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Abstract. We study three integrals related to the celebrated pair correlation conjecture of H. L. Mont-

gomery. The first is the integral of Montgomery’s function F pα, T q in bounded intervals, the second is an

integral introduced by Selberg related to estimating the variance of primes in short intervals, and the last

is the second moment of the logarithmic derivative of the Riemann zeta-function near the critical line. The

conjectured asymptotic for any of these three integrals is equivalent to Montgomery’s pair correlation con-

jecture. Assuming the Riemann hypothesis, we substantially improve the known upper and lower bounds

for these integrals by introducing new connections to certain extremal problems in Fourier analysis. In an

appendix, we study the intriguing problem of establishing the sharp form of an embedding between two

Hilbert spaces of entire functions naturally connected to Montgomery’s pair correlation conjecture.

1. Introduction

1.1. Background. Let ζpsq denote the Riemann zeta-function and let

ψpxq “
ÿ

nďx

Λpnq,

where Λpnq “ log p if n “ pk for a prime p and k P N, and Λpnq “ 0 otherwise. In order to study the

distribution of primes in short intervals, Selberg [23] introduced the integrals

Ipa, T q :“

ż T

0

ˇ

ˇ

ˇ

ˇ

ζ 1

ζ

ˆ

1

2
`

a

log T
` it

˙
ˇ

ˇ

ˇ

ˇ

2

dt

for a ą 0 and

Jpβ, T q :“

ż Tβ

1

´

ψ
´

x`
x

T

¯

´ ψpxq ´
x

T

¯2 dx

x2
(1.1)

for β ě 0. For 0 ď β ď 1, Gallagher and Mueller [11] proved that

Jpβ, T q „
β2

2

log2 T

T
, as T Ñ8. (1.2)

Assuming the Riemann hypothesis (RH), Selberg [23] proved an upper bound for Ipa, T q when a ě 10 and

used this to show that

Jpβ, T q “ Oβ

ˆ

log2 T

T

˙

, as T Ñ8, (1.3)

for 1 ă β ď 4. Selberg’s proof can be modified to show that the estimate in (1.3) holds for each fixed β ą 1.

Assuming RH, for each β ą 1, it is now known that there are constants D˘ such that

`

D´β ` op1q
˘

¨
log2 T

T
ď Jpβ, T q ď

`

D`β ` op1q
˘

¨
log2 T

T
, (1.4)
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as T Ñ 8. In particular, we see that the dependence on the parameter β is linear. The proof of the upper

bound in this form was first given by Montgomery (unpublished) while alternate proofs have been given in

[11, 14, 15, 16]. The proof of the lower bound is due to Goldston and Gonek [14].

1.2. Equivalences to Montgomery’s pair correlation conjecture. In order to study the pair correla-

tion of the zeros of ζpsq, for α P R and T ě 2, Montgomery [20] introduced the form factor

F pαq :“ F pα, T q “
2π

T log T

ÿ

0ăγ,γ1ďT

T iαpγ´γ
1
qwpγ ´ γ1q,

where wpuq “ 4{p4` u2q. Here the double sum runs over the ordinates γ, γ1 of two sets of non-trivial zeros

of ζpsq, counted with multiplicity. We use the shorthand notation F pαq for simplicity, but the reader should

always keep in mind that this is also a function of the parameter T . It follows from the definition that F pαq

is even and real-valued. Moreover, since

ÿ

0ăγ,γ1ďT

T iαpγ´γ
1
qwpγ ´ γ1q “ 2π

ż 8

´8

e´4π|u|

ˇ

ˇ

ˇ

ˇ

ÿ

0ăγďT

T iαγe2πiγu

ˇ

ˇ

ˇ

ˇ

2

du,

it follows that F pαq ě 0 for all α P R. Montgomery was interested in the asymptotic behavior of the function

F pαq since, by Fourier inversion, we have

ÿ

0ăγ,γ1ďT

R

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q “
T log T

2π

ż 8

´8

pRpαqF pαqdα (1.5)

for any function R P L1pRq such that pR P L1pRq, where

pRpαq “

ż 8

´8

e´2πiαxRpxqdx

denotes the usual Fourier transform of R. Assuming RH, it is known that

F pα, T q “
´

T´2|α| log T ` |α|
¯

˜

1`O

˜

d

log log T

log T

¸¸

, as T Ñ8, (1.6)

uniformly for 0 ď |α| ď 1. This was proved by Goldston and Montgomery [16, Lemma 8], refining the

original work of Montgomery [20]. This asymptotic formula allows one to estimate the sum on the left-

hand side of (1.5) for R P L1pRq with suppp pRq Ă r´1, 1s. Montgomery conjectured that F pαq „ 1 for

|α| ą 1, uniformly for α in bounded intervals. This is sometimes called Montgomery’s strong pair correlation

conjecture. This assumption, via approximating the characteristic function of an interval by bandlimited

functions, led Montgomery to further conjecture that, for any fixed β ą 0,

(I) Npβ, T q :“
ÿ

0ăγ,γ1ďT

0ăγ´γ1ď 2πβ
log T

1 „
T log T

2π

ż β

0

"

1´
´ sinπu

πu

¯2
*

du, as T Ñ8.

This is known as Montgomery’s pair correlation conjecture. Since there are „ T log T {p2πq non-trivial zeros

of ζpsq with ordinates in the interval p0, T s as T Ñ 8, the function Npβ, T q counts the number of pairs of

zeros within β times the average spacing between zeros.

Assuming RH, from the works of Gallagher and Mueller [11], Goldston [13], and Goldston, Gonek and

Montgomery [15], it is known that the following asymptotic formulae are equivalent to the validity of Mont-

gomery’s pair correlation conjecture in (I) for each fixed β ą 0:
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(II)

ż b``

b

F pα, T qdα „ `, as T Ñ8 for any fixed b ě 1 and ` ą 0;

(III) Jpβ, T q „

ˆ

β ´
1

2

˙

log2 T

T
, as T Ñ8 for any fixed β ą 1;

(IV) Ipa, T q „

ˆ

1´ e´2a

4a2

˙

T log2 T, as T Ñ8 for any fixed a ą 0.

Since Montgomery’s pair correlation conjecture remains a difficult open problem, it is natural to instead

ask for upper and lower bounds for the functions Npβ, T q,
şb``

b
F pα, T qdα, Jpβ, T q, and Ipa, T q in place of

asymptotic formulae. Assuming RH, extending previous work of Gallagher [10], it was shown in [3] that

NpT q

ˆ

β ´
7

6
`

1

2π2β
`O

ˆ

1

β2

˙

` op1q

˙

ď Npβ, T q ď NpT q

ˆ

β `
1

2π2β
`O

ˆ

1

β2

˙

` op1q

˙

,

as T Ñ 8, for all β ą 0, by using (1.5), (1.6), and certain extremal functions of exponential type. Here

NpT q denotes the number of non-trivial zeros of ζpsq with ordinates in the interval p0, T s, and the term 7{6

in the lower bound can be replaced by 1 if we further assume that almost all zeros of ζpsq are simple.

The purpose of this paper is to continue this direction of investigation and, using tools from Fourier

analysis, substantially improve the current upper and lower bounds for the integrals in (II), (III), and (IV)

assuming RH. As we shall see, novel insights and certain Fourier optimization problems emerge when we

treat each of these integrals.

1.3. Summary of results. We now present an overview of some of our main results. Theorems 1 and

3 below (and their corollaries) are representatives of a much more detailed discussion that follows in Sec-

tions 2 and 3, respectively. These sample results already give a clear perspective of the magnitude of the

improvements in this paper over previous results.

1.3.1. The integral of F pαq in bounded intervals. An important feature of this paper is the development of

a general theoretical framework relating the objects we want to bound in analytic number theory to certain

extremal problems in Fourier analysis. For some of these extremal problems, achieving the exact answer

is a hard task, and we must rely on certain test configurations to provide reasonable approximations. For

instance, we define universal constants C` and C´ in §2.4.1 and §2.4.2 as solutions of two such extremal

problems, and use them to prove the following theorem.

Theorem 1. Assume RH, let b ě 1, and let ε ą 0 be an arbitrary number. For large `, as T Ñ8, we have

pC´ ´ εq `` op1q ď

ż b``

b

F pα, T qdα ď pC` ` εq `` op1q,

where the constants C` and C´ are defined in (2.52) and (2.57), respectively.

We establish the bounds

0.9278 ă C´ ď C` ă 1.3302 (1.7)

for these universal constants, which immediately leads to the following corollary.

Corollary 2. Assume RH and let b ě 1. For large `, as T Ñ8, we have

0.9278 `` op1q ď

ż b``

b

F pα, T qdα ď 1.3302 `` op1q. (1.8)
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We use this theorem to give information about the distribution of primes in short intervals. Furthermore,

the work of Radziwi l l [22] illustrates a connection between Theorem 1 and the theoretical limitations of

mollifying the Riemann zeta-function on the critical line (see §2.5). Previously, the best known bounds in

(1.8) were due to Goldston [12, Lemma A] and Goldston and Gonek [14, Lemma], respectively, where an

estimate with 1
3 in place of 0.9278 in the lower bound and 2 in place of 1.3302 in the upper bound can be

established for sufficiently large ` by adding up integrals of length 2.

Theorem 1 and Corollary 2 are proved in Section 2, which actually brings a full discussion on effective

bounds for each b ě 1 and ` ą 0. This section is of utmost importance for us, as it brings the foundations

on the extremal problems in Fourier analysis that are connected to bounding the integral of F pαq, and how

one can properly explore them. For instance, the proof of the lower bound in (1.8), which treads strikingly

close to the conjectured value of `` op1q for large `, relies partly on the insight that Dirichlet kernels cannot

be large and negative. In fact, letting

c0 :“ min
xPR

sinx

x
“ ´0.21723 . . . ,

we see how the number

1`
c0
3
“ 0.92758 . . . (1.9)

appears naturally in our discussion. We first obtain (1.8) with any constant smaller than (1.9) multiplying

` in the lower bound, and any constant greater than 4{3 multiplying ` in the upper bound. A minor, yet

conceptually important, improvement leads us to sharpen these multiplying factors to 0.9278 in the lower

bound and to 1.3302 in the upper bound. Our general theoretical framework may be amenable to further

slight numerical refinements through the search of more complicated test functions. A posteriori, the reader

will notice that the fundamental pillar of the Section 2 is Theorem 7, a powerful general result that governs

all the others in the section, including Theorem 1 and Corollary 2. We need a little bit of preparation in

order to present it.

1.3.2. Primes in short intervals. In (3.1) and (3.2) below, we properly define the precise constants L˘ which

can be approximated by

L´ “ 0.9028 . . . and L` “ 1.0736 . . . .

Using the definitions of L˘, a Tauberian argument, and the estimates for the integral of F pαq in bounded

intervals, we deduce upper and lower bounds for the (weighted) variance of primes in short intervals.

Theorem 3. Assume RH and let ε ą 0 be an arbitrary number. For large β, as T Ñ8, we have

´

`

L´C´ ´ ε
˘

β ` op1q
¯ log2 T

T
ď Jpβ, T q ď

´

`

L`C` ` ε
˘

β ` op1q
¯ log2 T

T
.

The multiplying factors L˘ arise from what we call sunrise approximations for the Fejér kernel. Using

the bounds for C˘ in (1.7), we deduce the following result.

