectorized or image-data55. In our work, we develop an encoder-decoder ML model 
to approximate the relationship (f in Fig. 1) between material and structural characteristics and conditions, and 
physical fields (displacement, stress, and strain). Our model consists of three components, the Encoder, the 
Message Passing, and the Decoder (Fig. 1). From the graph representation of the material system, the Encoder 
encodes the node and edge features into a latent space (of larger dimension d) using the neural networks ǫN and 
ǫE at each node and edge, respectively. These encoded features are processed by the Message Passing module, 
which aggregates first information from the neighborhood of each node (through the neural network ME ), and 
then updates the node state using the neural network UN ; these two operations represent a message pass. After 
L message passes, the latent node features are transformed by the neural network δN (i.e., the Decoder) into the 
field outputs. The model is trained by supervising on nodal physical quantities (i.e., ui , σi , εi ) obtained by FE 
simulations (ground truth). Overall, the GNN model takes a graph representing the material system as input, 
and outputs physical fields. As measures to evaluate the model performance, we use the error map, defined as 
the nodal difference between the ground truth and predictions, and the mean absolute error, MAE. Moreover, to 
measure the ability of the model of predicting derivative material properties, we use the mean relative error for 
the constitutive stress-strain response of the whole RVE (when the stress field evolution is studied). More details 
are provided in Methods, and Supplementary Materials.

Our trained ML model can predict complex mechanical phenomena, such as wrinkling of thin interfacial 
layers and buckling instability of lattice materials, linking the geometry/topology, the base material properties, 
and the loading conditions to the deformation, stress and strain fields. Learning physical relationships between 
deformation and stress (or strain) fields from data, the model predicts realistic global mechanical behavior even 
when input information is not enough to capture the actual local phenomenon (e.g., the eigen-modes are not 
provided as input for post-buckling predictions). Indeed, attempting to minimize the global MAE, the average 
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behavior is more easily captured by the model in the absence of data related to the considered physical phenom-
enon (next evidence is provided). To demonstrate the power of deep GNNs to learn and predict the physics of 
complex mechanical phenomena in different classes of materials and structures, in the following sections we 
report three different problems solved by our ML model in order of increasing complexity.

Learning a class of composite materials.  Here, we focus on traditional unidirectional fiber composite 
materials subjected to plain strain uniaxial tensile loading. For simplicity of conveying the key ideas of our 
method, a grid-like periodic fiber distribution is considered by analyzing a single-fiber RVE (representing the 
microstructure), as shown in Fig. 2A,B. Two constituent materials compose the material microstructure, the 
hard phase (i.e., fiber) and soft phase (i.e., matrix). The fiber has linear elasticity, whereas the matrix has elasto-
plastic (J2 plasticity) behavior. To simulate high-contrast material discontinuity, in terms of Young’s modulus, 
the hard phase is 10 times stiffer than the soft phase (see Methods). Fully characterizing the microstructure’s 
geometry, the volume fraction of the fiber, fv is employed as the only independent geometric parameter g; for 
each value of fv , it is associated a unique fiber’s radius (Fig. 2A shows different microstructures). Linearly sam-
pling fv in the range 0.05–0.5, a dataset of 500 microstructures is generated, then split into 90 % of training data 
and 10 % of test data (sensitivity analysis with training data density reported in Fig. S12). Imposing periodic 
boundary conditions (PBCs) on the boundaries of each RVE (see Methods), the displacement ui = (u1i , u

2
i ) , 

and stress σi = (σ 11
i , σ 22

i , σ 33
i , σ 12

i ) fields obtained from FE simulations are regarded as the ground truth for 
the ML model’s output. The model’s input geometric information g of the microstructure is encoded into the 
graph topology (through the node connectivity), and the node and edge features. Specifically, undeformed nodal 
coordinates xi and node type ξi (equals 0 for matrix, 1 for fiber) are encoded into the node features, vi . Relative 
distance between the i-th and j-th node xij = xi − xj in the undeformed configuration and its absolute value |xij| 
are encoded into the edge features, eij.

