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We present a classical density functional theory (DFT) for fluid mixtures that is based on a third-order
thermodynamic perturbation theory of Feynman-Hibbs corrected Mie potentials. The DFT is developed to
study the interfacial properties of hydrogen, helium, neon, deuterium and their mixtures, i.e., fluids that are
strongly influenced by quantum effects at low temperatures. White Bear fundamental measure theory is used
for the hard-sphere contribution of the Helmholtz energy functional, and a weighted density approximation is
used for the dispersion contribution. For mixtures, a contribution is included to account for non-additivity
in the Lorentz-Berthelot combination rule. Predictions of the radial distribution function from DFT are in
excellent agreement with results from molecular simulations, both for pure components and mixtures. Above
the normal boiling point and 5 % below the critical temperature, the DFT yields surface tensions of neon,
hydrogen, and deuterium with average deviations from experiments of 7.5 %, 4.4 %, and 1.8 % respectively.
The surface tensions of hydrogen/deuterium, para-hydrogen/helium, deuterium/helium, and hydrogen/neon
mixtures are reproduced with a mean absolute error of 5.4 %, 8.1 %, 1.3 %, and 7.5 %, respectively. The surface
tensions are predicted with excellent accuracy at temperatures above 20 K. The poor accuracy below 20 K
is due to the inability of Feynman–Hibbs corrected Mie potentials to represent the real fluid behavior at
these conditions, motivating the development of new intermolecular potentials. This DFT can be leveraged in
the future to study confined fluids and assess the performance of porous materials for hydrogen storage and
transport.

I. INTRODUCTION

Vapor-liquid equilibria of fluids such as neon, helium,
hydrogen and deuterium occur at temperatures below
60 K, where other compounds form solids. At these tem-
peratures, quantum effects make significant contributions
to the surface tension,1,2 as well as other interfacial prop-
erties.3

It has become increasingly relevant to understand how
quantum effects influence interfacial properties. Lique-
faction at approximately 20 K is a promising concept
for large-scale distribution of hydrogen over longer dis-
tances.4 Mixed refrigerants of hydrogen, helium, and neon
can potentially be used to increase the efficiency of the
energy-intensive hydrogen liquefaction process. The sur-
face tension is a key parameter to estimate condensation
(and evaporation) rates of refrigerants, which are needed
to design heat exchangers.5–7

Other applications also require a model capturing quan-
tum effects for the description of interfacial phenom-
ena, such as hydrogen isotope separation technologies
for deuterium production,8 the exotic behavior of helium
droplets,9 and the storage of hydrogen in metal-organic
frameworks and zeolites.10

a)Electronic mail: oivind.wilhelmsen@ntnu.no

The importance of quantum effects relative to the clas-
sical behavior of fluids can be estimated by comparing
the de Broglie wavelength, Λ = h/

√
2πmkBT , to the typ-

ical length scale across which molecules interact, where h
and kB are Planck’s and Boltzmann’s constants, m is the
molecular mass, and T is the temperature. The de Broglie
wavelength increases with decreasing temperature and
molecular mass, which explains why hydrogen and helium
have particularly strong quantum effects. Quantum effects
are also important at high densities.11 Although solutions
of the Schrödinger equation can be used to calculate
the properties of such fluids, this is currently computa-
tionally unfeasible for systems consisting of a sufficiently
large number of molecules to study vapor-liquid interfaces.
Hence, there is a need for approximate methods. A for-
mally exact method to model the full quantum behavior of
an interaction potential is the path integral Monte Carlo
approach.12–14Wang and Johnson 15 used this method to
calculate the phase equilibrium of hydrogen and neon,
which was in good agreement with experimental data. In
practice however, a simpler semi-classical approach based
on pair potentials is often preferred.16

Wigner–Kirkwood theory17,18 was the first to describe
semi-classical, temperature-dependent quantum correc-
tions to classical interaction potentials. Feynman and
Hibbs later used another route to re-derive such quan-
tum corrections,19 which to first order are equivalent
with the Wigner–Kirkwood theory. They have later been
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referred to as Feynman–Hibbs corrections.19 The under-
lying idea is that classical statistical mechanics could
be used to study fluids influenced by quantum effects
by using quantum-corrected, temperature-dependent pair
potentials.19 This is particularly useful in molecular sim-
ulations, where fluids can be studied at low temperatures
using these semi-classical potentials. This simulation ap-
proach has been used to study phenomena such as the
adsorption of hydrogen in porous materials,10,20 quantum
clusters,21,22 helium at low temperatures,23 and quantum
fluids under confinement.24

In recent work,25–27 we have shown that Feynman–
Hibbs corrected Mie potentials with appropriately re-
gressed parameters are capable of representing the thermo-
dynamic properties of hydrogen, helium, deuterium, neon,
and their mixtures at temperatures above 20 K. A third-
order perturbation theory was developed called statistical
associating fluid theory of quantum corrected Mie poten-
tials (SAFT-VRQ Mie).25,26 It was shown to be in excel-
lent agreement with results from both molecular simula-
tions and experiments. We will use the SAFT-VRQ Mie
equation of state (EoS) as basis to develop a classical
density functional theory (DFT) for Feynman–Hibbs cor-
rected Mie potentials.

In previous works, DFT and molecular simulations
have been used with great success to estimate a range of
important interfacial properties of classical fluids, such as
the surface tension28 and its curvature dependence,29,30

interfacial resistivities,31–33 and adsorption isotherms.34

The goal of the present work is to investigate whether
Feynman–Hibbs corrected Mie potentials can provide a
pathway to achieve the same for fluids that are strongly
influenced by quantum effects.

Our development of a DFT for fluids influenced by
quantum effects follows along the same lines as previ-
ous work on DFT for classical fluids,35 which has been
shown to accurately represent the surface tension36,37 and
adsorption isotherms of confined systems.34 We find it nec-
essary to extend the Helmholtz energy functional with an
additional contribution that accounts for non-additivity
in the Lorentz-Berthelot combination rule to capture the
behavior of helium-hydrogen and helium-deuterium mix-
tures.38,39

We demonstrate that the presented DFT provides ac-
curate predictions of the surface tensions of both pure
fluids and mixtures that exhibit strong quantum effects
at temperatures above 20 K. By comparing with results
from molecular simulations, we also show that the DFT
is able to represent the radial distribution function of
both single-component fluids and mixtures described by
Feynman–Hibbs corrected Mie potentials. The DFT ex-
tends the simulation-theory-experiment nexus provided
by the SAFT-VRQ Mie EoS to inhomogeneous systems.