Corollary 4. Assume RH. For large β, as T Ñ8, we have

`

0.8376β ` op1q
˘ log2 T

T
ď Jpβ, T q ď

`

1.4283β ` op1q
˘ log2 T

T
. (1.10)

Previously, the best known bounds in (1.10) were implicit in the work of Goldston and Gonek [14], yielding

0.153 in place of 0.8376 in the lower bound, and 10.824 in place of 1.4283 in the upper bound. In Section 3,

we present a full discussion on bounds for Jpβ, T q for each β ą 1.
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1.3.3. The second moment of the logarithmic derivative of ζpsq. Our next result establishes the sharpest

known bounds for Ipa, T q, for any fixed a ą 0, assuming RH. Our upper bound for Ipa, T q uses a formula

of Goldston, Gonek, and Montgomery [15, Theorem 1] combined with the solution of the Beurling–Selberg

extremal problem for the Poisson kernel given in [5, 6]. This argument is inspired by the previous calculations

in [7] and [4], where explicit formula methods were combined with the solutions of the Beurling–Selberg

extremal problem to give the sharpest known bounds for the modulus and argument of ζpsq on the critical

line, assuming RH. Our lower bound for Ipa, T q also uses [15, Theorem 1] together with a method developed

in [3, Theorem 7] to prove the existence of small gaps between the non-trivial zeros of ζpsq using known pair

correlation estimates.

Theorem 5. Assume RH. Then, for T´1plog T q5{2 ď a ď plog T q1{4{plog log T q1{2, we have

`

1` op1q
˘

U´paqT log2 T ď Ipa, T q ď
`

1` op1q
˘

U`paqT log2 T

as T Ñ8, where

U´paq “
1´ p1` 2aq e´2a

4a2
`

ˆ

1

2a
`

1
?

3

˙

e´2ap1`1{
?

3q,

U`paq “
coth a

4a2
´
pcsch aq2

4a
`

coth a

2
´

1

2
,

and the terms of op1q are O
`

1{
?

log log T
˘

.

To compare Theorem 5 to the conjectural asymptotic formula in (IV), let

G˘paq “ U˘paq

Nˆ

1´ e´2a

4a2

˙

.

We then have G´p0`q “ 1, G`p0`q “ 4{3, minaą0G
´paq “ 0.899 . . . attained at a0 “ 0.998 . . ., and

maxaą0G
`paq “ 1.434 . . . attained at a0 “ 0.620 . . . . Both G˘paq Ñ 1 rapidly as a Ñ 8, for example

G´paq ě 0.999 if a ě 4.55 and G`paq ď 1.001 if a ě 5.83. See Figure 1. Assuming RH, in the range

T´1 log3 T ď a ! 1, Goldston, Gonek, and Montgomery [15] had previously proved that

`

1` op1q
˘

V ´paqT log2 T ď Ipa, T q ď
`

1` op1q
˘

V `paqT log2 T,

where

V ´paq “
1´p1`2aq e´2a

4a2
`

2

3 pe6a´e2aq
and V `paq “

1´p1`2aq e´2a

4a2
`

29

12 pe2a´1q
.

The bounds in Theorem 5 are sharper for any fixed a ą 0 and substantially better for small a. See Figure 2.

1.3.4. Hilbert spaces and the pair correlation of zeta zeros. In Appendix B, we revisit the framework of [3] to

find the sharp form of an embedding between two Hilbert spaces of entire functions naturally connected to

Montgomery’s pair correlation conjecture. Using tools from complex analysis, interpolation, and variational

methods, we are led to the intriguing result presented in Theorem 19.

1.4. Notation. Throughout the paper, txu denotes the largest integer that is less than or equal to x; rxs

denotes the smallest integer that is greater than or equal to x; and txu “ x´ txu denotes the fractional part

of x. We also write x` :“ maxtx, 0u and χE for the characteristic function of a set E. The real part of

complex number z is denoted by Repzq and its imaginary part by Impzq.
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Figure 1. Plots of G´paq and G`paq for 0 ď a ď 7.
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Figure 2. Plots of U´paq{V ´paq for 0 ď a ď 4 and U`paq{V `paq for 0 ď a ď 6.

2. The integral of F pαq in bounded intervals

2.1. Fourier optimization. We start with a broad principle to generate upper and lower bounds for the

integral of F pαq in bounded intervals. This is motivated by some particular constructions of Goldston [12]

and Goldston and Gonek [14], though we now set up the problem in a more general framework.

Throughout the paper we let A be the class of continuous, even, and non-negative functions g P L1pRq
such that pgpαq ď 0 for |α| ě 1. One can check, via approximations of the identity, that if g P A then

pg P L1pRq. For each g P A, we define the quantity

ρpgq :“ pgp0q `

ż 1

´1

pgpαq |α|dα , (2.1)

which is always non-negative since |pgpαq| ď pgp0q for all α P R. In fact, (2.1) is strictly positive if g ‰ 0. If

g P A, from (1.5), the fact that F is non-negative, and (1.6), we observe that

2π

T log T

ÿ

0ăγ,γ1ďT

g

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q “

ż 8

´8

pgpαqF pα, T qdα

ď

ż 1

´1

pgpαqF pα, T qdα “ ρpgq ` op1q

(2.2)

as T Ñ 8. We define A0 Ă A as the subclass of continuous, even, and non-negative functions g P L1pRq
such that suppppgq Ă r´1, 1s. If g P A0, then we have equality in (2.2), and also the alternative representation

ρpgq “ gp0q `

ż 8

´8

gpxq

#

1´

ˆ

sinπx

πx

˙2
+

dx , (2.3)
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which follows by Plancherel’s theorem.

2.1.1. Three extremal problems in Fourier analysis. We now introduce the following problems.

Extremal problem 1 (EP1). Let ` ą 0. Consider a finite collection of functions g1, g2, . . . , gN P A and points

ξ1, ξ2, . . . , ξN P R such that
N
ÿ

j“1

pgjpα´ ξjq ě χr0,`spαq (2.4)

for all α P R. Over all such possibilities, find the infimum

W`p`q :“ inf
N
ÿ

j“1

ρpgjq. (2.5)

Extremal problem 2 (EP2). Let ` ą 0. Consider a finite collection of functions g1, g2, . . . , gN P A and points

ξ1, ξ2, . . . , ξN P R such that
N
ÿ

j“1

pgjpα´ ξjq ď χr0,`spαq (2.6)

for all α P R. Over all such possibilities, find the supremum

W´p`q :“ sup
N
ÿ

j“1

`

2gjp0q ´ ρpgjq
˘

. (2.7)

Extremal problem 3 (EP3). Let b, β P R with b ă β. Consider a finite collection of functions g1, g2, . . . , gN P

A, points η1, η2, . . . , ηN P R, and values r1, r2, . . . , rN P R with rj ď 0 if gj P AzA0 pj “ 1, 2, . . . , Nq, such

that
N
ÿ

j“1

pgjpα´ ηjq ď χrb,βspαq (2.8)

for all α P R, and

Re

˜

N
ÿ

j“1

e2πiηjxgjpxq

¸

ě

N
ÿ

j“1

rj gjpxq (2.9)

for all x P R. Over all such possibilities, find the supremum

W´
˚ pb, βq :“ sup

N
ÿ

j“1

`

gjp0q ` rj
`

ρpgjq ´ gjp0q
˘˘

. (2.10)

Remark 1: Note that by a uniform translation of all the ξj ’s one can consider any interval of length ` in

(2.4) and (2.6) instead of the interval r0, `s. The situation is slightly different in (EP3) since, for fixed gj ’s

and rj ’s, condition (2.9) is not necessarily invariant under translations of the ηj ’s, and hence the answer

may depend on the particular interval rb, βs that we choose in (2.8). Throughout this section, we reserve the

variable ` for the length of the interval, hence the change of variables β “ b` ` is sometimes used. In (2.9)

note that the choice r1 “ r2 “ . . . “ rN “ ´1 is always admissible.

Remark 2: In the next subsections, we see that collections of functions and points that satisfy (2.4), (2.6),

or (2.8)–(2.9) indeed exist. We do not take the supremum and infimum over empty sets.

At this point we collect some basic facts about the newly introduced functions W`,W´ and W´
˚ .

Proposition 6. The following statements hold:

(i) The functions ` ÞÑW`p`q, ` ÞÑW´p`q and ` ÞÑW´
˚ pb, b` `q are non-decreasing for b P R and ` ą 0.
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(ii) For each b P R and ` ą 0 we have

W´p`q ďW´
˚ pb, b` `q. (2.11)

(iii) For each `1, `2 ą 0 we have

W`p`1 ` `2q ďW`p`1q `W`p`2q and W´p`1 ` `2q ěW´p`1q `W´p`2q. (2.12)

(iv) For b ă c ă d we have

W´
˚ pb, dq ěW´

˚ pb, cq `W´
˚ pc, dq. (2.13)

Proof. (i) This should be clear from the definitions of the extremal problems (EP1), (EP2) and (EP3).

(ii) Assume that (2.6) is verified. Then, letting ηj “ ξj ` b, we verify (2.8) with β “ b` `. We may choose

r1 “ r2 “ . . . “ rN “ ´1 in (2.9) to arrive at inequality (2.11).

(iii) If
`

tg1,ju
N1
j“1, tξ1,ju

N1
j“1

˘

verifies (2.4) with ` “ `1 and
`

tg2,ju
N2
j“1, tξ2,ju

N2
j“1

˘

verifies (2.4) with ` “ `2,

then the collection
`

tg3,ju
N1`N2
j“1 , tξ3,ju

N1`N2
j“1

˘

verifies (2.4) with ` “ `1 ` `2, where

g3,j “

$

’

&

’

%

g1,j , for 1 ď j ď N1;

g2,j´N1 for N1 ` 1 ď j ď N1 `N2;
; ξ3,j “

$

’

&

’

%

ξ1,j , for 1 ď j ď N1;

ξ2,j´N1 ` `1 for N1 ` 1 ď j ď N1 `N2.

This leads us to (2.12) for W`. A similar concatenation argument yields the inequality for W´.

(iv) Assume that the configuration
`

tg1,ju
N1
j“1, tη1,ju

N1
j“1, tr1,ju

N1
j“1

˘

verifies (2.8) – (2.9) for the interval

rb, cs, and that
`

tg2,ju
N2
j“1, tη2,ju

N2
j“1, tr2,ju

N2
j“1

˘

verifies (2.8)–(2.9) for the interval rc, ds. Then the collec-

tion
`

tg3,ju
N1
j“1, tη3,ju

N1`N2
j“1 , tr3,ju

N1`N2
j“1

˘

verifies (2.8)–(2.9) for the interval rb, ds, where

g3,j “

$

’

&

’

%

g1,j , for 1 ď j ď N1;

g2,j´N1
for N1 ` 1 ď j ď N1 `N2;

; η3,j “

$

’

&

’

%

η1,j , for 1 ď j ď N1;

η2,j´N1
for N1 ` 1 ď j ď N1 `N2;

and

r3,j “

$

’

&

’

%

r1,j , for 1 ď j ď N1;

r2,j´N1
for N1 ` 1 ď j ď N1 `N2.

This leads us to (2.13). �

2.1.2. A general bound. We now relate the three extremal problems introduced above to the integral of F pαq

in the following general result.

Theorem 7. Assume RH, let b P R and ` ą 0. Then, as T Ñ8, we have

W´p`q ` op1q ďW´
˚ pb, b` `q ` op1q ď

ż b``

b

F pα, T qdα ďW`p`q ` op1q. (2.14)

Proof. The first inequality on the left-hand side of (2.14) was already established in Proposition 6 (ii).

Assume that (2.4) holds. Then, using (2.4), (1.5) and (2.2) we have

ż b``

b

F pαqdα ď
N
ÿ

j“1

ż

R
F pαq pgjpα´ b´ ξjqdα

“
2π

T log T

N
ÿ

j“1

ÿ

0ăγ,γ1ďT

T ipb`ξjqpγ´γ
1
q gj

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q

8



ď
2π

T log T

N
ÿ

j“1

ÿ

0ăγ,γ1ďT

gj

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q

“

N
ÿ

j“1

ρpgjq ` op1q,

which leads us to the upper bound in (2.14).

