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Abstract—This paper proposes a combination of wind-tunnel
tests and flight experiments to find an aerodynamic model of the
Skywalker X8 airframe. The static coefficients resulting from
wind-tunnel tests are augmented with a parsimonious damping
model that we find by using flight test data and a sequentially
thresholded least squares algorithm. Experimental results show
significant improvements to the pre-existing baseline model.

Index Terms—System Identification, Unmanned Aircraft,
Aerodynamic Model

I. INTRODUCTION

A. Motivation and Background

In this paper, we address some issues that became apparent
when using the model of the Skywalker X8 proposed by
Gryte et al. [1], as it seems that our experiments were the first
to use this model in a model-based controller and evaluate in
flight tests. In [1], Gryte et al. auto-validate the identified
models against the measured wind tunnel data, resulting
in favorable scores of the coefficient of determination very
close to 1. However, the resulting score is even negative
when we compared the accelerations obtained through the
force model and the observations based on flight data from
inertial measurement units (IMUs). This indicates that using
the original model [1] in a model-based controller may not
optimize performance. Considering that the targeted use-case
by Gryte et al. is model-based flight control or model-based
estimation of aerodynamic parameters, we see it crucial to
apply the fitness metric to relevant flight data.

With a closer look at the wind tunnel data that serves as
a foundation for the following model identification process,
we identified several possible modifications that can improve
the model. First, the lever arm of the attack point of the
force vector to the center of mass is implicit in the model.
Gryte et al. tweaked the vector describing the lever arm
to have the pitch moment aligned with their experience.
We instead explicitly model the generalized forces at the
aerodynamic reference point, the location of the force sensors
during the experiments, and identify the vector to center
of mass based on flight data. Second, we have a more
thorough look at the subset of the available data suitable
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Fig. 1. Overview of the modeling work. Steps that are in solid rectangles
are contributions in this article and dashed rectangles represent results
that have been published in the references. Given that the model structure
of the aerodynamic coefficients that can be obtained from wind tunnel
experiments is well-understood, we use ordinary least squares (OLSQ) in
this identification step. To allow for more flexibility with respect to the
model structure, we use a second order polynomial library and a sequentially
thresholded least squares algorithm (STLSQ) to find the damping model
based on flight data.

for identifying aerodynamic linear coefficients related to
the side-slip angle. Moreover, we reduce the drag model’s
complexity and simultaneously improve its fitness. Third,
the final set of parameters proposed by Gryte et al. is a
blend of parameters identified by the wind tunnel, results
from a Vortex-Lattice method (XFLR), and additional manual
tweaks to the parameters based on experience from flight
experiments. The result is a set of parameters that is not
optimal in either of the original identification procedures. We
present a different approach that combines the use of wind
tunnel and flight data, which leads to a coherent parameter



Fig. 2. Skywalker X8.

vector, see Figure 1.
This paper aims to find an improved model by dealing

with the outlined shortcomings of the described identification
process. A significant part of the model will be re-identified
based on the same wind tunnel data used by Gryte et al. [1].
However, instead of finding the damping coefficients for the
rotational motion through a Vortex-Lattice method, we use
actual flight data. Finally, evaluate the new model compared
to the baseline model from Gryte et al. [1] and a model
entirely based on the estimated coefficients from the flights.

B. Related Work

This paper is not the first to consider the aerodynamic
model of the X8. In addition to [1], which is a continuation
of [5], several publications consider this popular airframe.
Farhadi et al. [6] identify a lateral model of the X8 using
flight data, in a combination of the output-error method and
ordinary least squares regression. Gan et al. [7] identify the
static aerodynamic coefficients from a Reynolds-averaged
Navier-Stokes (RANS) computational fluid dynamics (CFD)
program. Winter et al. [8] also provide a RANS CFD
analysis, further using time-series CFD simulations to study
the effect on the dynamic coefficients in situations where
the airfoil is subject to ice aggregation. All three papers
rely to some extent on our previous work [1], [5]. System
identification based on flight data is also a well-established
field [9], [10], and has been widely used in modelling of
fixed-wing unmanned aerial vehicles (UAVs), both in the
time- [11], [12] and frequency domain [13], [14]. More
recently, Kaiser et al. [15] presented results where they
identify the longitudinal dynamics of a fighter aircraft using
the Sparse Identification of Nonlinear Dynamics (SINDy)
proposed by Brunton et al. [16].