The paper is structured as follows. In Sec. II we intro-
duce a DFT that is based on the the SAFT-VRQ Mie EoS.
Details on numerical solution of the DFT and molecular
simulations are provided in Sec. III. In Sec. IV we com-
pare predictions from the DFT to experimental surface

tensions of pure components and mixtures, as well as the
radial distribution function of Mie Fluids from molecular
simulations. Concluding remarks are provided in Sec. V.
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FIG. 1: Comparison of the classical Mie interaction
potential (black, solid line) and the Feynman–Hibbs

corrected Mie-potential (green, dashed) of hydrogen, at
reduced temperature T ∗ = 1. The Feynman–Hibbs
correction increases the effective diameter σeff, and

decreases the well depth ϵeff, compared to the classical
Mie parameters σ and ϵ.

II. THEORY

This section presents a DFT for Feynman–Hibbs cor-
rected Mie potentials. We restrict the discussion to first-
order Feynman–Hibbs corrected Mie potentials, since they
have been shown to give the best overall performance.25,26

The expression for the interaction potential between in-
teraction sites of type i and j is
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=
σ
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where the potential well-depth is ϵij , the characteristic
length scale corresponding to the distance at which the
inter-molecular Mie potential is zero is σij , and the at-
tractive and repulsive exponents are λa,ij and λr,ij , re-
spectively. ℏ = h

2π is the reduced Planck’s constant. The
factors C and Q1 are

C(λr, λa) =
(

λr

λr − λa

)(
λr

λa

) λa

λr − λa , (2)
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and

Q1(λ) = λ(λ− 1) . (3)

The Feynman–Hibbs correction is given as the sec-
ond line of Eq. (1). It introduces a temperature- and
mass-dependent prefactor, where the expression in the
parentheses is the second derivative of the Mie potential
with respect to the inter-molecular distance, rij .19,25

As the temperature decreases, the first-order correction
1) increases the effective size-parameter σij,eff and 2) de-
creases the effective potential well-depth ϵij,eff. These
effects are illustrated in Fig. 1. At high temperatures,
the first-order contribution becomes negligible and the
classical Mie potential is restored.

The following relationships are used as combination
rules for the molecular potential parameters40

σij = 1
2 (σii + σjj) (1 − lij) , (4a)

ϵij = (1 − kij)

√
σ3

iiσ
3
jj

σ3
ij

√
ϵiiϵjj , (4b)

λij − 3 =
√

(λii − 3) (λjj − 3), (4c)
1
mij

= 1
mi

+ 1
mj

, (4d)

where lij and kij are binary correction parameters for the
diameter-parameter and well-depth parameter, respec-
tively. These parameters have been regressed in previous
work by using experimental data of binary phase equilib-
ria.26

In two previous works,25,26 we presented the
SAFT-VRQ Mie EoS, which represents the thermody-
namic properties of fluids interacting via Feynman–Hibbs
corrected Mie potentials. For mixtures, the specific re-
duced Helmholtz energy is:

ares = a− aig = ahs + anad + adisp, (5)

where A = aNkBT is the total Helmholtz energy, and
superscripts ig, res, hs, nad and disp refer to the ideal-gas,
residual, hard-sphere, non-additive, and dispersion contri-
butions, respectively. The SAFT-VRQ Mie EoS is valid
for bulk-phases. We shall next elaborate how the thermo-
dynamic description can be extended to heterogeneous
systems with DFT.

A. DFT with the SAFT-VRQ Mie Equation of State

The starting point of DFT is the grand canonical func-
tional,

Ω [{ρi(r)}] = F [{ρi(r)}]+
Nc∑
i

∫
dr ρi (r)

(
V ext

i (r) − µi

)
,

(6)

where ρi is the density of component i, F is the Helmholtz
energy functional, V ext

i denotes the external potentials
acting on component i, µi is the chemical potential of
component i and r is the spatial coordinate. The external
potential can be used to model e.g. fluid-solid interactions,
and the shape of the external potential depends on the
interactions to be modeled. In the following, similar
to Stierle et al.,41 we use square brackets to denote a
functional dependence, and curly brackets to indicate a
vector of all components in a mixture.

The grand canonical functional is minimum for a sys-
tem at fixed temperature T , volume, and chemical po-
tentials µi. The necessary conditions for a minimum of
Eq. (6) are provided by the Euler-Lagrange equations,

δF [{ρi}]
δρj (r) = µj − V ext

j (r) , (7)

which is the system of equations solved in DFT. The
thermodynamic description of the system under consid-
eration is defined through a model for the Helmholtz
energy functional capturing the ideal gas contribution
and the contribution due to fluid-fluid interactions as
well as expressions for the external potentials. We use
a weighted density approximation to model the residual
(intrinsic) Helmholtz energy functional, which accounts
for fluid-fluid interactions

βF res [{ρi (r)}] =
∫

dr Φres ({nα (r)}) , (8)

where Φres is the reduced residual Helmholtz energy den-
sity, and α ∈ {1, · · · } is an index of the relevant weighted
densities. The Helmholtz energy functional is obtained
as a sum of residual Helmholtz energy functional and the
ideal gas contribution, as F = F res + F ig. The weighted
densities are calculated via convolutions with the density
profiles,

nα (r) =
Nc∑
i

∫
dr′ ρi (r′)ωα

i (r − r′)

≡
Nc∑
i

ρi (r) ⊛ ωα
i (r) =

Nc∑
i

nα,i (r) , (9)

where ⊛ denotes the convolution, ωα
i is weight function α

of component i, and Nc is the total number of components.
The component-wise weighted densities are

nα,i (r) = ρi (r) ⊛ ωα
i (r) . (10)

The reduced, residual Helmholtz energy density of the
DFT is modeled as

Φres = Φhs + Φnad + Φdisp. (11)

