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Abstract
This paper presents a novel macro-element for vertical and batter pile groups.
The numerical scheme is based on de-coupled, single pile response. Each pile
consists of two separate load-displacement formulations (axial and transverse)
that take a displacement increment as input and return a diagonal tangent
stiffness value. The effect of rotation is implicitly incorporated in the trans-
verse load-displacement formulation. The presented macro-element does not
require pre-defined failure surfaces or other parameters, and is therefore not
restricted to a specific foundation configuration, soil profile or soil type. The
macro-element may be calibrated using any type of non-linear pile-soil model.
The developed macro-element is validated using rigorous numerical models for
a variety of configurations.
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1 INTRODUCTION

Pile groups pose difficulties in structural and geotechnical engineering when the objective is to determine the seismic
response of both structure and foundation. Researchers have proposed numerous linear solutions for estimating dynamic
impedance of pile groups,1–16 but these methods are restricted to small displacements. During seismic excitation, and
particularly in the presence of large inertial forces, piles are subject to large displacements that mobilize highly non-
linear behaviour such as soil-wedge type failure, flow-around failure, gap-formation and sliding. Although these effects
may be captured using sophisticated numerical tools, such methods are often time-consuming, complex and generally
unsuitable for practical engineering.
The term macro-element was first introduced by Nova and Montrasio,17 who formulated an elastoplastic model with

isotropic hardening for shallow foundations on sand. The concept of condensing the complex soil-foundation into a
single node enabled engineers to consider soil-structure interaction using a simple, yet realistic approach. Following this,
several macro-elements for shallow foundations were devolved. Paolucci18 and Pedretti19 extended the work of Nova and
Montrasio17 and adapted the model to seismic loading. Gottardi et al.20 performed experimental tests to describe the yield
surface for circular footings on dense sand. Le Pape et al.21 formulated a macro-element for seismic response based on
thermodynamics. Cremer et al.22 developed a macro-element for shallow foundations on cohesive soil that accounted for
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2 CEMALOVIC et al.

cyclic loading, soil plasticity and uplift. The elementwas later applied on the seismic analysis of a bridge pier foundation.23
Martin andHoulsby24,25 presented amonotonic model for spudcan footings on clay based on experimental tests. A similar
model was developed by Houlsby and Cassidy26 for sand. Cassidy et al.27 presented a monotonic macro-element for
spudcan footings with six degrees-of-freedom. Houlsby et al.28 derived a theoretical model based on Winkler springs
for quasi-static loading. Einav and Cassidy29 developed a model similar to Houlsby et al.28 Salciarini and Tamagnini30
formulated a model for shallow footings on sand which shared some similarities with the work of Nova and Montrasio.17
Chatzigogos et al.31 presented a bounding plasticity model considering soil inelasticity and non-linear uplift mechanism.
Chatzigogos et al.32 extended this model to include sliding. Figini et al.33 expanded on the work of Chatzigogos et al.31,32
and validated the results using cyclic and dynamic large-scale laboratory tests. Ibsen et al.34 and Foglia et al.35 investigated
the response of bucket foundations on dry sand. Skau et al.36 presented a macro-element for bucket foundations based
on multi-surface plasticity. Tistel and Grimstad37 presented a monotonic model for an anchor block foundation on
sand. Millen et al.38 presented a macro-element for shallow foundations based on the work of Chatzigogos et al.31 and
Figini et al.33.
In recent years, attempts have been made to develop macro-elements for deep foundations. Correia39 and Correia and

Pecker40 presented a pile-head macro-element for monoshaft foundations. The formulation accounted for non-linear
behaviour of pile, soil and separation effects. In addition, a rigorous calibration procedure was presented. Inspired by
the work of Salciarini and Tamagnini,30 Liu et al.41,42 first developed a macro-element for single piles embedded in
homogeneous sand, which they later extended to single batter piles. Page et al.43 presented a macro-element model for
mono-pile foundations based onmulti-surface plasticity and verified it against large-scalemodel tests.44 Pérez45 presented
a macro-element for vertical pile groups based on the work of Liu.46
To the authors knowledge, there are nomacro-elements developed for pile groupswith vertical and batter piles that take

into account the inelastic behaviour of both pile and soil. The objective of this paper is to formulate a practical macro-
element with three degrees of freedom for vertical and batter pile groups. Since macro-elements are most suitable for
practical engineering and design tools, the use of such elements should bemore attractive than finite elementmodelling of
the entire system. Consequently, certain criteria will be emphasized in the formulation. First, the macro-element does not
have to capture all the features of a rigorous finite element model, but it needs to capture the trends intrinsic to pile group
configuration and soil profile. Second, the formulation must be robust with respect to both pile group configuration and
numerical implementation. Third, the calibration must be straight-forward and independent of pile and soil properties,
soil profile and pile group configuration. To achieve robustness with respect to pile group configuration and straight-
forward calibration procedures, the numerical scheme presented in this study is based on de-coupled, single pile response.
Each pile consists of two separate load-displacement formulations (axial and transverse) that take a displacement incre-
ment as input and return a diagonal tangent stiffness value. The effect of rotation is implicitly incorporated in the
transverse load-displacement formulation. The global tangent stiffness matrix (which is passed to the global solution in a
finite element code) is assembled on the basis of the single pile tangent stiffness values. The presentedmacro-element does
not require pre-defined failure surfaces or other parameters, and is therefore not restricted to a specific foundation config-
uration, soil profile or soil type. It should be noted that even though the calibration in this paper is achieved using detailed
finite element models, the macro-element may be calibrated using any type of non-linear pile-soil model. However, there
are limitations thatmust be addressed. First, themacro-element is formulated for seismic design purposeswhere large dis-
placements are expected. It is assumed that geometric damping (frequency-dependent) is negligible compared to material
damping (frequency-independent). The constitutivemodel is therefore rate-independent. Second, pile-soil-pile interaction
is neglected. This assumption admittedly decreases the accuracy of the proposed model when the piles are closely spaced.
While it is possible to approximately include pile-soil-pile interaction, it should be noted that recent studies47,48 have
shown that pile-to-pile interaction is less significant when piles undergo large displacements in soft, inelastic soil. Third,
the macro-element is formulated such that pile-cap rotation is resisted by vertical pile-head loads only. This assumption
may also decrease the accuracy when the piles are closely spaced. Finally, axial and transverse response are de-coupled. It
is assumed that the active length contributes to transverse resistance while the soil below the active length contributes to
axial resistance. This assumptions strictly limits the formulation to long piles. The effect of axial load on bending capacity is
not considered.
This paper is divided in five sections. Section 2 briefly describes the finite element model used for validation. Section 3

presents the theoretical framework, numerical treatment and validation of the single pile macro-elements. Section 4 out-
lines the pile group tangent stiffness matrix assembly and demonstrates the pile group macro-element performance for
numerous configurations. The conclusion is given in Section 5.
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CEMALOVIC et al. 3

(A) Cross section of the concrete pile (B) Soil profile.