C. Contribution

We improve the aerodynamic model proposed in [1], here-
after referred to as baseline model, by re-using the available
wind tunnel data. We transform the data to increase its planar
symmetry and use flight data to find the dynamic coefficients
instead of the previously applied Vortex-Lattice method. The
improved model is made available to the research community
on github1.

1https://github.com/krisgry/x8

II. METHOD

A. The Dataset
The experiments conducted by Gryte et al. are thoroughly

described in [1]. The collected dataset includes variations
of the airspeed, angle of attack, and sideslip angle, as well
as control surface deflections. The tests were based on
the assumption of decoupled dynamics in the lateral and
longitudinal plane at small aerodynamic angles. This means
that it includes rotations of the lateral plane at zero angle of
attack, and rotations of the longitudinal plane at zero sideslip
angle. The angle of attack was varied between −10 deg and
15 deg with some measurements at higher values and low
airspeeds to identify forces in the stall regime. Gryte et al. [1]
tested five uniformly distributed elevator deflections between
−20 deg and 20 deg at airspeeds set to either 18m/s or
21m/s. With zero aileron deflection and sideslip angle, the
data points available for the identification of the longitudinal
coefficients are given by

(Va, α, δe) ∈ {18, 21} × [−10, 15]× {−20,−10, 0, 10, 20},
(1)

where Va, α, and δe denote airspeed, angle of attack and
elevator deflections, respectively. The dataset for identify-
ing the lateral coefficients includes sideslip angle variations
within −15 deg and 15 deg at the same airspeeds as for the
longitudinal tests. Based on the assumption of the aileron to
be symmetric around zero, the dataset only includes negative
deflections. At zero elevator deflection and angle of attack,
the lateral data points are given by

(Va, β, δa) ∈ {18, 21} × [−15, 15]× {−20,−10, 0}, (2)

where β and δa denote sideslip angle and aileron deflection,
respectively. Forces and moments due to the vehicle’s weight
were compensated during each run. The airframe was care-
fully mounted onto the force sensor to align the measurement
axes with the axes of the body-fixed frame. The remaining
mis-alignment between the measurement frame and the body-
fixed frame was accounted for through a calibration routine
which we describe in a separate paper.

B. Dataset for Model Identification
The aerodynamic force coefficients were computed based

on the measured body-fixed forces, airspeed and geometric
factors. The body-fixed forces X, Y, Z ∈ R are transformed
to the forces referred to as drag, crosswind and lift, denoted
by D, C, L ∈ R as follows:

fwa =

DC
L

 = Rbw(α, β)
⊤

−X
Y
−Z

 . (3)

The rotation matrix Rbw ∈ SO(3) describes the axes of the
wind frame in the coordinates of the body-fixed frame. It is
defined as a function of angle of attack and sideslip angle

Rbw(α, β) =

c(β)c(α) −s(β)c(α) −s(α)
s(β) c(β) 0

c(β)s(α) −s(β)s(α) c(α)

 , (4)



where we use the shorthand notation s(·), c(·) for
sin(·), cos(·), respectively.

The moments about the roll, pitch and yaw axes are
denoted by l, m, n ∈ R and given in the body-fixed frame.
The dimensionless coefficients are given by

CD =
D

q̄Swing
, CC =

C

q̄Swing
, CL =

L

q̄Swing

Cl =
l

q̄Swingb
, Cm =

m

q̄Swingc
, Cn =

n

q̄Swingb
, (5)

where Swing, b, c ∈ R denote the wing surface, wing span and
mean chord length, respectively. The coefficients are plotted
in Figure 3 for their respective variations of the control
surfaces and aerodynamic angles. Higher angles of attack
measurements beyond those used for model identification are
included in the figures to determine the linear region below
the stall angle. We see that for identifying a linear model
in CL and Cm, the angle of attack measurements need to
be restricted to angles below 12 deg, which is referred to as
stall angle.

Having a look at the lateral coefficients, we can see that
nonlinear effects are notable for sideslip angles that are either
below −5 deg or above 5 deg. The nonlinearities appear
negligible for roll and pitch moment, but are clearly visible
for the yaw moment. Regarding zero aileron deflections,
identifying the yaw moment coefficient would in the case
of ideal measurements lead to a model that is invariant
to sideslip angle variations. Moreover, the effect of aileron
deflections on the yaw moment coefficient seems to be
saturated for aileron deflections below −10 deg (or above
10 deg due to symmetry), which should be considered when
selecting a subset of the data for identification of a model
for Cn that is linear in δa. None of these effects are taken
into account by Gryte et al. [1].