Here, Φhs is the hard-sphere contribution, Φnad corrects
for non-additivity in the hard-sphere contribution of mix-
tures, and Φdisp is the contribution from dispersion in-
teractions. In the following, we will explain how each of
these terms are modeled.
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B. The Hard-Sphere Contribution - Fundamental Measure
Theory

We use fundamental measure theory (FMT) for the
hard-sphere contribution of the Helmholtz energy func-
tional. The weight functions used in Eq. (9) are

ω0
i (r) = 1

4πR2
i

δ (Ri − |r|) , (12a)

ω1
i (r) = 1

4πRi
δ (Ri − |r|) , (12b)

ω2
i (r) = δ (Ri − |r|) , (12c)
ω3

i (r) = Θ (Ri − |r|) , (12d)

ωV1
i (r) = 1

4πRi

r
|r|
δ (Ri − |r|) , (12e)

ωV2
i (r) = r

|r|
δ (Ri − |r|) , (12f)

with the Heaviside step function Θ and the Dirac delta
function δ. The hard-sphere radius of component i is

Ri = 1
2

∫ σii,eff

0
dr
(

1 − exp
(
−βuii(r)

))
, (13)

which depends on temperature. Furthermore, σij,eff is
defined by

uij(σij,eff , β) = 0. (14)

FMT for hard-sphere mixtures was developed by Rosen-
feld.42 The name fundamental measure relates to the
fundamental geometric measures of a sphere (volume,
surface area, mean radius of curvature and the Euler
characteristic). In this work, we use the White Bear ver-
sion of FMT,43 which reduces to the Boublík-Mansoori-
Carnahan-Starling-Leland44,45 EoS in homogeneous sys-
tems. The reduced Helmholtz energy density of the White
Bear functional is

Φhs = −n0 ln (1 − n3) + n1n2 − n1 · n2

1 − n3

+
(
n3

2 − 3n2n2 · n2
) n3 + (1 − n3)2 ln (1 − n3)

36πn2
3 (1 − n3)2 . (15)

The functional derivative on the left-hand-side of Eq. (7)
can be calculated as

δβF hs [{ρi}]
δρj (r) =

∫
dr
∑

α

∂Φhs

∂nα (r′) · δnα (r′)
δρj (r) . (16)

Furthermore, it can be shown that41

δnα (r′)
δρj (r) = ωα

j (r − r′) , (17a)

δnα (r′)
δρj (r) = −ωα

j (r − r′) , (17b)

leading to

δβF hs [{ρi}]
δρj (r) =

3∑
α=0

∂Φhs

∂nα
⊛ ωα

j −
V2∑

α=V1

∂Φhs

∂nα
⊛ ωα

j , (18)

which represents a convolution of the derivative of the
reduced Helmholtz density Φhs with the weight func-
tions ωα

j from Eq. (12). Moreover, the derivatives of the
reduced Helmholtz energy density with respect to the
weighted densities are also functions of the weighted den-
sities, which in turn come from convolution integrals (see
Eq. (9)). Further details on the numerical calculation of
these convolutions are provided in Sec. III.

C. The Non-additive Correction

Leonard, Barker, and Henderson laid the foundation
for the perturbation theory of mixtures38 in 1970. In a
seminal paper, they derived a perturbation theory for mix-
tures from three different references: 1) a pure component
hard-sphere fluid, 2) an additive hard-sphere mixture, and
3) a non-additive hard-sphere mixture. Since there is no
established FMT for non-additive hard-sphere mixtures,
we use an additive hard-sphere mixture as the reference.
We showed in previous work that this yields nearly as
accurate results as using a non-additive reference.39

The definition of an additive hard-sphere mixture is
that the repulsive distance dij of any cross interaction
equals the mean of the pure-fluid diameters, i.e., dij =
(di + dj) /2, where indices i and j refer to the two hard-
sphere fluids, di = δii, and

δij =
∫ σij,eff

0
dr
(

1 − exp
(
−βuij(r)

))
. (19)

The quantity δij is often referred to as the effective hard-
sphere diameter or the Barker–Henderson diameter. The
origin of non-additivity stems from the combination rules
of the molecular interaction potentials, Eqs. (4a)–(4d),
where the interaction parameter lij for σij is the main
source of non-additivity.

The additional contribution to the reduced specific
Helmholtz energy (a) that must be included to (approxi-
mately) account for non-additivity is

anad = −2π
ρ

Nc∑
i

Nc∑
j

ρiρjd
2
ijg

ij
mix,c (dij − δij) , (20)

where ρ is the overall density and gmix,c (subscript ‘c’) is
the value of the radial distribution function of the additive
hard-sphere mixture at contact. This contribution is zero
when dij = δij . Leonard et al.38 argued that the addi-
tional contribution from Eq. (20) is small, but they did
not investigate the influence of this contribution on ther-
modynamic properties. In a recent work, we showed that
it should be included to accurately reproduce the proper-
ties of non-additive mixtures,39 and it has a particularly
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large influence on the prediction of phase equilibria for
hydrogen-helium and the deuterium-helium mixtures.26

To describe the radial distribution function at contact
for inhomogeneous systems, we use the formulation pro-
posed by Yu and Wu46 for association, namely

gij
mix,c ({nα (r)}) = 1

1 − n3
+ didj

di + dj

ξn2

2 (1 − n3)2

+
(

didj

di + dj

)2
ξ2n2

2

18 (1 − n3)3 , (21)

with ξ = 1 − n2 · n2/n
2
2. For the densities in Eq. (20),

we use the FMT weighted densities n0,i scaled with ξi =
1 − n2,i · n2,i/n

2
2,i, leading to

Φnad =

− 2π
Nc∑
i

Nc∑
j

n0,iξin0,jξjd
2
ijg

ij
mix,c ({nα(r)}) (dij − δij) .

(22)

D. The Dispersion Contribution

The structure of the dispersion contribution of the
Feynman–Hibbs corrected Mie potentials to the Helmholtz
energy functional is based on the development of Sauer
and Gross,35

Φdisp
(

{ndisp
i (r)}

)
≡ ndisp (r) adisp({ndisp

i (r)}), (23)

with the reduced specific Helmholtz energy adisp from the
SAFT-VRQ Mie EoS to be consistent with the bulk EoS.