A typical RVE with the corresponding macroscopic stress-strain curve from the test dataset is shown in 
Fig. 2B. To demonstrate the ML model’s capability of capturing the small and finite deformation and stress field 
in fiber composites, in Fig. 2C-D we report the comparison between the FE simulations (ground truth) and 
model predictions for two macroscopic applied strain values, ε = 1 and 6 % (model trained separately). An average 
MAE of ∼ 0.02 and 0.04 is obtained on the test data (i.e., 50 microstructures) for the elastic and plastic regime, 
respectively. The deformation of the microstructure is accurately predicted by our ML model, as depicted in 
Fig. 2C for the plastic regime. Analogously, the ML predicted stress components σ11, σ22, σ33 distributions, shown 
in Fig. 2D, greatly resemble the numerical simulations for both strain regimes. The accuracy of the predictions 
is further confirmed by the error map, which additionally identifies the small local regions with larger errors 
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Figure 1.   Schematics of the proposed ML model. The meshed material or structural system is first mapped 
onto a graph. Three examples of various complexity are here shown. Node and edge features are defined over 
the graph structure, carrying information of the system, such as node positions, node type (i.e., base material 
phase), or displacements on specific nodes. These features are first encoded into a larger latent space. Then, a 
message-passing module processes the graph features: each node acquires information from its neighboring 
nodes, learning relationships between different parts of the system. The transformed nodal quantities are finally 
decoded into output physical fields, here, deformation, stress, and strain fields ( ui , σi,εi ). Providing geometric/
topological information ( g ), base materials’ behavior ( m ), and boundary conditions ( BC ), the model learns 
physical relationships with the considered fields. Once trained, the ML model can accurately predict physical 
fields of various material and structural systems subject to complex physical phenomena, such as wrinkling or 
buckling.
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(mostly close to the fiber-matrix boundary of high stress and strain gradient, as in48), contributing to accuracy 
drops. Remarkably, also complex stress patterns, as for the shear stress, σ12 , with low amplitude (compared to the 
main component σ11 ) are captured by our predictions, as shown in Fig. S2. Deformation and stress field compari-
sons for other RVEs in the test dataset are reported in Fig. S3 and S4. While often equivalent stress distributions, 
such as von Mises stress, are adopted as single output45,48, our model learns not only the whole stress tensor 
(i.e., multiple components) field but also the corresponding deformed shape (Fig. 2C). Learning the mechanics 
of microstructures with different fiber’s radii (thus, volume fraction), the proposed model can thus accurately 
predict the small and finite deformation, and stress field in both dilute and dense fiber-reinforced composites.

Deformation and stress field evolution.  In the earlier results on fiber composite microstructures, the 
ML model was trained separately for different levels of macroscopic applied strain. Here, we investigate whether 
our model can simultaneously learn multiple loading steps at different magnitudes i.e., the evolution of defor-
mation and stress field. To demonstrate the ability of the model to predict large local deformations, we first 
consider the same previous dataset but subject to displacement boundary conditions (instead of PBCs). In this 
way, harnessing the graph structure of the mesh to inform the ML model on the boundary conditions, a vector, 
uBCi = (u

(1,BC )
i , 0) representing the applied displacement on the i-th node, is introduced as additional node fea-

ture (i.e., BC in Fig. 1) . To further reduce the computational cost for training data generation and model train-
ing, a coarser mesh and linear elasticity are here adopted, and only 100 total data are considered. Without the 
hypothesis of plasticity, the macroscopic stress-strain responses are linear (less complex); this hence reduces the 
amount of required training data. Five loading steps are linearly sampled in the range 1–8 % of effective applied 
strain (ratio between the applied displacement and the RVE’ size) for each microstructure, treating the temporal 
variable (i.e., loading steps) as a parametrization of the data distribution i.e., a sequence of graphs. In addition, 
to make the approach more general (for future applications on path-dependent problems), we insert two recur-
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Figure 2.   Predicting elasticity and plasticity in transversally loaded unidirectional fiber composites. (A) 
Examples of RVEs from the dataset having different fiber volume fraction. (B) A typical RVE ( fv=37.55 % ) 
subject to macroscopic uniaxial tension strain ( ε ) together with the corresponding macroscopic stress-strain 
curve. The symbols in the plot indicate small ( ε =1 % ) and large ( ε =6 % ) deformations, corresponding to 
linear elasticity and plasticity, respectively. (C) Comparison of the FE simulated (i.e., ground truth) and ML 
predicted deformed mesh for ε =6 % . (D) Comparison of the ML predicted and FE simulated stress fields in 
the RVE shown in (B), randomly chosen from the test dataset, for small and large deformations, with the 
corresponding error map (i.e., difference between prediction and ground truth). The stress fields are plotted over 
the corresponding deformed shapes (exact relative scale between small and large deformations), while the error 
maps are shown in the undeformed configuration. Analogous results for the shear stress field ( σ12 ) are reported 
in Supplementary Materials.
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rent layers after the message-passing module, interpreting the latent node features as hidden states (Methods), 
finally transformed to output fields by the decoder (Fig. 1). An average MAE of ∼ 0.07 is obtained on the test 
data (average over all the microstructures and steps) and a remarkable resemblance between the ML predictions 
and FE simulations is achieved, as shown in Fig. S5 and Movie S1. The large transversal (to the loading direc-
tion) deformations of the microstructure are captured by our model, confirming that GNNs can predict smooth 
surface deformations with accuracy close to that of high-fidelity FE solvers.