1) Model structure: We modify the structure of the ex-
isting model with alterations to the drag coefficient. For
now, we focus on a subset of the aerodynamic coefficients
that can be identified based on wind tunnel experiments
in which the airframe is statically mounted to a pan-tilt-
unit. The dynamic coefficients that capture effects of the
angular rate are therefore not included. The expressions for
the identifiable aerodynamic coefficients are given by

CD = CD0
+ CDα

α+ CDαδe
αδe + CDα2α

2

CC = CC0 + CCβ
β + CCδa

δa

CL = CL0 + CLαα+ CLδe
δe

Cl = Cl0 + Clββ + Clδa
δa

Cm = Cm0 + Cmαα+ Cmδe
δe

Cn = Cn0 + Cnβ
β + Cnδa

δa. (6)

The model of the drag coefficient does not include the
effects of sideslip, given that the sensitivity of the drag
force to sideslip angle variations was not significant. We also
replace the quadratic elevator term by a mixed term with the
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Fig. 3. Measured aerodynamic coefficients for varying aerodynamic angles
and surface deflections. The moment coefficients in the right column are
with respect to the sensor position. The interval of the angle of attack
[−10 deg, 12 deg] and the sideslip angle [−5 deg, 5 deg] (marked in blue)
are suitable for identification of a linear model.

TABLE I
PARAMETERS OF THE WIND TUNNEL MODEL

CD0
0.023617 Cm0 0.051656 CL0

0.058192
CDα 0.012051 Cmα 2.409198 CLα 3.996278
CDαδe

0.075081 Cmδe
-0.043286 CLδe

0.242942
CDα2

1.725632

Cl0 0.001839 CC0 -0.002544 Cn0 0.000058
Clβ -0.064541 CCβ

-0.23371 Cnβ 0.006828
Clδa

0.094302 CCδa
0.036065 Cnδa

-0.004462

angle of attack, reflecting the fact that a negative/positive
elevator deflection at a positive angle of attack actually
decreases/increases the area of the UAV that is orthogonal
to the air stream.

Remark 1. Gryte et al. [1] also saw a notable drop in the
coefficient of determination for the drag model when auto-
validating it against the wind tunnel measurements. They
however assumed misalignment of the airframe to be the
issue and did not conclude that the aerodynamic coefficient
is not significantly affected by sideslip angle variations.

2) Identification of the model parameters: The model
structure in (6) is well-suited for linear regression which can



be used to identify models of the form

z = XΘ+ ϵ (7)

where z ∈ RN is a vector of N measurements, X ∈ RN×p

is the regressor matrix composed of the model terms, and
Θ ∈ Rp is the vector of model parameters. The part of
the measurements that are not explained by the model are
captured by the residual ϵ ∈ RN . Gauss showed that a cost
function composed of the sum of squares of the residuals

J(Θ) =
1

2
(z − XΘ)

⊤
(z − XΘ), (8)

is minimized by the solution

Θ̂ = (X⊤X)
−1
X⊤z. (9)

To find an estimate of the parameter vector Θ̂ for the
drag coefficient model, we use the regressor matrix and
measurement vector

XD =

1 αi αiδei α2
i

...
...

...
...

1 αN αNδeN α2
N

 , z =

CDi

...
CDN

 . (10)

The parameters of the other coefficients are identified in
the same way by parameterizing the regressor matrix and
measurement vector according to the model structure in (6).
A problem with ordinary least squares is that it will fit the
given parameter vector to the measurements, regardless of
how well its elements explain them, which requires a good
confidence in the proposed model structure. Regarding the
preceding discussion of the measurements, it is clear that
a linear model is appropriate for all coefficients except the
drag coefficient, which also requires quadratic terms. The
resulting model parameters are summarized in Table I and
plotted against the measurements in Figure 4. The linear
models correlate well with the measured data in general.
The notable exception is the yaw moment coefficient where
a model that is linear in the aileron deflection significantly
differs from the measurements at higher deflections. The drag
coefficient model could be extended by polynomial terms of
the angle of attack up to order four to better capture the data
at negative angles. Negative angles of attack are usually not
part of the nominal flight conditions, and we prioritize model
simplicity over global accuracy in this case.