Now assume that (2.8) and (2.9) hold, with β “ b` `. For the lower bound, we are inspired by a trick of

Goldston [12, p. 172]. Letting mγ denote the multiplicity of a zero 1
2 ` iγ of ζpsq, we use (2.8), (1.5), (2.9),

and (2.2) (recall that rj ď 0 if gj P AzA0) to get

ż b``

b

F pαqdα ě
N
ÿ

j“1

ż

R
F pαq pgjpα´ ηjqdα

“
2π

T log T

N
ÿ

j“1

ÿ

0ăγ,γ1ďT

T i ηjpγ´γ
1
q gj

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q

“
2π

T log T

N
ÿ

j“1

$

’

’

&

’

’

%

gjp0q
ÿ

0ăγďT

mγ `
ÿ

0ăγ,γ1ďT
γ‰γ1

T i ηjpγ´γ
1
q gj

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q

,

/

/

.

/

/

-

ě
2π

T log T

N
ÿ

j“1

$

’

’

&

’

’

%

gjp0q
ÿ

0ăγďT

mγ ` rj
ÿ

0ăγ,γ1ďT
γ‰γ1

gj

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q

,

/

/

.

/

/

-

(2.15)

“
2π

T log T

N
ÿ

j“1

#

gjp0q p1´ rjq
ÿ

0ăγďT

mγ ` rj
ÿ

0ăγ,γ1ďT

gj

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q

+

ě

N
ÿ

j“1

`

gjp0q ` rj
`

ρpgjq ´ gjp0q
˘˘

` op1q.

Here we have used the trivial bound
ÿ

0ăγďT

mγ ě
ÿ

0ăγďT

1 „
T log T

2π
, as T Ñ8,

to derive the final inequality. This leads us to the lower bound for the integral of F pαq in (2.14). �

Remark: It is an interesting problem to determine when the lower bounds in Theorem 7 start beating the

trivial bound of 0. For instance, in Theorem 9 below we show that W´p`q ą 0 for ` ą 6´ 2
?

6 “ 1.10102 . . .

In the case b “ 1 we may take advantage of the symmetry around the origin and (1.6) to provide alternative

upper and lower bounds as follows.

Corollary 8. Assume RH and let β ą 1. Then, as T Ñ8, we have

W´
˚ p´β, βq

2
´ 1` op1q ď

ż β

1

F pα, T qdα ď
W`p2βq

2
´ 1` op1q. (2.16)

Proof. The estimate in (1.6) implies that
ż 1

´1

F pαqdα “ 2` op1q. (2.17)

9



Using (2.17) and the fact that F pαq is even we have
ż β

´β

F pαqdα “ 2

ż β

1

F pαqdα` 2` op1q. (2.18)

The desired bounds in (2.16) now follow from (2.18) and Theorem 7. �

2.1.3. Strengths and limitations. Finding the exact answer in the general case of extremal problems (EP1),

(EP2) and (EP3) above is, in principle, something non-trivial. There are too many parameters in play. On

the other hand, an advantage of this method and Theorem 7 is that, for a fixed interval rb, b``s, it is possible

to bring in sophisticated computational tools to approximate the solutions of these extremal problems.

As noted in Proposition 6 (ii) and Theorem 7, the extremal problem (EP2) provides a weaker lower

bound than (EP3), but has the advantage of being a simpler problem. In fact, if one wants to obtain

effective estimates for all intervals in a more systematic way, it is simpler to narrow down the search to

certain families of functions within the subclass A0 and work with (EP1) and (EP2) to start. We proceed

along these lines in the next subsection. We note that the larger class A has proved useful to sharpen some

bounds in the theory of the Riemann zeta-function via sophisticated numerical experimentation [8] and,

though numerics is not our main focus here, we have already laid the foundational theoretical framework for

such endeavors.

Montgomery and Taylor [21] showed that for each function 0 ‰ g P A0 one has

ρpgq

gp0q
ě CMT :“

1

2
` 2´

1
2 cot

´

2´
1
2

¯

“ 1.32749 . . . , (2.19)

with equality if and only if

gpxq “
c

p1´ 2π2x2q2

´

cospπxq ´ 2
1
2πx cot

`

2´
1
2

˘

sinpπxq
¯2

pc ą 0q.

For an alternative proof using reproducing kernel Hilbert spaces, see [3, Corollary 14]. See also [18, Appendix

A]. Assuming that (2.4) holds, we integrate to get

N
ÿ

j“1

gjp0q “

ż

R

˜

N
ÿ

j“1

pgjpα´ ξjq

¸

dα ě

ż

R
χr0,`spαqdα “ `. (2.20)

If all functions gj are in the subclass A0, from (2.19) and (2.20), we see that

N
ÿ

j“1

ρpgjq ě CMT

N
ÿ

j“1

gjp0q ě CMT ` “ p1.32749 . . .q `. (2.21)

Analogously, if in extremal problem (EP2) we restrict our attention to functions gj in the subclass A0, by

integrating (2.6) and using (2.19), we get

N
ÿ

j“1

`

2gjp0q ´ ρpgjq
˘

ď
`

2´CMT

˘

` “ p0.67250 . . .q `. (2.22)

These are universal limitations of this method when using the extremal problems (EP1) and (EP2) restricted

to the subclass A0. For the lower bound, in the regime when ` is large, we see in §2.2 that we can in fact

get very close to the threshold (2.22) but, at the end, with the refined framework of §2.3 we see that the

extremal problem (EP3) yields a substantially better lower bound. For the upper bound, we show in §2.2

and §2.4 that we can get very close to the threshold (2.21).
10



2.2. Stacking triangles. A simple and effective way to use Theorem 7, with the lower bound given by

(EP2), is by considering the functions pgj being triangles. The linearity allows for a reasonable control over

restrictions (2.4) and (2.6). In fact, the key observation here is that the superposition (addition) of equally

spaced triangular graphs morally results in a constant function. This idea is already hinted in the work of

Goldston and Gonek [14, Lemma], and we further explore it here. For 0 ă ∆ ď 1, consider the Fourier pair

K∆pxq “ ∆

ˆ

sinπ∆x

π∆x

˙2

and yK∆pξq “

ˆ

1´
|ξ|

∆

˙

`

. (2.23)

Note that the graph of yK∆ is a triangle with base 2∆ (centered at the origin) and height 1. In this case,

(2.1) yields

ρpK∆q “ 1`
∆2

3
. (2.24)

We establish the following effective bounds.

Theorem 9 (Triangle bounds). Assume RH, let b ě 1, and let ` ą 0. Then, as T Ñ8, we have

C´N p`q ` op1q ď
ż b``

b

F pα, T qdα ď C`N p`q ` op1q,

where

C`N p`q “

$

’

’

’

’

&

’

’

’

’

%

4
3 p`` 1q ` t`u3

12 ´
t`u
3 ´ 1

4

`

1´ t`u ´ t`u2
˘

`
, for ` ě 1;

min
!

4
3 p`` 1q ` `3

12 ´
`
3 ´

1
4

`

1´ `´ `2
˘

`
; p1` cq

´

1` `2p1`cq2

12c2

¯)

,

for 0 ă ` ď 1, with c “ max
!

6´1{3 `2{3 , `
2´`

)

;

(2.25)

and

C´N p`q “

$

’

&

’

%

2
3 p`´ 1q ´ 2t`u

3 `

´

1`t`u
2

¯´

t`u ´ p1`t`uq2

12

¯

`
, for ` ě 2;

´

`´ 1´ `2

12

¯

`
, for 0 ă ` ď 2.

(2.26)

Before moving on to the proof of Theorem 9, let us make a few comments. The main point of this theorem

is to bring in some relatively simple bounds, that can be explicitly stated for all `. Nevertheless, we pay

attention to some important details that could be useful in other contexts. For instance, note that the

functions ` ÞÑ C˘N p`q are continuous and non-decreasing. Note also that our bound C`N p`q (which comes from

a particular choice of functions in (EP1)) establishes that

lim
`Ñ0`

W`p`q “ lim
`Ñ0`

C`N p`q “ 1. (2.27)

In fact, from (1.6) we get
şε

´ε
F pαqdα ě 1` op1q for any fixed ε ą 0. Then, from Theorem 7 we get

1 ďW`p`q ď C`N p`q

for all ` ą 0, and we may pass the limit as ` Ñ 0` to obtain (2.27). Recall that we cannot rule out the

existence of delta spikes in F pαq for |α| ě 1. The connection between this phenomenon and the so-called

alternative hypothesis to Montgomery’s strong pair correlation conjecture is investigated by Baluyot in [2].

In the regime 0 ă ` ď 1, our upper bound C`N p`q is realized by the first function for 1{6 ď ` ď θ1 “

0.3576 . . . and 0.7222 . . . “ θ2 ď ` ď 1, and by the second function for 0 ă ` ď 1{6 and θ1 ď ` ď θ2 (and in

this range the transition of c occurs at θ3 “ 0.5297 . . .). We note that the lower bound C´N p`q in (2.26) starts

to be non-trivial at ` “ 6´2
?

6 “ 1.10102 . . .. Finally, we note that Theorem 9 recovers a result of Goldston
11
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Figure 3. On the left, the birth of the idea. This is the construction of the upper bound
C`N p`q when ` “ 2.5, with n “ 2 and ∆ “ 3{4, where the triangular graphs add up to the
function on the top (in purple), that majorizes the characteristic function of the interval
r0, 2.5s. On the right, the plots of ` ÞÑ C`N p`q (in green), ` ÞÑ C´N p`q (in blue) and the
conjectured asymptotic ` (in orange), for 0 ď ` ď 4.5.

and Gonek [14, Lemma, Eqs.(3), (4) and (5)] in the cases 0 ď ` ď 2 (lower bound) and ` “ 1 (upper bound),

and refines it in all the other cases. Figure 3 brings the plot of our triangle bounds for small values of `.

Proof of Theorem 9. The idea here is simply to establish that

C´N p`q ďW´p`q ďW`p`q ď C`N p`q , (2.28)

and the result will follow from Theorem 7. Let us split the proof into its different regimes.

Step 1. Upper bound. The strategy here is to consider n big triangles and 2 small triangles, one at each end,

to adjust for the fractional part of `. Specifically, in the setup of extremal problem (EP1), we consider a

configuration with N “ n ` 2 functions given by pg2 “ pg3 “ . . . “ zgn`1 “ xK1 (the triangle of height 1 and

base 2; if n “ 0 this block is disregarded) and pg1 “ zgn`2 “ ∆yK∆ (the triangle of height ∆ and base 2∆),

where 0 ă ∆ ď 1. Assume further that

pn´ 1q ` 2∆ “ ` (2.29)

and observe that condition (2.4) is verified for the translates given by ξ1 “ 0; ξj “ pj ´ 2q ` ∆, for

j “ 2, 3, . . . , n` 1; and ξn`2 “ pn´ 1q ` 2∆. For this particular configuration, we have

n`2
ÿ

j“1

ρpgjq “
4n

3
` 2∆

ˆ

1`
∆2

3

˙

. (2.30)

When ` P N, since 0 ă ∆ ď 1, identity (2.29) can only be verified if pn,∆q “ p`, 1
2 q or p` ´ 1, 1q. Among

these two possibilities, the former optimizes (2.30), yielding the upper bound 4
3` `

13
12 . When ` R N, from

(2.29) we may have pn,∆q “
`

t`u` 1, t`u{2
˘

or
`

t`u, p1` t`uq{2
˘

. The minimum of these two in (2.30) yields

the quantity:
4

3
p`` 1q `

t`u3

12
´
t`u

3
´

1

4

`

1´ t`u ´ t`u2
˘

`

Note that the transition between the two possibilities occurs when t`u “
?

5´1
2 .

Step 2. Alternative upper bound when 0 ă ` ă 1. When ` is small, it is slightly better if we consider just one

triangle. Let pg1 “ p1` cqyK∆ (the triangle of height 1` c and base 2∆). For `
2 ă ∆ ď 1 and c ě `

2´` such
12



that
c

1` c
“
`{2

∆
, (2.31)

this triangle contains a segment of length ` at height 1. In other words, under (2.31), we have the validity

of (2.4) for ξ1 “ `{2. In this case, we have

ρpg1q “ p1` cq

ˆ

1`
∆2

3

˙

“ p1` cq

ˆ

1`
`2p1` cq2

12c2

˙

, (2.32)

and we may minimize it over c. From calculus, we see that this amounts to solving a cubic polynomial,
ˆ

1`
12

`2

˙

c3 ´ 3c´ 2 “ 0.

