

Article

A Method for Enterprise Architecture Model Slicing

Hong Guo 1,*, Jingyue Li 2, Shang Gao 3 and Darja Smite 4

1 School of Business, Anhui University, Hefei 230093, China
2 Department of Computer Science, Norwegian University of Science and Technology, 7034 Trondheim, Nor-

way; jingyue.li@ntnu.no
3 School of Business, Örebro University, 701 82 Örebro, Sweden; shang.gao@oru.se
4 Department of Software Engineering, Blekinge Institute of Technology, 371 41 Karlskrona, Sweden;

darja.smite@bth.se

* Correspondence: 15079@ahu.edu.cn

Abstract: Enterprise Architecture (EA) has been applied widely in industry as it brings substantial

benefits to ease communication and improve business-IT alignment. However, due to its high com-

plexity and cost, EA still plays a limited role in many organizations. Existing research recommends

realizing more of the EA potential. EA can be developed for specific purposes, accumulated in a

digital repository, and reused when needed later. Due to the diversity and inconsistency of the re-

pository, it is challenging to find relevant EA data and reuse it. In the present research, we propose

using slicing techniques to extract EA models for reuse. We validate the method with an official EA

repository hosted by The Open Group. The result shows that the method could facilitate extracting

existing EA model components for developing new EA artifacts to save cost, alleviate maintenance

effort, and help keep the repository consistent for future (re)use.

Keywords: enterprise architecture (EA); agile; lean; repository; program slicing; model slicing

1. Introduction

Enterprise Architecture (EA) is defined as “fundamental concepts or properties of an

enterprise in its environment and governing principles for the realization and evolution

of this entity and its related life cycle processes” [1]. EA has been applied widely to ad-

dress communication issues and align business and IT. However, traditional EA practices

follow formal processes with pre-defined frameworks and pursue extensive and rigid up-

front planning [2], which might bring a heavy workload and limit EA’s application in

many organizations [3].

Theories and agile EA practices were proposed to reduce the workload and improve

the cost-effectiveness of EA implementation [4,5]. Compared with traditional EA prac-

tices, agile EA is more lightweight, suggesting following an informal or no specific process

and developing and using EA for particular purposes when needed (e.g., to catch rapid

business changes) [2]. Studies, e.g., [6], following this direction, indicate that reusing ex-

isting artifacts could reduce the cost and alleviate the effort of maintaining an EA Repos-

itory (EAR). However, specific methods/techniques to find relevant EA models in a repos-

itory for reuse are still missing.

In this research, we propose to “borrow” (adapt) the methods and techniques from

Program Slicing (PS) [7] to support the model reuse in the EA field. PS was originally

introduced as a method to extract a minimal form of interest information from a software

system [7] and has been widely used in various software engineering activities, such as

understanding, debugging, reusing, and maintaining programs. To the best of our

knowledge, no study has addressed how to leverage slicing methods in an EAR for reus-

ing EA models and save costs of developing new EA artifacts.

 2 of 16

We pursue to answer the Research Question (RQ): How to find the relevant set of models

in an EAR to develop new EA artifacts? We propose a method of EA Model Slicing or EA

Slicing (EAS) for short by adapting existing Program Slicing (PS). We validate the EAS

method with a case study. The result shows that the proposed method helped us find the

expected set of EA components and relations in an extensive repository effectively and

flexibly.

The remains of this article are organized as follows. Section 2 briefly introduces back-

ground information about EA and PS. Section 3 introduces the research method. In Section

4, we formalize our EAS method. We validate the method with a case study in Section 5.

Then we discuss the method application in Section 6 and conclude the paper in Section 7.

2. Background and Related Work

2.1. EA Basics

EA is often referred to as a blueprint for enterprise composition and enterprise oper-

ating systems. EA has brought many benefits [8], including facilitating communication

and aligning business and IT [9]. Despite EA’s many benefits [8], one of EA’s main roles

is to provide the service to understand and communicate enterprise interaction patterns

through abstract and graphical expressions. Another role is to facilitate the alignment of

business and Information Systems (IS) in an enterprise [9].

EA usually covers the high-level content of an organization across areas, including

strategy, business, information, and technology. EA describes some concepts and relations

among them in such areas and is presented in the form of a set of abstract graphics. We

call abstractions presented in one single document an EA artifact.

EA is traditionally developed based on one or more EA Frameworks (EAFs), which

provided a common foundation for EA practitioners. For example, TOGAF [10] is main-

tained by the international standardization organization, namely The Open Group, and

is one of the most widely used EAFs. An EAF usually consists of two parts. One part is a

content framework, which mainly describes what concepts can be included in an EA and

the relations among them. The other part is a development method, which provides

guidelines for developing EA artifacts.

A metamodel is often used for a content framework to accurately define the concepts

(both syntax and semantics) and the relations between them. The metamodel is usually

one of the most critical components of an EAF. Since the primary form of EA is typically

a set of graphical models, content frameworks/metamodels are often associated with a set

of graphic notations. For example, the ArchiMate standard [11] hosted by The Open

Group includes a set of symbols fully compatible with the TOGAF metamodel.

When a well-defined metamodel is applied, it is possible to organize and maintain a

set of EA artifacts as EA data in a digital repository. Such an EAR, therefore, comprises a

set of EA components and relations among them. An EA artifact can be considered a

visualization of some subsets of a repository. Modern EA Management (EAM) tools [12]

usually leverage such an EAR to capture and connect context and information across dif-

ferent domains (e.g., business, information, solution, and technology), along with other

relevant architectural viewpoints, and to support strategic and tactical decision-making.