The weighted densities ndisp
i (r) of the dispersion con-

tribution (with ndisp (r) =
∑

i n
disp
i (r)) can be calculated

from Eqs. (9) and (10) with the weight function for the
dispersion contribution of component i, defined by

ωdisp
i (r) = Θ (2ψRi − |r|)

4π
3 (2ψRi)3 , (24)

using the model parameter ψ = 1.3862 proposed by Sauer
and Gross,35 which was shown to reproduce the surface
tension of n-alkanes when combining DFT with the PC-
SAFT EoS.

III. NUMERICAL METHODS

This section will present the main details of the numer-
ical solution of the DFT and the molecular simulations.

A. Convolution in Planar Geometries

The convolution integrals described in Eqs. (9), (10)
and (18) can be efficiently computed in Fourier space by

using available fast Fourier transform (FFT) algorithms
described by Knepley et al.,47 Stierle et al.,41,48 and ref-
erences therein. The complexity of the transforms can be
reduced by assuming periodic and even/odd symmetric
profiles that are convolved with the weight functions from
Eqs. (12) and (24). An advantage of this approach is that
it avoids the need of ‘buffer-zones’ outside of the compu-
tational domain,41 and simplifies the grid. Sec. 1 of the
Supplementary Information (SI) gives an introduction to
how the FFT can be split into sine and cosine transforms,
and how they apply to even and odd functions. This will
be exploited in the following. Definitions for the cosine
and sine transform as well as the corrensponding inverse
transforms are also found in Sec. 1 of the SI.

The weight functions in Eqs. (12) and (24) are analyti-
cally transformed to Fourier space,41 and the functions
are defined in Appendix A. The circumflex (ˆ) above the
functions refers to the Fourier transforms of the respective
quantity.

The Fourier transforms presented in the following can
be efficiently computed using fast discrete sine and cosine
transform algorithms. The grid used in Fourier space
for the planar geometries is defined and illustrated in
Appendix B.

1. Convolution with Scalar-Valued Weight Functions

The densities, the scalar-valued weighted densities, the
scalar-valued partial derivatives of the Helmholtz energy
densities from FMT and the dispersion functional are all
even functions in a planar geometry. They can therefore
be transformed into Fourier space using a cosine transform
according to

ρ̂i(kz) ≡ COS [ρi(z)] , (25)

where kz is the Fourier space coordinate. The convolution
that defines the scalar-valued weighted densities can be
computed as

nα,i(z) = COS−1 [ρ̂i(kz)ω̂α
i (kz)] , (26)

with the inverse cosine transform COS−1.
The scalar-valued partial derivatives of the Helmholtz

energy density, Eq. (18), are also even functions. They
are transformed to Fourier space according to

∂̂Φ
∂nα

(kz) ≡ COS
[
∂Φ
∂nα

(z)
]
. (27)

The convolution of the (even) scalar-valued partial
derivatives of the Helmholtz energy and the (even) scalar
weight functions, defined in Eqs. (12) and (24), or in
Fourier space in Eqs. (A1) and (A2), can be computed by

∂Φ
∂nα

(z) ⊛ ωα
j (z) = COS−1

[
∂̂Φ
∂nα

(kz)ω̂α
j (kz)

]
. (28)
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2. Convolution with Vector-Valued Weight Functions

Because the vector-valued weight functions from FMT
are odd functions, the vector-valued weighted densities,
nα,i, are transformed back from Fourier space using the
sine transform via

nα,i(z) = ıSIN −1 [ρ̂i(kz)ω̂α
i (kz)] , (29)

since the argument of the inverse sine transform is scalar-
valued (odd).

The vector-valued partial derivatives of the Helmholtz
energy density from FMT, Eq. (16), are odd functions.
They are transformed to Fourier space using the sine
transform,

∂̂Φ
∂nα

(kz) ≡ −ıSIN
[
∂Φ
∂nα

(z)
]
. (30)

Although the imaginary unit, ı ≡
√

−1, appears in
Eqs. (29) and (30), the use of complex numbers can be
avoided completely by adjusting the sign of the convolu-
tion results, noting the imaginary unit appears quadrat-
ically (ı2 = −1). The convolution of the (odd) vector-
valued derivatives of the Helmholtz energy density and
the (odd) vector-valued weight functions is

∂Φ
∂nα

(z) ⊛ ωα
j (z) = COS−1

[
∂̂Φ
∂nα

(kz) · ω̂α
j (kz)

]
, (31)

where the argument of the inverse cosine transform is
scalar-valued (due to the scalar product and because the
product of two odd functions yields an even function).

B. Iterative Solution for Density Profiles

The equilibrium density profiles are obtained from
DFT by solving Eq. (7). By substituting the ex-
actly known ideal gas contribution for the chemical po-
tential βµig,b

j = ln
(
ρb

j Λ3
j

)
and the functional deriva-

tive δβF ig

δρj
= ln

(
ρj(r)Λ3

j

)
, the following fixed-point equa-

tion is obtained

ρj (z) = ρb
j exp

(
βµres,b

j − βV ext
j (z) − δβF res [{ρi}]

δρj (z)

)
.

(32)
The fixed-point equations can be solved by a combination
of simple Picard iterations and/or Anderson mixing,49,50

also called Pulay mixing51,52 or direct inversion in the
iterative subspace (DIIS).53 We refer the interested reader
to the work of Mairhofer and Gross54 for more details
and comparison of different methods for solving Eq. (32).
The fixed-point iterations can be stabilized by introduc-
ing additional constraints, e.g., for the total number of
molecules in the system. We have included more details
on this in Appendix C.

C. Calculating Surface Tensions

The surface tensions are calculated for planar interfaces
in one-dimensional Cartesian coordinates for pure fluids
and mixtures. The initial condition partial density profiles
ρIC

i (z) are generated using a hyperbolic tangent function
proposed by Mairhofer et al.,55 as

ρIC
i (z) = 1

2

(
ρℓ,b

i + ρv,b
i

)
+ 1

2

(
ρℓ,b

i − ρv,b
i

)
tanh

(
z

di

(
2.4728 − 2.3625 T

T c

))
.

