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Abstract. The neat and clean surrounding is the main driving force
for any city to be called a smart city. In order to address current so-
cietal and business challenges, the objective is to provide a solution to
enable collection-on-demand of wastes by connecting waste data and
users/customers with the waste management system. In that context,
the focus is to improve the waste collection process in terms of collection
cost, collection time, and CO2. Within the overall objective, an impor-
tant goal that needs to be solved is waste collection on demand and the
present paper addresses this by tackling the optimization problem related
to the routing. Application of the presented solution to a case study with
real data collected in the municipality of Alesund, Norway, is presented.
This study also shows a comparison of three popular optimization algo-
rithms for solving vehicle routing problems (VRP) and multiple vehicle
routing problems (MVRP), to identify a suitable algorithm for the case
study, introducing a data-driven model. Five constraints with alternative
objectives of distance and cost minimization are considered.

Keywords: Smart City - Sustainability - Waste Management - Opti-
mization - MVRP

1 Introduction

For a sustainable future, addressing the development goals (SDGs) is crucial [1].
In order to transform society into smart circular communities and cities, SDG 11
- Sustainable Cities and Communities, and SDG 12 - Responsible Consumption
and Production, are important. Smart cities need smart waste management and
an essential step to achieve it is scheduling and planning the collection route. Ad-
ditionally, enabling optimized management for the collection of the waste gives a
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significant contribution to the municipalities’ budgets and linked environmental
hazards. Different constraints (e.g., noise pollution, safety, privacy, etc.) should
be considered in planning the collection route(s) since it leads to a sufficient and
sustainable system which reflects the inhabitants’ needs.

The traditional urban waste collection is mainly done by collecting the waste
from all the bins regardless of the status of bins (full or not) considering fixed
predetermined routes and schedules and transporting it to the disposal station.
This is a vehicle routing problem (VRP). According to the current practices, it
is up to the user to move his/her waste bin to a nearby collection point for the
next pick up adding more uncertainties.

The waste collection cost is very high and involves many types of costs such
as labor costs, maintenance costs, fuel costs, etc. Therefore, the collection pro-
cess problem has been addressed enormously recently. The proposed solutions
range between optimizing the collection routes and collection of selected bins
by considering the filling levels. Different researchers solved this problem as a
multi-objective optimization problem by considering priorities other than the
shortest distance. Mohsenizadeh et al. [2] added the impact of CO2 emissions
from the transportation activities, while Nemachnow et al. [3] added the best
service to the shortest distance. Abdallah et al. [4] developed waste collection
routes by selecting the waste bins with predicted high filling levels based on his-
torical data. While Mamun et al. [5] used sensor technology to monitor the waste
bins and send the filling level in real-time. In [6] the importance of awareness in
sustainability in waste collection process is tackled via Cyber-Physical Systems,
a mathematical model is described, which incorporates routing, assignment, and
scheduling problems. In [7] multi-objective optimization approach to generate
a route by minimizing the route distance and maximizing the amount of waste
is presented. In [8] the optimization problem of wet waste collection and trans-
portation in Chinese cities is solved in terms of a chance-constrained low-carbon
vehicle routing problem, while in [9] a priority considered green vehicle routing
problem model in a waste management system is constructed paying particular
concern to the possibility of immediate waste collection services for high-priority
waste bins, e.g., those containing hospital or medical waste.

The main objective of this study is two-fold:

— To compare various optimization algorithms for standard Multiple Vehicle
Routing problems (MVRP) and identify suitable approaches to get optimal
collection routes.

— To develop a data-driven optimized routing and scheduling for waste collec-
tion and transportation

We consider several objectives linked to Key Performance Indicators (KPIs)
such as time consuming, CO2 producing and financial costs for sustainable smart
cities, thereby addressing SDGs 11 and 12. To this purpose, we define single and
multi-objective optimization problems to address routing and scheduling under
a variety of constraints, identify suitable algorithms to address the optimiza-
tion problems, and discuss possible gains from using collection-on-demand. The
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addressed case study is the one of Alesund municipality, where real data have
been collected. The cooperation between NTNU (Norwegian University of Sci-
ence and Technology) and local municipalities (i.e., Alesund Kommune) ensures
that the definition of the optimization problem is realistic and adapted to local
regulations. The proposed solution is dynamic and interactive.

This paper is organized as follows: Section 2 presents the problem and a
comparison between different approaches. Section 3 describes a case study of on
demand waste collection in Alesund municipality. Finally, section 4 provides the
conclusion of this study.