Traditionally, EAM practices follow a pre-defined framework (e.g., TOGAF), which

means: (1) EA development process is pre-defined (e.g., TOGAF ADM), formal, separated

from other projects, and pursues rigid and extensive upfront planning [2], (2) developing

EA models according to a content framework (usually a well-defined metamodel and a

set of notations, such as ArchiMate) so that the models are well organized and connected.

The benefits of traditional EA practices are that EA models are rigorous and aligned across

the organization. However, one major challenge is EA development is not cost-effective,

or the development cost is difficult to estimate. On the one hand, the value of developing

each separate EA model is unclear. On the other hand, development is challenging, and

the workload is heavy. The low cost-effectiveness of EA development leads to

 3 of 16

participants’ low motivation or disorientation. It also might lead to over-development of

EA, turn the overall EA development into an impossible task, and even fail the final EA

application. In addition, as changes are happening increasingly rapidly nowadays, such

prescribed and proactive ways of using EA [2] could not meet the flexible and changing

requirements well.

Agile EAM practices were proposed in academia and industry [4,5] to overcome the

challenge of low cost-effectiveness of EA development and embrace changes. According

to Agile EAM principles, all artifacts/models to be developed should deliver a clear busi-

ness value. The quality and quantity of such models are limited to just enough to provide

value. Doing so can significantly improve the cost-effectiveness of individual EA arti-

facts/model development. However, different artifacts might not be connected or aligned

in an ideal way, which can be alleviated by maintaining a single digital repository based

on a common metamodel. That means Agile EAM practices have the following charac-

teristics. (1) The development process is not pre-defined and rigid, but to follow an infor-

mal one and develop and use EA when needed (e.g., to respond to dramatical business

changes) [2] and separately, each for a specific purpose. One example is the Business Out-

come Driven EA proposed by Gartner [13]. (2) Based on the only EAR, EAs are developed

for specific business purposes and are accumulated gradually. It was advocated to have

“just enough, just in time” architecture and not design EA until needed. All the inde-

pendently developed models can be accumulated in a single repository, so that can be

used collaboratively, like a puzzle.

In short, agile EA weakens the development method/process part of EAFs but

strengthens the content framework/metamodel part.

2.2. EAR Management and Data Reuse

Effective EAR management is vital for realizing the more significant potential of EA.

This is because it means developing new artifacts that can be based on existing EA data

(to save cost and improve consistency). It also means the fusion of multiple EA artifacts

to improve the alignment among EA artifacts. In addition, the utilization of various com-

puting power for analysis, prediction, and visualization of the EA artifacts can be em-

ployed to enable more empowerment.

Traditional EAR management has not sparked much discussion [14], because it was

assumed that EA data are developed according to a (pre-defined and fixed) metamodel,

and the data are complete, structured, rigorous, and consistent. For instance, in [15],

BPMN choreography diagrams can be automatically generated based on existing models

stored in a web-based repository that uses the BPMN ontology to describe each compo-

nent’s structural properties. Furthermore, in [16], metadata about the content of UML

class diagrams can be automated and archived into a pre-existing repository.

However, modern Agile EAM practices may bring new challenges for EAR manage-

ment and model reuse. The pursuit of more non-professional participation [17], rapid

model development and validation, and high Return on Investment (ROI) for model de-

velopment around a specific purpose can lead to reduced model quality, which challenges

EAR management. Researchers noticed such potential repository pollution issues and

proposed to use machine learning techniques to avoid adding duplicates to the repository

[18].

Reusing existing model data might be challenging because EARs are usually com-

plex and large, consisting of many components and intricate relationships in multiple di-

mensions, making them difficult for a human to grasp completely. Moreover, such repos-

itories rely on a scattered accumulation of workforce because it is often created by humans

and aims for humans (to understand). As a result, the rigor and consistency of the data

may be limited. The complexity, significant volume, and low consistency of EARs make

reusing model data difficult for humans or computers. The vague requirements to de-

velop new models make model reuse even more difficult. To make it clear, reusing

 4 of 16

existing model data in this article does not mean integrating data from other sources, but

recommending and reusing data in the existing model repository for new views/purposes.

Many relations exist implicitly within multiple views. Thus, it is difficult to remem-

ber and find all relevant model data by humans. Due to the diversity of underlying met-

amodels and the inconsistency of the data, it is not easy to implement an automatic search

with a pre-written (one-time) script.

2.3. Program Slicing

Weiser [7] proposed PS as a method or a task to make an abstract of a program to a

minimal form. The reduced program is called a “slice,” which guarantees representing the

original program within the domain of interest. PS was widely used and accepted in var-

ious software engineering tasks, including code debugging, integration, dataflow testing,

and maintenance [19].

To extract a slice, a slicing criterion <S, V> should be defined to specify a loca-

tion/statement (S) and a variable (V) [20]. There are many types of program slices. For

instance, Weiser initially used executable backward static slices [20]. PS can also be dy-

namic or conditional. Different algorithms have been applied to extract program slices.

Some algorithms rely on a control flow graph following [20] and can be thought to solve

a data flow problem and a graph reachability problem [20]. Basically, a directed graph G

can be defined as a set of nodes N and a set of edges [20]. A control flow graph for program

P is a graph in which each node is associated with a statement in P, and the edges repre-

sent the control flow in P [20]. More recent work tends to use the system dependence

graph [21]. In general, the process of PS consists of four steps: Relation Extraction, Criteria

Deciding, Slice Generation, and Slice Usage.