F IGURE 1 System configuration

2 VALIDATIONMODEL

The macro-element is validated by finite element models constructed in OpenSees MP49 together with the pre- and post-
processing tool STKO.50 The soil profile and cross section of the concrete pile are shown in Figure 1. The piles aremodelled
using displacement-based beam elements. The non-linear behaviour of reinforced concrete is represented using fibre
sections. The confined and un-confined concrete is simulated using the uni-axial material models ConfinedConcrete0151
and Concrete01,52 respectively. The cylindrical strength 𝑓𝑝𝑐 is 45𝑀𝑃𝑎 and the initial elastic stiffness modulus 𝐸𝑐 is 36𝐺𝑃𝑎.
The reinforcement is simulated using the uni-axial material model Steel02.53 The yield strength 𝑓𝑦 is 487𝑀𝑃𝑎 and the
initial elastic stiffness modulus 𝐸𝑠 is 185𝐺𝑃𝑎. The soil is divided in six layers along the pile length, where each layer
has a height ℎ𝑙𝑎𝑦 = 3𝑚. The soil is modelled using eight-noded hexahedral elements with a single integration point to
prevent locking behaviour. The adopted soil model Pressure Independent Multi-Yield is an elastic-plastic, soil model suited
for clay.54 The reader is referred to Cemalovic et al.55 for a detailed description of the soil material model, soil profile
and meshing strategies. The pile-soil interface is modelled using frictional contact elements based on the Mohr-Coulomb
criterion, penalty constraints and an implicit-explicit solution scheme.50,56 Multi-stage analyses are performed to capture
the correct stress state prior to the quasi-static pile-head loading. The first stage is a gravity analysis of the soil domain.
In the second stage, a new gravity analysis is performed where the soil corresponding to the pile geometry is removed. In
the third stage, a new gravity analysis is performed which includes the piles and contact elements. In the fourth and final
stage, the quasi-static pile-head load analysis is performed. Prior to each analysis, the displacement field is set equal to
zero. The system is solved using the Krylov-Newton implicit scheme.57

3 SINGLE PILES

3.1 One-dimensional bounding plasticity

Several researchers have successfully implemented bounding surface plasticity models for shallow and deep
foundations.31–33,36,39,40,43 The macro-element presented in this paper is based on the bounding surface plasticity theory
with radial mapping.58,59 There are three major aspects that distinguish bounding surface plasticity from conventional
rate-independent plasticity. First, the current load is limited by a bounding surface. Second, the current load surface is
also the yield surface, which implies that a purely elastic domain does not exist (except for a infinitesimal range at initial
loads or load reversals). Third, the evolution of internal variables is governed only by the distance from the current load
to a image point on the bounding surface, which implies that there is no need for an explicit description of a hardening
variable. Since the macro-element in this study considers un-coupled single pile response, we will henceforth refer to
points (or loads) rather than surfaces. The general formulation presented in this section applies for both transverse and
axial loading.
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4 CEMALOVIC et al.

Displacement and rotation rates are decomposed into elastic and plastic components, that is,

�̇� = �̇�𝑒𝑙 + �̇�𝑝𝑙 (1)

The rate of generalized forces is expressed as

�̇� = 𝐾𝑒𝑙 �̇�𝑒 = 𝐾𝑒𝑙(�̇� − �̇�𝑝𝑙) (2)

where 𝐹 is the force and 𝐾𝑒𝑙 is the elastic stiffness. The bounding load is constrained through

𝐺(�̄�, 𝜁) = 0 (3)

where 𝜁 represents a set of internal variables and �̄� is the image point. In the one-dimensional case, �̄� is simply the
bounding load magnitude. If we assume that both the current load and the bounding load are centred at the origin, the
image point may be expressed through a simple mapping rule

�̄�(𝐹, 𝜆) = 𝜆𝐹 =
1

𝛿
𝐹 (4)

where 𝜆 is the load parameter varying from infinity (when the current load is zero) to unity (when the current load is equal
to the image point) and 𝛿 is the ratio between current load and the image point, varying from zero (when the current load
is zero) to unity (when the current load is equal to the image point). The relationship between 𝐹 and �̄� expressed in
Equation (4) is referred to as radial mapping. Since the evolution of internal variables is controlled by a function that only
depends on the distance between the current load and the image point, Equation (3) may be written as

𝐺(�̄�, 𝜆) = 0 (5)

The evolution of plastic displacements is given by the plastic flow rule

�̇�𝑝𝑙 = �̇� 𝑠𝑖𝑔𝑛(𝐹) (6)

where the plastic multiplier 𝛾 is zero during elastic response and greater than zero during plastic response. The hardening
rule may be expressed as

�̇� = �̇�𝜇 (7)

where 𝜇 is the hardening parameter. The consistency condition

�̇��̇� = 0 (8)

ensures that the image point always coincides with the bounding load. It then follows that

�̇�(�̄�, 𝜆) =
𝜕𝐺

𝜕�̄�

(
𝜕�̄�

𝜕𝐹

𝜕𝐹

𝜕𝑡
+
𝜕�̄�

𝜕𝜆

𝜕𝜆

𝜕𝑡

)
= 0 ⇒ 𝜆�̇� + 𝐹�̇�𝜇 = 0 (9)

Solving for �̇� gives

�̇� = −
𝜆�̇�

𝐹𝜇
= −

𝜆

𝜇𝐹 𝑠𝑖𝑔𝑛(𝐹)
�̇� 𝑠𝑖𝑔𝑛(𝐹) = −

1

𝐾𝑝𝑙
�̇� 𝑠𝑖𝑔𝑛(𝐹) = 0 (10)

and the plastic modulus is expressed as

𝐾𝑝𝑙 = −
𝜇

𝜆
𝐹 𝑠𝑖𝑔𝑛(𝐹) (11)
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CEMALOVIC et al. 5

In conventional rate-independent plasticity, the hardening parameter 𝜇 must be defined explicitly in order to obtain the
plastic modulus. Here, it is only required that the plastic modulus is (1) a function of 𝜆 (or 𝛿) , (2) is infinite during the
initial elastic response, (3) vanishes on the bounding point and (4) varies monotonically between the extremes. Several
researches31,32,40 have used the expression

𝐾𝑝𝑙(𝛿) = 𝐾
𝑝𝑙
0 ln

(
1

𝛿

)
(12)

to describe monotonic loading for both shallow and deep foundations, where 𝐾𝑝𝑙0 is a calibration parameter. In order to
completely describe the cyclic behaviour of foundations, it is necessary to distinguish between virgin loading, reloading
and unloading. Chatzigogos et al.31,32 used the expression

𝐾𝑝𝑙(𝜆, 𝜆𝑚𝑖𝑛) = 𝐾
𝑝𝑙
0 ln

[(
𝜆

𝜆𝑚𝑖𝑛

)𝑛𝑅
𝜆

]
(13)

to represent a slightly less plastic behaviour during reloading for shallow foundations. Here, 𝜆𝑚𝑖𝑛 is the minimum load
parameter obtained during the previous loading steps and𝑛𝑅 is a calibration parameter.However, unloadingwas described
as purely elastic (which is not a realistic assumption for cyclic pile response). Correia39 andCorreia and Pecker40 simulated
the cyclic behaviour of a laterally loaded pile using

𝐾𝑝𝑙(𝛿1, 𝛿2) = 𝐾
𝑝𝑙
0

[
ln

(
1

𝛿1

)
+ ln

(
1

𝛿2

)𝑛𝑢𝑟]
(14)

for both unloading and reloading. Here, 𝛿1 is the ratio between the first loading surface and the bounding surface, 𝛿2 is
the ratio between second loading surface and the virgin loading surface and 𝑛𝑢𝑟 is a calibration parameter. Equation 14
implies that when current load reaches the virgin loading surface (𝛿2 = 1), the expression reduces to Equation 12 and the
plastic modulus obtained at the last virgin load state is retrieved. The advantage of this formulation is that (1) unloading
is inelastic, (2) there is a smooth transition between unloading and reloading and (3) overshooting is avoided at the virgin
loading surface. However, this approach produces unrealistically soft behaviour upon partial reloading, especially as the
second loading surface expands near the virgin loading surface. In this paper, unloading and reloading are formulated
using a different approach, and the formulations depend on the force-displacement relationship. A complete description
of the plastic modulus evolution is given in the following sections.

