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Abstract— Inner-loop control algorithms in state-of-the-art
autopilots for fixed-wing unmanned aerial vehicles (UAVs) are
typically designed using linear control theory, to operate in
relatively conservative flight envelopes. In the Autofly project,
we seek to extend the flight envelopes of fixed-wing UAVs to
allow for more aggressive maneuvering and operation in a wider
range of weather conditions. Throughout the last few years, we
have successfully flight tested several inner-loop attitude con-
trollers for fixed-wing UAVs using advanced nonlinear control
methods, including nonlinear model predictive control (NMPC),
deep reinforcement learning (DRL), and geometric attitude
control. To achieve this, we have developed a flexible embedded
platform, capable of running computationally demanding low-
level controllers that require direct actuator control. For safe
operation and rapid development cycles, this platform can be
deployed in tandem with well-tested standard autopilots. In this
paper, we summarize the challenges and lessons learned, and
document the system architecture of our experimental platform
in a best-practice manner. This lowers the threshold for other
researchers and engineers to employ new low-level control
algorithms for fixed-wing UAVs. Case studies from outdoor field
experiments are provided to demonstrate the efficacy of our
research platform.

I. INTRODUCTION

A. Background and motivation

Fixed-wing unmanned aerial vehicles (UAVs) can be an
essential part of robotic networks deployed in ocean mon-
itoring, search and rescue, crop monitoring in agriculture,
and logistic infrastructure, to name a few. For guidance, nav-
igation, and control (GNC) of these vehicles, several open-
source hardware and software systems exist. For instance,
the ArduPilot [1] and PX4 [2] software suites have been
widely adopted by industry, research institutions, as well as
hobbyists. Over the last decade, the open-source ecosystems
have stimulated many drone startups and considerable growth
in the unmanned systems industry.

The low-level control algorithms (i.e., control of the vehi-
cle’s attitude and speed) are typically based on linear control
theory. The controllers are designed to operate close to
some nominal operating conditions (trim conditions), and the
flight performance is usually satisfactory for non-aggressive
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maneuvers under relatively calm wind conditions. However,
for more aggressive flight trajectories, nonlinear aerodynamic
effects become increasingly significant, causing performance
deterioration and in the worst case, instability. A practical
approach to this problem is to limit the range of flight
conditions the UAV is operated in, referred to as the flight
envelope.

The nonlinear nature of the underlying physics suggests
that methods in nonlinear control theory should instead
be used to design more advanced autopilots that are less
conservative, more capable of agile maneuvering, and which
allow for a wider flight envelope. Such functionality will
increase the capabilities of fixed-wing UAVs and can lead to
new innovative use-cases and products. Although promising
results exist using nonlinear methods such as e.g. dynamic
inversion [3], backstepping [4], [5], and adaptive control [6],
these methods have arguably not been developed to the
mature level required for implementation in UAV autopilots.
Many nonlinear control algorithms have not been sufficiently
tested outside nominal operating conditions for fixed-wing
UAVs. Moreover, flight control methods developed for high-
performance aircraft are not easily adopted since fixed-
wing UAVs typically operate at low speeds with small stall
margins, [7], and only limited resources are available for
tuning in many cases.

Our research seeks to extend the flight envelope of fixed-
wing UAVs to perform more aggressive maneuvers and
operate in a wider range of weather conditions. In particular,
we base our autopilot designs on nonlinear control theory
and then demonstrate the performance of these methods in
extensive field experiments. We argue that to leverage the full
potential, the low-level, linear PID loops need to be replaced
with nonlinear counterparts. To validate this hypothesis, the
experimental platform requires direct access to the actuators.

Over the course of the last few years, we have successfully
flight tested several advanced nonlinear algorithms for atti-
tude control of fixed-wing UAVs: nonlinear model predictive
control (NMPC), deep reinforcement learning (DRL), and
geometric attitude control (GAC), each demanding different
capabilities in the onboard avionics stack. In particular,
NMPC is very computationally demanding, as a nonlinear
optimization program needs to be solved at every controller
update. DRL is more computationally efficient, but requires
access to some framework for artificial neural networks,
which is not provided by the standard autopilots. As a
result of this work, we have established a common hardware



platform, system architecture, and operating procedures for
flight experiments of low-level nonlinear control algorithms
for fixed-wing UAVs. In this paper, we summarize this
work with a focus on the challenges and lessons learned
and document our experimental platform in a best-practice
manner.