2 Problem Formulation

A trade-off between conflicting objectives, e.g., environmental and economic
goals, motivates multi-objective optimization problems. Additionally, it is re-
quired to incorporate constraints, such as number of available trucks, capacities,
cost per working hour, time, and distance. Several scenarios can be taken under
consideration for optimal routing and trip scheduling as described later.

2.1 Problem description

The optimization problem is a VRP or MVRP with the goal of allocating a
number of filled bins for each truck (i.e., task allocation problem) and finding
optimal routes based on the real-time data (e.g., traffic data). The problem can
be solved considering several scenarios, such as:

— One vehicle, one disposal center: this is a simple scenario where we have
only one vehicle and one disposal station. The vehicle has to start from a
starting point and collect the trash from all the filled bins and end up in the
disposal station. This is a simple traveling salesman problem (TSP) which
can be solved by heuristic algorithms.

— Many vehicles, one disposal center: this is a traditional MVRP, where the
bins must be divided between a number of vehicles in order to optimize
the objective function (e.g., minimize the cost, minimize the collection time,
minimize the travelling distance, ...).

— Many vehicles, many disposal centers: this is a similar problem to the pre-
vious one where we add more disposal stations.

— Static problem vs. dynamic problem: static problem is fixed, and the opti-
mal routes are calculated at the beginning of the time window (e.g., in the
beginning of the day, midnight). While in the dynamic problem, the routes
are subject to re-calculation during the collection process if there is new data
such as traffic data, filling level, priority level, inputs from vehicles (drivers).

The data-driven model depends on available GIS data and real-time data:

- Maps: roads, bins’ locations, starting points, disposal stations’ locations.
- Bin attributes (location, capacity, priority).

- Road attributes (directions, speed limit, noise, safety, real speed).
Disposal centers (location, capacity, type).

- Vehicles (location (GPS), capacity, cost of use, emission rate).

The waste collection problem and the data flow are depicted in Figure 1.
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Fig. 1. The optimization problem and the data flow for the waste collection problem
2.2 Problem representation

The problem can be represented by a graph G = (V, E) with a set of N nodes V
and a set of edges E (such that Ej;; connects node ¢ with node j). Nodes are bins
locations, starting points, and disposal stations. Let ¢ the number of vehicles.
Hereafter we consider several alternatives for objective functions.

Optimization problem with single objective function: Following [10],
we formulate the optimization problem with a single objective function (e.g.,
minimizing the total driving distance or cost) and for one depot.

Let d;; the distance or cost for using the path from node ¢ to node j, with
depot node {0}. The binary variable z;; is equal to 1, if the path from node %
to node j is part of the solution, and 0 otherwise. r(S) denotes the minimum
number of vehicles needed to serve set S of nodes.

i€V jev

subject to

N
(1) > wy=1 forj=12.. N
i=1

N
2) Y mi;=1 fori=1,2,...,N
j=1
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Constraints (1) and (2) state that each node is visited by exactly one vehicle.
Constraints (3) and (4) state that the number of vehicles leaving the depot {0}
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is the number of vehicles entering the depot and equal to ¢. Constraints (5) are
the capacity constraints, which ensure that the routes must be connected and
not exceed the vehicle capacity.

A weighted sum as objective function: One objective function incorporates
several objectives, such as minimizing the driving distance, minimizing the col-
lection time, or minimizing the collection cost. In this case, the objective function
can written as,

min(f) = Zwifi ;
i1

where w; are weights and n is the number of objectives.

Multi-objective function: In this case, several objective functions are con-
sidered simultaneously with the goal of finding Pareto optimal solutions. A
Pareto optimal solution cannot be improved in any of the objectives without
degrading at least one of the other objectives. The multi-objective optimiza-
tion problem can be formulated as, min(f1, f1, ..., fn), where n is the number of
objectives.

In the following, we also consider cases of the MVRP with multiple depots
as formulated by Kulkarni and Bhave [11, Sec. 4].