Moreover, to test the capability of the model to predict physical responses on unseen applied strains , five 
additional loading steps are sampled in the applied strain range (1–8 %), with a total of ten applied strain levels. 
The model, trained only on five steps, is tested against all the ten strains. The result is shown in Movie S2, where 
the σ11 stress component is displayed; an average MAE of ∼ 0.07 is obtained, as before. Analogous results, not 
shown here for the sake of brevity, hold by sampling the strain range by an arbitrary number of loading steps 
(we tested up to 25), and training the model only on a few of them. The model can thus accurately predict the 
selected physical fields on different loading steps from the five training ones (spanning all the applied strain 
range). This approach may be helpful to reduce the amount of required training data for fields evolution predic-
tion. Indeed, by training the model on a few time steps, it would be able to predict the fields evolution also for 
unseen strain levels in between.

To further demonstrate that our model can accurately predict derivative material properties from more 
complex stress fields, linear hardening plasticity is here introduced for the matrix of the composite together with 
PBCs (more details in Methods). These latter are represented as additional node features, εBCi  being the applied 
macroscopic strain component (BC in Fig. 1). The model is trained on ten loading steps and it is tested on 25 
levels of strains in the same range (0–8 %). In Fig. 3 the predicted and simulated stress-strain responses of two 
RVEs with different fiber volume fractions as well as the mean relative error distributions on the test dataset are 
reported for the two non-zero macroscopic stress components (average over the RVE). Although higher average 
MAE values ( ∼ 0.10) for the physical fields are obtained, the macroscopic predictions are virtually indistinguish-
able from the simulated responses, exhibiting maximum relative errors below 3.5 and 7.5 % for the components 
σ11 amd σ33 , respectively (Fig. 3). In addition, without inputting the information of plain strain uniaxial tension 
into the GNN model, the predicted macroscopic stresses are consistent with such applied condition. Accord-
ingly, the model predicts the stress components σ22 and σ12 to be zero, with a scatter below 1 % of the peak of 
the dominant component, σ11.

Overall, the performance of our GNN models on the two datasets, comprising only elastic phases with larger 
deformations or more complex linear hardening plasticity, seem to be promising. However, we observe that the 
mean errors of field evolution ( ∼ 0.07–0.10) are higher than those of separate predictions ( ∼ 0.02–0.04), i.e., 
model trained on a specific macroscopic strain. For the elastic case, only 90 microstructures (90:10 training-test 
data ratio) each with five loading steps are employed as training data, resulting in a really small dataset, thus, 
limiting the maximum accuracy. For the plastic case, 450 microstructures each with ten loading steps are used; 
however, the additional complexity of linear hardening plasticity (characterizing the matrix), introduces a path-
dependent physics, calling for more data. To understand the trade-off between the predictive performance and 
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Figure 3.   Derivative macroscopic material response from the GNN-predicted stress field evolution of 
unidirectional fiber composites. Stress–strain curves derived from ML-predicted and FE-simulated fields for 
fv = 40.5 % (A), and fv = 5.8 % (B). (C) Mean relative error distributions evaluated on the test dataset for the 
two non-zero macroscopic stress components. The letters in (C) refer to the relative errors of the individual non-
zero stress components of the corresponding RVEs in (A) and (B). The strain on the x-axis in (A) and (B) is the 
macroscopic applied strain ( ε ). For more details on stress-strain curves derivation see Methods.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21834  | https://doi.org/10.1038/s41598-022-26424-3

www.nature.com/scientificreports/

training costs, we report a sensitivity analysis in Fig. S12, showing that not only the average MAE but also the 
scatter decreases with larger training datasets. Owing to the large graphs involved (mesh-to-graph mapping), 
future works may thus focus on ways to reduce such graph size, providing a way to exploit larger training datasets.