2.4. Model Slicing

The application of slicing in the model domain is called Model Slicing [22]. Model

Slicing, however, usually relies on specific restrictions (e.g., model transformation rules

and model constraints [23]) and is only applied to certain types of models (e.g., UML mod-

els [22] or finite-state-machine-based models [24]).

In the EA field, however, many diverse models are embraced. In addition, the con-

sistency between models might not be guaranteed because many models are created man-

ually. The complexity/diversity and inconsistency issues might limit the applicability of

slicing techniques in the EA field. Levashova et al. [25] studied slicing EA ontologies for

context retrieving, and Jacobs et al. [26] studied constructing an EA Framework (EAF) for

slicing purposes by leveraging data warehouse theories.

However, to our knowledge, no study has addressed how to leverage slicing meth-

ods in an EAR for reusing EA artifacts and saving costs of developing new EA artifacts.

3. Research Method

There are two main paradigms in IS research: behavioral science and design science

[27,28]. The behavioral science paradigm seeks to develop and justify theories that explain

or predict human or organizational behavior. In contrast, the design science paradigm is

more problem-solving and aims to create artifacts to extend the boundaries of human or

organizational capabilities. For the proposed research question, we pursue a solution con-

tributing to reusing EA models and employ the design science method.

According to [29], design can be both a process (set of activities) and a product (arti-

fact). As identified by [30], four types of design artifacts/products (constructs, models,

methods, and instantiations) can be produced by design science research in IS. Among

them, a method defines processes and guides how to solve problems. We aim to construct

a method as the design artifact to describe how to extract and reuse existing data in an

EAR. Design processes/activities include building and evaluating artifacts. For design sci-

ence research, it is crucial to find a proper balance between rigor and relevance [27]. While

 5 of 16

rigor is usually achieved by applying existing foundations and methodologies appropri-

ately, framing research activities to address business needs could assure research rele-

vance.

When building our proposed method, we selectively applied existing foundations

and methodologies to achieve rigor [27]. We examined and adapted the existing PS tech-

niques. We analyzed and found commonalities between the two areas (e.g., program re-

use and EA reuse) concerning the problem to be solved/goal, solution, criteria pattern,

and algorithm premise. The commonalities support us in applying the PS method to the

EA domain. We then adapted the PS method to derive our EAS based on the EAS’s unique

challenges. We applied pseudo-codes, case studies, and testing to achieve rigor to validate

our method. We used a case study to provide an in-depth observational evaluation [27] in

a business environment. We used pseudo-codes and executed reference implementations

to provide structural and functional testing [27]. The official case study hosted by The

Open Group was selectively chosen to ensure the relevance of our approach to appropri-

ate business problems. In this case, the EAR was modeled in ArchiMate modeling lan-

guage, which conforms to the TOGAF EAF. Both TOGAF and ArchiMate are the most

used international standards in the EA field. More details about the case are provided in

Section 4 and Section 5.

4. A Method for EA Model Slicing

We first analyzed the commonalities between the programming field and the EA

field. The results indicated the potential of adapting slicing approaches in the program-

ming field in the EA field. We adopted similar parts in the programming field in EAS.

Then, according to EAS’s unique feature/requirement, we developed the particular com-

ponents (of the slicing method/algorithm) for the EA field. We formalize the overall

method/algorithm as follows.

4.1. Adapting PS to Develop EAS

The following insights about the commonalities between the two areas (Program re-

use and EA reuse) support us in deriving parts of EAS similar to PS.

• Goal: Both PS and our proposed EAS aim to save costs on software engineering tasks.

For PS, such tasks are program re-development and program maintenance. While for

EAS, such tasks might include new model development and maintenance.

• Solution: To save costs, both methods exclude irrelevant lines of codes/model com-

ponents that are not “of interest” and try to find the minimum subset of the original

program/repository.

• Criteria pattern: Criteria are needed to clearly define how to select the minimal sub-

set, namely, what defines the “interest.” Both PS and EAS employ a similar criteria

pattern specifying a location (statement/view) and a variable/component.

• Algorithm premise: Both algorithms of PS and EAS rely on a graph-like structure

provided by the original program/repository. PS depends on a control flow graph

with nodes and edges. In comparison, an EA model repository consists of compo-

nents and relations between them and is naturally organized as a graph.

In addition, we require more unique features to slice EA data.

• Flexible parts of Criteria: Criteria define what makes a subset of the original pro-

gram/repository concerning a criterion of <S, V> be “of interest.” For PS, in a slice,

the value of V at the position of S should remain the same as that in the original

program. Such a precise and unambiguous criterion could be found for PS because

programs are usually created by professional programmers, executed by computers,

and therefore are formal and rigorous. However, finding a similar criterion for EAS

might not be easy. Under many circumstances, models are not accurately defined or

used because they are usually created by and used for humans who might not have

specific expertise. In other words, we might not be able to define the criteria in EAS

 6 of 16

precisely due to the diversity of metamodels, inconsistent model data, and different

requirements of using a slice in advance. Therefore, the EAS method might need to

allow more flexibility (to allow for manual screening) for the criteria in EAS.

• Flexible parts of Algorithms: To address the flexible part of the criteria, we propose

to introduce manual intervention in addition to a computerizable slicing algorithm.