B. Related work

We classify algorithms as either high-level
(guidance/outer-loop) controllers, or low-level (inner-
loop) controllers. Whereas the high-level algorithms
are typically implemented on a single-board computer,
transmitting references to standard low-level control loops
running on some commercial or open-source autopilot (e.g
ArduPilot [1] or PX4 [2]), the low-level algorithms need
direct access to the actuators. A comprehensive review
of different control architectures is not in the scope of
this paper. Although we mention some notable works that
include experimental verification of high-level controllers,
our focus is on low-level control and the computing
platforms and system architectures used.

The low-level algorithms can be further classified concern-
ing their requirements to the embedded computing platform
as either: (a) lightweight, or (b) computationally intensive.
Lightweight algorithms are easily integrated into open-source
autopilots and can be run directly on hardware platforms
such as the Pixhawk or CubePilot series of autopilots. For
instance, in [8], the low-level control framework is based
on explicit model predictive control (MPC) using linearized
models and implemented directly on the resource-constrained
onboard avionics. The unified guidance and low-level con-
trol architecture in [9] is implemented directly on a mRo
PixRacer with a 180Mhz ARM Cortex M4 processor, by
modifying the existing PX4 middleware.

Among the more computationally intensive algorithms, the
NMPC scheme in [10] first poses a feasibility problem to
generate dynamically feasible paths from an initial guess
found via a Rapidly-Exploring Random Tree (RRT) algo-
rithm combined with spline smoothing. Then, a time-varying
Linear Quadratic Regulator (LQR) is used to follow the
nominal trajectories calculated by the planner in a receding-
horizon manner. Their experiments are conducted in a con-
trolled lab environment with a motion capture system and
desktop computer for nonlinear optimization. The desired
actuator signals are transmitted to the vehicle through radio
communication. The authors in [11] identify second-order
models of the autopilot-controlled low-level dynamics which
is used in their MPC guidance algorithm. The computing
platform is an Intel UP board running a Robot Operating
System (ROS) node. In [12] MPC controllers for trajectory-
tracking of both fixed-wing and rotary-wing UAVs are pre-
sented, with a special focus on ROS integration. ROS is also
used in [13], where an optimal path-following controller for
windy conditions transmits roll and pitch angle references to
low-level controllers running in PX4 on a Pixhawk.

Looking wider, into the realm of multirotor UAVs, [14]
presents a controller for unified trajectory optimization and
tracking with a hexacopter UAV. They explicitly aim at im-
proving performance by giving the controller direct actuator
access. The optimal controller is implemented on a stationary
Intel Core i7 processor that sends the velocity commands of
the rotors to the flight control unit. State estimation is done
with an optical motion capture system. The work in [15]
aims at showing that current optimal control solvers have
become fast enough to handle the computational burden that
is coming with highly dynamic robotics applications such as
the low-level control of multirotors for which they provide
experimental results.

DRL algorithms are computationally efficient during on-
line execution, but often require more flexibility than is typ-
ically provided by standard flight controllers. Some special-
ized solutions exist, e.g. in [16], a low-level reinforcement
learning (RL)-based controller for multirotors is validated
experimentally using a PixRacer flight control board. In [17],
a model-based RL algorithm for low-level control of a
Quadrotor is validated using the open-source Crazyflie 2.0
quadrotor. pulse-width modulation (PWM) commands are
calculated on a ROS server running on the ground and sent
to the UAV using radio. The Neuroflight neural network-
based flight control firmware is presented in [18], where
experimental validation of a low-level RL controller for a
quadcopter is carried out using a 216MHz ARM Cortex-M7
microcontroller.

C. Contributions

There does not seem to be any documented standard
solution or best practice for computationally demanding
fixed-wing UAV control architectures that require low-level
access to the actuators. Motivated by this, and based on our
experience with extensive field testing of a wide range of
nonlinear control algorithms, the main contributions of this
paper are:
• An overview of the Autofly project, where we describe

novel experimental results from flight testing of sev-
eral advanced nonlinear control algorithms for attitude
control of fixed-wing UAVs while articulating the key
challenges and lessons learned.