(33)

Here, T c refers to the critical temperature calculated from
the liquid composition. The bulk properties of liquid (ℓ)
and vapor (v) are calculated from phase equilibrium cal-
culations with knowledge of the temperature for pure
fluids and an additional specification for the binary sys-
tems. This additional specification is either the liquid
composition or the vapor phase densities.

For the simulation of the planar interfaces the external
potentials in Eqs. (6), (7) and (32) are set to zero for all
components, V ext

j (r) = 0 ∀ j.
Using the equilibrium density profiles, the surface ten-

sion γ is calculated from the reduced Helmholtz energy
density Φ, the chemical potentials µi, and the bulk pres-
sure pb, all three properties comprising ideal gas plus
residual contributions, by evaluating the following inte-
gral, which is only non-zero in the interface region

γ =
∫ ∞

−∞
dz
(
kBTΦ({ρi(z)}) −

Nc∑
i

µiρi (z) + pb

)
,

(34)
with the z-direction being perpendicular to the interface.

D. The Radial Distribution Function determined from DFT
and from Molecular Dynamics Simulations

Within the DFT formalism, the radial distribution func-
tions and (self-) solvation free energies can be obtained
via Percus’ test particle theory.56,57 In this method, the
intermolecular pair potential (the Feynman–Hibbs cor-
rected Mie potential) is used as the external potential,
V ext

i (r) in Eq. (6), at the origin of the system.
Solving the DFT, the resulting equilibrium density pro-

file for a homogeneous fluid in a one-dimensional spherical
coordinate system can be used to calculate the radial dis-
tribution function,

g(r) = ρ(r)
ρb , (35)

where ρ(r) is the density profile from the DFT and ρb is
the value from the EoS for a homogeneous system. For
binary mixtures, the same methodology is applied but two
DFT computations are required: one calculation for the
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intermolecular pair potential of each component, which
acts as an external potential. We refer to the work by
Eller et al.57 and the SI of this work for further details
about these calculations.

The radial distribution function from DFT can be com-
pared to results from molecular dynamics simulations
(MD). For this purpose, we have carried out MD simula-
tions using the open-source code LAMMPS58 in the NVT
ensemble with a time step of ∆t = 1.0 fs using a Nosé-
Hoover thermostat and a damping time of tdamp = 100 fs.
The Feynman–Hibbs corrected Mie potentials for all in-
teraction pairs were provided as energy and force ta-
bles (5000 values, equidistant between rmin = 0.1 Å and
rmax = 12.0 Å) evaluated at the simulation temperature.
The cut-off distance was the maximum distance of the
tabulated potential (rc = 12.0 Å) and the same cut-off
distance was used for all intermolecular potentials.

The thermodynamic conditions for the simulations were
generated as follows. The SAFT-VRQ Mie EoS was used
to calculate the bubble point for a given temperature and
mixture composition. Next, the pressure was increased to
ensure a stable liquid phase. For the resulting tempera-
ture, pressure, and composition, the density was computed
from which – for a fixed number of Mie interaction sites,
N = 4000 – the length of the cubic simulation box was
determined. The Mie sites were randomly placed in the
simulation box. An energy minimization was conducted
prior to an equilibration (tequil = 0.1 ns) and subsequent
production (tprod = 1.0 ns). During the production phase,
the radial distribution function was sampled (500 bins in
r = [0, rc], every 100-th step) and the running average
stored. LAMMPS input files, energy and force tables,
Jupyter notebooks and plots for the investigated binary
mixture’s radial distribution functions are available in the
SI.

IV. RESULTS AND DISCUSSION

Neon, deuterium, hydrogen, helium and their mixtures
display vapor-liquid phase equilibria at temperatures be-
low 60 K, where other substances form solids. At these
conditions, the influence of quantum effects can be signif-
icant.

Both, hydrogen and deuterium have two isomeric forms,
referred to as spin isomers. The two nuclear spins of
the protons of ortho-hydrogen are aligned parallel, while
for para-hydrogen, they are aligned antiparallel. The
equilibrium ratio of the spin isomers at high temperatures
is referred to as normal-hydrogen, which is a mixture of
75 % ortho-hydrogen and 25 % para-hydrogen. Similarly,
the ratio of ortho-deuterium to para-deuterium is 2:1 for
’normal’-deuterium. In the following, we will restrict the
discussion to normal-hydrogen, normal-deuterium and
para-hydrogen. Normal-hydrogen and normal-deuterium
will in this work be treated as pure fluids and referred to
as hydrogen and deuterium.

For hydrogen, para-hydrogen, helium and neon, we have

TABLE I: Mie potential parameters used with first-order
Feynman–Hibbs corrections

Substance σ/Å (ϵ/kB)/K λa λr
Helium 2.7443 5.4195 6 9
Hydrogen 3.0243 26.706 6 9
Para-hydrogen 3.0235 26.5860 6 9
Deuterium 3.0087 39.2388 7 11
Neon 2.7778 37.501 6 13

used the parameters of the Feynman-Hibbs corrected Mie
potentials from previous work.25 For deuterium however,
the parameters have been improved to achieve more ac-
curate liquid-phase densities at low temperatures, with
small influence on other thermodynamic properties. But,
even with the new parameters the predictions for the
liquid densities of deuterium deviate from the experimen-
tal values below the normal boiling point. More details
on the regression of new parameters for deuterium are
available in the SI.

The parameters of the pure-component interaction po-
tentials used in this work are listed in Tab. I. For mixtures,
the same combination rules as in our previous work were
used.26

All of the results presented in this work have been repro-
duced using both, the open-source FeOs framework59,60

and the open-source Thermopack framework.61,62 This
has served as a consistency check for the implementation.

A. The Radial Distribution Function of Feynman-Hibbs
corrected Mie fluids

To gain confidence in predicting interfacial properties
using DFT, we first assess how well DFT is able to predict
the fluid structure in bulk phases. We compare the radial
distribution functions (RDFs) calculated from DFT to
results from molecular simulations. Details about these
calculations can be found in Sec. III D and in the SI.