2.3 Comparisons of OR-tools, GA, and DRL for four standard
MVRP problems

As depicted in Figure 1 and discussed in the introduction, a variety of optimiza-
tion algorithms exist that can be used to address MVRPs such as our waste
collection problem. In order to choose an algorithm to be used in the case study,
three optimization algorithms are compared in terms of performance when ad-
dressing a set of four standard MVRP. We choose three popular algorithms that
are relevant to this kind of problems. The first algorithm that is used is based on
the OR-tools [12]. This is an open-source library recently developed by Google
that can solve combinatorial optimization problems using a Constraint Program-
ming solver with a Local Search implementation on top. It includes a toolbox for
solving MVRP, [13]. The CP-SAT solver [14] uses a lazy clause generation solver
on top of an SAT solver. OR-Tools is an open source software that suites well
for optimization problems in vehicle routing [12]. The second approach is based
on Genetic Algorithms (GA) and it is used for solving both constrained and
unconstrained optimization problems [15]. GA is a well known meta-heuristic
algorithm which can generate high-quality solutions to optimization and search
problems.The third approach is based on Deep Reinforcement Learning (DRL)
and combines reinforcement learning and deep learning [16]. The DRL concept
deals with the problem of learning by trial and error to make decisions on a
computational agent. This approach is the most popular among the machine
learning techniques for solving VRP [17].

Our experimental setting was conducted on four standard VRP problems
that are defined by the number of depots, vehicles, customers and maximum
load for each vehicle, see Figure 2. We consider low numbers of customers, but
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also more complex problems with a higher number of customers (20,50,100,120).
The problems can be found in the project repository [18]. We address problems
with different conditions over three rounds. The minimum cost and minimum
calculation time for each solver are given in Figure 2.

. - Problem
MVRP'Coffiparing differentalgorithms n20d3c5D1 n50d3c3D2s6 n100d3c2D3s1 n120d3c3D3510
vesiing Hoind Aot Calc. Time | Min Cost | |Calc. Time | Min Cost | |Calc. Time | Min Cost | |Calc. Time | Min Cost
eséing Hioun gonthm (Second) | (Distance) | | (second) | (Distance) | | (second) | (Distance) || (second) | (Distance)
Ortools 0.084 0.134 7.114 \ 0.464 0.579
1stRound  |Genetic Algorithm 0.408 1.701 rsAsss | 9.779 15.445
Reinforcement Leanring 113 218 I 6.887 ‘ 5.395 12.041
ortcols 0.039 0.132 7.114 ‘ 0.335 0.614
2nd Round | Genetic Algorithm 0.382 1.69 I 6.487 ‘ 9.415 15.216
Reinforcement Leanring 0.843 2.19 [ 6.896 \ 7.197 11.639
Ortools 0.041 0.14 I 7.114 0.354 0.569
3rdRound  |Genetic Algorithm 0.403 1.687 l 6.494 \ 9.044 14.541
Reinforcement Leanring 0.94 214 I 6.881 ‘ 5.79 12.107
Problem instances
n20d3c5D1s1 n50d3c3D2s6 n100d3c2D3s1 n120d3c3D3s10
n 20 n 50 n 100 n 120
d 3 d 3 4 3 F 3 Result table
c 5 c 3 c 2 ¢ 3 Index Stronger Weaker
e
D 100 D 200 D 300 D 300 ) .
S 1 5 5 S 1 A 10 (Min Cost) Simple problems ORtools > DRL > GA|
n = total number of customers (Min Cost) Complex problems ORtools > DRL > GA|
d = number of depots ) . i
Description | = number of vehicles available in each depot (Min Calc. Time) Simple problems ~ ORtools > GA > DRU
D = maximum load for each vehicle ) )
s = sample number (Min Calc. Time)Complex problems ORtools > DRL > GA

Fig. 2. Comparisons of results with OR tools, GA, DRL algorithms for four standard
MVRPs.

In each of the three rounds of the four problem instances considered, OR-
tools has the shortest calculation time. In eight cases, OR-tools find the best
solution, while it finds the second-best solution in one case and the third-best
solution in three case. Overall, OR-tools was able to achieve a good decrease
of the objective function value with small calculation times, both for problems
with 20, 50, 100 or 120 customers in our particular case. Hence, OR-Tools has
been chosen as solver for the case study.

3 Case study: On demand waste collection in Alesund
municipality

Alesund in Norway is a small but smart city joined United Nations Cities pro-
gram, which focuses on the applications of smart innovation and digital technol-
ogy. We initially consider three trucks (vehicles) and 27 bin stations (locations).
The truck drivers utilize Google map and traffic data to choose their routes dur-
ing the work. The administrative officers plan to find the optimal schedules for
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the on demand waste collection, i.e., the set of driving paths with the lowest cost.
The cost could be distance, time or the combination with several indicators. The
objective function reflects KPI concept by considering minimal distance, time
and financial cost. The administrative planners will guide the drivers to collect
bins in the bin stations until arriving at the assigned destination (some of 27 bin
stations) as planned in the scheduled routes.