• A set of constructive guidelines on how to deploy
an experimental platform that is well-suited for the
evaluation of control algorithms that require a lot of
computational resources and direct access to the actu-
ators. Our approach also allows for switching between
the experimental algorithm and the standard autopilot,
allowing safe experimental testing at an early stage.

In summary, this lowers the threshold for other researchers
and engineers to employ new low-level control algorithms
for fixed-wing UAVs. The individual components are off-
the-shelf and thus readily available. This facilitates research
with a minimum of resources without deviating from the
main research focus.



TABLE I: Features of the compared controllers.

GAC DRL NMPC
Demand for comp. resources Low Low High
Needs dynamic model Low Medium/High High
Optimality wrt. cost/reward Low Medium High
Constraint satisfaction No No Yes
Interpretable performance Yes No Yes
Open software available Not needed Yes Yes
Available stability proofs High Low Medium

D. Organization of the paper

The rest of this paper is structured as follows: In Sec-
tion II we describe the control algorithms that have been
successfully implemented and tested using our experimental
platform. The system architecture is presented in Section III,
and our test procedure, for both ground testing and flight
experiments, is described in Section IV. In Section V, we
summarize our results, and in Section VI we discuss the
lessons learned before giving some concluding remarks in
Section VII.

II. CONTROL ALGORITHMS: OVERVIEW

In this section, we describe the main control algorithms
evaluated in the Autofly project, namely NMPC [19],
DRL [20], GAC [21], as well as a proportional-integral-
derivative (PID) benchmark implementation based on the
ArduPilot [1] fixed-wing attitude controller. The capabilities
needed to effectively run these algorithms online define
the requirements for the system architecture presented in
Section III. This section also provides the necessary back-
ground for the experimental results of Section V. An in-depth
discussion of the experimental controllers is out of scope
of this work and more details can be found in each of the
respective references [19], [20], [21]. A comparison of the
most significant features of the controllers is given in Tab. I.

A significant part of our controllers is, to some extent,
relying on accurate models of the UAV. We also depend on
dynamic models in our simulators, discussed in Section IV.
Our dynamic models are based on previous and ongoing
modeling efforts, in particular [22], [23], [24].

A. PID Benchmark

As a benchmark, we use the widely adopted ArduPi-
lot [1] open-source autopilot and compare our methods to
the ArduPlane PID attitude controller for fixed-wing UAVs.
To get a fair comparison, we implemented a version of
this in the same system as our algorithms. This means
that all algorithms run on the same hardware, in the same
software environment, and with the same communication
latencies. For reference, we have documented the equations
in Appendix A of [20].

B. Nonlinear Model Predictive Control (NMPC)

NMPC allows us to explicitly encode the flight envelope
in the controller design as nonlinear constraints in an optimal
control problem (OCP) that can be solved regularly to

obtain an optimal control input trajectory. The OCP over
a prediction horizon T usually has the form

min
x(·),u(·)

∫ T

0

l(x(τ),u(τ), r(τ))dτ +
1

2
s>Ps t ∈ [0, T )

s. t. x(0) = x0

ẋ(t) = f(x(t),u(t),d(0) t ∈ [0, T )

h(x(t),u(t), s) ≥ 0 t ∈ [0, T ),

where the cost consists of l, denoting a stabilizing stage
cost that is often in quadratic form, and a penalty for the
slack variables s that are included for constraint relaxation
to guarantee the feasibility of the approximating quadratic
program (QP). The constraints include the initial condition,
denoted by x0, dynamic constraints in form of the con-
tinuous model, denoted by the vector Ordinary Differential
Equation (ODE) defined by f , and inequality constraints to
reflect operational and actuator limits, denoted by h. Optimal
performance with respect to a defined cost function and
prediction in addition to constraint satisfaction by use of the
actuation system in an integrated multiple-input multiple-
output (MIMO) fashion are traits that are hard to achieve
with the existing autopilot software such as ArduPlane. The
drawback however is its increased computational complexity
and requirement for a dynamic model of the UAV, [25],
which demands powerful embedded computing platforms
and a considerable engineering effort in system identifica-
tion [26]. The field of MPC is quite mature and conditions
for performance and stability guarantees exist on a theoretical
level but may be hard to formally verify for a particular
system [27].