The liquid-phase states for the single-component fluids
are listed in Tab. II. The states are found for temper-
atures at approximately 0.8 of the critical temperature
(T ≈ 0.8T c) and densities that are slightly increased from
the saturation density at this temperature. With these
states as input, we calculated the RDFs of helium, hydro-
gen, deuterium and neon represented by Feynman-Hibbs
corrected Mie potentials. Fig. 2 shows an excellent agree-
ment between predictions from DFT and results from
MD simulations. This suggests that the DFT functional
is suitable for inhomogeneous systems with pronounced
local density correlations.

A similar comparison that extends these findings to
mixtures can be found in the SI. For mixtures, we find
that it is key to include the non-additive contribution
described in Sec. II C to be able to represent the RDF
of mixtures that have significant non-additivity. For in-
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FIG. 2: Radial distribution functions of pure fluids from DFT (orange, dashed) and MD simulations (green, solid).

TABLE II: Pure fluid states for calculating RDF.

Substance T /K ρ/(kg/m3)
Helium 4.0 137.5

Hydrogen 27.5 61.5
Deuterium 30.0 145.0

Neon 35.0 1050.0

stance, the local stucture arbound helium atoms in a
helium-deuterium mixture at 30 K and 50 bar from DFT
is only in agreement with results from molecular simu-
lation if the additional non-additive contribution from
Sec. II C is included in the Helmholtz energy functional.

B. Surface Tensions of Pure Fluids

Mulero et al.63 correlated the surface tensions of several
pure-component fluids to experimental data. They pre-
sented empirical correlations formulated as polynomials in

reduced temperature (T/T c). The correlations agree well
with the experimental data for neon and deuterium. For
para-hydrogen however, the agreement is poor above 20 K.
A new correlation for the surface tension of para-hydrogen
has therefore been developed, where details can be found
in the SI. For hydrogen, the correlation by Mulero et
al. is in good agreement with available experimental
data for most of the temperature range, but it displays
a nonphysical kink close to the critical temperature. A
new correlation without this kink has been developed
for hydrogen, where details can be found in the SI. The
critical temperatures used in this work for evaluation of
the correlations are tabulated in Tab. III. In the following,
we assess the accuracy of the DFT by comparing to the
empirical correlations and to experimental data.

Fig. 3 compares the surface tensions from DFT to
correlations and available experimental data for hydro-
gen, para-hydrogen (the hydrogen isomer stable at low
temperatures), deuterium, and neon. Hydrogen, para-
hydrogen and deuterium, shown in Fig. 3a, Fig. 3b and
Fig. 3c respectively, show good agreement with the exper-
iments, but with increasing deviation as the temperature
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FIG. 3: Surface tension calculated using DFT is compared to experimental data and correlations. A new correlation
(see SI) is used for para-hydrogen, while the correlations of Mulero et al.63 are used for the other fluids. For deuterium,

the experimental data of ortho-deuterium is included in the diagram (crosses).

TABLE III: Critical and normal boiling point
temperatures (NBT) of the quantum fluids.64–66

Substance T c/K T NBT/K
Hydrogen 33.145 20.369

Para-hydrogen 32.938 20.271
Deuterium 38.34 23.661

Neon 44.4918 27.104

decreases. This is consistent with the modest under-
prediction of the density of the saturated liquid by the
Feynman-Hibbs corrected Mie potential and the EoS at
these conditions. In Fig. 3c we include the experimental
data of ortho-deuterium in the diagram for deuterium.
The data of ortho-deuterium deviate to a small extent
from the data of normal-deuterium.

For neon, shown in Fig. 3d, the relative deviations
between DFT-results from experimental data increases

with temperature. The most likely reason for these devi-
ations are small errors of the EoS already observed for
bulk properties, in particular a deviation in the critical
temperature.

In the temperature-range from normal boiling point to
95 % of the critical temperature (T boil ≤ T ≤ 0.95 T c),
the DFT predicts surface tensions for neon, hydrogen,
para-hydrogen, and deuterium with average deviations
from experimental results of 7.5 %, 4.4 %, 6.7 %, and 1.8 %,
respectively. These errors have been estimated with an
equidistant temperature grid (100 points). No parameters
of the DFT-model were adjusted to interfacial properties,
which is why we refer to the DFT results as predictions.

From Fig. 3 we see that the predictions for all fluids
are in good agreement with the experimental data. Also
the availability of experimental data is excellent for hy-
drogen and para-hydrogen. For deuterium, only one good
source of experimental data has been found with temper-
atures ranging from 20.57 K to 36.7 K.67 One reference
with data in a similar range is also reported for ortho-
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deuterium.68 The availability of data for neon is fairly
good, but only two data sets with measurements up to
41.93 K are available.69,70

C. Surface Tensions of Mixtures

There are few published measurements of the surface
tensions of mixtures of helium, hydrogen, deuterium and
neon. To the best of our ability, we could only find data of
four mixtures, which will be discussed in the following. For
all of these mixtures, the surface tensions were measured
with the capillary-rise method.

Blagoi and Pashkov74 measured four isotherms (T ∈
{24.59, 26.33, 27.15, 29.00} K) of the hydrogen-neon mix-
ture. The measured pressures range from 1.91 atm to
5.90 atm, and the surface tension was shown to decrease
rapidly with increasing hydrogen concentration. Fig. 4d
compares predictions from DFT to the experimental data
with composition ranging from pure neon to the triple
point composition. An almost linear decrease in surface
tension with increasing hydrogen content is thereby ob-
served. The experimental data appears to follow a more
convex composition-dependence. All of the predictions
fall within 10 % of the experimental data, with a mean
absolute deviation (MAD) of 7.5 %.

Grigorev and Rudenko71 measured the surface tensions
of eight hydrogen-deuterium mixtures with deuterium
mole fractions from 7.2 % to 82.3 %. The measured tem-
peratures were in the range 16.44 K to 20.46 K. In Fig. 4a,
two isotherms (18.88 ± 0.2 K and 20.44 ± 0.2 K) have
been extracted from the experimental data. The surface
tensions from DFT show the same trend as the experi-
mental values. However, since the measured temperatures
are all below the normal boiling point of deuterium, the
EoS predictions for the liquid-phase density of deuterium
deviate from the experimental values. The error in the liq-
uid densities predicted by the model result in a deviation
between DFT and experiments for the surface tension,
which is especially large in the limit of pure deuterium.
The MAD of the hydrogen-deuterium system was found
to be 5.4 %.