Wrinkling of interfacial layers.  Although stress and strain fields in material systems with variable base 
material composition exhibiting complex behavior could reasonably be predicted by pixel-based ML models 
using high resolution images45,47,48, accurately predicting also complex deformed shapes would be computation-
ally costly. To face this challenge using our GNN model, as an example we focus here on the formation of wrin-
kled interfaces (i.e., instability) in soft layered composites56. The stratified composite (Fig. 4A) is composed of 
thin hard interfacial layers of thickness t, periodically arranged at distance d and embedded in a soft matrix; both 
phases have linear elasticity, with Young’s modulus E0 and E1 for the soft and hard phase, respectively. Assuming 
periodic geometric pattern, we consider an RVE of size d (inset of Fig. 4A), subjected to plain strain uniaxial 
compression with applied macroscopic strain ε = 9 % under PBCs (see Methods). As already known, the layer 
instability is governed by the distance-to-thickness ratio, d/t, Young’s moduli ratio E1/E0 and matrix’ Poisson’s 
ratio ν056. To verify whether our model can learn a relation between the base materials properties m = (E, ν) , 
and displacement and strain fields (ui , εi) , we keep the geometric parameter g = d/t constant (avoiding long-wave 
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Figure 4.   Predicting wrinkling of interfacial layers in stratified composites. (A) Schematic of a stratified 
composite composed of thin hard layers immersed in a soft matrix. Both phases have linear elasticity. The inset 
shows an arbitrary RVE of size d, corresponding to the distance between layers, and layer’s thickness t. Here, 
the two phases’ material properties (E,ν ) are varied instead of the geometric parameters. (B) Wrinkled interface 
under macroscopic uniaxial compression ( ε ) together with the corresponding macroscopic stress-strain curve. 
The symbol identifies the post-wrinkling regime for ε =9 % . This configuration is characterized by a Young’s 
moduli ratio E1 / E0=741 and matrix’ Poisson’s ratio ν0=0.13. (C) Comparison of the ML predicted and FE 
simulated strain fields in the interfacial layer shown in (B), randomly sampled from the test dataset, for ε =9 % , 
with the corresponding error maps. The stress fields are plotted over the corresponding deformed shapes, while 
the error maps are shown in the undeformed configuration. The strain component ε33 is overall zero because 
of the plain strain hypothesis, and it is thus not here reported. (D) Comparison of the ML predicted and FE 
simulated deformed mesh of the configuration in (B) for ε = 9%.
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instability56), while varying E1/E0 and ν0 in the range 50–1000 and 0.01–0.49, respectively. Linearly sampling 100 
values for E1/E0 , and 5 values for ν0 , a dataset of 500 configurations (i.e., total combinations) is then constructed, 
and split into 90 % of training data and 10 % of test data (sensitivity analysis with training data density reported 
in Fig. S12). The base materials information is naturally encoded into the node features, substituting the previ-
ously used node type ξi with m for each node.

The compressed interfacial layer tends to deform into a wavy pattern upon the onset of buckling instability, 
as shown in Fig. 4B. For different layer and matrix properties, various wavy deformed shapes and strain field 
amplitudes are exhibited (see Fig. S6). Here, the most challenging task is capturing the complex wavy patterns 
(i.e., amplitude and wavelength of the deformed shape), and strain contours (i.e., spatial distribution and local 
amplitude) upon buckling of the interfacial layer for different base material properties. Indeed, as the phenom-
enon becomes more complex and larger deformations occur, the ML model struggles to have similar low MAE 
values on the test dataset as those of the previous example (fiber composites). Nonetheless, a non-uniform 
distribution of MAE values (both for training and test dataset) is exhibited (Fig. S7). Most of the predictions 
exhibit low MAE, as shown in Fig. 4C, closely resembling the FE simulated wavy patterns as well as the strain 
distributions. The average MAE value (on the test dataset) of ∼ 0.22 can be explained by highly localized mis-
matches in the strain field amplitude in a few regions close to the interface (error map in Fig. 4C), and in the 
wavy deformed shape for some test configurations (Figs. S7–S8). Specifically, almost independently of ν0 , the 
MAE of the predictions on the whole dataset tends to be smaller for microstructures with higher E1/E0 , cor-
responding to long-wavelength, high-amplitude wavy patterns (Fig. S7). These results suggest that complexity 
rather than largeness of the deformation limits the accuracy of predictions. Despite predicting the wrong wavy 
pattern (i.e., wavelength) for low stiffness ratios, the trained ML model tends to learn a relationship between 
the curvature of the interfacial layer and the strain distribution (Fig. S8). For each strain component, positive 
and negative strains are associated to the concavity of the wavy pattern (Fig. S8). Considering for example the 
components ε11 and ε22 in Fig. S8, although the predicted wavelength does not match the real one, the tensile 
and compressive regions in the composite matrix are qualitatively well captured based on the layer concavity. 
To better evaluate our predictions, in Fig. 4D we compare the FE simulated and ML predicted wrinkled meshed 
interfaces. Although deviations of the predicted deformation from the smooth numerical solution exist (inset 
in Fig. 4D), the two meshes globally overlap, indicating that the amplitude and wavelength of the post-buckled 
shape of the layer are accurately predicted by the ML model. This example demonstrates that GNNs, which allow 
resolution increase close to regions where the local phenomenon is expected to occur, can accurately capture 
localized complex phenomena, just in a purely data-driven supervised setting. For future research, we argue that 
smoothness in the ML predicted solution might be enforced by introducing physical constraints into the GNN 
model, increasing accuracy and generalizability. To investigate if an image-based ML model can similarly solve 
this problem using the same dataset, we implement a U-Net (recently adopted for heterogeneous materials with 
variable base material properties48) and report the results in Fig. S9. After several empirical tests performed by 
varying the perceptive field (increasing the kernel size, the dilation step, and network’s depth), the U-Net model 
tends to predict uniform strain fields (on the three components) with a relatively low average MAE of ∼ 0.07 
yet without capturing any local deformation. These results suggest that a GNN framework can not only predict 
highly localized phenomena for composites with variable base material properties but also reduce the need of 
training data compared to image-based ML models.