C. Deep Reinforcement Learning (DRL)

In addition to NMPC, we looked at DRL, a set of data-
driven methods for approximate optimal control, where the
controller is implemented as an artificial neural network
(ANN) [28]. These methods can operate on and optimize
control performance for the full nonlinear dynamics in a
model-free manner (at least in theory), their online operation
is generally highly computationally efficient, and can exhibit
(nearly) arbitrarily complex behavior. A downside of the
DRL methods is the lack of interpretability of the deep neu-
ral network; stability, robustness, and constraint satisfaction
properties are not guaranteed. In addition, DRL requires a
lot of training data, a challenge that is further complicated
for flight control applications by the high inherent risk
associated with data collection using a suboptimal controller.
A common approach is to instead train the controller in a
simulator environment, which motivates the need for a good
model. To deal with model mismatch when transferring the
trained controller to the field, ”Sim2Real” measures such as
domain randomization [20] are typically applied.

D. Geometric Attitude Control (GAC)

A third approach we considered is to apply nonlinear
control methods based on Lyapunov stability theory, in



particular GAC. Such methods require only a fraction of the
computational resources required by NMPC, and stability
and robustness guarantees can be given under some assump-
tions for the particular system under study, even with limited
knowledge of system models. However, constraint handling
is difficult to address and optimality is not addressed. Tradi-
tionally, the orientation/attitude of aircraft in 3D space is
parametrized using Euler angles, which have singularities
for certain orientations, which in itself contributes to a
more limited flight envelope. In our work, we employ a
global, nonsingular reduced attitude representation on the
two-sphere. In addition to avoiding singularities, this enables
more efficient, shortest path (geodesic) rotation maneuvers,
[29].

III. SYSTEM ARCHITECTURE

In this section, we describe our experimental platform,
which has evolved over several years as a result of a wide
range of research activities carried out at the NTNU UAV-lab.
An alternative system architecture is described in [30], which
provides a flexible architecture for system integration that is
well-suited for research on high-level planning, guidance,
and payload control, but less ideal for low-level control
research. For our purpose, the goal was to extend the existing
capabilities to satisfy the following requirements:

1) An embedded platform powerful enough to run low-
level NMPC online on-board the vehicle at a suffi-
ciently high update frequency.

2) This platform should also have direct access to the
actuators.

3) The system should be flexible enough to run a wide
range of advanced control algorithms.

4) To lower the threshold for early testing of highly ex-
perimental low-level control algorithms (and to lower
the risk of crashing), we needed some way to safely
transition between the well-tested (and trusted) stan-
dard autopilot and our experimental algorithms.

5) For continued safe operation, the added functionality
should not interfere with the existing fail-safe systems.

6) A software-in-the-loop (SITL) simulation environment
to test the airworthiness of the low-level algorithms
before conducting flight experiments.

7) Support for an automated reference generator to gather
repeated sample trajectories for system identification,
as well as evaluation and comparison of different
algorithms.

An overview of the hardware configuration and communica-
tion architecture of the UAV and ground station is depicted
in Fig. 1. We proceed by describing each main element of
the system architecture. The following discussion concerns
fixed-wing UAVs, given that we focus our research on this
type of UAV. Note, however, that it is straightforward to
translate the hardware architecture and outlined test proce-
dures to other UAV morphologies. The only requirement
is access to the actuators through PWM signals and a

fallback controller, which is usually available on off-the-shelf
platforms.

A. UAV Platform

Our platform is built around a Skywalker X8 airframe,
depicted in Fig. 2. The X8 is a tailless aircraft with two
elevon control surfaces, one on each wing, which can be
moved differentially to produce a rolling acceleration, or
collectively, to produce a pitch acceleration. The control
signals consist of PWM signals to the two servo motors
that actuate the elevons, and the throttle signal (also PWM)
to a consumer-grade Electronic Speed Controller (ESC) that
controls the motor and propeller in the back of the UAV.