While the computerizable algorithm captures the fixed and accurate part of the crite-

ria, the manual screen examines the flexible parts and decides on inclusion/exclusion

based on the actual settings.

To summarize, the original version of PS starts from a location/statement, then con-

tinuously finds new points/statements along the edge/flow in the program’s control or

data flow and judges whether it is relevant to the requirement according to the pre-de-

fined criteria, and when to stop traversing. Our proposed EAS works similarly. The dif-

ference is that the traversal and judgment of PS are automated, while the judgment in our

version is partially manual. As mentioned above, the data in the EAR may have some

inconsistent issues, such as missing attributes or misuse of similar relations. We perform

automated traversal and preliminary screening with pre-set criteria and then use manual

screening to handle data inconsistencies.

4.2. Formalizing the EAS Method

According to the similarities and differences between PS and EAS, we formalize our

method following a similar process as PS, as shown in Table 1. Like PS, we use Step 1,

Extract information, to review the EAR and get a general knowledge of its metamodel and

model data quality. In Step 2, we decide the specific criteria based on the requirements of

the slice (e.g., for new EA artifacts development) and the EAR settings. After that, we

conduct automatic searching to get the subset of the original repository in Step 3. Unlike

PS, due to the complexity and inconsistency issues of EARs, we introduce manual screen-

ing in Step 4 to exclude irrelevant/invalid components within the automatic searching

results.

Table 1. The proposed method of EAS.

Steps Activities

Step 1: Extract information Review and get a general knowledge of the repository settings and quality.

Step 2: Decide criteria Decide the criteria based on repository settings and requirements.

Step 3: Automatically search (with the

automatic algorithm)
Automatically search related components for the given criteria.

Step 4: Manually screen (with the man-

ual algorithm)
Manually screen the result from the automatic search.

Step 5: Integrate and use the slice
Recurse, integrate the result, and use the slice (e.g., for new EA artifact devel-

opment).

After Step 4, for each component in the search results, Steps 1–4 will be recalled in a

recursive way to find additional indirectly related components. We present this part as a

simple recursion in Figure 1, and a more accurate definition of the recursion process is

written in pseudo-codes and is detailed later. At last, in Step 5, we integrate the result

based on all the intermediate results throughout the recursive process and use the slice.

 7 of 16

Figure 1. The process of the proposed EAS method.

4.3. Formalizing the EAS Algorithm

With this, we formalize the overall slicing algorithm and main functions of the algo-

rithm in pseudo-codes. In the pseudo-codes (Figures 2–4), keywords for the control flow

are bolded, while comments are shadowed. We also highlight the function calls to show

the overall logic.

Figure 2. Pseudo-codes for the overall recursive slicing process (Step 1–4).

Figure 3. Pseudo-codes for the automatic searching algorithm (Step 3).

Figure 4. Pseudo-codes for the manual screening algorithm (Step 4).

 8 of 16

In EAS, the slicing algorithm is recursive. As shown in the upper part of Figure 2, the

resulting slice consists of two parts. One includes all directly related components called

“direct slice” (Line 4). Another contains slices for all components in the “direct slice” (Line

6). We use GetDirRelComp to get directly related components and construct the recursion

with the Slicing function call.

In the lower part of Figure 2, we show “GetDirRelComp” contains automatic searching

and manual screening (with corresponding pseudo-codes shown in Figures 3 and 4). By

combining the automatic and manual tasks in an interwoven way, the algorithm realizes

the searching/filtering for all components that (directly or indirectly) are related to a given

component (within a particular view) in the entire EAR, thereby achieving the purpose of

slicing.

As indicated by the pseudo-code in Figure 3, the algorithm for the automatic search-

ing task in Step 3, for the given component in a particular view, is about finding infor-

mation of all (directly) related components (Line 6), such as relation names and view

names. This task executes automatically so that the structured retrieving can be conducted

quickly and reliably. This task also maps user-friendly information such as component

name to IT (Line 3) to facilitate automatic searching, or vice versa to facilitate human un-

derstanding (Line 7). The result of this task will provide candidates for the subsequent

manual screening task.

The pseudo-code in Figure 4 demonstrates the algorithm for the manual screening in

Step 4, which manually selects relevant components based on the information provided

in Step 3. Manual screening includes correlation judgment (Line) and consistency verifi-

cation (Line 3).

5. Evaluation

We designed a proof-of-concept case study to demonstrate our proposed method’s

use and prove the concepts’ validity. In this section, we introduce the settings of the case

study, present the results, and reflect on the results.

5.1. Settings

Our case study is an insurance enterprise that maintains a digital EAR and needs to

develop a new roadmap artifact. The existing EAR has been used to capture and connect

the context and information across domains (e.g., business, information, solution, and

technology) to support strategic and tactical decision-making. We employ the official re-

pository [31] hosted by The Open Group [32]. In this case, the repository [33] is modeled

with the ArchiMate modeling language [11] and stored with ArchiMate Model Exchange

File Format [34]. We suppose a new roadmap artifact is required because the management

wants a coherent and straightforward picture representing the overall strategic planning.

A roadmap artifact is usually defined as “structured graphical views of all planned IT initia-

tives in specific business areas having direct business value,” serving to “achieve clearer tracea-

bility between the business strategy and future IT investments” [3]. Therefore, we need to find

out existing components and relations that are relevant to this view. Our proposed EAS

method will be used to extract relevant components in the repository and lower the cost

of new artifact development through reuse.