3.2 Solution scheme

The numerical scheme is expressed in terms of normalized forces, displacements and stiffness values, i.e.,

𝐻𝑛 =
𝐻

𝐻𝑓𝑎𝑖𝑙
, 𝐾𝑒𝑙𝐻,𝑛 =

𝐾𝑒𝑙𝐻𝑑𝑝

𝐻𝑓𝑎𝑖𝑙
, 𝑤𝑛 =

𝑤

𝑑𝑝
(15a)

𝑉𝑛 =
𝑉

𝑉𝑓𝑎𝑖𝑙
, 𝐾𝑒𝑙𝑉,𝑛 =

𝐾𝑒𝑙𝑉𝑑𝑝

𝑉𝑓𝑎𝑖𝑙
, 𝑢𝑛 =

𝑢

𝑑𝑝
(15b)

where 𝐻 is the transverse load, 𝑉 is the axial load, 𝑤 is the transverse displacement, 𝑢 is the axial displacement, 𝐻𝑓𝑎𝑖𝑙
and 𝑉𝑓𝑎𝑖𝑙 are the ultimate (bounding) loads, 𝐾𝑒𝑙 is the initial, elastic stiffness, 𝑛 indicates a normalized value and 𝑑𝑝 is
the pile diameter. The algorithm assumes that the initial step in the creation of any loading (virgin loading, unloading or
reloading) is purely elastic and that the subsequent steps within the respective loading always contain plastic deforma-
tions. To determine the corresponding load and the elastic and plastic displacements, a returnmapping algorithm is used.
The cutting plane algorithm60–62 has been adopted by researchers31,32,39,40 in the formulation of macro-elements for both
shallow and deep foundations. The same approachwill be used here. Themain concept of the cutting-plane algorithm is to
explicitly integrate the state variables and iterate the solution until a constraining condition is satisfied. Here, this implies
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6 CEMALOVIC et al.

ALGORITHM 1 Return mapping algorithm for 𝐾𝐻,𝑡𝑎𝑛,𝑛

procedure RETURN
for each iteration j do
if j = 0 then
Set 𝑤𝑒𝑙𝑁,𝑗=0,𝑛, 𝑤

𝑝𝑙

𝑁,𝑗=0,𝑛
and 𝜆𝑁,𝑗=0,𝑛 equal to values from obtained at previous step N-1 and calculate 𝐻𝑁,𝑗=0,𝑛 by assuming purely elastic

behaviour. Set 𝛾𝑁,𝑗=0 equal to zero.
else
if 𝜆𝑡𝑟𝑖𝑎𝑙 ≤ 𝜆𝑚𝑖𝑛 then
This is a virgin loading state. Calculate the plastic modulus for virgin loading 𝐾𝑝𝑙𝐻,𝑣,𝑛.

els if (𝜆𝑡𝑟𝑖𝑎𝑙 > 𝜆𝑚𝑖𝑛) and (𝜆𝑡𝑟𝑖𝑎𝑙 > 𝜆𝑁−1) and (𝑉𝑁,𝑛 ⋅ 𝑉𝑁−1,𝑛 > 0) then
This is an unloading state. Calculate the plastic modulus for unloading 𝐾𝑝𝑙𝐻,𝑢,𝑛.

else
This is a reloading state. Calculate the plastic modulus for reloading 𝐾𝑝𝑙𝐻,𝑟,𝑛 .

end if
Update 𝑤𝑒𝑙

𝑁,𝑗
, 𝑤𝑝𝑙
𝑁,𝑗
, 𝜆𝑁,𝑗 and compute the displacement residual 𝑅𝑁,𝑗 and bounding surface 𝐺𝑁,𝑗 .

if |𝑅𝑁,𝑗| < 𝑅𝑡𝑜𝑙 and |𝐺𝑁,𝑗)| < 𝐺𝑡𝑜𝑙 then
Update 𝜆𝑚𝑖𝑛 and pass the tangent stiffness 𝐾𝐻,𝑡𝑎𝑛,𝑛 to the global solution.
break

else
Update 𝛾𝑁,𝑗 and𝐻𝑁,𝑗,𝑛

end if
end if

end for
end procedure

using Equations 1, 2, 6, 7 and 10 to obtain the elastic displacement, plastic displacement, load and load multiplier using
values from the previous iteration or the last converged step. The consistency condition in Equation 9 is linearised and
solved for the plastic multiplier and the state variables are updated. Convergence is achieved when both the displacement
residual and the bounding point equation are within a prescribed tolerance value.
The return mapping scheme for the transverse tangent stiffness is shown in Algorithm 1. Here, 𝑤𝑒𝑙 is the

elastic displacement, 𝑤𝑝𝑙 is the plastic displacement, 𝑁 is the load step number, 𝑗 is the iteration number, sub-
script 𝑛 represents normalized values, 𝐻 is the transverse load, 𝛾 is the plastic multiplier, 𝜆𝑡𝑟𝑖𝑎𝑙 is the trial load
parameter, 𝜆𝑚𝑖𝑛 is the minimum load parameter obtained during the previous loading steps, 𝐾𝑝𝑙𝐻 is the transverse
plastic modulus, 𝑅 is the displacement residual, 𝐺 is the bounding point equation, 𝑅𝑡𝑜𝑙 is the displacement resid-
ual tolerance and 𝐺𝑡𝑜𝑙 is the bounding point equation tolerance. The axial tangent stiffness is obtained though a
similar procedure.

3.2.1 Plastic modulus evolution for transverse response

For one-dimensional plasticity problems where displacements are decomposed as expressed in Equation (1), the
normalized tangent stiffness is given as

𝐾𝐻,𝑡𝑎𝑛,𝑛 =
𝐾𝑒𝑙𝐻,𝑛 𝐾

𝑝𝑙
𝐻,𝑛

𝐾𝑒𝑙𝐻,𝑛 + 𝐾
𝑝𝑙
𝐻,𝑛

(16)

If𝐾𝑝𝑙𝐻,𝑛 is infinite,𝐾𝐻,𝑡𝑎𝑛,𝑛 reduces to the normalized, elastic stiffness𝐾
𝑒𝑙
𝐻,𝑛. If𝐾

𝑝𝑙
𝐻,𝑛 is zero,𝐾𝐻,𝑡𝑎𝑛,𝑛 is also zero. In essence,

the formulation of a bounding plasticity model condenses into determining the evolution of the plastic modulus between
the initial, elastic load (where the tangent stiffness is equal to the elastic stiffness) and the ultimate load (where the tangent
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CEMALOVIC et al. 7

F IGURE 2 Schematic sketch of transverse loading points for reloading and unloading.

stiffness is zero). In order to correctly represent the evolution of the plasticmoduluswithin the framework of the presented
macro-element, it is necessary to distinguish between virgin loading, unloading and reloading.
Virgin loading is described by the mapping rule

𝜆𝐻𝑛 = 1 (17)

such that

𝛿1 =
1

𝜆
(18)

The plastic modulus is expressed as

𝐾
𝑝𝑙
𝐻,𝑣,𝑛(𝛿1) = 𝐾

𝑝𝑙
0,𝐻,𝑛 ln

(
1

𝛿1

)
(19)

where 𝐾𝑝𝑙0,𝐻,𝑛 is a calibration parameter.
Reloading is described by a different mapping rule. In addition to the current loading point and the image point, it

is also necessary to keep track of the virgin loading point and the loading point associated with the last initial unloading
and reloading state. Figure 2 shows a schematic representation of loading points for reloading and unloading. Note that
we need to separate between reloading in the direction of the last initial unloading point and reloading in the opposite
direction of the last initial unloading point. This may be achieved through the parameter

𝑟𝑟 = 𝑠𝑖𝑔𝑛(𝐻𝑢,𝑛𝐻𝑛) (20)

where𝐻𝑢,𝑛 is the last initial unloading point. To the authors knowledge, this parameter was first introduced by Correia.39
The image point and the virgin loading point are given by

𝜆𝐻𝑛 = 1, 𝜆𝑚𝑖𝑛𝐻𝜆𝑚𝑖𝑛,𝑛 = 1 (21)

where 𝜆𝑚𝑖𝑛 is the load parameter associated with the virgin loading point. The reloading point is expressed as