The coefficients Cl, Cm, Cn model the aerodynamic mo-
ments at the point where the sensor was located during the
wind tunnel experiments. Let this point be referred to as the
aerodynamic reference point. This is in contrast to [1], that
propose a model with respect to the center of mass of the
airframe. The position of the point of the force measurements
relative to the center of mass was manually adjusted until
the equilibrium point of the pitch moment was shifted to an
angle of attack that approximately matched the experience
from flight tests. Instead of implicitly assuming a fixed offset,
we identify the vector based on data collected in flight tests.
The identification of this lever arm, together with a suitable
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Fig. 4. Aerodynamic models based on the wind tunnel data compared to the
measurements for sweeps of angle of attack and sideslip angle. The moment
coefficients are with respect to the sensor position.

model that augments the wind tunnel model with additional
damping, is the subject of the next section.

III. MODEL AUGMENTATION BASED ON FLIGHT
EXPERIMENTS

So far, we have found an aerodynamic model based on data
from a wind tunnel. The wind tunnel model maps relative
linear velocities and the surface deflections to aerodynamic
forces and moment, and is denoted by fwt : R5 7→ R6 which
reads as [

fwa,wt

mb
a,wt

]
= fwt(ν

b
r, δa, δe) (11)

The aim of this section is to use data collected during
flight experiments to augment fwt with a damping model
that further considers the effect of angular velocities onto
the generalized aerodynamic forces. We thus seek a function
fdamp : R6 7→ R6, and the final augmented model fwt,aug :
R8 7→ R6 such that the modeled generalized aerodynamic
forces are given by[

fwa,wt,aug

mb
a,wt,aug

]
= fwt,aug(ν

b
r, δa, δe)

= fwt(v
b
r, δa, δe) + fdamp(ν

b
r). (12)

We will further identify a separate model that is entirely
based on the collected flight data and includes effects of the



throttle δt. Let this model be denoted by fflight : R9 7→ R6

and it’s resulting forces be given by[
fwa,flight
mb

a,flight

]
= fflight(ν

b
r, δ), with δ =

[
δa δe δt

]⊤
.

(13)
A brief outline of the flight experiments to identify the new

models reads as follows: Starting from wings-level horizontal
flight, we induced oscillations of the control surfaces as a
chirp signal with frequency range from 4Hz to 8Hz and
minimum and maximum set to −5 deg and 5 deg, respec-
tively. We moreover used step signals that were added as
doublets to the elevators and in the form of 1-2-1 signals to
the ailerons as depicted in Figure 5. The relative velocities
from Ardupilot’s wind velocity observer, IMU data and
actuator set-points are recorded and used for the following
identification procedure.

We assume that a model of the propulsion is available
that maps airspeed and throttle set-point to a propulsion
force and let the result be denoted by f bt,prop ∈ R3. For
example the propulsion force model identified in [3] models
the propulsion force vector f bt,prop =

[
T 0 0

]⊤
with

CT = δt(Va + δt(km − Va))(km − Va)

T = ρSpropηpropCT . (14)

The propeller parameters are Sprop = 0.108, ηprop = 0.248
and the electric motor parameter is km = 37.42. For more
details on the identified thrust model, see [3]. A last assump-
tion on existing models is knowledge of the moment of inertia
Jb, which has been identified based on bifilar pendulum tests
and is given by

Jb =

 0.335 0 −0.029
0 0.14 0

−0.029 0 0.40

 (15)

The observed generalized aerodynamic forces are then com-
puted by combining several measurements as

fwa,z = mRbw
⊤abnb − f bt,prop (16)

mb
a,z = Jbω̇b

nb − Jbωb
nb × ωb

nb, (17)

where abnb ∈ R3 denotes the linear acceleration measured by
the IMU and m denotes the mass of the UAV. The observed
angular acceleration ω̇b

nb ∈ R3 is computed using the
centered difference formula based on the observed angular
velocity.

In the following section we will first discuss how to find
a lever arm between the center of mass and the aerodynamic
reference point, i.e. the position of the measurement equip-
ment in the wind tunnel tests. The lever arm will be used to
correct the moments of the wind tunnel model. After that
follows a discussion on how to find the damping model,
fdamp, and the model that is fully identified based on flight
data, fflight.
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Fig. 5. Step inputs used in the flight experiments for model identification
and evaluation.