Compression of architected metamaterials.  While image representations are generally effective to 
represent fully dense material systems, such as those previously analyzed, they are not when dealing with archi-
tected metamaterials with low volume fraction, such as lattice structures, in which the solid phase is sparsely 
distributed. These structures are instead more naturally suitable for graph representation. As an example, here 
we exploit our GNN model to predict the deformation and stress field in finite-size lattice structures under 
compressive loading (Fig. 5A,B). Based on a bottom-up generation procedure featured in our previous work57, a 
dataset of 762 structures is constructed with 2 × 2 tessellations of randomly generated unit cells (Supplementary 
Materials) and split as before in training and test dataset (sensitivity analysis with training data density reported 
in Fig. S12). The lattice structures are composed of incompressible hyperelastic beams with initial shear modulus 
µ and uniform thickness t, and have constant volume fraction ρ . Separately trained on two different deformation 
regimes i.e., small and large deformations, the ML model is characterized by different node and edge features, 
and output. For small deformations, only the nodal coordinates of the undeformed mesh (10 beam-elements per 
beam) are encoded into the node features, and analogous edge features as before are here adopted; the output 
is represented by the displacement field ui , and axial stress σi = σ a

i  along the beams. For large deformations, 
accounting for local buckling, the critical eigen-mode coordinates, x̃i are additionally encoded into the node fea-
tures, and the corresponding node-to-node distances ( x̃ij and |x̃ij| ) are included into the edge features; only the 
displacement field is output by the model. More details are provided in Methods, and Supplementary Materials.

To demonstrate our ML model can learn the compressive behavior of non-uniform lattice structures for 
small and large deformations, in Fig. 5C,D we report the FE simulated and ML predicted stress distribution σ a

i  
for small effective strain ( ε = 0.1% ), and deformed shapes after the onset of buckling instability ( ε = 3% ), for 
three different architectures randomly sampled from the test dataset (see Fig. S10 for other lattices). In the elastic 
regime, the stress field is overall captured by our model with MAE values ∼ 0.29 (Fig. 5C). Carrying most of the 
load through the beams aligned with the loading direction, the lattice structures are mainly stressed along the 
horizontal direction (x-direction). Predicting this behavior thus suggests that the ML model effectively learns the 
mechanics of the structure under compressive loading. The error map in Fig. 5C confirms these results, except 
for a few localized regions, mainly represented by the lattice junctions, where the stress concentrations tend to be 
smoothed by the ML model to reduce the overall loss. This limitation, however, does not impact the prediction 
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of the overall mechanical behavior of the structure without considering local cracking and damage mechanisms, 
beyond the scope of this example. Upon reached the critical applied displacement, the structure locally buckles 
and localizes the deformation transversally to the loading direction (Fig. 5B). The global displacement (thus, 
the stiffness) of the structure is captured by the ML model, as shown in Fig. 5D. Despite the highly localized 
nonlinear deformation, converging to MAE values ∼ 0.39 on the test dataset, the ML model can also predict the 
complex post-buckled deformed shape with satisfactory approximation (Fig. 5D). The mismatch between the 
predicted and simulated beams’ local deformations together with the good approximation of the global structure 
displacement suggests that the model, trying to minimize the overall error, gets stuck in a local minimum during 
training. We expect that much larger training datasets and physics constraints in the model could reduce such 
local mismatch. We also notice that without using the critical eigen-mode information as input, the model is 
prone to converge to the un-buckled deformed configuration, while properly predicting the global displacement 
(Fig. S11). This observation suggests that the GNN model tends to learn actual physical relationships between 
the given inputs and outputs (Fig. 1).