This can be computed explicitly and yields a solution of the form

c “ 6´1{3 `2{3 ` op`2{3q pas `Ñ 0q.

For simplicity, we take

c “ max

"

6´1{3 `2{3 ,
`

2´ `

*

.

Plugging this choice of c in (2.32) leads to the remaining upper bound stated in (2.25).

Step 3. Lower bound. The quantity appearing in (2.7) for K∆ is

2K∆p0q ´ ρpK∆q “ 2∆´ 1´
∆2

3
. (2.33)

Hence, it is only profitable to include a triangle yK∆ in our configuration if the quantity in (2.33) is non-

negative, that is, if ∆ ě 3 ´
?

6 “ 0.5505 . . .. If 0 ă ` ă 2 we just choose pg1 “ zK`{2 and ξ1 “ `{2 in (2.6),

provided that `{2 ě 3´
?

6, otherwise we go with the trivial lower bound 0.

If ` ě 2, the idea here is to consider n big triangles and (possibly) one small triangle at the end to adjust

for the fractional part of `. We let n “ t`u ´ 1 and ∆ “ p1 ` t`uq{2. Observe then that n ` 2∆ “ `. In

the setup of extremal problem (EP2), we consider a configuration with N “ n or n ` 1 functions given by

pg1 “ pg2 “ . . . “xgn “ xK1 and zgn`1 “ ∆yK∆, with ξj “ j for j “ 1, 2, . . . , n and ξn`1 “ n`∆, where the last

pair pzgn`1, ξn`1q is only included if ∆ ě 3´
?

6. Observe that (2.6) is verified, and this configuration yields

our desired lower bound
N
ÿ

j“1

`

2gjp0q ´ ρpgjq
˘

“
2

3
n`∆

ˆ

2∆´ 1´
∆2

3

˙

`

.

�

Observe that, when ` is large, the effective upper bound in Theorem 9 with the multiplying factor 4{3 is

very close to the conceptual threshold (2.21) for the extremal problem (EP1) restricted to A0, and almost

yields what we claim in Corollary 2, but not quite there yet. We return to this point in §2.4. As for the

lower bound in Theorem 9, when ` is large, the multiplying factor 2{3 is very close to the threshold (2.22)

for the extremal problem (EP2) restricted to A0.

2.3. Dirichlet kernels. We now discuss the reach of the extremal problem (EP3) in the setup of Corollary

8. The case when the lower endpoint b is equal to 1 is precisely the situation that is most useful when

bounding the integral Jpβ, T q in the next section.
13



2.3.1. Minima of Dirichlet kernels. For n P Zě0 we consider the Dirichlet kernel Dn given by

Dnpxq “
n
ÿ

k“´n

eikx “ 1` 2
n
ÿ

k“1

cospkxq “
sin

`

pn` 1{2qx
˘

sinpx{2q
. (2.34)

Let us define the minimum

mpnq :“ min
θPr0,2πs

sin
`

p2n` 1qθ
˘

sin θ
“ min

xPR
Dnpxq , (2.35)

and the universal constant

c0 :“ min
xPR

sinx

x
“ ´0.21723 . . . . (2.36)

In Appendix A, we briefly verify the bounds

2c0 ´
p2π ´ 1q

n
ď

mpnq

n
ď 2c0 `

5.4935

n
(2.37)

for n ě 1, which in particular implies that

lim
nÑ8

mpnq

n
“ 2c0.

Hence, the moral is that Dirichlet kernels cannot be too negative when compared to their maximal value

(attained at the origin). One of the main insights here is how to properly take advantage of that information

in our context.

2.3.2. A max-min optimization. We establish the following effective upper and lower bounds for the integral

of F pαq in the interval r1, βs. Our lower bound is stated in terms of the minima mpnq and, although our

main focus is the behavior for large β, we try also to be careful for small values of β. In the argument below,

we choose the degree of the Dirichlet kernel in order to optimize the effect that the minimum mpnq is not

too negative.

Theorem 10 (Symmetric bounds). Assume RH and let β ą 1. Let c0 be given by (2.36) and C`N given by

(2.25). Then, as T Ñ8, we have

C´p1, βq ` op1q ď
ż β

1

F pα, T qdα ď C`p1, βq ` op1q, (2.38)

where

C`p1, βq “ C`N p2βq
2

´ 1 (2.39)

and

C´p1, βq “ max
nPN

Gnpβq ě
´

1`
c0
3

¯

ptβu´ 1q ´
pπ ` 1q

3
. (2.40)

Here the functions tGnunPN are given by

G1pβq “ min

"

´

β ` 2
3β ´ 2

¯

`
, 1

3

*

; (2.41)

Gnpβq “

ˆ

n´
1

2

˙

min

"

1,
β

n

*

`mpn´ 1q

˜

min
 

1, βn
(2

6
´

min
 

1, βn
(

2
`

1

2

¸

´ 1 pn ě 2q. (2.42)

Before moving to the proof of this result, let us make a few comments. Observe that when 2β is integer,

the constant in (2.39) is reduced to

C`p1, βq “ 4

3
pβ ´ 1q `

7

8
.

14
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Figure 4. On the left, the competition between the lower bounds Gn for n “ 1, 2, 3, 4, 5. On
the right, the plots of β ÞÑ C`p1, βq (in red), β ÞÑ C´p1, βq (in purple) and the conjectured
asymptotic β ÞÑ β ´ 1 (in orange), for small values of β. In this symmetric setup, these
always do better than the triangle bounds β ÞÑ C`N pβ´ 1q (in green) and β ÞÑ C´N pβ´ 1q (in
blue) coming from Theorem 9.

We have also already observed that the function β ÞÑ C`p1, βq is continuous and non-decreasing. Note that

(2.37) guarantees that the maximum in (2.40) is attained for some n ď 13β (from that value on we actually

have Gnpβq ď 0). In particular, the function β ÞÑ C´p1, βq is, locally, a maximum of a finite number of

continuous functions, hence it is also continuous. It is also clear that β ÞÑ C´p1, βq is non-decreasing. The

particular choice n “ tβu ě 3 in (2.40) (which is generally near-optimal) gives us the effective lower bound

C´p1, βq ě tβu´
3

2
`

mptβu´ 1q

6
ě

´

1`
c0
3

¯

ptβu´ 1q ´
pπ ` 1q

3
,

stated in (2.40). Note the use of (2.37) in the last inequality above. Observe that, for large β, the multiplying

factor

1`
c0
3
“ 0.92758 . . .

on the right-hand side of (2.40) is only slightly short of the conjectured value of 1 in (II), and is one of the

highlights of this theorem. The first few values of mpnq are

mp0q “ 1 ; mp1q “ ´1 ; mp2q “ ´
5

4
; mp3q “ ´

14
?

7` 7

27
“ ´1.63113 . . . ; mp4q “ ´2.03911 . . .

Our lower bound C´p1, βq starts to be non-trivial at β1 “ 1.57735 . . . and from that value up to β2 “

1.77243 . . . the maximum in (2.40) is attained when n “ 1. From β2 up to β3 “ 3.02404 . . . the maximum is

attained when n “ 3. From β3 up to β4 “ 4.04983 . . . the maximum is attained when n “ 4 and so on. In

particular, we have

C´p1, 2q “ 79

216
“ 0.36574 . . . ; C´p1, 3q “ 31

24
“ 1.29166 . . . ; C´p1, 4q “ 2.22814 . . .

See Figure 4 for the graphs of β ÞÑ C`p1, βq and β ÞÑ C´p1, βq for small values of β.

We remark that, in this symmetric setup, the bounds coming from Theorem 10 are better than the triangle

bounds coming from Theorem 9, that is, for all β ą 1, one has

C`p1, βq “ C`N p2βq
2

´ 1 ď C`N pβ ´ 1q (2.43)

and

C´p1, βq ě C´N pβ ´ 1q. (2.44)
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Inequality (2.43) is a routine explicit computation. Inequality (2.44) follows from (2.40) for large β (say, for

β ě 12) and for small β we verify it numerically. Figure 4 also illustrates this dominance.

Remark: In the small range 3
2 ă β ă 11

7 , we note that Radziwi l l [22] obtains, with different methods, the

lower bound
ż β

1

rF pα, T qdα ě β ´
3

2
` op1q,

as T Ñ8, for the integral of the variant rF pα, T q defined in (2.60).

Proof of Theorem 10. The upper bound in (2.38) plainly follows from Corollary 8 and (2.28).

For the lower bound, first let n P N, n ě 2 and let ∆ “ mint1, β{nu. In the setup of extremal problem

(EP3), we consider a configuration with N “ 2n ´ 1 functions given by pg1 “ pg2 “ . . . “ pg2n´1 “ yK∆;

ηj “ pn´ jq∆ for j “ 1, 2, . . . , 2n´ 1; and r1 “ r2 “ . . . “ r2n´1 “ r given by

r “ inf
xPR

K∆pxq‰0

K∆pxq Re
´

ř2n´1
j“1 e2πipn´jq∆x

¯

p2n´ 1qK∆pxq
“ min

xPR

Dn´1p2π∆xq

p2n´ 1q
“

mpn´ 1q

2n´ 1
. (2.45)

Definition (2.45) assures the validity of (2.9). Observe also that (2.8) is verified (with b “ ´β), that is

2n´1
ÿ

j“1

yK∆pα´ pn´ jq∆q “
n´1
ÿ

k“´pn´1q

yK∆pα` k∆q ď χr´β,βspαq (2.46)

for all α P R. Therefore, recalling (2.24), the outcome appearing in (2.10) for this particular configuration is

2n´1
ÿ

j“1

`

gjp0q ` r
`

ρpgjq ´ gjp0q
˘˘

“ p2n´ 1q∆`mpn´ 1q

ˆ

1`
∆2

3
´∆

˙

ďW´
˚ p´β, βq.

Dividing by 2 and subtracting 1 we have

Gnpβq :“

ˆ

n´
1

2

˙

∆`mpn´ 1q

ˆ

1

2
`

∆2

6
´

∆

2

˙

´ 1 ď
W´
˚ p´β, βq

2
´ 1 , (2.47)

and the lower bounds with each of these functions Gnpβq, for n ě 2, follow from Corollary 8. We can now

optimize the choice of the parameter n here. Note that n “ 1 would have given a negative value for the term

on the left-hand side of (2.47), and that is the reason we are not considering it for the moment. Therefore,

we define the function G1 differently.

When 1 ă β ď 2 and we consider n “ 2 in the configuration above, note that ∆ “ β{2 and we may

replace (2.46) by the slightly stronger inequality
˜

1
ÿ

k“´1

yK∆pα` k∆q

¸

`

`

|α| ´∆
˘

∆
χt∆ď|α|ď1upαq ď χr´β,βspαq.

Following the same computation as in (2.15) for the integral of F pαq from ´β to β, using (1.6) and the fact

that r “ mp1q{3 “ ´1{3, we would then obtain
ż β

1

F pαqdα ě 2∆`
1

3∆
´ 2` op1q “ β `

2

3β
´ 2` op1q.

This is the function we called G1pβq in (2.41) (technically speaking, its non-negative part). This concludes

the proof of Theorem 10. �
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For completeness, we record here the most refined explicit versions of upper and lower bounds for the

integral of F pαq over a generic interval, by combining Theorems 9 and 10.