A. Distance from Aerodynamic Reference Point to the Center
of Mass

Let the coefficients that model the aerodynamic moment at
the aerodynamic reference point used in the wind tunnel be
denoted by C{l,m,n},ar and the values at the center of mass
be denoted by C{l,m,n},cm. Their difference is determined by
the lever arm rar,cm and the aerodynamic force coefficients
as Cl

Cm

Cn


cm

=

 Cl

Cm

Cn


ar

+ diag(b, c, b)
−1

(
rar,cm ×

CX

CY

CZ

).
(18)

The expression follows from simple mechanics of a force-
inducing moment given by the cross-product of the lever arm
and the force vector.

We can again use linear regression to find rar,cm and use
the skew-symmetric operator S to express a cross-product of
two vectors x, y ∈ R3 as a matrix operation x×y = S(x)y.
It is defined for a vector x =

[
x1 x2 x3

]⊤
as

S(x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (19)

Given N measurements, for each sample i let

Xi = −diag(b, c, b)
−1
S

(
Rwb(α, β)

⊤

−CD

CC

−CL

), (20)

zi =

 Cl

Cm

Cn


z

−

 Cl

Cm

Cn


ar

(21)

which can be vertically concatenated to give the regressor
matrix X ∈ R3N×3 and measurement vector z ∈ R3N . Using
the measured data gives the OLSQ

rar,cm =
[
−0.226 −0.02 0.144

]
, (22)

which is in line with the vector found in [1].

Remark 2. Considering the dimensions of the Skywalker
X8, an offset of 0.144m in the z-direction may seem too
high. However, keep in mind that this reflects the different



orientations of the sensor frames of the force balance used
in the wind tunnel experiments and the frame of the IMU in
the flight experiments.

B. Aerodynamic Models from Flight Observations
In this section, we will first give a brief outline of the

method that we use to identify the models fdamp and fflight
before briefly showing how to apply it.

1) Sparse Identification of Nonlinear Dynamics: Ordinary
least squares that we used up until now has the drawback that
it gives a solution that fits the proposed parameter vector
to the measurements, even if a subset of the parameters
actually does not explain the underlying dynamics in a
meaningful way. There are several methods that address this
problem by introducing an additional penalty on the size of
the coefficients. A prominent method is Ridge Regression
using an additional l2 regularization. Other methods such
as Lasso or Elastic Net fit sparse models by including l1
or l0 regularization sparse models with fewer terms. In this
direction, Brunton et al. [16] developed Sparse Identification
of Nonlinear Dynamics (SINDy). Since its first publication in
2016, SINDy received a lot of attention and has recently been
made available as an open-source toolbox implemented in
Python [17]. The idea is to use a library of symbolic functions
such as low-order polynomials and optimize over the induced
function space to have a linear combination of nonlinear
functions describe the dynamical system that best fits the
collected measurement data. The underlying assumption is
that the dynamics have a sparse representation in the function
space that is described by the library. We use SINDy to find
an expression for the damping forces of the airframe, and
give a brief outline on how it works.

Consider an autonomous dynamic system that is not af-
fected by external disturbances. It’s dynamics can be de-
scribed by

ẋ = f(x) (23)

for which the function f is to be determined from data of
the state x(t) and its derivative ẋ(t). The data at sampling
times t1, t2, . . . , tm is arranged into matrices X, Ẋ ∈ Rm×nx

given as

X =


x⊤(t1)
x⊤(t2)

...
x⊤(tm)

 , Ẋ =


ẋ⊤(t1)
ẋ⊤(t2)

...
ẋ⊤(tm)

 . (24)

Then a function library Θ(X) consisting of nonlinear
candidate functions based on X is used, for example

Θ(X) =
[
1 X XP2

]
(25)

where the matrix XP2 includes quadratic nonlinearities:

XP2 =


x2
1(t1) x1(t1)x2(t1) . . . x2

nx
(t1)

x2
1(t2) x1(t2)x2(t2) . . . x2

nx
(t2)

...
...