Discussion
Here, we have proposed a mesh-based ML approach for the prediction of deformation, stress and strain fields 
in material and structural systems exhibiting complex physical phenomena using GNNs. The neural networks 
are trained on a few hundred simulation data yet accurately predict complex phenomena, such as wrinkling of 
interfacial layers and buckling instability of architected metamaterials, hence, showing high versatility and broad 
applicability. Harnessing the natural mesh-to-graph mapping and the expressive power of GNNs, our model 
learns the physical relationships between geometry and topology, constituent materials properties, boundary con-
ditions, and mechanical fields in various classes of materials and structures, from fiber composites to architected 
lattice structures (Fig. 1). With the ambitious goal of surrogating or complementing FE simulations of mechanical 
systems, the proposed model, once trained, dramatically reduces the computation time from minutes, hours, 
or days (typical for FE solvers) to fractions of a second (see Table S3). In addition, while the training process 
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Figure 5.   Predicting compressive behavior of lattice metamaterials. (A) Representative lattice structure 
under compressive loading. (B) Normalized effective stress-strain curve of the structure in (A) together with 
the normalized FE simulated stress field (i.e., axial stress, σ a , on the lattice’s beams) for small ( ε = 0.1% ) 
and large ( ε = 3% ) deformations. (C) Comparison of the ML predicted and FE simulated stress field for 
small deformations ( ε = 0.1% ) in three randomly chosen geometries from the test dataset, together with the 
corresponding error map. (D) ML predicted and FE simulated post-buckled deformed shapes for ε =3 % . The 
base material has incompressible nonlinear elasticity (hyperelasticity) with initial shear modulus µ = 14.5MPa.
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represents the computational bottleneck, once trained, GNNs can quickly predict mechanical fields in the spe-
cific class of materials and structures where have been trained independently of the complexity of the problem.

Nevertheless, limits related to (1) the graph structure of GNNs, and (2) the purely supervised data-driven 
set-up here used, exist. Regarding (1), GNNs are memory-demanding during training; therefore, as the number 
of nodes in the mesh rises, the training phase becomes increasingly more expensive. In addition, a trade-off 
between mesh refinement and far-field phenomena appears: the more accurately local fields are predicted via 
mesh refinement, the more message passing steps (computational cost) are needed to accurately capture far-field 
phenomena (i.e., information spatially far away from the mesh refinement). Regarding (2), although our model 
can predict complex phenomena with a small amount of training data (a few hundreds), it still lacks of generaliz-
ability (e.g., predicting “unseen” boundary conditions) as well as the accuracy is still not completely comparable 
to that of high-fidelity numerical solvers. For future research, we guess that by constraining the GNN solution to 
physics laws may largely improve the accuracy22, at the cost of higher training time. Despite these trade-offs are 
not negligible, the proposed graph-based ML framework represents a first step towards more powerful surrogate 
models, especially suitable for cellular solids, as architected truss metamaterials. To evaluate the applicability of 
the model, we additionally report in Fig. S12 a sensitivity analysis of the model performance with the training 
data density. For the three mechanics problems, we show that although the average accuracy of field predictions 
does not quickly rise, the scatter considerably decreases with the training density.

As a proof of concept, we have additionally demonstrated that our approach can be extended to predicting 
mechanical fields in material systems under multiple loading steps (e.g., for different applied strains). Com-
bining GNNs with recurrent neural networks in a dynamic-graph framework55 to predict physical fields for 
different applied external excitations (such as macroscopic strain in RVEs) could represent a promising tool 
for exhaustively modeling nonlinear and path-dependent phenomena in materials, such as nonlinear elasticity 
and plasticity. Carrying all the needed information, the variable physical fields would provide the macroscopic 
material response (e.g., stress–strain curve) as shown in Fig. 3, from which material properties, such as strength 
and toughness, could be easily extracted. In addition, stemming from the flexibility of graph representation 
and the expressive power of GNNs, mixed loading conditions may be easily encoded into the model through 
the node or global graph features55 (e.g., different displacement components applied to boundary nodes), and 
topology optimization may be integrated with the proposed model to address problems related to curves and 
surfaces’ smoothness. This work not only provides a novel method to predict complex physical phenomena 
using graph-based ML models but also opens new avenues to designing advanced materials like mechanical or 
functional truss metamaterials.