Corollary 11. Assume RH, let β ą b ą 1 and set ` “ β ´ b. Then, as T Ñ8, we have

C´pb, βq ` op1q ď
ż β

b

F pα, T qdα ď C`pb, βq ` op1q,

where

C´pb, βq “ max
 

C´N p`q , C´p1, βq ´ C`p1, bq
(

(2.48)

and

C`pb, βq “ min
 

C`N p`q , C`p1, βq ´ C´p1, bq
(

. (2.49)

Proof. The triangle bounds come directly from Theorem 9, while the identity
ż β

b

F pαqdα “

ż β

1

F pαqdα´

ż b

1

F pαqdα (2.50)

allows us to use the symmetric bounds from Theorem 10. �

Note that the bounds C˘pb, βq in (2.48) and (2.49) are continuous functions of two variables. For a fixed

b ą 1, the lower bound in (2.48) is going to be C´p1, βq´Op1q for large β. As observed in (2.40), this comes

with a multiplying factor of

1`
c0
3
“ 0.92758 . . .

which is almost what we claim in Corollary 2 but, technically speaking, not quite there yet. We return to

this point in the next subsection.

2.4. Proof of Theorem 1 and Corollary 2.

2.4.1. Upper bound. A natural idea to deal with the asymptotic upper bound is to morally consider, in the

formulation of (EP1), copies a single function g. Let A1 Ă A be the subclass of bandlimited functions in A,

i.e. the functions g P A such that pg has compact support. Note that A0 Ă A1 Ă A. For each g P A1, we

define its periodization on the Fourier side

P
pgpαq :“

ÿ

nPZ
pgpα` nq.

This is a continuous and 1-periodic function, and
ż 1

0

P
pgpαqdα “

ż

R
pgpαqdα “ gp0q ě 0. (2.51)

For our next extremal problem, it is convenient to restrict matters to the subclass A1.

Extremal problem 4 (EP4). Find the infimum

C` :“ inf
0‰gPA1

ρpgq

min
0ďαď1

ˇ

ˇP
pgpαq

ˇ

ˇ

. (2.52)

Let us see how this fits into our framework of problem (EP1). Let 0 ‰ g P A1, and assume that

min
0ďαď1

ˇ

ˇP
pgpαq

ˇ

ˇ ‰ 0. (2.53)

Since P
pg is 1-periodic and continuous, from (2.51) and (2.53) we must have P

pgpαq ą 0 for all 0 ď α ď 1. By

multiplying g by an appropriate constant (note that the ratio in (2.52) is invariant under such operation),
17



we may hence assume that

min
0ďαď1

ˇ

ˇP
pgpαq

ˇ

ˇ “ min
0ďαď1

P
pgpαq “ 1. (2.54)

Assume that suppppgq Ă r´M,M s, where M P N. Given ` ą 0 large, in the setup of (EP1) let N “ r`s`2M´1

and consider the configuration given by pg1 “ pg2 “ . . . “ xgN “ pg and ξj “ pj ´Mq for j “ 1, 2, . . . , N . From

the fact that pg is continuous and suppppgq Ă r´M,M s, together with (2.54), we have

N
ÿ

j“1

pgjpα´ ξjq “ P
pgpαq ě 1 (2.55)

for 0 ď α ď r`s (and in particular for 0 ď α ď `). Every term in the sum on the left-hand side of (2.55)

is zero if α ď ´2M ` 1 or α ě r`s ` 2M ´ 1, hence the sum itself is zero in this range. If the sum is

non-negative in the remaining set r´2M ` 1, 0s Y
“

r`s, r`s ` 2M ´ 1
‰

we will have achieved (2.4). There is,

however, the possibility that the sum on the left-hand side of (2.55) is negative in some parts of the set

r´2M ` 1, 0s Y
“

r`s, r`s ` 2M ´ 1
‰

, but this is not going to be a big issue here, for in this case we can fix

the situation in order to achieve (2.4) by further including in our configuration a finite number of triangles

of the form cxK1, where the number of triangles and their height c may depend on g, but not on `. We have

then showed that

W`p`q ď ` ρpgq `Op1q,

where the constant in Op1q may depend on g, but not on `. This implies that, for any fixed ε ą 0, we have

W`p`q ď ` pC` ` εq

for large `. Hence, for any fixed ε ą 0, from Theorem 7 we have
ż b``

b

F pα, T qdα ď ` pC` ` εq ` op1q

for large `, as T Ñ8. This establishes the upper bound proposed in Theorem 1.

Finding the exact value of the constant C` seems to be a hard problem. At the moment we can provide a

reasonable approximation by working within the subclass A0 Ă A1. If g P A0, a classical result of Krein [1,

p. 154] guarantees that gpxq “ |hpxq|2, where h P L2pRq and supppphq Ă r´1
2 ,

1
2 s. As we have seen in Theorem

9, a natural choice is gpxq “ K1pxq “
`

sinπx
πx

˘2
, for which pgpαq “ p1´ |α|q` has the triangular graph. This

corresponds to the 2choice phpαq “ χr´ 1
2 ,

1
2 s
pαq in Krein’s decomposition, and yields the outcome of 4{3. We

experimented with polynomial perturbations of low degree (up to 8) of this function and the search routine

provided some better options, for instance

phpαq “
`

10` 2α2 ´ 35α4
˘

χr´ 1
2 ,

1
2 s
pαq ,

which yields the outcome
ρpgq

min
0ďαď1

ˇ

ˇP
pgpαq

ˇ

ˇ

“ 1.33017 . . . .

This establishes the rightmost inequality in (1.7) and hence the upper bound proposed in Corollary 2.

2.4.2. Lower bound. The idea here is similar, now considering copies of a suitable function g P A in the

centered formulation of (EP3). Let g P A and assume that gp0q ą 0 (this assumption is harmless here since

gp0q “ 0 would yield an undesirable negative numerator in the formulation (2.57) below). For m P N we
18



define

Kmpgq :“ max
αPR

m
ÿ

n“0

pgpα` nq. (2.56)

Note that
ż 0

´1

˜

m
ÿ

n“0

pgpα` nq

¸

dα “

ż m

´1

pgpαqdα ě

ż 8

´8

pgpαqdα “ gp0q.

Hence Kmpgq ě gp0q ą 0. The fact that the maximum is indeed attained in (2.56) follows from the fact

that the sum is continuous and goes to zero as |α| Ñ 8 (Riemann-Lebesgue lemma). We observe that

tKmpgqumPN is a non-increasing sequence and set

Kpgq :“ lim
mÑ8

Kmpgq ě gp0q ą 0.

Let c0 be the constant given by (2.36). We consider the following extremal problem.

Extremal problem 5 (EP5). Find the supremum

C´ :“ sup
0‰gPA
gp0qą0

gp0q ` c0
`

ρpgq ´ gp0q
˘

Kpgq
. (2.57)

Let us see how this fits into the framework of (EP3). Let 0 ‰ g P A with gp0q ą 0 and assume without

loss of generality that Kpgq “ 1. Given δ ą 0 small, let m0 “ m0pδq be such that

1 ď Kmpgq ď 1` δ (2.58)

for m ě m0. Let β be large, in particular with 2tβu ě m0 ` 2, and set n “ tβu. In the framework of (EP3)

we let N “ 2n´ 1 and consider the configuration given by pg1 “ pg2 “ . . . “ pg2n´1 “ pg{p1` δq ; ηj “ pn´ jq

for j “ 1, 2, . . . , 2n´ 1; and r1 “ r2 “ . . . “ r2n´1 “ r given by

r “ inf
xPR

gpxq‰0

gpxq
1`δ Re

´

ř2n´1
j“1 e2πipn´jqx

¯

p2n´ 1q gpxq1`δ

“ min
xPR

Dn´1p2πxq

p2n´ 1q
“

mpn´ 1q

2n´ 1
.

This assures the validity of (2.9). From the fact that g P A (in particular, the condition pgpαq ď 0 for |α| ě 1),

together with (2.56) and (2.58), one can verify (2.8) (with b “ ´β). For this configuration, the outcome

appearing in (2.10) yields

p2n´ 1q

1` δ

ˆ

gp0q `
mpn´ 1q

2n´ 1

`

ρpgq ´ gp0q
˘

˙

ďW´
˚ p´β, βq.

By using (2.37), we arrive at the inequality

β

1` δ

`

gp0q ` c0
`

ρpgq ´ gp0q
˘˘

´Op1q ď
W´
˚ p´β, βq

2
,

where the constant in Op1q may depend on g, but not on β. Therefore, for any fixed ε ą 0, we have

β
`

C´´ ε
˘

ď
W´
˚ p´β, βq

2

for large β. Hence, for any fixed ε ą 0 and b ě 1, from Corollary 8 and a decomposition as in (2.50) we have

` pC´ ´ εq ` op1q ď

ż b``

b

F pα, T qdα

for large `, as T Ñ8. This establishes the lower bound proposed in Theorem 1.
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As in the extremal problem (EP4), the precise value of the constant C´ is unknown to us but we

can provide a reasonable approximation by working within the subclass A0 Ă A. In this case, note that

Kmpgq “ K1pgq for all m P N. As argued before, if g P A0, Krein’s decomposition [1, p. 154] guarantees

that gpxq “ |hpxq|2, where h P L2pRq and supppphq Ă r´1
2 ,

1
2 s. We have seen in Theorem 10 that the choice

gpxq “
`

sinπx
πx

˘2
, corresponding to phpαq “ χr´ 1

2 ,
1
2 s
pαq, yields the outcome

1`
c0
3
“ 0.92758 . . . .

Experimenting with polynomials perturbations of low degree (up to 8) of this function, the search routine

provided some slightly better options, for instance

phpαq “
`

5´ α2
˘

χr´ 1
2 ,

1
2 s
pαq ,

which yields the outcome
gp0q ` c0

`

ρpgq ´ gp0q
˘

Kpgq
“ 0.92781 . . . .

This establishes the leftmost inequality in (1.7) and hence the lower bound proposed in Corollary 2.

2.5. Limitations to mollifying ζpsq on the critical line. We now comment on an application of our

explicit bounds for F pαq. Following Radziwi l l [22], let

IpMθq :“
1

T

ż 2T

T

ˇ

ˇ1´ ζp 1
2 ` itqMθp

1
2 ` itq

ˇ

ˇ

2
dt, where Mθpsq “

ÿ

nďT θ

apnq

ns

is a Dirichlet polynomial with ap1q “ 1 and apnq !ε n
ε for all ε ą 0. For a fixed θ ą 0, an important problem

in the theory of the zeta function is to choose Mθpsq so that IpMθq is as small as possible, e.g. [9, 19]. In

[22, Theorem 1], it is shown that there is an absolute constant c ą 0 such that

IpMθq ě
c

θ
, (2.59)

when T is sufficiently large. When θ ă 1
2 , an unpublished argument of Soundararajan is presented which

shows that IpMθq ě
1
θ ` op1q, as T Ñ8. Assuming RH, Radziwi l l further connects the problem to the pair

correlation of the zeros of ζpsq, by using a slight variant of our F pαq function, namely,

rF pαq :“ rF pα, T q “
2π

T log T

ÿ

Tďγ,γ1ď2T

T iαpγ´γ
1
qwpγ ´ γ1q. (2.60)

Under the additional assumption1 that appq ! 1 for primes p , for fixed θ ą 0 and sufficiently large T , [22,

Theorem 3] gives

IpMθq ě

˜

1

2
`

ż 1`θ`ε

1

rF pα, T qdα

¸´1

(2.61)

assuming RH, where ε ą 0 is arbitrary. Note that when θ is large, under Montgomery’s strong pair correlation

conjecture, c in (2.59) can be taken to be 1´. Based upon these results, Radziwi l l suggests that the inequality

(2.59) holds with c “ 1 for all θ ą 0.

With the alternative definition (2.60) we still have the validity of (1.5), (1.6) and therefore (2.2), and our

framework yields the exact same bounds of §2.1–§2.4 for the integral of rF pαq in bounded intervals. Relation

(2.61) immediately leads us to the following corollary of Theorem 10.

1In [22], the assumption is appkq ! 1 for primes p and k P N, but it is sufficient to assume only the case k “ 1 in Radziwi l l’s
proof.
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Corollary 12. Assume RH. For fixed θ ą 0 and Mθpsq as above, assume also that appq ! 1 for primes p.

Then, as T Ñ8, we have

IpMθq ě

ˆ

1

2
` C`

`

1, 1` θ
˘

˙´1

` op1q.