To reuse existing model data to develop the new roadmap artifact, we conducted

several slicing tasks to get relevant components concerning several strategic components.

Due to the space limitation, we demonstrate the process of using our proposed EAS

method for one of the tasks. The task is to find all existing components/IT initiatives that

directly or indirectly support one of the planned Business Output, namely, Detailed Insights

in Customer in the view of Business Strategy.

Here four requirements for the slicing are implicitly given: (1) “support” indicates

that a relation with a meaning of “support” (e.g., Realization and Serving) connects some

component to others; (2) “directly support” means such relation directly connects one

 9 of 16

component and the other, while “indirectly support” happens when more than one such

relation connects or other relations (e.g., Aggregation) are involved additionally; (3) the

resulting components should be at a high level and cannot contain more details than that

of general IT initiatives; (4) as a general non-functional requirement, the model data

should be of acceptably high quality, which means that the data should be at least reason-

able to humans and consistent with other data in the repository.

Note that although these requirements look clear and comprehensive enough for a

human, they are still somewhat vague to be formalized in programs. Take the first re-

quirement, for instance, we as humans understand the general meaning of “support.”

However, we could not determine the exact types of relations to apply in a particular re-

pository due to various metamodels that can be applied in the EA fields. Other examples

include what defines an “indirect” relation in the second requirement, what components

are sufficiently “high-level” in the third requirement, and what kind of data inconsistency

issues are unacceptable in the fourth requirement. They are all the “undefined” or

“vague” part of the requirements. Such flexible requirements are the primary reason we

adopt a hybrid method to combine automatic searching and manual screening.

We used existing tools for our demonstration and concept-proof validation. We used

Archi 4.8.1 [35], an open-source ArchiMate modeling tool, for reviewing the EAR in a vis-

ualized way (Step 1). An Extensible Markup Language (XML) viewer is also used in Step

1 to help us examine the repository serialized in the exchange file format. We employed

an Integrated Development Environment (IDE) to implement the criteria/algorithm and

run the automatic searching (Step 3) in Python 3.8. We used a text editor to record the

recursive slicing process and all intermediate results (Step 4). At last, we used Archi [35]

to present the integrated results of the slice (Step 5) to develop the new artifact based on

it.

5.2. Results

According to EAS, we recursively conduct the slicing process. First, we find compo-

nents that “directly support” the starting component. Then, for each component found,

we conduct Steps 1–4 to find the components that “directly support” it. We perform this

process recursively until finding no more components. Then we take all the components

and relations found throughout the process and compile the final result. We provide more

details for the first loop as an example.

In Step 1, we browse the entire repository to capture the general information in a

visualized way in Archi (as shown in Figure 5) and in a serialized exchange file format in

an XML viewer (see Figure 6). Such general information includes the overall library size,

major existing views, and types of components and relations used in the repository. The

result shows that, in the repository, 328 EA Components and 701 Relations are presented in

71 EA views spanning different layers of the enterprise, including strategy, business, and

IS. The relations include 643 common relations, such as Serving and Realization, 39 Group-

ing, and 19 Junction relations.

 10 of 16

Figure 5. Browsing the use case repository in Archi.

Figure 6. One section of the case repository exchange file in an XML viewer.

In Step 2, we define the initial slicing criterion as <Detailed Insights in Customer, Busi-

ness Strategy>, indicating that the slice should include all valid components that “directly

support” the starting component of Detailed Insights in Customer in the view of Business

Strategy.

This criterion and the corresponding algorithm were programmed in Python (as

shown in Figure 7) in Step 3. After running the automatic searching (as shown in Figure

8), we achieve five relations that connect “Detailed Insights in Customer” with other com-

ponents.

 11 of 16

Figure 7. Sample code snippets for automatic slicing in Python.

Figure 8. Intermediate results of performing an EAS automatic searching.

Then, in Step 4, we conduct a manual validation by examining each relation and

checking if the involved relation, related component, and view are reasonably relevant

and valid according to the criteria. We found that among the five relations, only one of

them is valid and relevant to our specific goal. This relation indicates that the “Data-

Driven Insurance” component realizes the starting component of “Detailed Insights in

Customer Behavior.” Later, we decided to further track the EA components of the slicing

result by starting a new iteration because they are a higher level of abstraction than the

expected “IT plan.”

We conducted four iterations in total. In the last iteration, we found that all relations

in the slicing result are irrelevant or invalid according to the criteria. The observation in-

dicates that all components of interest have been retrieved in previous iterations. There-

fore, we stopped the slicing process. The resulting slice contains four components and

three relations from two original views. They are reasonable and valid data concerning

the slicing goal. We then presented them (by dragging them from the original to the new

views) to reuse them for developing the new artifact, as shown in Figure 9. Note that we

 12 of 16

examined (manually screened) 18 relations within 22 views throughout the recursive slic-

ing process. The numbers of components, relations, and views of the original repository,

manual screening, and the resulting slice, are recorded and compared, as Table 2 shows.

Figure 9. Using the resulting slice for a new EA artifact development.

Table 2. The number of components, relations, and views before and after slicing.

 Component Number Relation Number View Number

Original repository 328 701 71

Manual screening 18 18 22

Resulting slice 4 3 2

5.3. Reflections

Our experience shows that simple manual or automatic methods are indeed chal-

lenging to achieve the slicing goals in such a representative EA context for the following

reasons.