Methods
FE modeling.  The datasets are generated by FE modeling, using the commercial software Abaqus/Standard 
(Dassault Systemes Simulia Corp., 2017), considering the displacement, stress and strain fields as the ground 
truth for comparison with the ML results. All simulations are carried out in 2D under static loading. Automatic 
time step procedure (i.e., increment size in Abaqus) is adopted, except for multi-step predictions (i.e., evolution 
of physical fields) where a fixed time step of 0.01 is set; the static loading is overall divided in 101 steps. The loga-
rithmic strain (LE in Abaqus) is employed as strain measure for the simulations involving large deformations. 
For the fiber and stratified composites, plain strain elements (“CPE4R” in Abaqus) are used with a global mesh 
size of 0.03 and locally refined mesh with 40-by-10 elements (x and y direction in Fig. 4A) on the interfacial layer, 
respectively. Timoshenko-beam elements (B22 in Abaqus) are used to mesh the lattice structures, with a global 
mesh size of 10 elements per physical beam. To obtain stable results, convergence analysis is performed for the 
three material systems. All the computations are performed on a Intel Xeon E3-1270, 3.60 GHz, CPU core.

Datasets.  Unidirectional fiber composites.  The first dataset is composed of 500 RVEs characterized by dif-
ferent fiber volume fraction (i.e., fiber’s radius), linearly sampled in the range 0.05–0.5. The RVE’s shape is a 
square with size arbitrarily set to 1 mm. Applying a macroscopic plain strain tensile loading strain along the 
x-direction (Fig. 2A) of 6 % to each RVE subjected to PBCs, the nodal displacement, ui = (u1i , u

2
i ) , and stress, 

σi = (σ 11
i , σ 22

i , σ 33
i , σ 12

i ) fields at two loading steps (1 and 6 % of strain) are collected in the dataset as the ground 
truth. The matrix is modeled as an elasto-plastic (J2-perfect-plasticity) solid with Young’s modulus of 200 MPa, 
Poisson’s ratio of 0.3, and yield strength of 10 MPa. Representing the hard phase, a linear elastic model is instead 
adopted for the fiber, with Young’s modulus of 2000 MPa and Poisson’s ratio of 0.3. For the multi-step predic-
tions, two datasets are generated. For the first, composed of 100 RVEs, displacement boundary conditions are 
imposed (instead of PBCs) up to 8 % of effective strain (ratio between the applied displacement and the RVE’ 
size). A linear elastic model is adopted for both phases with same previous parameters. For the second, com-
posed of 500 RVEs, PBCs are imposed up to 8 % of macroscopic applied strain. Same previous base material 
properties are adopted, except for the matrix which is modeled using a linear hardening plasticity with a tangent 
modulus Ey = E / 3 . The macroscopic strain-strain curves shown in Fig. 3 are derived by averaging the local 
stress field for each applied macroscopic strain value. More details on PBCs can be found in Supplementary 
Materials.

Wrinkled interfacial layers.  The dataset includes 500 different combinations of base material properties. 
The two phases have linear elastic response. The soft phase (i.e., the matrix) has constant Young’s modulus 
E0 = 200MPa , and variable Poisson’s ratio ν0 in the range 0.01–0.49. The hard phase (i.e., the interfacial layer) 
has variable Young’s modulus E1 in the range 104–2× 105 MPa , and constant Poisson’s ratio ν1 = 0.3 . Linearly 
sampling 100 values for E1 , and 5 values for ν0 , 500 combinations are obtained. To limit the data generation, the 
geometric parameter g = d/t is set to 50, arbitrarily assuming d = 1mm . We simulate nonlinear post-buckling 
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behavior of the interfacial layer (i.e., wrinkling) by (1) conducting eigenvalue analysis, (2) applying the critical 
eigen-mode to the RVE as imperfection, and (3) carrying out a nonlinear static analysis with large deformations. 
Applying a macroscopic compressive loading strain along the x-direction (Fig. 2A) of 9 % to each RVE subjected 
to PBCs, the nodal displacement, ui = (u1i , u

2
i ) , and strain, εi = (ε11i , ε22i , ε33i , ε12i ) fields are collected in the data-

set as the ground truth. More details on PBCs and wrinkling can be found in Supplementary Materials.