When θ is large, from (2.61) and the discussion in §2.4.1 we see that, under RH and appq ! 1, the value

of c in (2.59) can be taken to be constant less than 1{C`. We have seen that

1{C` ą 1{p1.3302q ą 0.7517,

which is close to the conjectured bound of 1.

3. Primes in short intervals

3.1. Sunrise approximations to the Fejér kernel. In this subsection we develop some preliminaries for

the upcoming discussion on the integral Jpβ, T q. The following extremal problem in analysis is going to be

relevant for our purposes.

Extremal problem 6 (EP6). Construct continuous functions g˘ : r0,8q Ñ R verifying:

(i) g˘ are non-increasing;

(ii) 0 ď g´pxq ď

ˆ

sinx

x

˙2

ď g`pxq for all x ě 0;

(iii)
ş8

0
g´pxqdx is as large as possible and

ş8

0
g`pxqdx is as small as possible.

This problem admits unique solutions with the functions g˘ constructed as follows. We have

g´pxq “

$

’

’

&

’

’

%

ˆ

sinx

x

˙2

, if 0 ď x ď π;

0, if x ě π,

with

L´ :“

ż 8

0

g´pxqdx

ż 8

0

ˆ

sinx

x

˙2

dx

“
2

π

ż π

0

ˆ

sinx

x

˙2

dx “ 0.9028 . . . . (3.1)

The construction of g` is as follows. Let 0 “ m0 ă m1 ă m2 ă m3 ă . . . be the sequence of local maxima

of psinx{xq2 in r0,8q. For each k ě 1, let ak P pmk´1,mkq be such that psin ak{akq
2 “ psinmk{mkq

2 (note

that such ak indeed exists). Then g` is defined by

g`pxq “

$

’

’

&

’

’

%

ˆ

sinx

x

˙2

, if x P rmk´1, akq , k ě 1;
ˆ

sinmk

mk

˙2

, if x P rak,mkq , k ě 1,

(see Figure 5) and a numerical verification yields

L` :“

ż 8

0

g`pxqdx

ż 8

0

ˆ

sinx

x

˙2

dx

“
2

π

ż 8

0

g`pxqdx “ 1.0736 . . . . (3.2)
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Figure 5. Plots of psinx{xq2 and g`pxq for 2 ď x ď 11

The idea to consider this pair of functions is inspired in the classical sunrise lemma in harmonic analysis.

When the sun rises over the graph of the Fejér kernel from the right (resp. from the left) the visible portion

is g` (resp. g´). Throughout this section we reserve the notation g˘ for these sunrise approximations, and

L˘ for the constants in (3.1) and (3.2).

3.2. Asymptotic inequalities. The following lemma is a modification of Goldston [13, Lemma 2], replacing

the assumption of asymptotic relations in that paper by inequalities in the present setting. The sunrise

approximations g˘pxq, from §3.1, play important roles in the proof below.

Lemma 13. Let f : r0,8qˆr2,8q Ñ R be a non-negative continuous function such that fpt, ηq ! log2
pt`2q.

Let KpT, ηq :“
şT

0
fpt, ηqdt and c ě 0.

(i) Suppose that KpT, ηq ď
`

c` op1q
˘

T , as T Ñ8, uniformly for η log´3 η ď T ď η log3 η. Then

ż 8

0

ˆ

sinpκtq

t

˙2

fpt, ηqdt ď
`

c` op1q
˘ π

2
L` κ

as κÑ 0, for η — 1{κ.

(ii) Suppose that
`

c` op1q
˘

T ď KpT, ηq ! T , as T Ñ8, uniformly for η log´3 η ď T ď η log3 η. Then

ż 8

0

ˆ

sinpκtq

t

˙2

fpt, ηqdt ě
`

c` op1q
˘ π

2
L´ κ

as κÑ 0, for η — 1{κ.

Proof. We only prove part (i), as the proof of part (ii) follows the same outline. We suppose that η — 1{κ

and divide the integral to be bounded into four ranges:

ż 8

0

ˆ

sinpκtq

t

˙2

fpt, ηqdt “

ż η log´3 η

0

`

ż η log η

η log´3 η

`

ż η log3 η

η log η

`

ż 8

η log3 η

:“ A1 `A2 `A3 `A4.
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The main contribution will come from A2, while the integrals A1, A3, and A4 will contribute an error term.

Using the fact that fpt, ηq ! log2
pt` 2q, we have

A1 “ κ2

ż η log´3 η

0

ˆ

sinpκtq

κt

˙2

fpt, ηqdt ! κ2

ż η log´3 η

0

log2
pt` 2qdt ! κ2 η

log η
!

κ

log η

and

A4 “

ż 8

η log3 η

ˆ

sinpκtq

t

˙2

fpt, ηqdt !

ż 8

η log3 η

log2 t

t2
dt !

1

η log η
!

κ

log η
.

Since f is non-negative, we use integration by parts to get

A3 “

ż η log3 η

η log η

ˆ

sinpκtq

t

˙2

fpt, ηqdt ď

ż η log3 η

η log η

1

t2
pKpt, ηqq1 dt

“
Kpη log3 η, ηq

pη log3 ηq2
´
Kpη log η, ηq

pη log ηq2
` 2

ż η log3 η

η log η

1

t3
Kpt, ηqdt !

1

η log η
!

κ

log η
.

We now analyze the contribution from the integral A2. Using integration by parts, we have

A2 “ κ2

ż η log η

η log´3 η

ˆ

sinpκtq

κt

˙2

fpt, ηqdt ď κ2

ż η log η

η log´3 η

g`pκtq fpt, ηqdt

“ κ2

ż η log η

η log´3 η

`

´ g`pκtq
˘1
Kpt, ηqdt`O

ˆ

κ

log η

˙

,

where we have used the fact that g`pxq ď min
 

1, 1
x2

(

to estimate the error term above. Since g` is

non-increasing and absolutely continuous, we get

κ2

ż η log η

η log´3 η

`

´ g`pκtq
˘1
Kpt, ηqdt ď κ2

ż η log η

η log´3 η

`

´ g`pκtq
˘1
t pc` op1qqdt.

Again using that g`pxq ď min
 

1, 1
x2

(

, an integration by parts yields

κ2

ż η log η

η log´3 η

`

´ g`pκtq
˘1
tdt “ κ2

ż η log η

η log´3 η

g`pκtqdt`O

ˆ

κ

log η

˙

“ κ2

ż 8

0

g`pκtqdt´ κ2

ż η log´3 η

0

g`pκtqdt´ κ2

ż 8

η log η

g`pκtqdt`O

ˆ

κ

log η

˙

“ κ

ż 8

0

g`ptqdt`O

ˆ

κ

log η

˙

.

Combining estimates, the lemma follows. �

3.3. Relating primes in short intervals to pair correlation. Our next theorem gives an explicit rela-

tionship between the integral Jpβ, T q and the integral of F pαq in bounded intervals.

Theorem 14. Assume RH and let β ą b ą 0. Let L´ and L` be the constants defined in (3.1) and (3.2).

Then, as T Ñ8, we have

L´

˜

lim
εÑ0`

lim inf
τÑ8

ż β´ε

b`ε

F pα, τqdα` op1q

¸

log2 T

T
ď Jpβ, T q ´ Jpb, T q

ď L`

˜

lim
εÑ0`

lim sup
τÑ8

ż β`ε

b´ε

F pα, τqdα` op1q

¸

log2 T

T
.

(3.3)

Remark: From (1.2) and (1.6) it should be clear that, when 0 ă b ď 1, the lower endpoints in the integrals

appearing in (3.3) can be taken to be b pinstead of b` ε and b´ ε, respectivelyq. For the lower bound when
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0 ă b ă 1 and the upper bound when 0 ă b ď 1 this follows directly by (1.6). For the lower bound when

b “ 1, we estimate instead Jpβ, T q ´ Jp1´ δ, T q and then send δ Ñ 0 using (1.2).

From (1.2), Theorem 10, Corollary 11 and Theorem 14 (including the remark thereafter) we immediately

get the following corollary.

Corollary 15. Assume RH and let β ą 1. Then, as T Ñ8, we have
ˆ

L´ C´p1, βq ` 1

2
` op1q

˙

log2 T

T
ď Jpβ, T q ď

ˆ

L` C`p1, βq ` 1

2
` op1q

˙

log2 T

T
. (3.4)

In general, if β ą b ą 1, as T Ñ8, we have

`

L´ C´pb, βq ` op1q
˘ log2 T

T
ď Jpβ, T q ´ Jpb, T q ď

`

L` C`pb, βq ` op1q
˘ log2 T

T
. (3.5)

Previously, assuming RH, Goldston and Gonek in [14] had proved that for any b ą 0 one has

p0.307` op1qq
log2 T

T
ď Jpb` 2, T q ´ Jpb, T q ď p21.647` op1qq

log2 T

T

as T Ñ8. As we already observed in the introduction, from this estimate one can deduce that, for large β,

p0.153β ` op1qq
log2 T

T
ď Jpβ, T q ď p10.824β ` op1qq

log2 T

T

(the lower bound actually holds for all β ą 1). In direct comparison, (2.48), (2.49) and (3.5) imply that
ˆ

2

3
L´ ` op1q

˙

log2 T

T
ď Jpb` 2, T q ´ Jpb, T q ď

ˆ

15

4
L` ` op1q

˙

log2 T

T
, (3.6)

as T Ñ8. The constants in (3.6) are 2
3 L´ “ 0.6018 . . . and 15

4 L` “ 4.026 . . .. For large β, inequality (3.4)

in Corollary 15 implies that, in (1.4), D´ can be taken to be any constant less than L´
`

1` c0
3

˘

“ 0.8374 . . .

while D` can be taken to be any constant greater than 4
3L` “ 1.431 . . .. These values are substantially

closer to the conjectured value 1. We now establish the further small improvement proposed in Theorem 3

and Corollary 4.

Proof of Theorem 3 and Corollary 4. From Theorem 14 and Theorem 1, we see that, for large β, the value

D` in (1.4) can be taken to be any constant greater than L`C`. We have shown that L`C` ă L`p1.3302q ă

1.4283. Similarly, Theorem 14 and and Theorem 1 show that the value D´ in (1.4) can be taken to be any

constant less than L´C´. We have showed that L´C´ ą L´p0.9278q ą 0.8376. This completes the proof.

�

Proof of Theorem 14. We partially follow the idea developed by Goldston and Gonek in [14]. Throughout

the proof let

0 ď a1 ă a2 ă a3 ă a4

be fixed real numbers (that will be conveniently specialized later). We let g :“ ga1,a2,a3,a4 : R Ñ C be a

Schwartz function verifying

|pg| ď 1 on R ; suppppgq Ă ra1, a4s ; pg ” 1 on ra2, a3s.

Then, from definition (1.1), we plainly see that

Jpa3, T q ´ Jpa2, T q ď

ż 8

1

´

ψ
´

x`
x

T

¯

´ ψpxq ´
x

T

¯2
ˇ

ˇ

ˇ

ˇ

pg

ˆ

log x

log T

˙
ˇ

ˇ

ˇ

ˇ

2
dx

x2
ď Jpa4, T q ´ Jpa1, T q. (3.7)
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From [14, Eq. (8)], with e2κ “ 1` 1
T , we have

ż 8

1

´

ψ
´

x`
x

T

¯

´ ψpxq ´
x

T

¯2
ˇ

ˇ

ˇ

ˇ

pg

ˆ

log x

log T

˙
ˇ

ˇ

ˇ

ˇ

2
dx

x2

“
2

π
log2 T

ż 8

0

ˆ

sinpκtq

t

˙2
¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γ

g

ˆ

pt´ γq
log T

2π

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γ

g

ˆ

pγ ´ tq
log T

2π

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚dt`Op1{T q.