First, it is difficult, if not impossible, for humans to exhaustively and reliably identify

all relevant relations distributed in many views. We felt it was impossible to remember all

the relevant components. We needed to focus on 18 out of 701 relations in our case (as

shown in the second and third lines of Table 2). Secondly, when we need to validate and

extract more detailed information, it is very costly to traverse across a large number of

views. This means checking 18 relations in 22 views in our context (as shown in the third

line of Table 2). Manual operation is not only time-consuming and labor-intensive but also

easy to bring inconsistent and unreliable data.

In addition, for automatic methods (pre-defined or one-time defined programming

methods), it is not easy to cope with various previously mentioned undefined/vague re-

quirements. Firstly, due to the different metamodels used in EARs and the diverse pref-

erences of model developers, the relevant slicing principles and algorithms need not be

defined or programmed precisely. For example, in our case, we only selected components

that Realize the starting component for Realization relations. However, for the Aggrega-

tion relations, we selected components that are Aggregated by the starting component. Sec-

ondly, many human-made models have various inconsistency issues which need to be

handled flexibly. For example, in our case, we found that there was no relevant view for

some relations. For some relations, the related component did not have a name. By ob-

serving more relevant information, we think they are possibly caused by previous unreg-

ulated human operations (the models were deleted in views but not in the repositories,

for instance). We, therefore, simply ignored them.

In contrast to pure manual or automatic methods, our proposed method combines

the advantages of manually making intelligent decisions and the computational power of

automation. The EAS method can flexibly handle the metamodel complexities and data

 13 of 16

inconsistencies. It can also traverse the database sufficiently and reliably in a cost-effective

way.

6. Discussion

We summarize the benefits of our proposed method and discuss how to apply our

proposed method in the EA field.

6.1. Benefits of Our Proposed EAS Method

In this paper, we propose to use slicing methods in the EA field to lower the cost of

developing new EA artifacts by retrieving and reusing relevant components. Considering

specific characteristics in the EA field, we propose to introduce manual intervention in

addition to an automatic algorithm. Such characteristics are:

(1) There are more flexible requirements in the EA field as EA models are often devel-

oped for human understanding purposes. Accordingly, the slicing criteria can hardly

be defined in a very precise way.

(2) The metamodels used in the EA field can be very diverse. The analogy is to use mul-

tiple programming languages (statically or dynamically) in PS. Thus, it is challenging

to implement the algorithms in advance fully.

(3) The EA model data inconsistency issues might widely exist as people manually de-

velop many models. This imposes diverse and flexible data validation work.

However, by weaving automatic and manual tasks together, we can automatically

retrieve component candidates quickly and reliably and present them with meaningful

and readable information to humans. We also benefit from manual screening to ensure

the results are valid and fit flexible requirements (but reasonable enough for humans) of

slicing.

6.2. Balance between the Automatic and Manual Tasks

We have considered the possibility of implementing the EAS algorithm with pro-

grams completely without manual intervention. The answer is yes if a comprehensive re-

view of the repository could be conducted in advance. However, it can be very uneco-

nomical and difficult to maintain. Pre-programming requires comprehensive manual

browsing of the entire repository and general rule extraction. While manual screening

only takes care of a small subset of the repository and conducts specific judgments. Since

the repository is dynamically developed and used/maintained and all the metamodels

and models can be continuously changing, maintaining the slicing algorithm might be

considerably time-consuming or even become a mission impossible.

However, it is possible to balance and distribute tasks in automatic or manual parts

under different situations differently or even dynamically to achieve the best slicing per-

formance.

6.3. Tool Support

Appropriate tool support would speed up and ensure the quality of EAS, especially

for Step 3 and Step 4 in the slicing method. In our case, we programmed the slicing crite-

ria/algorithms with Python in Step 3. However, note that this type of program is quite

domain-specific and contains common patterns. Therefore, tools can be developed to en-

able no/low code programming to configure patterns rather than writing general code to

configure which types of relations are considered. By doing so, not only could the slicing

process be accelerated, but more stakeholders, such as business architects without pro-

gramming expertise, could also benefit and conduct the process independently [17]. Tools

could be used to address inconsistency issues in Step 4 by highlighting inconsistent data

and providing automatic corrections, for example. They can also provide What You See

Is What You Get (WYSIWYG) functions to facilitate and accelerate the manual screening

in Step 4 by highlighting related components in corresponding views, for instance.

 14 of 16

6.4. Data Validation/Dealing with Model Inconsistency

In EAS, data validation is conducted manually, and model inconsistencies (e.g., dif-

ferent relations used for similar purposes) are considered/solved flexibly.

All inventory data should contain time and owner information to facilitate later ver-

ification. In our case study, we are the only user/developer of the EAR. However, in actual

scenarios, multiple users/developers usually operate the repository. Therefore, infor-

mation about its owner and timestamp may be required for all data in a repository. In this

way, when relevant data are retrieved, whether such data are valid should be verified in

Step 4 according to the timestamp information. Then, if necessary, the owner could be

contacted to double-check and fix/update the data before reusing it.

6.5. Inventory Maintenance

EA inventories should be maintained while using. In the present research, we pro-

pose a cost-effective method primarily for new EA artifact development by reusing EA

models/data in an existing EAR. However, reusing and developing new data is not the

end. In real scenarios, newly developed artifacts should be merged back into the reposi-

tory. By doing so, the repository could be continuously and sustainably accumu-

lated/maintained. Therefore, we should make sure all relevant data can be retrieved in

Steps 3–4. In addition, after using the data in Step 5, newly developed EA data should be

merged back properly to keep the repository consistent.