. . .
...

x2
1(tm) x1(tm)x2(tm) . . . x2

nx
(tm)

 . (26)

The coefficients Ξ = [ξ1 ξ2 . . . ξnx
] are then used to set

up a sparse regression problem to select the nonlinear can-
didate functions that model the time-derivatives Ẋ through
a linear combination of the features that are included in the
function library

Ẋ = Θ(X)Ξ. (27)

The minimization problem seeks the coefficients according
to the objective

ξk = argmin
ξk

∥Ẋk −Θ(X)ξk∥2 + α∥ξk∥1 (28)

where the ∥·∥1 promotes sparsity in the function space.
A trade-off between low model complexity and sufficient
accuracy can be made by tuning the parameter α. The result
of the sparse symbolic regression, which is implemented in
[17], is the coefficient vector Ξ from which we can construct
the governing equations as

ẋk = fk(x) ≈ Θ(x⊤)ξk (29)

with Θ(x) denoting the vector of symbolic functions that
were proposed as candidates.

2) Damping model augmentation to the wind tunnel
model: Now, to find expressions for the damping terms to
augment the wind tunnel model, we use the error vectors of
the generalized aerodynamic forces. Let the values obtained
by the wind tunnel model be denoted by fwa,wt, m

b
a,wt. The

goal is to find a damping model fdamp that minimizes a
residual ϵ of the difference between the wind tunnel model
and the observations fwa,z, m

b
a,z , which can be formulated as[

fwa,z − fwa,wt

mb
a,z −mb

a,wt

]
= fdamp(x) + ϵ, with x = νb

r. (30)

with ϵ being the remaining error.
The variables to explain the errors are the relative veloc-

ities νb
r, which build the polynomial function library in the

form of (25). We used six sequences of oscillating input dis-
turbances to the aileron and elevator over a duration of 15 s as
training data. Finding the error models with the sequentially
thresholded least squares (STLSQ) algorithm and α = 0.05
with the threshold set to 0.1 gives the coefficient matrix Ξ
shown in Table II. The coefficient vectors for the rotational
damping model have a desirable sparse structure which shows
that a simple model is sufficient to explain the difference
between the observed moment and the linear model from the
wind tunnel. The coefficient vectors for the force error model
are less sparse, which indicates that a function library based
on second order polynomials of the relative velocities is not
sufficient to capture the difference between the wind tunnel
model and the observations. For instance angle of attack,
sideslip angle, airspeed or their products are not included.
The extension of the feature library to rational polynomials,
trigonometric functions or fractional exponents is straight
forward and may give models that are more accurate and
sparse.



TABLE II
THE COEFFICIENT MATRIX Ξ FOR THE DAMPING AUGMENTATION TO

THE WIND TUNNEL MODEL. THE COEFFICIENTS THAT ARE 0 ARE
STRUCTURAL ZEROS AND NOT ROUNDED.

dX dY dZ dl dm dn

1 -15.01 -2.88 -398.74 3.22 0.29 0
u 0.52 0.21 48.51 -0.21 0 0
v 0 6.89 18.54 0.66 0 0
w 8.73 2.02 -41.30 0 -0.24 0
p 2.70 2.07 -8.62 -0.67 0 0
q -5.60 -0.26 50.31 0.16 0.50 0
r -4.89 -26.10 21.09 32.12 -0.12 -0.18
u2 0 0 -1.43 0 0 0
uv 0 -0.33 -1.06 0 0 0
uw -0.48 -0.11 3.04 0 0 0
up -0.16 -0.14 0.50 0 0 0
uq 0.28 0 -3.30 0 0 0
ur 0.23 1.86 -1.16 -2.16 0 0
v2 0.16 0 -2.03 0 0 0
vw 0 0.16 -0.72 0 0 0
vp 0 0 -0.17 0 0 0
vq 0 -0.15 0.56 0 0 0
vr 0.85 -0.20 -7.35 0 0 0
w2 -0.41 0 0.30 0 -0.15 0
wp 0 0.44 0 0.44 0 -0.17
wq 0 0 0.44 0 0.24 0
wr 0.13 0 0.84 0.87 0 0
p2 -0.26 0 -0.57 0 0 0
pq 0.21 -0.95 -0.48 -0.14 0 0
pr -0.26 -0.23 -4.86 0.36 -0.66 0.39
q2 0.86 0 -0.70 0 -0.23 0
qr -0.53 -0.37 -0.46 -2.52 0 0
r2 2.77 -0.76 -43.44 -0.49 -0.56 0

Remark 3. The training data can also be used to find the
aerodynamic damping coefficients that that were used in [1]
by means of ordinary least squares. However, this leads to
a degrading fitness compared to the raw wind tunnel model
where damping is neglected.