𝑟𝑟𝜆𝑟𝐻𝑟,𝑛 = 1 (22)

were𝐻𝑟,𝑛 and 𝜆𝑟 are the load and load parameter associated with the last initial reloading point. If 𝑟𝑟 is positive, reloading
is in the same direction as the last initial unloading point. Otherwise, it is in the opposite direction. Note that if 𝑟𝑟 is
negative, the last initial reloading point and the last initial unloading point represent the same loading point. If 𝛿2 is the
ratio between the second loading point and the virgin loading point (as defined by Correia39 and Correia and Pecker40),
𝛿2 is expressed as

𝛿2 =
|𝐻𝑛 − 𝐻𝑟,𝑛||𝐻𝜆𝑚𝑖𝑛,𝑛 − 𝐻𝑟,𝑛| =

|||| 1𝜆 − 𝑟𝑟

𝜆𝑟

|||||||| 1

𝜆𝑚𝑖𝑛
−
𝑟𝑟

𝜆𝑟

||||
=

𝜆𝑟−𝜆𝑟𝑟

𝜆𝜆𝑟

𝜆𝑟−𝜆𝑚𝑖𝑛𝑟𝑟

𝜆𝑚𝑖𝑛𝜆𝑟

=
𝜆𝑚𝑖𝑛(𝜆𝑟 − 𝜆𝑟𝑟)

𝜆(𝜆𝑟 − 𝜆𝑚𝑖𝑛𝑟𝑟)
(23)
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8 CEMALOVIC et al.

As mentioned, this formulation may yield somewhat soft response for partial reloading. In this paper, we propose to
redefine 𝛿2 as the similarity ratio between the second loading point and the virgin loading point span, i.e,

𝛿2 =
|𝐻𝑛 − 𝐻𝑟,𝑛||2𝐻𝜆𝑚𝑖𝑛,𝑛| =

|||| 1𝜆 − 𝑟𝑟

𝜆𝑟

|||||||| 2

𝜆𝑚𝑖𝑛

||||
=
𝜆𝑚𝑖𝑛(𝜆𝑟 − 𝜆𝑟𝑟)

2𝜆𝜆𝑟
(24)

The plastic modulus is then obtained as

𝐾
𝑝𝑙
𝐻,𝑢𝑟,𝑛(𝛿2) = 𝐾

𝑝𝑙
0,𝐻,𝑛

[
ln

(
1

𝛿𝑚𝑎𝑥

)
+ ln

(
1

𝛿2

)𝑛𝑢𝑟,𝐻]
(25)

where 𝑛𝑢𝑟,𝐻 is a calibration parameter, 𝛿2 is given by Equation (24) and 𝛿𝑚𝑎𝑥 is the similarity ratio corresponding to the
virgin loading point.
Unloading is also described by a unique mapping rule. The image point and the virgin loading point are now located

on opposite sides such that

−𝜆𝐻𝑛 = 1, 𝜆𝑚𝑖𝑛𝐻𝜆𝑚𝑖𝑛,𝑛 = 1 (26)

The unloading point is mapped as

−𝜆𝑢𝐻𝑢,𝑛 = 1 (27)

where 𝜆𝑢 is the load parameter associatedwith the last initial unloading point. If 𝛿2 is the ratio between the second loading
point and the virgin loading point, then

𝛿2 =
|𝐻𝑛 − 𝐻𝑢,𝑛||𝐻𝜆𝑚𝑖𝑛,𝑛 − 𝐻𝑢,𝑛| =

||||−1𝜆 + 1

𝜆𝑢

|||||||| 1

𝜆𝑚𝑖𝑛
+
1

𝜆𝑢

||||
=

𝜆−𝜆𝑢

𝜆𝜆𝑢

𝜆𝑚𝑖𝑛+𝜆𝑢

𝜆𝑚𝑖𝑛𝜆𝑢

=
𝜆𝑚𝑖𝑛(𝜆 − 𝜆𝑢)

𝜆(𝜆𝑚𝑖𝑛 + 𝜆𝑢)
(28)

This expression applies only if 𝛿2 for reloading is defined by Equation (23). Otherwise, the plastic modulus becomes
discontinuous at the point of zero loading. Instead, we redefine 𝛿2 similar to reloading, that is,

𝛿2 =
|𝐻𝑛 − 𝐻𝑢,𝑛||2𝐻𝜆𝑚𝑖𝑛,𝑛| =

||||−1𝜆 + 1

𝜆𝑢

|||||||| 2

𝜆𝑚𝑖𝑛

||||
=
𝜆𝑚𝑖𝑛(𝜆 − 𝜆𝑢)

2𝜆𝜆𝑢
(29)

and use Equation (25) to compute the plastic modulus.
The formulation presented above completely describes the evolution of the plastic modulus for arbitrary transverse

loading. There are, however, some features of the formulation that should be noted:

1. Equations (24) and (25) imply that the transition from reloading to virgin loading is smooth only when unloading
from virgin loading (closed-loop cycles). For partial unloading/reloading cycles, the plastic modulus is discontinuous
in transition from reloading to virgin loading.

2. Since the explicit description of loading points (𝛿1 and 𝛿2) is limited to two, overshooting is only avoided at the virgin
loading point.

3. At the point of zero loading, 𝜆 is infinite. It then observed that both Equation (24) and Equation (29) reduce to

𝛿2 =
𝜆𝑚𝑖𝑛
2𝜆𝑢

(30)
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CEMALOVIC et al. 9

F IGURE 3 Implicit transverse-rotational modification factors. 𝑛𝑤𝜃,1 = 0.5 and 𝑛𝑤𝜃,2 = −0.5

since 𝜆𝑟 is equal to 𝜆𝑢 when 𝑟𝑟 is negative, implying that the plastic modulus is continuous at the transition between
unloading and reloading.

Transverse-rotational coupling is implicitly introduced using modification factors for𝐻𝑛 and 𝐾𝑒𝑙𝐻,𝑛, that is,

𝛾𝜃
𝛾𝑤

≥ 0 ∶ 𝜁𝐻 = 1 −

[
(1 − 𝑛𝑤𝜃,1)

𝛾𝜃
𝛾𝑤

]
≥ 𝑛𝑤𝜃,2 and 𝜁𝐾 = 1 −

[
(1 − 𝑛𝑤𝜃,1)

𝛾𝜃
𝛾𝑤

]
(31a)

−1 ≤
𝛾𝜃
𝛾𝑤
< 0 ∶ 𝜁𝐻 = 1 and 𝜁𝐾 = 1 (31b)

𝛾𝜃
𝛾𝑤
< −1 ∶ 𝜁𝐻 =

||||𝛾𝑤𝛾𝜃 |||| +
(
1 −

||||𝛾𝑤𝛾𝜃 ||||
)||𝑛𝑤𝜃,2|| and 𝜁𝐾 =

|||| 𝛾𝜃𝛾𝑤 |||| (31c)

where

𝛾𝑤 =
Δ𝑤

𝑤𝑓𝑎𝑖𝑙
, 𝛾𝜃 =

Δ𝜃

𝜃𝑓𝑟𝑒𝑒
, 𝑛𝑤𝜃,1 =

𝐻𝑓𝑟𝑒𝑒

𝐻𝑓𝑎𝑖𝑙
> 0, 𝑛𝑤𝜃,2 =

𝐻𝑓𝑎𝑖𝑙,𝑟𝑜𝑡

𝐻𝑓𝑎𝑖𝑙
< 0 (32)

Here, Δ𝑤 is the current displacement increment, Δ𝜃 is the current rotation increment,𝑤𝑓𝑎𝑖𝑙 is the displacement at failure
for a fixed-head pile, 𝜃𝑓𝑟𝑒𝑒 is rotation of a free-head pile at 𝑤𝑓𝑎𝑖𝑙, 𝐻𝑓𝑟𝑒𝑒 is the transverse load of a free-head pile at 𝑤𝑓𝑎𝑖𝑙
and𝐻𝑓𝑎𝑖𝑙,𝑟𝑜𝑡 is the failure load for pure rotation. Figure 3 shows a plot of the modification factors plotted against the ratio
𝛾𝜃∕𝛾𝑤 for typical load ratios. The following should be noted:

1. For 𝛾𝜃∕𝛾𝑤 ≥ 0:
(a) When 𝛾𝜃∕𝛾𝑤 is small, then 𝜁𝐻 = 𝜁𝐾 = 1. The plastic modulus equals fixed-head conditions.
(b) When 𝛾𝜃∕𝛾𝑤 = 1, then 𝜁𝐻 = 𝜁𝐾 = 𝑛𝑤𝜃,1. The plastic modulus equals free-head conditions.
(c) When 𝛾𝜃∕𝛾𝑤 is large, then 𝜁𝐻 is a negative number restricted by 𝑛𝑤𝜃,2 and 𝜁𝐾 is an arbitrarily large, negative

number. The plastic modulus equals pure rotation conditions.
2. For −1 ≤ 𝛾𝜃∕𝛾𝑤 < 0, then 𝜁𝐻 = 𝜁𝐾 = 1. The plastic modulus equals fixed-head conditions. It is assumed that when
𝛾𝜃∕𝛾𝑤 = −1, transverse loads are mainly caused by transverse displacements.

3. For 𝛾𝜃∕𝛾𝑤 < −1:
(a) When |𝛾𝜃∕𝛾𝑤| ≈ 1, then 𝜁𝐻 = 𝜁𝐾 = 1. The plastic modulus equals fixed-head conditions.
(b) When |𝛾𝜃∕𝛾𝑤| is large, then 𝜁𝐻 = 𝑛𝑤𝜃,2 and 𝜁𝐾 is a large number. The plastic modulus equals pure rotation

conditions.

It is emphasized that the reason for using implicit transverse-rotational coupling is to allow for unrestricted calibration
procedures without the need for pre-defined failure surfaces.
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10 CEMALOVIC et al.

3.2.2 Plastic modulus evolution for axial response

Similar to transverse loading, it is necessary to distinguish between virgin loading, unloading and reloading. In addition,
axially loaded concrete piles behave differently in tension and compression.
Virgin loading in tension is described similar to transverse response. In compression, the response is mainly elastic

until a cut-off load 𝑉𝑒𝑙,𝑛 is reached. For this range, it is proposed that the plastic modulus varies as

𝐾
𝑝𝑙
𝑉,𝑣𝑐,𝑛(𝛿1) = 𝐾

𝑝𝑙
0,𝑉,𝑛

[(
1 −

𝛿1
𝛿𝑒𝑙

)
ln

(
1

𝛿𝑖𝑛𝑡

)
+

(
𝛿1
𝛿𝑒𝑙

)
ln

(
1

𝛿1

)]
(33)

where 𝛿𝑒𝑙 is the similarity ratio between the cut-off load and the bounding load, 𝛿𝑖𝑛𝑡 is the similarity ratio between an
initial, infinitesimal load and the bounding load and 𝐾𝑝𝑙0,𝑉,𝑛 is a calibration parameter. Once the cut-off load is exceeded,
the plastic modulus varies as

𝐾
𝑝𝑙
𝑉,𝑣𝑐,𝑛(𝛿1) = 𝐾

𝑝𝑙
0,𝑉,𝑛 ln

(
1

𝛿1

)
(34)

Reloading is also defined separately for compression and tension. The similarity ratio 𝛿2 is defined as for transverse
response, but the variation of the plastic modulus differs in tension and compression. In tension, the plastic modulus
varies with Equation (25) (with axial parameters). In compression, it is suggested that the plastic modulus is infinite when
reloading is in the direction of the last initial unloading point (𝑟𝑟 = 1) and

𝐾
𝑝𝑙
𝑉,𝑟𝑐,𝑛(𝛿2) = 𝐾

𝑝𝑙
0,𝑉,𝑛

[(
ln

(
1

𝛿𝑚𝑎𝑥

)
+ ln

(
1

𝛿2

)𝑛𝑢𝑟)
𝛿
𝑛𝑟,𝑉
𝑢 + ln

(
1

𝛿𝑖𝑛𝑡

)(
1 − 𝛿

𝑛𝑟,𝑉
𝑢

)]
(35)

when reloading in the opposite direction of the last initial unloading point (𝑟𝑟 = −1). Here, 𝛿𝑢 is similarity ratio for the
last unloading point and 𝑛𝑟,𝑉 is a calibration parameter.
Unloading is also defined separately for compression and tension. The similarity ratio 𝛿2 is defined as for transverse

response. In tension, the plastic modulus varies with Equation (25) (with axial parameters). In compression, unloading is
mainly elastic and the plastic modulus is infinitely high. The following features of the formulation should be noted:

1. When virgin loading starts, 𝛿1 is low and the plastic modulus expressed in Equation (33) reduces to

𝐾
𝑝𝑙
𝑉,𝑣𝑐,𝑛 = 𝐾

𝑝𝑙
0,𝑉,𝑛 ln

(
1

𝛿𝑖𝑛𝑡

)
(36)

The initial parameters 𝜆𝑖𝑛𝑡 and 𝛿𝑖𝑛𝑡 are infinite and zero only in a theoretical sense. Numerically, 𝜆𝑖𝑛𝑡 is an arbitrary
large number and 𝛿𝑖𝑛𝑡 is an arbitrary small number that need to be predefined in the numerical scheme. Simulations
using programming language Python 363 show that

𝜆𝑖𝑛𝑡 = 10
(𝑂+12), 𝛿𝑖𝑛𝑡 =

1

𝜆𝑖𝑛𝑡
(37)

where

𝑂 = log
10
(𝐾𝑒𝑙𝑉,𝑣,𝑛) (38)

is a good approximation with respect to desired behaviour and numerical stability. Hence, Equation (36) represents a
relatively high plastic modulus, which through Equation (16) (with axial parameters) gives a tangent stiffness value
approximately equal to the initial, elastic stiffness. As the load reaches the cut-off load, that is, when 𝛿1 is equal to 𝛿𝑒𝑙,
Equation (33) reduces to Equation (34), implying that the plastic modulus is continuous throughout virgin loading.

2. When unloading in compression, the plastic modulus is given by Equation (36) and the tangent stiffness approximately
equals the elastic stiffness.
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CEMALOVIC et al. 11

TABLE 1 Calibration parameters.

Transverse
𝐻𝑓𝑎𝑖𝑙 955.3 kN Transverse failure load for fixed-head conditions.
𝐻𝑓𝑟𝑒𝑒 510.4 kN Transverse load at 𝑤𝑓𝑎𝑖𝑙 for free-head conditions.
𝐻𝑟𝑜𝑡 -602.6 kN Transverse failure load for pure rotation.
𝐾𝑒𝑙𝐻 55.7 MN/m Initial, elastic transverse stiffness for fixed-head conditions.
𝐾
𝑝𝑙

0,𝐻 33.4 MN/m Transverse plastic modulus constant for fixed-head conditions.
𝑤𝑓𝑎𝑖𝑙 100 mm Transverse displacement at failure load for fixed-head conditions.
𝜃𝑓𝑟𝑒𝑒 0.022 rad Rotation at 𝑤𝑓𝑎𝑖𝑙 for free-head conditions.
𝑛𝑢𝑟,𝐻 0.8 Controls the transverse unloading/reloading curve shape.
Axial
𝑉𝑓𝑎𝑖𝑙 4332.0 kN Axial failure load.
𝑉𝑒𝑙 -2000.0 kN Axial cut-off load separating elastic and plastic response in compressive virgin loading.
𝐾𝑒𝑙𝑉 320.3 MN/m Initial, elastic axial stiffness.
𝐾
𝑝𝑙

0,𝑉 128.1 MN/m Axial plastic modulus constant.
𝑛𝑢𝑟,𝑉 0.8 Controls the axial unloading/reloading curve shape.
𝑛𝑟,𝑉 0.021 Controls the transition between unloading in tension and reloading in compression.