6.6. Other Slicing Techniques/Algorithms

PS techniques/algorithms could be further explored in the EA field. Many PS algo-

rithms exist, such as static, dynamic, or conditional PS and forward or backward PS. We

have only employed the basic algorithm to reveal the feasibility and potential. Consider-

ing the similarities in the two fields, we believe it would be rewarding to explore further

and apply other relevant techniques/methods.

6.7. Other Application Areas

The present method might be useful in more EAM tasks and reusing for new EA

artifacts development. PS has been widely applied in understanding, testing/debugging,

redesigning, reusing, maintaining/evolving, and measuring programs. We believe the

proposed method could be extended/adapted with a similar algorithm and principle for

further application in more tasks.

In addition, we primarily discussed how this method facilitates activities for EA

models. However, this method can also be applied to general model repositories if they

are based on integrated metamodels and even general data repositories. For instance, Data

lakes are emerging to support extracting knowledge from a large number of highly heter-

ogeneous and rapidly changing data sources [36,37]. New techniques are needed to ex-

tract complex knowledge patterns from data stored in data lakes. The method proposed

in this article might provide some new insights into this goal.

7. Conclusions

In this paper, we proposed to use a method in terms of slicing techniques to extract

and reuse existing EA models. We validated the method with an official EAR hosted by

The Open Group. The results show that it is possible to reuse existing EA models to de-

velop new EA artifacts to save cost and help keep the single repository consistent for fu-

ture use.

There are some limitations of the present research. First, we focused on how to reuse

data in an EAR that contains inconsistent data. We have not discussed in depth how to

deal with/fix such inconsistent data in the EAR systematically. Second, we validated our

method mainly by a proof-of-concept case study. Future work will include developing

 15 of 16

prototype tools to explore further how to deal with inconsistency issues, maintain the

EAR, and validate the method with user tests.

Author Contributions: Writing—original draft, H.G.; Writing—review & editing, J.L., S.G. and D.S.

All authors have read and agreed to the published version of the manuscript.

Funding: This research was partically funded by the Research Council of Norway grant number

NFR 295920 (IDUN Project). And the APC was funded by Anhui University grant number

Y040418077 and Ministry of Human Resources and Social Security of the People’s Republic of China

grant number Z010146009.

Institutional Review Board Statement:

Informed Consent Statement:

Data Availability Statement:

Conflicts of Interest: The authors declare no conflict of interest.

References

1. ISO/IEC/IEEE. ISO/IEC/IEEE 42020:2019 Software, Systems and Enterprise—Architecture Processes. ISO. 2019. Available

online: https://www.iso.org/standard/68982.html (accessed on 1 September 2022).

2. Kotusev, S.; Singh, M.; Storey, I. Consolidating enterprise architecture management research. In Proceedings of the 2015 48th

Hawaii International Conference on System Sciences, Kauai, HI, USA, 5–8 January 2015; pp. 4069–4078.

3. Kotusev, S. Enterprise architecture and enterprise architecture artifacts: Questioning the old concept in light of new findings. J.

Inf. Technol. 2019, 34, 102–128.

4. Hauder, M.; Roth, S.; Schulz, C.; Matthes, F. Agile enterprise architecture management: An analysis on the application of agile

principles. In Proceedings of the 4th International Symposium on Business Modeling and Software Design, Luxembourg, 24–

26 June 2014; pp. 38–46.

5. Gill, A.Q. Agile enterprise architecture modelling: Evaluating the applicability and integration of six modelling standards. Inf.

Softw. Technol. 2015, 67, 196–206.

6. Guo, H.; Li, J.; Gao, S.; Smite, D. Boost the Potential of EA: Essential Practices. In Proceedings of the 23rd International Confer-

ence on Enterprise Information Systems, Online Streaming, 26–28 April 2021; Volume 2: ICEIS; pp. 735–742.

7. Weiser, M. Program slicing. IEEE Trans. Softw. Eng. 1984, 4, 352–357.

8. Winter, K.; Buckl, S.; Matthes, F.; Schweda, C.M. Investigating the State-of-the-Art in Enterprise Architecture Management

Methods in literature and Practice. In Proceedings of the Mediterranean Conference on Information Systems (MCIS), Tel Aviv,

Israel, 12–14 September 2010; Volume 90.

9. Korhonen, J.J.; Lapalme, J.; McDavid, D.; Gill, A.Q. Adaptive enterprise architecture for the future: Towards a reconceptualiza-

tion of EA. In Proceedings of the 2016 IEEE 18th Conference on Business Informatics (CBI), Paris, France, 29 August–1 Septem-

ber 2016; pp. 272–281.

10. The Open Group. The TOGAF® Standard. 2020. Available online: https://www.opengroup.org/togaf (accessed on 1 September

2022).

11. The Open Group. ARCHIMATE® 3.1 SPECIFICATION. Available online: https://pubs.opengroup.org/architecture/archimate3-

doc/ (accessed on 1 September 2022).

12. Gartner. Enterprise Architecture (EA) Tools Reviews and Ratings. Availabe online: https://www.gartner.com/reviews/mar-

ket/enterprise-architecture-tools (accessed on 1 September 2022).

13. Gartner Research. Stage Planning a Business-Outcome-Driven Enterprise Architecture. Availabe online: https://www.gart-

ner.com/en/documents/3642517/stage-planning-a-business-outcome-driven-enterprise-arch (accessed on 1 September 2022).