The description of the case study is organized as following. We introduce the
data and a set of optimization problems in Sec.3.1. The experimental result for
five constraints can be found in Sec.3.2. In Sec.3.3, two use cases with multiple
constraints are described and addressed. The datasets, source codes, results could
be downloaded from here [18].

3.1 A set of waste collection problems

The dataset provided by Alesund municipality includes 27 disposal center loca-
tions. For the case studies, we assume there is only one kind of trash bin. We
track and manually set other problem parameters such as the number of trucks
¢ and numbers of bins at a position (Sg). The parameters are listed in Table 1.
The depot positions compose of disposal centers and bin locations. The distance
matrix My and the time matrix M; have been obtained using Google map APIs
at 2022/03/19 22:52:41.

For the case study, we consider a set of MVRP constraints which we as-
sume to be relevant for the waste collection problem in Alesund municipality.
(DMultiple starts & ends means each vehicle might be assigned an individ-
ual start depot and stop depot. The start and stop depot lists are saved in S,
and S.. (2) Capacity Constraints means each vehicle has limited capacity for
the quantity, for example the weight or the volume. In our research this quan-
tity is the maximum bin number for each vehicle by S.. In this case, we also
assign a demand (quantity to be picked up) to each depot position (using Sy).
(3)Pickups and Deliveries has pairs of pickup and delivery locations in the
list Spq. This requires for each pair that the bins in the pickup location should
be picked up first and delivered to the delivery location by the same vehicle.
It means each item must be picked up before it is delivered. (9 Penalties and
Dropping Visits introduces a penalty list .S}, it records the extra cost if the
depot position is dropped by the vehicle. In this case, the objective function
is the total distance together with the sum of all dropped locations’ penalties.
(®Time Window Constraints requires vehicles to arrive at depots within the
time period in the list Si,. In this case, vehicles may wait at a location for a
waiting time T, and are assigned a maximum running time T;,,4.

Parameter values for the constraints are presented in Table 2. For all exper-
iments, we let d = 3 and ¢ = 3. Table 2 also presents our set of optimization
problems, which is defined by the set of constraints, combinations of multiple
constraints and two baseline experiments. The baseline examples with a single
end depot are MVRPs with S; = S, = [3,3,3] and S5 = [3,5,6], Se = [3, 3, 3], re-
spectively. They are used for comparison. With exception of constraint (5) (Time
Window Constraints), which requires the time matrix My, the constraints only
use the distance matrix M.
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Table 1. List of parameters
Parameters Value
Mg |distance matrix each directed edge has a distance.
M; |time matrix each directed edge has a time.
d number of depots each bin position can be a depot.
c number of vehicles in total
Ss |start depots list each depot has an index.
Se |end depots list each depot has an index.
Sq |demand list each location has a demand.
I each vehicle has the maximum quantity
S |capacity list that it can hold.
Spa  |pairs of pickup and delivery locations|the indexes for the locations
. each location has a penalty, which is the

Sp |penalty list extra cost if drop this position.

each location has one travel time
Stw |time window list window with the start and stop time.

the unit is minute.
Tw |the allow waiting time (default) 30 mins
Tmaz|the maximum time per vehicle (default) 30 mins
w1 |weighted rate for manhour cost, M; |(default) 10 NOK / min
wz  |weighted rate for vehicle cost, My (default) 1 NOK / m

Table 2. List of constraints

Constraints No

Parameters with assumed value

(2) Capacity Constraints

Common constraints d=3 c¢=3

One start & end Ss=S.=[3, 3, 3]

Multiple starts & one end Ss=13,5,6] Se=]3,3,3]
(D Multiple starts & ends Ss=13,5,6] Se=15,6, 3]

Si=11,3,20,4,.,4 8.