3) Full model of the aerodynamic forces: A model that
is identified based on the available flight data can be used
for comparison. We seek a model fflight for the generalized
aerodynamic forces as a function of the relative velocities and
the control input δ =

[
δa δe δt

]⊤
. This can be formulated

as [
fwa,z
mb

a,z

]
= fflight(x) + ϵ with x =

[
νb
r

δ

]
. (31)

with ϵ being the error. We use the same training data and
parameterization of the optimizer as for the damping model.
The coefficients of fflight are given in Table III. Note again
the sparsity of the resulting coefficient vectors, indicating a
good choice of the function library. A problem that is appar-
ent in this model is that the data for identification includes
mostly constant throttle so that there is little information
on how it affects the dynamics. The result of this is the
high magnitudes of the coefficients related to the terms that
include δt. A more rigorous test design would be needed
to accurately model the effect of the throttle. During this
test campaign, however, the primary purpose was to find the
rotational damping coefficients to augment the wind tunnel

model. A more thorough identification of a model that is
entirely based on data collected in flight is part of future
work.

IV. FLIGHT RESULTS AND DISCUSSION

The models are compared against the baseline model
presented in [1] in test sequences including chirp signals
and step perturbations to elevator and aileron. The modeled
aerodynamic forces for the respective disturbances to the
aileron and elevator are depicted in Figure 6 and Figure 7. A
set of different chirp signals was used to identify the damping
model and the full aerodynamic model based on flight data,
and no step perturbations were used in the identification
process.

We use the coefficient of determination (R2) as a metric to
evaluate the model fitness in terms of the generalized aero-
dynamic forces and the resulting accelerations. The results
are summarized in Table IV. They indicate that our model
obtained from the wind tunnel without damping already
outperforms the baseline model in all forces except for the
side force Y . However, the lateral acceleration v̇ shows that
the aerodynamic force in this direction is not significant
compared to the coriolis term. The damping augmentation
further improves the wind tunnel model except for the roll
moment l and the resulting acceleration ṗ. This suggests an
overfitting of the roll damping to the training data. Another
possible explanation is the feedback controller in the loop
that will introduce disturbances into the observations of the
open-loop damping. A more rigorous test campaign in which
the UAV is operated in open-loop for the collection of the
training data can mitigate this problem. Upon inspection of
the trajectories depicted in Figure 6 and Figure 7, we see that
the roll model from the wind tunnel data is already capturing
the most important transients of the observed roll moment,
which should be sufficient for model-based control. Similar
arguments can be made for the yaw moment n, which in
contrast to the roll moment, is improved by the damping
augmentation. The most improvements to the wind tunnel
model are in the pitch moment m, for which we see drastic
improvements by adding a small set of additional terms, as
can be seen in Table II.

Regarding the modeled forces X, Y, Z, the R2 scores and
the depicted trajectories show that the wind tunnel model
without damping augmentation is a better fit than the baseline
model. However, both models appear to capture all relevant
transients and thus differ from the observations by a slowly
time-varying offset. The variance of this offset is further
reduced for the trajectories of the accelerations, which are not
shown here. Offset-free control and integral action are well-
suited to compensate for this type of model mismatch, such
that the additional complexity introduced by the damping
augmentation is not necessary for model-based control.



TABLE III
THE COEFFICIENT MATRIX Ξ FOR THE GENERALIZED FORCES

IDENTIFIED WITH FLIGHT DATA.