3. When reloading in compression after unloading from tension (𝑟𝑟 = −1), and the last unloading point in tension is
equal to the bounding load (𝛿𝑢 = 1), Equation (35) reduces to Equation (25) (with axial parameters). In that case, the
plastic modulus is continuous at the transition between unloading and reloading since unloading from tension is also
described by Equation (25). However, when the last unloading point in tension is near zero (𝛿𝑢 is a small number),
Equation (35) reduces to Equation (36) and the reloading path equals the unloading path. The calibration parameter
𝑛𝑟,𝑉 may be considered as a parameter that controls the transition between unloading in tension and reloading in com-
pression between the above-mentioned extremes. When reloading in compression after unloading from compression
(𝑟𝑟 = 1), the plastic modulus is always defined by Equation (36).

3.3 Calibration

Asmentioned earlier, the developedmacro-element does not require pre-defined failure surfaces or other parameters and
may be calibrated using any type of non-linear pile-soil model. Vertical pile models may be used for batter piles assuming
realistic batter angles up to approximately 15 degrees. There are in total 14 parameters that must be determined. Nine
parameters, namely 𝐻𝑓𝑎𝑖𝑙, 𝐾𝑒𝑙𝐻 , 𝑤𝑓𝑎𝑖𝑙, 𝜃𝑓𝑟𝑒𝑒, 𝐻𝑓𝑟𝑒𝑒, 𝐻𝑟𝑜𝑡, 𝑉𝑓𝑎𝑖𝑙, 𝑉𝑒𝑙 and 𝐾

𝑒𝑙
𝑉 , are directly retrieved from the finite element

analysis. They may also be taken from closed-form solutions for simple soil profiles. The remaining five parameters (𝐾𝑝𝑙0,𝐻 ,
𝑛𝑢𝑟,𝐻 , 𝐾

𝑝𝑙
0,𝑉 , 𝑛𝑢𝑟,𝑉 , 𝑛𝑟,𝑉) are obtained by matching the area enclosed by the load path using the macro-element with the

corresponding results from the finite element model. The parameters are summarized in Table 1. The given values rep-
resent the pile-soil system evaluated in the following sections. The parameters may be determined through the following
steps:

1. Perform a pushover analysis up to failure for pure transverse pile-head loading with all other degrees of freedom fixed.
Determine𝐻𝑓𝑎𝑖𝑙, 𝑤𝑓𝑎𝑖𝑙 and 𝐾𝑒𝑙𝐻 and 𝐾

𝑝𝑙
0,𝐻 .

2. Perform an one-cycle analysis up to𝑤𝑓𝑎𝑖𝑙 for pure transverse pile-head loading with all other degrees of freedom fixed.
Determine 𝑛𝑢𝑟,𝐻 .

3. Perform a pushover analysis up to 𝑤𝑓𝑎𝑖𝑙 for pure transverse loading for a free-head pile. Determine 𝜃𝑓𝑟𝑒𝑒 and𝐻𝑓𝑟𝑒𝑒.
4. Perform a pushover analysis up to failure for pure rotational loading with all other degrees of freedom fixed. Determine
𝐻𝑓𝑎𝑖𝑙,𝑟𝑜𝑡.

5. Perform a pushover analysis up to failure for pure axial pile-head loading in tension with all other degrees of freedom
fixed. Determine 𝑉𝑓𝑎𝑖𝑙, 𝐾𝑒𝑙𝑉 and 𝐾

𝑝𝑙
0,𝑉 .
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12 CEMALOVIC et al.

(A) Large cycles, fixed rotation (B) Large cycles, rotation in phase (C) Large cycles, rotation out of phase

(D) Small cycles, rotation fixed (E) Small cycles, rotation in phase (F) Small cycles, rotation out of phase

(G) One partial cycle (H) Three partial cycles

F IGURE 4 Comparison of macro-element and OpenSees MP. Transverse load-displacement relationship.

6. Perform a pushover analysis up to failure for pure axial pile-head loading in compression with all other degrees of
freedom fixed. Determine 𝑉𝑒𝑙.

7. Perform a two-cycle analysis up to 𝑢𝑚𝑎𝑥 for pure axial pile-head loading with all other degrees fixed. Determine 𝑛𝑢𝑟,𝑉
and 𝑛𝑟,𝑉 .

3.4 Validation

The single pile macro-elements are validated in this section against the finite element model presented in Section 2 for
various loading conditions.

3.4.1 Transverse response

Transverse response is shown in Figure 4. Figure 4A shows the cyclic response when rotation is fixed. Virgin loading,
unloading and reloading are well defined in a global sense, but there are minor pinching effects caused by the concrete
material model that are not fully captured by the macro-element. Figure 4B shows the cyclic response for a combination
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CEMALOVIC et al. 13

of in-phase transverse displacements and rotations corresponding to a free-head pile, that is, when 𝛾𝜃∕𝛾𝑤 = 1. The
stiffness and bounding load reduction are well captured. Figure 4C shows the cyclic response for transverse out-of-phase
displacements and rotations. Compared to the case with fixed rotation shown in Figure 4A, the transverse response is
only slightly altered. Hence, the assumption that transverse loads are mainly caused by transverse displacements when
𝛾𝜃∕𝛾𝑤 = −1 seems reasonable. Figure 4D shows that small displacements with fixed rotation are well captured. Figure 4E
shows in-phase small displacements and relatively large rotations. It is observed that transverse forces are negative when
transverse displacements are positive. In this case, 𝛾𝜃∕𝛾𝑤 is relatively large and rotations also contribute to the generation
of transverse forces. When displacements and rotations are in phase, rotations cause negative transverse forces. Figure 4F
shows out-of-phase small displacements and rotations. In this case, rotations cause positive transverse forces. The results
in Figures 4A–4F show that the implicit transverse-rotational coupling factors expressed in Equations (31) and (32)
are able to modify stiffness and bounding load quite accurately for most combinations of displacements and rotations.
Figures 4A–4F also show that the transition from reloading to virgin loading is smooth for closed-loop cycles and that
the transition from unloading to reloading (point of zero loading) is smooth. Figures 4D and 4E demonstrate that the
macro-element is capable of capturing cyclic behaviour for small transverse displacements. However, it is emphasized
that the macro-element is not able to simulate frequency-dependent radiation damping, which becomes more important
with decreasing displacement amplitudes. Figure 4G shows one partial loading cycle. In addition to comparison with
the finite element model, the macro-element is demonstrated using 𝛿2 defined by Equations (23) and (28). In this case,
it is clear that 𝛿2 defined by Equations (24) and (29) produce more accurate behaviour, especially as the load approaches
the virgin loading point. Figure 4G also shows that even though the plastic modulus is discontinuous in transition from
reloading to virgin loading, the behaviour is still very close to the finite element model. This behaviour is supported by
the findings in The Pile Soil Analysis (PISA) Project,44,64 where design procedures for OWT monopiles were addressed
through numerous medium scale field tests. Figure 4H shows multiple partial loading cycles. The macro-element is
generally able to capture this behaviour fairly well, but is should be emphasized that overshooting is only avoided at
the virgin loading point. This is shown in the blown-up segment in Figure 4H. However, this error mainly occurs in the
vicinity of the virgin loading point with small magnitude. As for the case with one partial loading cycle, using 𝛿2 defined
by Equations (24) and (29) produces better results compared to Equations (23) and (28.)