[25, 25, 30]

(3 Pickups & Deliveries

Spd = [[197 2}> [107

11]]

(@ Penalties & Dropping Visits

S, = [20, 20, 20, 19,..., 10, 1, 1, 2, 4, 2, 4]

(®) Time Window Constraints

Sww = [[0, 15], [7, 12], [10, 15], ..., [0, 5]]

(6) Multiple constraints

D&

(7) Multiple constraints

DEDED

Multiple constraints

DLEQEBED

(9 Multiple constraints

wl X My +w2 X My

@0 Multiple constraints

OFZ0)

@D Multiple constraints

©O&LEBGHED

@2 Multiple constraints

OEBEDERED
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3.2 Results for problems with simple constraints

Figure 3 (a) presents the results. The total distance in (I) Multiple starts &
ends decreases compared to the baseline experiments because the vehicles could
stop more freely. The (2) Capacity Constraints has higher distance in total,
since the vehicles may be full during the work. When requiring 3)Pickups and
Deliveries, we see an increase of distance due to the given pickup and deliveries
sequence. (HPenalties and Dropping Visits allows for dropping some depots
and a smaller total distance than in the baseline experiments.

Multiple Vehicle Routing Problem (Simple constraints)

Multiple Vehicle Routing Problem (Simple constraints)

407 651 421927 412201
382255 381121 385 544 o0k 364808 385544

146 4 E
126479 22942 liz6ises 048 L3012 259.320 3 281934 276 040 130121 281934

257057 1000

3 3 281 934 249 842 46 165 | 281 934

= - = e
126462 138170 126710 137897 126462 108122 108122 126462
49529 © 0R284 (o}

"@) ®

Fig. 3. The experiments result for simple constraints. (a) is with the distance limitation
and (b) is without distance limitation

For Figure 3 (a), we set distance limitations for each vehicle to be (2 x
max(mg € Mg)), while the vehicles’ driving distances are not limited in the
experiments whose results are shown in Figure 3 (b). The difference is mostly
work load distributed on just one vehicle in the calculation result except the
(3Pickups and Deliveries. Therefore, it is critical to set the reasonable dis-
tance limitation first to keep the work load balance for each vehicle no matter
what’s the other constraints.

When our objective is to minimize the time cost instead of the distance cost,
time matrix M; is used to replace the distance matrix M, as the input of the
calculation. In this condition, we marked one start & end (time) in Figure 4 (a)
to distinguish the target is to minimize the total time cost, not total distance.
This is the baseline compared with (5)Time Window Constraints result. The
total distance is also marked with the total time in different Y axes. The increase
of time is much more compared with the increase of distance. Because of the exist
of time window, most of the time cost is the waiting time, but not the vehicle
running time.
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3.3 Results for problems with multiple constraints

In this section, there are two use cases described with the results. The first case
is to minimize the distance with a priority list of four constraints, and the sec-
ond one focuses to find the optimal financial cost with multiple constraints by a
weighted sum of distance and time cost.

Case 1. Find an optimal schedule to minimize the distance cost under
the multiple constraints with priority

In this case, we assume the officer wish to find the multiple constraints affection
on the distance cost for the vehicle schedule. It only relates to the distance ma-
trix My and is composed of &) (7) (8). They are the multiple constraints adding
simple constraints (D) @) B) @ one by one as Table 2.

Figure 4 (b) shows sometimes the constraints for the capacity may help to
find better solution by chance. Meanwhile, the pickup and deliveries constraints
cause much more distance cost compared to the same single constraint (3). And
the result of the penalties and dropping in this case is similar with (@) in total
value. The multiple constraints for the distribution of vehicles could have more
balanced load like compare (3) and (8). Sometimes it fails to find the solution if
the constraints are more than three kinds and not including penalty constraints.

Simple constraints (Time window constraints) Multiple constraints (Use case 1)

480k 2400 500k
437 570
388974 441 245 1980 37 570

360k 145720, 1800
140,737

400k 382 255 381121 378786
145311

&0 00k 126479 126/588 105718

240k . 1200

120k 600

258014

Total distance (m)
(uiw) awp [e10).
Total distance (m)

&
3
2

1
141 228 145 906
123287 TN 126 462 126 710 127393 7265
0 S 0 0
ne start & end ime window start&end Multiple starts & ® ) ®
(Time) ® d ® @ ®
Vehicle 0 Distance @ Vehicle 1 Distar Vehicle 2 Distance @ Vehicle 0 Time 0}
® Vehicle 1 Tim ® Vehicle 2 Time Vehicle 0 Distance @ Vehicle 1 Distance  ® Vehicle 2 Distance

(a)

Fig. 4. The experiments result (a) Time window constraint , (b) Multiple constraints
use case 1.