14. Rouhani, B.D.; Mahrin, M.N.r.; Nikpay, F.; Ahmad, R.B.; Nikfard, P. A systematic literature review on Enterprise Architecture

Implementation Methodologies. Inf. Softw. Technol. 2015, 62, 1–20.

15. Wiśniewski, P.; Kluza, K.; Suchenia, A.; Szała, L.; Ligęza, A. Recomposition of Process Choreographies Using a Graph-Based

Model Repository. In Proceedings of the International Conference on Knowledge Science, Engineering and Management, Sin-

gapore, 6–8 August 2022; pp. 478–488.

16. Di Felice, P.; Paolone, G.; Paesani, R.; Marinelli, M. Design and Implementation of a Metadata Repository about UML Class

Diagrams. A Software Tool Supporting the Automatic Feeding of the Repository. Electronics 2022, 11, 201.

17. Sandkuhl, K.; Fill, H.-G.; Hoppenbrouwers, S.; Krogstie, J.; Matthes, F.; Opdahl, A.; Schwabe, G.; Uludag, Ö.; Winter, R. From

expert discipline to common practice: A vision and research agenda for extending the reach of enterprise modeling. Bus. Inf.

Syst. Eng. 2018, 60, 69–80.

18. Borozanov, V.; Hacks, S.; Silva, N. Using machine learning techniques for evaluating the similarity of enterprise architecture

models. In Proceedings of the International Conference on Advanced Information Systems Engineering, Rome, Italy, 3–7 June

2019; pp. 563–578.

19. Tip, F. A Survey of Program Slicing Techniques. Amsterdam: Centrum voor Wiskunde en Informatica. 1994. 58.

 16 of 16

20. Binkley, D.W.; Gallagher, K.B. Program slicing. Adv. Comput. 1996, 43, 1–50.

21. Horwitz, S.; Reps, T.; Binkley, D. Interprocedural slicing using dependence graphs. ACM Trans. Program. Lang. Syst. (TOPLAS)

1990, 12, 26–60.

22. Bae, J.H.; Lee, K.; Chae, H.S. Modularization of the UML metamodel using model slicing. In Proceedings of the Fifth Interna-

tional Conference on Information Technology: New Generations (ITNG 2008), Las Vegas, NV, USA, 7–9 April 2008; pp. 1253–

1254.

23. Shaikh, A.; Wiil, U.K. UMLtoCSP (UOST) a tool for efficient verification of UML/OCL class diagrams through model slicing. In

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, Cary, NC, USA,

11–16 November 2012; pp. 1–4.

24. Androutsopoulos, K.; Clark, D.; Harman, M.; Krinke, J.; Tratt, L. State-based model slicing: A survey. ACM Comput. Surv.

(CSUR) 2013, 45, 1–36.

25. Levashova, T.; Lundqvist, M.; Pashkin, M. Moving towards automatic generation of information demand contexts: An approach

based on enterprise models and ontology slicing. In Proceedings of the OTM Confederated International Conferences “On the

Move to Meaningful Internet Systems”, Rhodes, Greece, 21–25 October 2006; pp. 1012–1019.

26. Jacobs, D.; Kotzé, P.; Van Der Merwe, A. Towards an enterprise repository framework. In Proceedings of the Joint Workshop

on Advanced Technologies and Techniques for Enterprise Information Systems, Milan, Italy, 6–10 May 2009; pp. 77–89.

27. Hevner, A.R.; March, S.T.; Park, J.; Ram, S. Design science in information systems research. MIS Q. 2004, 28, 75–105.

28. Tuunanen, T.; Gengler, C.E.; Rossi, M.; Hui, W.; Virtanen, V.; Bragge, J. The Design Science Research Process: A Model for

Producing and Presenting Information Systems Research. Available online: (accessed on 1 September 2022).

29. Walls, J.G.; Widmeyer, G.R.; El Sawy, O.A. Building an information system design theory for vigilant EIS. Inf. Syst. Res. 1992, 3,

36–59.

30. March, S.T.; Smith, G.F. Design and natural science research on information technology. Decis. Support Syst. 1995, 15, 251–266.

31. The Open Group. ArchiSurance Case Study, Version 3.1. Availabe online: https://publications.opengroup.org/y194 (accessed

on 1 September 2022).

32. The Open Group. Availabe online: https://www.opengroup.org/about-us/who-we-are (accessed on 1 September 2022).

33. The Open Group. ArchiSurance Case Study, Version 3.1, ArchiMate® Model Exchange File Format. 2020. Available online:

https://publications.opengroup.org/y194m (accessed on 1 September 2022).

34. The Open Group. ArchiMate® Model Exchange File Format for the ArchiMate Modeling Language, Version 3.1. Availabe

online: https://publications.opengroup.org/c19c (accessed on 1 September 2022).

35. Beauvoir, P. Archi ArchiMate Modeling. Availabe online: https://www.archimatetool.com/ (accessed on 1 September 2022).

36. Giudice, P.L.; Musarella, L.; Sofo, G.; Ursino, D. An approach to extracting complex knowledge patterns among concepts be-

longing to structured, semi-structured and unstructured sources in a data lake. Inf. Sci. 2019, 478, 606–626.

37. Diamantini, C.; Lo Giudice, P.; Potena, D.; Storti, E.; Ursino, D. An approach to extracting topic-guided views from the sources

of a data lake. Inf. Syst. Front. 2021, 23, 243–262.