3.4.2 Axial response

Axial response is shown in Figure 5. Figures 5A and 5D show that cyclic loading with large amplitudes is well simu-
lated. Note that the macro-element is able to capture complex features such as (1) the highly elastic response for virgin
loading and unloading and (2) the abrupt stiffness change passing the cut-off load in compression. Figures 5B and 5E
show that the behaviour under small displacements is also well captured. As for transverse response, it should be noted
that the macro-element is not able to simulate frequency-dependent radiation damping. Figures 5C and 5F show that
partial loading is fairly well represented, admittedly with some inaccuracy. Most importantly, Figure 5F shows that Equa-
tion (35) is able to globally capture the transition between unloading in tension and reloading in compression for a variety
of unloading points.
The observed axial behaviour in compression is supported by experimental tests reported in the literature. Chen et al.65

performed a number of cyclic, axial loading tests on pre-stressed concrete pipe piles in soft clay. The load-displacement
curves for quasi-static compression tests showed similar trends for virgin loading and unloading as observed in this
study. Drbe and El Naggar66 performed full-scale load tests on micro-piles in cohesive soil. Quasi-static tests for loading,
unloading and partial loading in compression showed the same tendency as the results obtained in this study.

4 PILE GROUPS

4.1 Stiffness matrix assembly

The single pile formulations for the individual load-displacement relationships has been presented in the previous sec-
tions. This section provides a procedure for establishing a three degree-of-freedom stiffness matrix based on the single
pile formulations. The macro-element is validated for a variety of pile configurations, batter angles and soil profiles. It is
demonstrated how the macro-element may be employed to obtain linear-equivalent properties.

 10969845, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eqe.3806 by C

ochrane Sw
eden, W

iley O
nline L

ibrary on [01/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 CEMALOVIC et al.

(A) Large cycle, virgin in tension (B) Small cycle, virgin in tension (C) Partial cycles, virgin in tension

(D) Large cycle, virgin in compression (E) Small cycle, virgin in compression (F) Partial cycles, virgin in compression

F IGURE 5 Comparison of macro-element versus OpenSees MP. Axial load - displacement relationship.

F IGURE 6 Schematic sketch of the pile
group stiffness matrix.

With reference to Figure 6, the displacement increment of the single pile 𝑖 is expressed as

Δ𝒅𝒍
𝒊
= 𝒂𝑇

𝒊
Δ𝒅
𝒈

𝒊
=

[
Δ𝑢𝑙
𝑖

Δ𝑤𝑙
𝑖

]
=

[
cos(𝛽𝑖) sin(𝛽𝑖)

− sin(𝛽𝑖) cos(𝛽𝑖)

][
Δ𝑢
𝑔
𝑖

Δ𝑤
𝑔
𝑖

]
(39)

where 𝒅𝒍
𝒊
is the displacement vector of pile 𝑖 in local coordinates, 𝒂𝒊 is the coordinate transformation matrix and 𝒅

𝒈

𝒊
is the

displacement vector of pile 𝑖 in global coordinates. The tangent stiffness matrix of a single pile 𝑖 in global coordinates is
obtained through a coordinate transformation procedure and is expressed as

𝑲
𝒈

𝑺,𝒊
= 𝒂𝒊𝑲

𝒍
𝑺,𝒊
𝒂𝑇
𝒊
=

[
𝑘
𝑔
𝑆,𝑢𝑢,𝑖

𝑘
𝑔
𝐺,𝑢𝑤,𝑖

𝑘
𝑔
𝑆,𝑤𝑢,𝑖

𝑘
𝑔
𝑆,𝑤𝑤,𝑖

]
=

[
cos(𝛽𝑖) − sin(𝛽𝑖)

sin(𝛽𝑖) cos(𝛽𝑖)

]⎡⎢⎢⎣
𝑘𝑙
𝑆,𝑢𝑢,𝑖

0

0 𝑘𝑙
𝑆,𝑤𝑤,𝑖

⎤⎥⎥⎦
[
cos(𝛽𝑖) sin(𝛽𝑖)

− sin(𝛽𝑖) cos(𝛽𝑖)

]

=
⎡⎢⎢⎣

cos2(𝛽𝑖)𝑘
𝑙
𝑆,𝑢𝑢,𝑖

+ sin
2
(𝛽𝑖)𝑘

𝑙
𝑆,𝑤𝑤,𝑖

cos(𝛽𝑖) sin(𝛽𝑖)𝑘
𝑙
𝑆,𝑢𝑢,𝑖

− cos(𝛽𝑖) sin(𝛽𝑖)𝑘
𝑙
𝑆,𝑤𝑤,𝑖

cos(𝛽𝑖) sin(𝛽𝑖)𝑘
𝑙
𝑆,𝑢𝑢,𝑖

− cos(𝛽𝑖) sin(𝛽𝑖)𝑘
𝑙
𝑆,𝑤𝑤,𝑖

cos2(𝛽𝑖)𝑘
𝑙
𝑆,𝑤𝑤,𝑖

+ sin
2
(𝛽𝑖)𝑘𝑆,𝑢𝑢,𝑖

⎤⎥⎥⎦
(40)
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CEMALOVIC et al. 15

where 𝑲𝒈
𝑺,𝒊

is the tangent stiffness matrix of a single pile 𝑖 in local coordinates and 𝑘𝑙
𝑆,𝑢𝑢,𝑖

and 𝑘𝑙
𝑆,𝑤𝑤,𝑖

are the tangent
stiffness values returned by the respective single pile formulations. The pile group stiffness matrix is expressed as

𝑲𝑮 =

⎡⎢⎢⎢⎣
𝑘𝐺,𝑢𝑢 𝑘𝐺,𝑢𝑤 𝑘𝐺,𝑢𝜃

𝑘𝐺,𝑤𝑢 𝑘𝐺,𝑤𝑤 𝑘𝐺,𝑤𝜃

𝑘𝐺,𝜃𝑢 𝑘𝐺,𝜃𝑤 𝑘𝐺,𝜃𝜃

⎤⎥⎥⎥⎦ (41)

Thematrix entries in𝑲𝑮 are obtained by enforcing unit displacements and rotations (in turn) and solving the equilibrium
equations, that is,

𝑢𝐺 = 1 ⇒ 𝑘𝐺,𝑢𝑢 =

𝑁∑
𝑖=1

𝑘
𝑔
𝑆,𝑢𝑢,𝑖

, 𝑘𝐺,𝑤𝑢 =

𝑁∑
𝑖=1

𝑘
𝑔
𝑆,𝑤𝑢,𝑖

, 𝑘𝐺,𝜃𝑢 =

𝑁∑
𝑖=1

𝑘
𝑔
𝑆,𝑢𝑢,𝑖

𝑙𝑖 (42a)

𝑤𝐺 = 1 ⇒ 𝑘𝐺,𝑢𝑤 =

𝑁∑
𝑖=1

𝑘
𝑔
𝑆,𝑢𝑤,𝑖

, 𝑘𝐺,𝑤𝑤 =

𝑁∑
𝑖=1

𝑘
𝑔
𝑆,𝑤𝑤,𝑖

, 𝑘𝐺,𝜃𝑤 =

𝑁∑
𝑖=1

𝑘
𝑔
𝑆,𝑢𝑤,𝑖

𝑙𝑖 (42b)

𝜃𝐺 = 1 ⇒ 𝑘𝐺,𝑢𝜃 =

𝑁∑
𝑖=1

𝑘
𝑔
𝑆,𝑢𝑢,𝑖

𝑙𝑖 , 𝑘𝐺,𝑤𝜃 =

𝑁∑
𝑖=1

𝑘
𝑔
𝑆,𝑤𝑢,𝑖

𝑙𝑖 , 𝑘𝐺,𝜃𝜃 =

𝑁∑
𝑖=1

𝑘
𝑔
𝑆,𝑢𝑢,𝑖

𝑙2
𝑖

(42c)

where 𝑙𝑖 is the distance from the global node to the pile-node 𝑖 and 𝑁 is the number of piles. We assume that there is no
contact between the pile cap and the soil, that is, all the forces and moments from the pile cap are transferred through the
piles. Note that (1) 𝑙𝑖 is set negative when the corresponding pile is located on the right hand side of the global node, (2)
the pile-cap rotation is resisted by vertical pile-head loads only and (3) the local nodes are internal element nodes that are
not a part of the global solution.