(3.8)

The implicit constant in the error term above may, in principle, depend on the function g. From now on let

us write

fpt, ηq :“

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γ

g

ˆ

pt´ γq
log η

2π

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γ

g

ˆ

pγ ´ tq
log η

2π

˙

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

Using [13, Eqs. (5.1), (5.2) and (5.3)]2 we get
ż T

0

fpt, ηqdt “ 2T

ż 8

0

F pα, T q |pgpαq|2 dα` opT q,

uniformly for η log´3 η ď T ď η log3 η. In this range of T and η, using our assumptions on pg and the fact

that F ě 0, we arrive at
ˆ

2 lim inf
τÑ8

ż a3

a2

F pα, τqdα` op1q

˙

T ď

ˆ

2

ż a3

a2

F pα, T qdα` op1q

˙

T

ď

ż T

0

fpt, ηqdt

ď

ˆ

2

ż a4

a1

F pα, T qdα` op1q

˙

T ď

ˆ

2 lim sup
τÑ8

ż a4

a1

F pα, τqdα` op1q

˙

T.

(3.9)

Upper bound. From the fast decay of g and the classical estimate for the number of zeros in an interval, one

can show that fpt, ηq ! log2
pt ` 2q (see, for instance, [14, p. 618]). Then, by (3.9) and Lemma 13 (i), we

obtain
ż 8

0

ˆ

sinpκtq

t

˙2

fpt, ηqdt ď

ˆ

2 lim sup
τÑ8

ż a4

a1

F pα, τqdα` op1q

˙

π

2
L` κ (3.10)

as κ Ñ 0, for η — 1{κ. Choosing η “ T in (3.10), and combining with (3.7) and (3.8) (recall that κ “
1

2T p1` op1qq) we get

Jpa3, T q ´ Jpa2, T q ď

ˆ

lim sup
τÑ8

ż a4

a1

F pα, τqdα` op1q

˙

L`
log2 T

T

as T Ñ8. At this point we can take a3 “ β, a2 “ b, a1 Ñ a´2 and a4 Ñ a`3 to conclude.

Lower bound. By (3.9) and Lemma 13 (ii) we have

ż 8

0

ˆ

sinpκtq

t

˙2

fpt, ηqdt ě

ˆ

2 lim inf
τÑ8

ż a3

a2

F pα, τqdα` op1q

˙

π

2
L´ κ (3.11)

as κÑ 0, for η — 1{κ. As before, choosing η “ T in (3.11) and combining with (3.7) and (3.8), we get

Jpa4, T q ´ Jpa1, T q ě

ˆ

lim inf
τÑ8

ż a3

a2

F pα, τqdα` op1q

˙

L´
log2 T

T

as T Ñ8. We now take a4 “ β, a1 “ b, a2 Ñ a`1 and a3 Ñ a´4 to conclude.

2See also [14, Eq. (7)], where there seems to be a typo and the lower endpoint of the integral should be zero.
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4. The second moment of the logarithmic derivative of ζpsq

4.1. Preliminaries. We start by presenting some auxiliary tools for the upcoming proof of Theorem 5.

4.1.1. Relating Ipa, T q to the Poisson kernel. Our starting point for the proof of Theorem 5 is a result of

Goldston, Gonek, and Montgomery which, assuming RH, relates the integral Ipa, T q to the Poisson kernel

hbpxq :“
b

b2 ` x2
. (4.1)

Lemma 16. Assume RH and let 0 ă a ď
?

log T . Then

Ipa, T q “ log T
ÿ

0ăγ,γ1ďT

ha{π

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q ´
1

2

ż T

1

log2

ˆ

t

2π

˙

dt

`O

ˆ

log4 T

a2

˙

`OpaT log T q,

where wpuq “ 4{p4` u2q.3

Proof. This formula is stated in [15, Theorem 1] without the weight function wpγ ´ γ1q in the double sum

over zeros and with the constraint 0 ă a ! 1. The proof in [15] goes through unchanged with the condition

0 ă a ď
?

log T and a calculation on p. 115 of [15, Section 2] shows that the factor wpγ ´ γ1q can be added

at the expense of a term that is OpaT log T q. �

4.1.2. Extremal bandlimited approximations. Our argument for the upper bound for the second moment of

the logarithmic derivative of ζpsq is related to the following extremal problem in Fourier analysis.

Extremal problem 7 (EP7). Fix b ą 0 and let hbpxq be the Poisson kernel defined in (4.1). Find a continuous

and integrable function mb : RÑ R such that

(i) hbpxq ď mbpxq for all x P R;

(ii) supppxmbq Ă r´1, 1s;

(iii)
ş

R
`

mbpxq ´ hbpxq
˘

dx is as small as possible.

This is called the Beurling-Selberg majorant problem (for the function hb). As discussed in [5, Lemma

9], the solution of this particular problem comes from the general Gaussian subordination framework of

Carneiro, Littmann, and Vaaler [6]. Such extremal function exists and is unique, being given by

mbpxq “

ˆ

b

b2 ` x2

˙

˜

e2πb ` e´2πb ´ 2 cosp2πxq

peπb ´ e´πbq
2

¸

.

Its Fourier transform is given by

pmbpαq “
π

2

sinhp2πbp1´ |α|qq

psinhpπbqq2
χr´1,1spαq.

3The weight function wpuq “ 2h2puq is also a Poisson kernel, but we keep Montgomery’s notation wpuq to illustrate the
connection to the Fourier inversion formula (1.5).
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4.1.3. A weighted integral of F pαq. For the lower bound in Theorem 5 we shall use a different approach

rather than bandlimited approximations. Following Goldston [12, Section 7], we define the function

Ipξq “

ż ξ

1

pξ ´ αqF pαqdα

and we observe that I2pξq “ F pξq for ξ ě 1. The following lemma gives a non-trivial lower bound for Ipξq

when ξ ě 1` 1{
?

3.

Lemma 17. Assume RH. Then, as T Ñ8, we have

Ipξq ě
ξ2

2
´ ξ `

1

3
`O

˜

ξ2

d

log log T

log T

¸

uniformly for ξ ě 1.

Proof. This is a slight refinement of [3, Lemma 17], using (1.6) in the proof that appears there. �

4.2. Proof of Theorem 5.

4.2.1. Upper bound. We use the special function mbpxq and Lemma 16. Since pmbpαq and F pαq are even and

suppppmbq Ă r´1, 1s, by (1.5) and (1.6) we have

ÿ

0ăγ,γ1ďT

ha{π

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q

ď
ÿ

0ăγ,γ1ďT

ma{π

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q

“
T log T

2π

ż 1

´1

pma{πpαqF pαqdα

“ T log T

#

ż 1

0

sinhp2ap1´ αqq

2 psinh aq2
`

α` T´2α log T
˘

˜

1`O

˜

d

log log T

log T

¸¸

dα

+

“ T log T

#

coth a

4a2
´
pcsch aq2

4a
`

coth a

2
`O

˜

ˆ

1

a
` 1

˙

d

log log T

log T

¸+

,

where the big-O term is obtained by using the fact that 0 ă a ď
?

log T . Since
ż T

1

log2

ˆ

t

2π

˙

dt “ T log2 T `O
`

T log T
˘

,

the upper bound in Theorem 5 now follows from Lemma 16 by using the additional constraints

plog T q5{2

T
ď a ď

plog T q1{4

plog log T q1{2
(4.2)

and the fact that U`paq “ 2
3a ´

1
2 `Opaq as aÑ 0` and U`paq „ 1

4a2 as aÑ8, in order to group the error

terms.

4.2.2. Lower bound. We now use Lemmas 16 and 17. Since phbpαq “ πe´2πb|α|, by (1.5), (1.6), and the fact

that F pαq is even, we have

ÿ

0ăγ,γ1ďT

ha{π

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q “
T log T

2π

ż 8

´8

pha{πpαqF pαqdα
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“ T log T

"
ż 1

0

e´2aα
`

α` T´2α log T
˘

˜

1`O

˜

d

log log T

log T

¸¸

dα

`

ż 8

1

e´2aα F pαqdα

*

“ T log T

"

1´p1`2aq e´2a

4a2
`

1

2
`O

˜

d

log log T

log T

¸

`

ż 8

1

e´2aα F pαqdα

*

,

where the big-O term is obtained by using the fact that 0 ă a ď
?

log T . To estimate the integral from

1 to 8, we integrate by parts twice (from the work of Goldston [12, Section 7] we have I1pξq “ Opξq and

Ipξq “ Opξ2q for ξ ě 1). Since Ip1q “ I1p1q “ 0 and Ipαq ě 0 for α ě 1, we apply Lemma 17 to deduce that
ż 8

1

e´2aα F pαqdα “ 4a2

ż 8

1

Ipαq e´2aα dα

ě 4a2

ż 8

1`1{
?

3

ˆ

α2

2
´ α`

1

3

˙

e´2aα dα`O

˜

a2

d

log log T

log T

ż 8

1`1{
?

3

α2 e´2aα dα

¸

“

ˆ

1

2a
`

1
?

3

˙

e´2ap1`1{
?

3q `O

˜

1

a

d

log log T

log T

¸

.

Again since
ż T

1

log2

ˆ

t

2π

˙

dt “ T log2 T `O
`

T log T
˘

,

the lower bound in Theorem 5 now follows from Lemma 16 by using the additional constraints in (4.2) and

the fact that U´paq “ 1
2a ´

1
2 ` Opa2q as a Ñ 0` and U´paq „ 1

4a2 as a Ñ 8, in order to group the error

terms. This concludes the proof.

5. Appendix A: Minima of Dirichlet kernels

Complementing the discussion in §2.3.1, we present a brief proof of inequality (2.37). Let mpnq as in

(2.35) and c0 as in (2.36).

Proposition 18. For each n P N, the following bounds hold

2c0 ´
p2π ´ 1q

n
ď

mpnq

n
ď 2c0 `

5.4935

n
.

Proof. We rewrite (2.34) as

Dnpnq “ 1` 2n
n
ÿ

k“1

cos

ˆ

xn
k

n

˙

1

n
.

Using the mean value theorem we get, for x ě 0,
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

cos

ˆ

xn
k

n

˙

1

n
´

ż 1

0

cospxntqdt

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

cos

ˆ

xn
k

n

˙

1

n
´

n
ÿ

k“1

ż k{n

pk´1q{n

cospxntqdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

ˇ

ż k{n

pk´1q{n

ˆ

cos

ˆ

xn
k

n

˙

´ cospxntq

˙

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

k“1

ż k{n

pk´1q{n

xn

ˆ

k

n
´ t

˙

dt “
x

2
.

Therefore,

1

n
`

2 sinpnxq

nx
´ x ď

Dnpxq

n
ď

1

n
`

2 sinpnxq

nx
` x. (5.1)
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Let x1 “ 4.49340 . . . be the unique real positive number such that

c0 “ min
xPR

sinx

x
“

sinx1

x1
“ ´0.21723 . . ..

Plugging xn “ x1{n in (5.1) we obtain

mpnq

n
ď
Dnpxnq

n
ď

1

n
`

2 sinpnxnq

nxn
` xn “

1

n
`

2 sinpx1q

x1
`
x1

n
ď 2c0 `

5.4935

n
.

On the other hand, using the fact that Dnpxq is an even periodic function with period 2π, it follows that

mpnq “ min
xPr0,πs

Dnpxq. Let ξ P r0, πs be a real number where such minimum is attained. If 2π{p2n` 1q ď ξ ď

4π{p2n` 1q, using (5.1) we get

mpnq

n
“
Dnpξq

n
ě

1

n
` 2c0 ´

4π

2n` 1
ą 2c0 ´

p2π ´ 1q

n
.

If 6π{p2n` 1q ď ξ ď π, using the fact that sin t ě 2t{π for t P
“

0, π2
‰

we have

mpnq

n
“
Dnpξq

n
“

sinppn` 1{2qξq

n sinpξ{2q
ě

´1

n sinpξ{2q
ě ´

π

nξ
ě ´

2n` 1

6n
ą 2c0 ´

p2π ´ 1q

n
.