The standard avionics flight stack is centered around
a Cube Orange1 that is running ArduPlane open-source
autopilot, which is the fixed-wing build of the ArduPilot
firmware [1]. The sensor suite consists of triple redun-
dant inertial measurement units (IMUs) with magnetometers,
pressure sensors for altitude and airspeed (pitot-static tube),
and a global navigation satellite system (GNSS) receiver.

B. Payload Computer

Alongside the Cube Orange, we use the Khadas Vim32

single-board computer (SBC) that includes four 2.2Ghz
Cortex-A73 cores and two 1.8Ghz Cortex-A53 cores. We
initially started using other SBCs, including the Odroid-XU4
and a Raspberry Pi 4. After a series of benchmarking tests,
we settled with the Khadas Vim3, mainly driven by the
computational requirements of the NMPC.

On the SBC we run the DUNE Uniform Navigation En-
vironment. DUNE is part of the LSTS toolchain [31] devel-
oped at the Underwater Systems and Technology Laboratory
(LSTS), University of Porto. DUNE allows us to (similarily
to ROS) write different tasks that run independently from
each other on separate threads or processes while exchanging
data using a message bus mechanism.

The NMPC is implemented using acados [32], which we
interfaced as a DUNE Task. The closed-loop runtime of the
solver was benchmarked for each SBC based on simulations
that reflect targeted maneuvers. Benchmarking results for
the Khadas Vim3 are depicted in Fig. 3, which show the
closed-loop runtime of the solver to find solutions to the
OCP at each solver update for a Monte-Carlo study that
includes a range of initial conditions and environmental
disturbances. Approximately 96% of the simulations allow
the solver to find a solution in less than 50 ms after two
controller updates when warm-starting the solver based on
the time-shifted previous solution. Therefore, we chose an
update period of 50 ms in the experiments, which led to
satisfactory performance. More details can be found in [25].

The DRL controller is implemented as a DUNE task in
C++ with the ANN implemented in TensorFlow. Benchmark-
ing tests show that the controller can run with an update

1https://cubepilot.org/
2https://www.khadas.com/vim3
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Fig. 1: Hardware configuration of the experimental platform.

Fig. 2: Skywalker X8 fixed-wing UAV.

0 0.5 1 1.5 2 2.5 3

0

50

100

Time [s]

C
om

p.
tim

e
[m

s]

N = 10
N = 15
N = 20
N = 25
N = 30
N = 35
N = 40
N = 45

Fig. 3: NMPC benchmarking results for the employed SBC
for different prediction horizons N in a direct multiple-
shooting scheme with 0.1 s shooting interval.

rate of several thousand hertz. However, this is orders of
magnitude faster than needed since state estimates are deliv-
ered at 50Hz (see next section). Naturally, the computational
demands of the DRL controller is not the bottleneck when
selecting our hardware, but rather that of the NMPC.

C. State Estimates
State estimates, including estimates of the local wind

velocity, are provided by ArduPilot’s extended kalman filter
(EKF), and is propagated to the SBC together with attitude
references (either originating from the pilot’s radio trans-
mitter or ArduPlane’s guidance system) and other auxiliary
signals via a serial communication link using the MAVLink
protocol. This provides our controllers with all the neces-
sary data. The MAVLink communication was configured to
provide data at the highest possible rate, which in this case
is 50 Hz, corresponding to the loop rate of the ArduPlane
scheduler. Communicating such large amounts of data at a
high rate turned out to be a demanding task for the ArduPilot
system, which in turn made us select the Cube Orange among
several candidate autopilots. Cube Orange is (as of February
2022) the most powerful of the CubePilot series of autopilots,
with a 400MHz ARM Cortex M7 processor. Benchmarking
tests showed that less powerful autopilot hardware platforms
such as the Pixhawk 1 and Pixhawk 2.1/Cube Black were not
powerful enough to handle the high data throughput over the
serial link.

D. Actuators
Our controllers output desired throttle and control surface

deflections that are converted to PWM duty cycle using static



linear maps. For the elevons, these were identified based on
lab experiments using a camera.

Remark 1: For future work, an interesting extension to a
static linear mapping would be to identify a second-order
model of the actuator dynamics. This can be done with a
series of step responses that can be recorded in a motion
capture lab [33]. More advanced servos that provide position
feedback and control of the surface deflection angles can also
be considered for model-based control.