X Y Z l m n

1 27.72 -5.94 -200.19 -8.80 3.19 -1.04
u -0.97 0.41 23.41 0.52 -0.22 0
v 2.49 -1.81 -15.41 0.20 0 0.50
w 11.27 0 -23.38 -0.64 -0.57 0
p 4.96 3.54 -16.26 0 0 0
q -10.49 0.23 56.32 0.56 0.86 0
r 20.82 -9.70 -77.45 -5.75 -5.21 -0.52
δa 0 0 0.10 0 0 0
δe 0 0 0 0 -0.10 0
δt -118.23 17.33 14.27 22.95 -3.23 3.29
u2 0 0 -0.89 0 0 0
uv -0.11 0 0.87 0 0 0
uw -0.66 0 0.98 0 0 0
up -0.36 -0.17 1.18 0 0 0
uq 0.67 0 -4.15 0 0 0
ur -1.53 0.76 5.85 0.79 0.31 0
uδa 0 0 0 0 0 0
uδe 0 0 -0.12 0 0 0
uδt 2.20 -0.93 7.05 -1.12 0.37 0
v2 0 0 0 0 0 0
vw 0.18 0 -0.78 0 0 0
vp 0 0 0 0 0 0
vq 0 0 0.47 -0.10 0 0
vr -0.39 -0.29 -0.69 0 0 0
vδa 0 0 0 0 0 0
vδe 0 0 0 0 0 0
vδt -1.40 1.24 3.31 -1.23 0 -0.45
w2 0.47 0 -0.36 0 0 0
wp 0 0.21 0 0.26 0 0
wq -0.66 0 1.21 0 0.12 0
wr 2.41 0 -6.73 0.72 0 0
wδa 0 0 0 0 0 0
wδe 0 0 0 0 0 0
wδt 2.02 -0.31 -3.06 0.79 0.28 0
p2 0 0 -1.36 0 0 0
pq 0 -0.39 0 0 0 0
pr 0.16 0 -3.12 -0.41 -0.62 0
pδa 0 0 0 0 0 0
pδe 0 0.10 0 0 0 0
pδt 2.16 0 -6.49 -0.93 0 0
q2 0.96 0 -2.36 0 -0.23 0
qr -2.98 -0.49 4.33 -1.84 0 -0.30
qδa 0 0 0 0 0 0
qδe 0 0 0 0 0 0
qδt -3.78 0 17.89 -0.42 -0.64 0
r2 2.61 -2.61 5.17 -2.45 0 0.45
rδa 0 0 -0.75 0 0 0
rδe -0.18 0 0.37 0.12 0 0
rδt 2.41 -5.04 -19.24 -12.51 0 -0.71
δ2a 0 0 0 0 0 0
δaδe 0 0 0 0 0 0
δaδt 0 0.34 0 0.69 0 0
δ2e 0 0 0 0 0 0
δeδt 0 0.14 -1.19 0 -0.12 0
δ2t 80.40 -1.86 -106.05 -4.67 -2.28 -2.86
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Fig. 6. Forces for aileron disturbances. The chirp disturbance was active
during the first half and the step disturbance during the second half.

V. CONCLUSION

In this paper, we looked at the shortcomings of the existing
model that we used for the dynamic model of a low-level
nonlinear model predictive controller (NMPC). A calibration
procedure that finds a static transformation for the wind
tunnel data and a more careful consideration of the subset of
data in which the aerodynamic coefficients are linear helped
to improve the model compared to the baseline model [1].
Additional damping augmentation using SINDy further lifted
the quality of the model which we demonstrated using flight



TABLE IV
THE R2 SCORES FOR THE ENTIRE FLIGHT, INCLUDING THE MODELED AERODYNAMIC FORCES AND THE RESULTING ACCELERATIONS.

X Y Z l m n u̇ v̇ ẇ ṗ q̇ ṙ

baseline -3 -0.27 -1.5 -3.1 -1.3 -0.63 -1.3 0.93 -0.19 -3.1 -1.3 -0.62
wt -1.6 -0.5 -1 0.093 -0.096 0.21 -0.52 0.91 0.036 0.089 -0.096 0.036
wt,aug 0.68 0.12 0.63 -0.76 0.7 0.37 0.69 0.94 0.82 -0.77 0.7 0.26
flight 0.71 0.24 0.81 0.6 0.72 -0.0047 0.65 0.95 0.91 0.6 0.72 -0.26
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Fig. 7. Forces for elevator disturbances. The chirp disturbance was active
during the first half and the step disturbance during the second half.

observations. We also used SINDy to identify a model that
is entirely based on in-flight data collections, which does
not require access to a wind tunnel and therefore helps
to significantly reduce cost and effort. We discussed the
implications of the additional complexity in light of the
model mismatch for model-based control. However, a more
rigorous design of the test campaign may improve the model
quality, in particular larger variations to the throttle and open-
loop training sequences for the control surfaces are needed.
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