Finally, in the cases 0 ď ξ ă 2π{p2n` 1q or 4π{p2n` 1q ă ξ ă 6π{p2n` 1q, it is clear that Dnpξq ě 0, and

such points will not be points where the global minimum is attained. This concludes the proof. �

6. Appendix B: Hilbert spaces and pair correlation

6.1. Sharp equivalence of norms. We conclude by revisiting a result of [3], a paper that provides a study

of the pair correlation of zeros of zeta via the framework of Hilbert spaces of entire functions. Let us first

recall some basic terminology. For ∆ ą 0 we say that an entire function f : CÑ C has exponential type at

most 2π∆ if, for all ε ą 0, there exists a positive constant Cε such that |fpzq| ď Cε e
p2π∆`εq|z| for all z P C.

Let B2pπ∆q be the classical Paley–Wiener space, i.e. the Hilbert space of entire functions of exponential type

at most π∆ with norm

}f}2 “

ˆ
ż 8

´8

|fpxq|2 dx

˙1{2

ă 8.

Functions in B2pπ∆q have Fourier transforms supported in the interval r´∆{2,∆{2s (by the Paley–Wiener

theorem). For a survey on such spaces, their interpolation formulas and some classical applications to

analytic number theory we refer the reader to the work of J. D. Vaaler [24].

Write dµpxq “
 

1 ´
`

sinπx
πx

˘2(
dx for the pair correlation measure and denote by B2pπ, µq the normed

vector space of entire functions f of exponential type at most π with norm

}f}L2pdµq “

ˆ
ż 8

´8

|fpxq|2 dµpxq

˙1{2

ă 8.

Using the uncertainty principle for the Fourier transform, it was shown in [3, Lemma 12] that the vector

spaces B2pπq and B2pπ, µq are the same (as sets), with the norms being equivalent. That is, there is a

universal constant D ą 0 such that

D }f}2 ď }f}L2pdµq ď }f}2 (6.1)

whenever f P B2pπq. In particular, B2pπ, µq is also a Hilbert space. It should be clear that the inequality on

the right-hand side of (6.1) is sharp and that there are no extremizers. In fact, given any f0 P B2pπq, the

sequence fnpzq :“ f0pz ´ nq is an extremizing sequence as nÑ8. In this appendix we discuss the problem

of finding the value of the sharp constant D.
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Extremal problem 8 (EP8). Find

D2 :“ inf
fPB2pπq
f‰0

}f}2L2pdµq

}f}22
“ inf
gPA0
g‰0

ρpgq ´ gp0q

pgp0q
. (6.2)

Remark: We comment briefly on the equality between the infima above, as it relates to the class A0 defined

in §2.1, the quantity ρpgq defined in (2.1) (which is equal to (2.3) in this case), and some of the other

extremal problems that have been considered in this paper. This is essentially a consequence of the Paley–

Wiener theorem and Krein’s decomposition [1, p. 154]: a continuous and non-negative function g P L1pRq
has suppppgq Ă r´1, 1s if and only if it is the restriction to R of an entire function of exponential type 2π

(that we keep calling gpzq) and gpzq “ fpzqfpzq for some f P B2pπq. The fact that we can restrict the search

on the right-hand side of (6.2) to even functions comes from a standard symmetrization procedure: if g is

not even, we can consider hpxq “ 1
2 pgpxq ` gp´xqq without affecting the ratio.

Finding the sharp forms of embeddings between function spaces is usually a rich a non-trivial problem in

analysis. As we shall see, extremal problem (EP8) has a particularly intriguing answer.

Theorem 19. We have

D2 “ 1´
1

2π2θ2
“ 0.3244 . . . ,

where 0 ă θ ă 1
2 is the unique solution of

pπθq tan pπθq “ 1 ; pθ “ 0.27385 . . .q.

Moreover, there is a unique pup to multiplication by a non-zero complex constant q extremal function f P B2pπq

such that }f}L2pdµq{}f}2 “ D, namely

fpzq “
sinπpz ` θq

πpz ` θq
`

sinπpz ´ θq

πpz ´ θq
. (6.3)

The proof we present here is based of functional analysis and variational calculus considerations. We first

establish the existence of an extremizer and then study the corresponding Euler-Lagrange equation that

arises on the Fourier side 4.

6.2. Proof of Theorem 19.

6.2.1. Existence of extremizers. The first step is to show that there exists f P B2pπq that extremizes (6.2)

(i.e. such that }f}L2pdµq{}f}2 “ D). As we have argued in (6.2) and the remark thereafter, it is enough to

find an extremizer in the class A0 defined in §2.1 for

1´D2 :“ sup
gPA0
g‰0

ş8

´8
gpxq

`

sinπx
πx

˘2
dx

ş8

´8
gpxqdx

. (6.4)

Let tgnuně1 Ă A0 be an extremizing sequence for (6.4), normalized so that }gn}1 “ 1 for all n. Hence,

ż 8

´8

gnpxq

ˆ

sinπx

πx

˙2

dxÑ 1´D2

as nÑ8. Recall that supppxgnq Ă r´1, 1s and that }xgn}8 “xgnp0q “ }gn}1 “ 1. Therefore }xgn}
2
2 ď 2}xgn}

2
8 ď

2, and we see that tgnuně1 is a bounded sequence in B2p2πq. By reflexivity, passing to a subsequence if

4In the arXiv version of this paper we present an alternative proof of this result using interpolation formulas and working
mainly on the entire function side.
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necessary, we may assume that gn converges weakly to a certain g7 P B2p2πq. In particular,

1´D2 “ lim
nÑ8

ż 8

´8

gnpxq

ˆ

sinπx

πx

˙2

dx “

ż 8

´8

g7pxq

ˆ

sinπx

πx

˙2

dx, (6.5)

and hence g7 ‰ 0. Since B2p2πq is a reproducing kernel Hilbert space, we also have the pointwise convergence

lim
nÑ8

gnpyq “ lim
nÑ8

ż 8

´8

gnpxq
sin 2πpy ´ xq

πpy ´ xq
dx “

ż 8

´8

g7pxq
sin 2πpy ´ xq

πpy ´ xq
dx “ g7pyq

for all y P R. Hence g7 is even and non-negative on R. Moreover, by Fatou’s lemma, it follows that

}g7}1 ď lim inf
nÑ8

}gn}1 “ 1, (6.6)

which implies that g7 P A0. From (6.5) and (6.6), we see that this particular g7 is an extremizer for (6.4).

6.2.2. Solving the Euler–Lagrange equation. For a generic 0 ‰ h P B2pπq let us write

Φphq “

ş8

´8
|hpxq|2

`

sinπx
πx

˘2
dx

ş8

´8
|hpxq|2 dx

. (6.7)

For instance, for hpxq “ sinπx
πx , we have Φphq “ 2

3 . Let 0 ‰ f P B2pπq be a maximizer for (6.7), normalized

so that }f}2 “ 1. That is,

Φpfq “ 1´D2.

In what follows let us write K1pxq “
`

sinπx
πx

˘2
, recalling our notation (2.23). For any h P B2pπq with }h}2 “ 1

and h K f , we have Φpf ` εhq ď Φpfq for any ε P R, with equality if ε “ 0. Therefore

0 “
B

Bε
Φpf ` εhq

ˇ

ˇ

ˇ

ε“0
“ 2 Re

ˆ
ż 8

´8

fpxqhpxqK1pxqdx

˙

.

Similarly, for ε P R,

0 “
B

Bε
Φpf ` iεhq

ˇ

ˇ

ˇ

ε“0
“ 2 Im

ˆ
ż 8

´8

fpxqhpxqK1pxqdx

˙

.

We then conclude that

0 “

ż 8

´8

fpxqK1pxqhpxqdx “

ż 8

´8

`

pf ˚ xK1

˘

pαqphpαqdα.

Since this holds for any h K f in B2pπq, the function pf must verify the following Euler–Lagrange equation:

`

pf ˚ xK1

˘

χr´ 1
2 ,

1
2 s
“ η pf, (6.8)

as functions in L2r´ 1
2 ,

1
2 s, for some η P C. At this point observe that (6.8) yields

1´D2 “ Φpfq “

ż 8

´8

`

pf ˚ xK1

˘

pαq pfpαqdα “ η.

Hence η P R and we have seen that 1 ą η ě 2
3 .

Since the left-hand side of (6.8) is continuous in r´ 1
2 ,

1
2 s, we may assume that pf is continuous in r´ 1

2 ,
1
2 s

and hence

`

pf ˚ xK1

˘

pαq “

ż 8

´8

pfpξq xK1pα´ ξqdξ “ η pfpαq (6.9)
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for all α P r´ 1
2 ,

1
2 s. Since xK1 is a Lipschitz function, the integral in (6.9) (as a function of α) is differentiable

for all α P p´ 1
2 ,

1
2 q. Recalling that

`

xK1

˘1
pαq “ χp´1,0qpαq ´ χp0,1qpαq, and that suppp pfq Ă r´ 1

2 ,
1
2 s, we have

´

ż α

´ 1
2

pfpξqdξ `

ż 1
2

α

pfpξqdξ “ η
`

pf
˘1
pαq

`

α P
`

´ 1
2 ,

1
2

˘˘

. (6.10)

The left-hand side of (6.10) is again differentiable in α, and an application of the fundamental theorem of

calculus now yields

´2 pfpαq “ η
`

pf
˘2
pαq

`

α P
`

´ 1
2 ,

1
2

˘˘

.

The general solution of this linear differential equation is

pfpαq “
´

Aeiα
?

2{η `B e´iα
?

2{η
¯

χ`
´ 1

2 ,
1
2

˘pαq ,

where A,B P C. Plugging this back into (6.10) we find the relation

cos

ˆ

1
?

2η

˙

pA´Bq “ 0.

Since η ě 2
3 ą

2
π2 , we have cosp1{

?
2ηq ą 0 and therefore A “ B ‰ 0. Evaluating (6.9) at α “ 0 we arrive

at the condition
ˆ

1
?

2η

˙

tan

ˆ

1
?

2η

˙

“ 1 , (6.11)

that determines our η uniquely (η “ 0.67551 . . .). Finally, the normalization } pf}L2r´ 1
2 ,

1
2 s
“ 1 together with

(6.11) yields the value |A| “
`

p2η ` 1q{p8η ` 2q
˘1{2

.

In sum, our extremal function is unique (up to multiplication by a complex number) and its Fourier

transform, with the substitution θ “ p2π2ηq´1{2, is given by

pfpαq “ 2A cos p2πθ αq χ`
´ 1

2 ,
1
2

˘pαq,

which, by Fourier inversion, leads us to (6.3).
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Italy; and IMPA - Instituto de Matemática Pura e Aplicada Rio de Janeiro - RJ, Brazil, 22460-320.

Email address: carneiro@ictp.it ; carneiro@impa.br

Mathematics Department, Kansas State University, 125 Cardwell Hall, Manhattan, KS, 66503 USA

Email address: chandee@ksu.edu

Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim,

Norway

Email address: carlos.a.c.chavez@ntnu.no

Department of Mathematics, University of Mississippi, University, MS 38677 USA

Email address: mbmilino@olemiss.edu

33


	1. Introduction
	1.1. Background
	1.2. Equivalences to Montgomery's pair correlation conjecture
	1.3. Summary of results
	1.4. Notation

	2. The integral of F() in bounded intervals
	2.1. Fourier optimization
	2.2. Stacking triangles
	2.3. Dirichlet kernels
	2.4. Proof of Theorem ??nd Corollary 2
	2.5. Limitations to mollifying (s) on the critical line.

	3. Primes in short intervals
	3.1. Sunrise approximations to the Fejér kernel
	3.2. Asymptotic inequalities
	3.3. Relating primes in short intervals to pair correlation

	4. The second moment of the logarithmic derivative of (s)
	4.1. Preliminaries
	4.2. Proof of Theorem 5

	5. Appendix A: Minima of Dirichlet kernels
	6. Appendix B: Hilbert spaces and pair correlation
	6.1. Sharp equivalence of norms
	6.2. Proof of Theorem 19

	Acknowledgments
	References