In a series of articles, Paine and Seidel72,73,75 reported
measurements of the adsorption energy of helium on the
surface of liquid hydrogen and of liquid deuterium. The
spin-isomer composition of hydrogen and deuterium were
equilibrated at low temperatures (20 K) using a magnetic
catalyst. The equilibrium composition is then nearly pure
para-hydrogen, while deuterium is converted to almost
pure ortho-deuterium.

The dependence of the surface energy of liquid hy-
drogen on the helium gas density was measured using
the capillary-rise technique, and the experiments were
equilibrated for 10 min until mechanical and thermal equi-
librium was established in the experimental cell. The bulk
liquid phase was, however, not in compositional (chemical)
equilibrium. Paine and Seidel estimated the diffusion coef-
ficient of helium in hydrogen to be 0.1 µm s−1 to 1 µm s−1.

Despite of being out of equilibrium with net transport of
helium across the interface, the diffusion lengths for the
equilibration time are orders of magnitude larger than
the size of the relevant interface region. Hence, it is rea-
sonable to assume the gradient in chemical potentials to
be zero, i.e., assume chemical equilibrium in spatial coor-
dinate across the nanosized interfacial region considered
in the DFT calculations. Because the properties of ortho-
deuterium and para-deuterium are very similar, we used
the parametrization for normal-deuterium to describe
ortho-deuterium. The interaction between para-hydrogen
and helium was set to kij = 0.08 and lij = −0.05, the
same as for hydrogen and helium.

The surface tension data of Paine and Seidel are mea-
sured as a function of the helium partial densities in the
vapor phase.72,73 To compare the experiments to predic-
tions from DFT, the vapor-liquid equilibrium condition
was solved to extract the specific component mass density
of helium, ρ(m)

He .
Four isotherms for helium with para-hydrogen, at T ∈

{15, 17, 19, 21} K, are shown in Fig. 4b. The two isotherms
with lowest temperature extrapolate well towards the
pure fluid correlation (represented by a star-symbol in
Fig. 4b). Extrapolating the isotherms at T = 19 K and
T = 21 K, however, indicate too high values of the surface
tensions for the mixtures. The DFT results deviate for
pure para-hydrogen, an offset that remains for increased
helium content, although the DFT shows the same trend
as the experimental data. Overall, the MAD found for
the helium-para-hydrogen mixture is 8.1 %.

Fig. 4c shows six isotherms for the helium-deuterium
mixture (T ∈ {20, 21, 22, 23, 24, 26} K). Predictions from
the DFT are in good agreement with the experimental
data, and the mixture-data agrees fairly well with the
quasi-experimental correlation for pure liquid deuterium.
The MAD was found to be 1.3 %.

V. CONCLUSION

Neon, deuterium, hydrogen, helium and their mixtures
display vapor-liquid phase equilibria at temperatures be-
low 60 K. At these conditions, other components form
solids and the influence of quantum effects can be signif-
icant. We present a classical density functional theory
(DFT) for these fluids that can be used to study interfacial
properties at temperatures above 20 K.

The DFT is based on a third-order thermodynamic per-
turbation theory of Feynman–Hibbs quantum corrected
Mie potentials called the SAFT-VRQ Mie EoS. White
Bear fundamental measure theory is used to describe the
additive hard-sphere mixture, and a new functional con-
tribution has been developed to correct for non-additivity.
The correction is incorporated into the DFT through a
functional representation of the radial distribution func-
tion at contact. A weighted density approximation is used
for the dispersion contribution.

The ability of the DFT to capture the pair-wise struc-
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FIG. 4: Isothermal surface tension calculated using DFT (solid lines) compared to experimental data (dots) and pure
fluid values (asterisk) calculated form correlations. For para-hydrogen (4b) the new correlation is used otherwise the

Mulero et al.63 correlation is used.

ture of the quantum corrected Mie fluid in bulk phases was
evaluated by computing the radial distribution function
utilizing Percus’ test particle theory. The radial distri-
bution function from DFT was found to be in excellent
agreement with results from molecular dynamic simula-
tions performed with Feynman–Hibbs quantum corrected
Mie potentials of both pure fluids and mixtures.

For ranges of temperature between the normal boiling
point and 95 % of the critical temperature, the DFT yields
surface tensions of neon, hydrogen, para-hydrogen, and
deuterium with average deviations from experimental
data of 7.9 %, 4.4 %, 6.7 %, and 1.8 %, respectively.

The surface tensions of hydrogen–deuterium, para-
hydrogen–helium, deuterium–helium, and hydrogen–neon
mixtures from experiments were reproduced within a
mean absolute error of 5.4 %, 8.1 %, 1.3 %, and 7.5 %, re-
spectively. The DFT model predicts the surface tension of
fluids that exhibit strong quantum effects with excellent
accuracy at temperatures above approximately 20 K.

The decreased accuracy of the model at lower temper-

atures (T < 20 K) comes from the inability of Feynman–
Hibbs corrected Mie potentials to represent the thermody-
namic properties of the real (bulk) fluids. We thus identify
a need for developing new force fields for quantum fluids
that are accurate, also below 20 K.

Although prediction of surface tensions was the primary
focus of the present work, the presented DFT model
can in the future be used to study confined fluids.24 An
interesting future application is to assess the performance
of porous materials for storage and transport of hydrogen.