Lattice structures.  The dataset is composed of 762 finite-size 2× 2 tessellations of randomly generated unit 
cells (see Supplementary Materials) with constant relative density ρ = 20% . The lattice beams are character-
ized by a rectangular cross section with in-plane thickness t = 0.14mm and depth H = 10mm . To reduce the 
boundary effects, a thicker frame around the structures is considered with t = 0.30mm . An incompressible 
hyperelastic Neo-Hookean material model with initial shear modulus µ = 14.5MPa is adopted to model the lat-
tice beams. Uniaxial compressive displacement (along the x-direction, Fig. 5A) is applied to the right edge, while 
constraining the left side. To account for buckling instability, we simulate nonlinear post-buckling behavior of 
the structures by (1) conducting eigenvalue analysis, (2) applying the critical eigen-mode to the structure as 
imperfection, and (3) carrying out a nonlinear static analysis with large deformations and material nonlineari-
ties. The nodal displacement, ui = (u1i , u

2
i ) and stress, σi = σ a

i  fields for two deformation regimes i.e., effective 
strain of 0.1 and 3 % before and after buckling, respectively, are then collected in the dataset as the ground truth. 
More details on the unit cell generation can be found in Supplementary Materials.

Structure of the ML model.  The ML model is implemented using PyTorch Geometric58 in the PyTorch 
framework59. The model consists of an encoder, a message-passing module, and a decoder. The encoder function 
is encoding node, vi , and edge, eij features into a larger latent space. This task is carried out using two neural net-
works, ǫN and ǫE for the node and edge features, respectively. Each feature is input into the corresponding net-
work, composed of two layers of width d (namely, latent size), each associated with a ReLU nonlinear activation 
function, and finally followed by a LayerNorm layer, which performs element-wise Layer Normalization60 using 
mean and standard deviation over a mini-batch. The resulting latent graph is then processed by the message-
passing module. For each node, the latent neighboring node and edge features are transformed by the neural 
network, ME , and aggregated via summation; this represents the message passed by the neighborhood of one 
node. The message together with the previous node features (namely, node state) is then updated by the neural 
network, UN , generating a new node state. Before aggregation, the message represents the new edge features. 
The new node states and edge features are summed to the corresponding previous states (i.e., sum of residu-
als). This process is repeated L times (i.e., message steps). The networks ME and UN have the same architecture 
of the networks in the encoder. After L message steps, in the decoder the latent node states are transformed by 
the neural network, δN , into field outputs. For multi-step predictions, to make the approach more general, two 
gated recurrent units (GRUs) are inserted after the message-passing module, interpreting the latent node states 
as hidden states (see Supplementary Materials). The node and edge features of each sample in the dataset are 
normalized using the function StandardScaler in the sklearn Python library. Analogously, the ground truth (i.e., 
nodal physical fields) is normalized using the mean and standard deviation computed on the training data by an 
in-house function; the ML model outputs are then de-normalized for performance evaluation and visualization. 
For training our model, we use the mean absolute error, MAE, as loss function, and the Adam optimizer, set-
ting the initial learning rate to 0.01 with exponential decay by γ = 0.9 every epoch. To reduce overfitting, an L2 
regularization technique with weight decay of 5× 10−4 is adopted in the Adam optimizer. In addition, to reduce 
the memory consumption a mini-batch technique is employed during training. Each dataset is split into 90 % of 
training data and 10 % of test data. In Table S1 we report the specific values of latent size, message steps, batch 
size, and training epochs for each dataset. For the sake of clarity, in Table S2 the node and edge features, and the 
output fields for each dataset are additionally reported. Without loss of generality, optimization of the networks’ 
architecture and hyperparameter sensitivity analysis are not here performed, being outside the goal of this work. 
All the ML training and inference is performed on a GPU NVIDIA Quadro P2000, 5GB (dedicated memory); 
an Intel Xeon E3-1270, 3.60 GHz, CPU core is also utilized for inference (predictions on unseen data) to have a 
fair comparison with FE simulations. More details can be found in Supplementary Materials.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request. The code of the ML models is available on GitHub https://​github.​com/​marco​mau06/​GNNs_​
fields_​predi​ction.
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