4.2 Validation

A 2×1 pile group with vertical piles and 𝑆0∕𝑑𝑝 = 5 is subjected to harmonic, in-phase horizontal displacements and
rotations. The results are shown in Figure 7. Figure 7A shows the results for large displacements and small rotations.
Figures 7B and 7C show the same results, but with increasing rotation. It is clear that the implicit transverse-rotational
coupling modifies horizontal stiffness and bounding load quite accurately in all three cases. The moment-rotation rela-
tionships match the finite element model fairly well, but it is evident that the accuracy decreases for small rotations. The
same analyses are carried out for a 2×1 pile group with batter piles (𝑆0∕𝑑𝑝 = 5 and 𝛽 = 15𝑜). The results are shown in
Figure 8. As for the vertical pile group, the macro-element shows good agreement with the finite element model. The
moment-rotation relationships are particularly well captured, but the horizontal load-displacement relationship is some-
what overestimated. Interestingly, the horizontal stiffness of a batter pile group is practically unaffected by rotation. Since
the opposite applies for vertical pile groups, the results indicate that batter piles substantially increase horizontal stiffness,
especially at large rotations.
Next, a 3×3 pile group with both vertical and batter piles (𝑆0∕𝑑𝑝 = 5 and 𝛽 = 15𝑜) is subjected to various combinations

of horizontal displacements and rotations. The results are shown in Figure 9. Figure 9A shows the results for in-phase
large displacements and small rotations. As for the 2×1 pile group with batter piles, the horizontal load-displacement
relationship is somewhat overestimated. The same accuracy is observed in Figure 9B for in-phase large displacements
and large rotations. Figures 9C, 9D and 9E show that the macro-element is able to capture in-phase small displacements
and large rotations, out-of-phase large displacements and small rotations and out-of-phase large displacements and large
rotations. Figure 9F shows that partial loading is captured with approximately the same accuracy as full cycle loading.
One of the limiting assumptions governing themacro-element formulation is that pile-soil-pile interaction is neglected.

Figure 10A shows the results for a 3×3 pile group with 𝑆0∕𝑑𝑝 = 3 in the direction of loading. The finite element model
shows only slightly softer horizontal response compared to the pile groups with 𝑆0∕𝑑𝑝 = 5 shown in Figure 9B. These
results indicate that neglecting pile-soil-pile interaction may be reasonable for pile groups with realistic 𝑆0∕𝑑𝑝-values and
soft soil. It is, however, expected that the accuracy will decrease as the soil stiffness increases. In addition, it was suspected
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16 CEMALOVIC et al.

(A) In-phase small rotations (B) In-phase medium rotations (C) In-phase large rotations

F IGURE 7 Macro-element versus OpenSees MP. 2×1 pile group with vertical piles. 𝑆0∕𝑑𝑝 = 5

(A) In-phase small rotations (B) In-phase medium rotations (C) In-phase large rotations

F IGURE 8 Macro-element versus OpenSees MP. 2×1 pile group with batter piles. 𝑆0∕𝑑𝑝 = 5 and 𝛽 = 15𝑜

that neglecting pile-headmoment would decrease themoment-rotation accuracy for close pile spacing. However, rotation
is well captured in this case, and the difference between 𝑆0∕𝑑𝑝 = 3 and 𝑆0∕𝑑𝑝 = 5 is evident in Figures 10A and 9B.
Since the numerical scheme is based on de-coupled, single pile response, the macro-element should not be restricted

to symmetric configurations. Figure 10B shows the results for a 3×2 pile group with asymmetric configuration of batter
angles in the direction of loading. The macro-element is in good agreement with the finite element model.
All analyses thus far are performed using the (approximately) linearly varying soil profile shown in Figure 1B. In order

to validate themacro-element for different soil profiles, the 3×3 pile group is analysed in homogeneous soil corresponding
to the middle layer in the linearly varying profile. The results in Figure 10C show that the macro-element matches the
finite element quite well.
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CEMALOVIC et al. 17

(A) In-phase large displacement and small

rotations

(B) In-phase large displacement and

large rotations

(C) In-phase small displacement and

large rotations

(D) Out-of-phase large displacement

and small rotations

(E)Out-of-phase large displacement

and large rotations

(F)Partial cycles, in-phase displacements

and rotations.

F IGURE 9 Macro-element versus OpenSees MP. 3×3 pile group with vertical and batter piles. 𝑆0∕𝑑𝑝 = 5 and 𝛽 = 15𝑜

The results presented herein indicate that even though the macro-element may be somewhat inaccurate compared
to a rigorous finite element model, it is highly capable of capturing trends associated with pile group configuration,
batter angle, pile spacing and soil profile. In practical engineering, where actual response values are approached in a
broader sense, it is often more important to evaluate trends rather than exact values. The macro-element is therefore
particularly suitable in practical design situations or as an efficient tool in parametric analysis for both practical and
academic purposes.

4.3 Equivalent linear properties

In addition to non-linear time history analysis, the macro-element may be used to efficiently estimate equivalent linear
properties of a pile group. The equivalent linear pile group impedance in complex form is expressed as

𝐾𝐺 = 𝐾
𝑠𝑒𝑐
𝐺
(1 + 𝑖2𝜉𝐺) (43)
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18 CEMALOVIC et al.

(A) Close pile spacing (B) Asymmetric configuration (C) Homogeneous soil profile

F IGURE 10 Macro-element versus OpenSees MP. Different soil profiles and pile group configurations

(A) Area-based approach (B) Normalized secant stiffness (C)Equivalent viscous damping

F IGURE 11 Equivalent linear properties using the macro-element. 3×3 pile group with vertical and batter piles. 𝑆0∕𝑑𝑝 = 5 and 𝛽 = 15𝑜

where 𝐾𝑠𝑒𝑐
𝐺

is the displacement-dependent secant stiffness and 𝜉𝐺 is the equivalent viscous damping ratio. The equivalent
viscous damping may be estimated using the area based approach first suggested by Jacobsen,67 that is,

𝜉 =
𝑊𝑑
4𝜋𝑊𝑠

(44)

where 𝑊𝑑 is the energy dissipated in one cycle during the steady state response and𝑊𝑠 is the peak energy during one
cycle. The equivalent linear approach is schematically shown in Figure 11A for the 3×3 pile group subjected to harmonic
displacements with fixed rotation in linearly varying soil.
The macro-element allows for fast parametric analysis of secant stiffness and damping ratios for a variety of parameters

such as pile group configuration, batter angle and pile spacing. As an example, Figure 11B and 11C show the secant stiffness
and damping ratios for a variety of batter angles as a function of displacement amplitude. In this case, it is clear that secant
stiffness is highly dependent on batter angle. The damping ratio, however, is rather unaffected by batter angle. The ability
to efficiently asses such values is particularly useful in preliminary design or as means of evaluating the effect of change
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CEMALOVIC et al. 19

in later design stages. In addition, governing codes and general design rules are often expressed in terms of simplified,
linear values, which in most cases are not easily retrieved using rigorous finite element tools.

5 CONCLUSION

A novel macro-element for vertical and batter pile groups has been presented. The numerical scheme is based on de-
coupled, single pile response without any requirements for pre-defined failure surfaces or other parameters. Although
practical, such simplified formulations are bound to limited validity. First, the accuracy is expected to decrease for small
displacement since the formulation neglects radiation damping, which becomes more important for small-strain soil
deformations. Second, even though themacro-element performswell within the realistic range of pile spacings in soft soil,
further studies on the performance in stiffer soils are needed. Third, axial and transverse response are de-coupled, which
inherently introduces an error related to the bounding loads and restricts the macro-element to long piles. Nevertheless,
it has been demonstrated that the macro-element is capable of capturing trends associated with pile group configuration,
batter angle, pile spacing and soil profile.
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