SUPPLEMENTARY MATERIAL

We refer to the online supplementary material for basic
information on the efficient calculation of convolution inte-
grals using the convolution theorem and the Fourier trans-
form, plots showing how the modified SAFT-VRQ Mie
EoS used in this work compares to the originally published
EoS, a comparison of the radial distribution function calcu-
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lated from DFT to results from MD simulations, and new
correlations for the surface tension of normal-hydrogen
and para-hydrogen. The supplementary material also
contains a zip-file showing how to calculate the radial dis-
tribution functions of the quantum binary systems from
MD and DFT.
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Appendix A: Analytically Transformed Weight Functions

The weight functions in Eqs. (12) and (24) can be
analytically transformed to Fourier space41

ω̂0
i (kz) = j0(2πRi|kz|), (A1a)
ω̂1

i (kz) = Rij0(2πRi|kz|), (A1b)
ω̂2

i (kz) = 4πR2
i j0(2πRi|kz|), (A1c)

ω̂3
i (kz) = 4

3πR
3
i

(
j0(2πRi|kz|) + j2(2πRi|kz|)

)
, (A1d)

ω̂V1
i (kz) = −ıkz

2Ri
ω̂3

i (kz), (A1e)

ω̂V2
i (kz) = −ı2πkzω̂

3
i (kz). (A1f)

The Fourier transform of the dispersion weight is

ω̂disp
i (kz) = j0(4πψRi|kz|) + j2(4πψRi|kz|), (A2)

where the spherical Bessel functions of the first kind of
order zero and two are

j0(x) = sin(x)
x

, (A3a)

j2(x) =
(

3
x2 − 1

)
sin(x)
x

− 3 cos(x)
x2 . (A3b)

Appendix B: Grid in Fourier Space in Planar Geometries

The sine and cosine transforms used in Sec. III A can
be efficiently computed using fast discrete sine and cosine
transform algorithms.

For the numerical grid depicted in Fig. 5, the appro-
priate algorithms are the discrete sine and cosine trans-
form variant II (DST II and DCT II, respectively) for the
transformation to Fourier space and variant III for the
transformation from Fourier back to real space (DST III
and DCT III). Fig. 5 illustrates how the DST II and DCT II
assume periodic even/odd symmetric profiles.

The corresponding discrete kz-grid can be obtained
by discretizing the continuous cosine transform, using
zj = (j + 1

2 )∆z and f(zj) = fj , resulting in

f̂(kz) = 2
∞∫

0

dz f(z) cos(2πzkz)

≈ 2
N−1∑
j=0

fj cos
(

2π
(
j + 1

2

)
∆zkz

)
, (B1)

and comparing it to the discrete cosine transform defined
in Eq. (7a) in the SI. Comparison of the arguments, 2π(j+
1
2 )∆zkz = π

N (j + 1
2 )k, leads to

kz ≡ k

2N∆z = k

2Ltot
with k = 0, · · · , (N − 1). (B2)
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FIG. 5: Schematic equidistant Cartesian grid with N = 6
grid points and grid spacing ∆z. All profiles f(z) to be

transformed are computed on the domain Ltot and
evaluated at the center of the grid cells zi. The implicit
even/odd continuation is visualized for the discrete cosine

and sine transforms, DCT II and DST II, respectively.

The ‘2Ltot’ in the denominator of Eq. (B2) indicates that
the domain length of the profiles to be transformed is
actually the double of Ltot, and that the even or odd
symmetries of the profile are exploited.

DST
DCT

k = 0 · · · N

k∗ = 0 · · · (N − 1)

FIG. 6: Required shift of indices to match DST and
DCT . Filled spheres represent the kz-grid of the

respective transform. k is the discrete variable for the
DCT (which equals the discretization variable in Fourier
space) while k∗ represents the discrete variable for the
DST (which is related to the discretization variable in

Fourier space by k∗ = k − 1).

The discretizations in Fourier space for N grid points
to calculate the weight functions, Eqs. (12) and (24), are

kDST
z = 1

2Ltot
[1, . . . , N ] , (B3a)

kDCT
z = 1

2Ltot
[0, . . . , (N − 1)] . (B3b)

The DST does not include the (exact) value f̂DST
k=0 = 0,

but instead considers f̂DST
k=N , which the DCT does not

include. This has been illustrated in Fig. 6. Therefore,
the results of the DST and the DCT cannot be combined
without modifications.

This has the following implications: ρ̂i(kz) in Eq. (29)
(the result of the DCT from Eq. (25)) is multiplied by
a vector-valued weight function. Because the DST is
used to transform the product back to real space, the
exact value f̂DCT

k=0 = 0 is disregarded, the sequence shifted
and an approximate value for f̂DST

k=N ≈ 0 is added to the
end of the sequence. This has a negligible effect on the
results, because f̂DST

k→∞ → 0 for smooth profiles. Eq. (31)
has similar implications: the argument of the transform
is the result of a DST transform, but is transformed back
to real space by a DCT transform. Therefore, the exact
value for f̂DCT

k=0 = 0 is the first element of the sequence,
while the last element f̂k=N is disregarded.

Appendix C: Iterative Solutions for the Density Profiles with
Constraints

To constrain the total number of molecules N in the
system can be used to increase the robustness of the
numerical solution procedure.

Using the method of Rehner,76 (Sec. 2.2) a semi-grand
potential Ω∗([{ρi(r)}], T,N, {∆µi}), defined by

Ω∗[{ρi(r)}] ≡ F [{ρi(r)}] −
Nc∑
i=2

∆µi

∫
dr′ ρi(r′), (C1)

with ∆µi ≡ µi − µ1 is utilized, which allows us to fix
the total number of molecules N , and stabilize the vapor-
liquid interface during the minimization. The Lagrangian
is then

L∗ ([{ρi(r)}], λ) = Ω∗[{ρi(r)}]+λ
(
N−

Nc∑
i=1

∫
dr′ ρi(r′)

)
,

(C2)
with a Lagrange multiplier λ that is equal to the chemical
potential of the reference component, µ1. The fixed-point
equations become

ρj(r) = zb
j exp

(
−δβF res

δρj(r) − βV ext
j (r)

)
, (C3)

zb
j =

NΛ−3
j eβ∆µj∑

k Λ−3
k eβ∆µk

∫
dr exp

(
− δβF res

δρk(r) − βV ext
k (r)

) ,
(C4)

where the bulk fugacity is given by

zb
j = exp (βλ) Λ−3

j exp (β∆µj) = ρb
j exp

(
βµres,b

j

)
.

(C5)
The combination of Eqs. (C3) and (C4) allows the DFT
to be solved for multicomponent mixtures by specifying
the total number of molecules N and the chemical poten-
tials {∆µi}. Note that fixing the number of molecules
is not exacly equivalent to a canonical or semi-grand en-
semble. Eq. (C4) merely enforces a solution of Eq. (C3)
where the number of molecules in the system equals N .
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