Case 2. Explore the lowest financial cost with multiple constraints
In case 2, the officer plans to explore the optimal schedule with lowest financial
cost, which happens more often in the real world. The weighted sum (Section 2.3)
is utilized to compute the financial cost based on the fixed weighted parameters
wy and wo (Table 1). The financial cost is computed by f = ws f1 + w2 f2, where
f1 is the time objective and f5 is the distance objective. Therefore, we uses three
aspects to reflect the results in Figure 5 (¢). They are total financial cost (black),
time (orange), distance (blue). The experiment with the constraint (9) uses the
financial cost as the objective with distance limitation only, and works as a
baseline with the rest three multiple constrains configuration. The constraints
@0 @) (2 are the multiple ones adding simple constraints (5) (2) 3) @ as Table
2. When (@) is added to (), there is no solution. Therefore, we add (4) together

with (3) to to (D as (2.
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Multiple constraints (Use case 2)

550k 1650 110k
1508 100373
500k 1500 100k
94 610
450k 446719 1350 90k
82101 31192
400k 397 65§ 659 1200 80k
34180 1103
70 780
350k 1009 1050 70k
137.951
303 452 150
300k 20407 900 60k

750 50k

‘ )
600 40k
w7z 450 30k
100k
129314

300 20k
27 755
50k H 103 676 150 10k
® @ ce

Vehicle 0 Distance @ Vehicle 1 Distance Vehicle 2 Distance Vehicle 0 Time ® Vehicle 1 Time ® Vehicle 2 Time
Vehicle 0 Cost @ Vehicle 1 Cost ® Vehicle 2 Cost

250k

Total distance (m)
(ujw) 3wy [e0)
(MON) 3502 [elduRUL [BI0]

200k

150k

Fig. 5. The experiments result of multiple constraints use case 2.

Compared with (9) and (0, much more waste of time happens compared with
the increase of distance. This is because the financial cost is mainly affected by
the distance factor with higher w;. The (2) capacity constraint directly causes
the decrease of the time and inevitable rising of the distance, which finally causes
more financial cost. The () is the main factor to solve (2 because there is no
solution only adding (3) on (1. The results reflect the larger decrease of distance
in distance and financial cost.

4 Conclusion, limitations and future work

This study presents a comparison of three optimization algorithms (OR tools,
GA algorithm, DRL) for four standard MVR problems and found that OR-tools
outperforms others for these specific problems. Further, a data-driven model has
been introduced which gives a dynamic interactive solution to the waste collec-
tion problem. We propose to use hybrid approaches to improve the performance
of the optimization algorithms. The proposed multi-objective cost clarifies how
the use of multiple constraints can be addressed and solved in real time. This op-
timization takes into account KPIs as consumed time, CO2 producing, financial
cost in the decision making process. It has been shown how on demand routing
is useful for the minimization of fuel consumption and the effectiveness of the
data-based management.

We present results for a set of waste collection problems with real data,
five constraints, along with the two alternative objectives of distance and cost
minimization. Here, we prioritized constraints and included them successively
into the problem formulation. We considered single objective functions and a
weighted sum as objective function, representing the financial cost and consid-
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ering both distance and time. The results also cover all the simple constraints
except the multiple starts & ends.

There are several directions for future work building on the presented study.
Firstly, parameter values for the constraints have been based on our assumptions
(about e.g., capacities or time windows). The optimization algorithm employed
for the case study fails to find a solution when constraints are too strict and of
many types. The constraints 4) @) 3) (D) are negative with higher cost from
the strongest to the weakest and (5) is strongly positive. (I) could be positive
sometimes. These classification is made on our experiments by quality and it
could be more convincing if we use real world constraints values in the future.
It might also be worthy to analyze the result in the quantitative view. A further
direction for future work would be to compare results form experiments con-
ducted at several times of the day / week. Alesund is a small city with minor
changes in traffic patterns. Actually, there are more than 30 groups of distance
and time matrices collected for the targeted depots list by Google Map API.
The comparison of the result shows it brings tiny changes to the result when the
temporal changes of raw data are small. In the future, we plan to focus more
on the analysis on the traffic data in the large cities. The present solution can
be improved by the use of customer satisfaction and real time measurements,
such as waste fill-level to dynamically set an adaptive optimal routing. To this
purpose data on waste fill-level in a waste bin in real-time, temperature and bin
location need to be obtained, i.e. collecting them through IoT devices. Ongoing
and future research is addressing these questions.
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