Most of the SBCs require additional hardware for PWM
output. For instance, the Odroid-XU4 has no hardware PWM
ports, and the Raspberry PI 4 only has two (we need three).
For the Khadas Vim3, we chose a solution based on a
PCA9685 servo driver which is interfaced through Inter-
Integrated circuit (I2C) communication.

E. Multiplexer Switch

The PWM signals to the actuators can be set by both
computing platforms. A PWM multiplexer (MUX) is used
to switch between the controller that runs on the SBC and
the ArduPilot controllers. A switch on the pilot’s radio
transmitter is mapped to the MUX switch using ArduPilot’s
RC pass-through functionality, allowing the pilot to choose
the output source at any given time, including a manual
recovery if loss of control should occur. To achieve an
additional layer of safety, the manual mode always overrides
the SBC output.

This architecture allows for a redundant PID controller to
run on the autopilot that may overwrite the commands from
the experimental controller whenever necessary to ensure a
safe operation, for example, if instability occurs or when
the required update rates of an optimization-based controller
such as MPC can not be met by the employed solver. The
switching mechanism enables us to safely engage the highly
experimental low-level control code in flight, while takeoff
and landing are performed by the pilot operating the standard
ArduPlane autopilot.

When switching between different controllers, we reset
integral terms to zero to avoid potential stability or perfor-
mance issues. In ArduPlane this is done every time a switch
happens between ”MANUAL” mode and stabilized modes.
For our custom controllers implemented in DUNE, we do
this through dedicated parameters.

For an alternative control selection method, based on
a performance monitoring scheme, together with a thor-
ough discussion of MPC employed on alternative computing
platforms such as field-programmable gate arrays (FPGAs),
see [34].

F. Fail-Safe

The ArduPilot system includes standard fail-safe function-
ality, such as an automatic return to launch (RTL) mode
that is triggered if the pilot’s radio transmitter signal is out
of range or otherwise lost. Since this includes the MUX
switch signal, we had to augment the fail-safe functionality.

Otherwise, if the signal is lost when the SBC is in control,
we would have no way to recover the aircraft should our
algorithms fail. To solve this, the fail-safe configuration of
our RC receiver (FrSky) is set to move the controls to the
following preset values in the case of a lost control signal
for some time:
• The mode switch is set to RTL.
• The MUX switch is set such that the Cube Orange’s

PWM output is sent to the servos.
• The other controls are set such that they correspond to

centered sticks on the transmitter.
This way, our fail-safe system works similar to ArduPilot’s.
In addition, we are sure that ArduPilot will be in control
should we lose the control signal. A potential downside of
this is that the ArduPilot system will not be aware that the
control signal is out of range since the receiver channels
are just set to some preset values, instead of the usual ”no
signal”.

G. Ground Station

Communication with the ground station is handled through
a redundant radio link using one 433MHz SiK Telemetry
Radio and a 5GHz Ubiquiti Rocket M5, both providing
MAVLink communication with the Cube autopilot. The
5GHz radio also enables us to communicate with the SBC
on a local aera network (LAN) through an onboard network
router (see [30] for details).

We use the ArduPilot-compatible ground control software
Mission Planner running on a dedicated computer. Both radio
communication links are used for redundancy, and multiplex-
ing of the two radio signals is handled by MAVProxy.

Control of the DUNE controller tasks is done through
Neptus, which is the command and control framework of the
LSTS toolchain, communicating with DUNE using the Inter
Module Communication (IMC) protocol. Neptus allows the
operator to set configuration parameters, monitor telemetry
data, and execute commands on the SBC.

H. Reference Generation for Automated Testing

We can use pre-defined signals to overwrite references
coming from the guidance controller to test our low-level
motion controllers in a repeatable manner. This means that
we can e.g. use ArduPlane to fly a square waypoint mission,
where we run repeated custom maneuvers when on the long
sides of the square. Step sequences and chirp signals with
increasing frequency turned out to be a good way to test the
closed-loop dynamics with different control algorithms that
need to be compared.

We follow a similar approach to collect data for identifying
dynamic models of a particular airframe. However, instead
of manipulating reference signals for the low-level controller,
the actuator signals of a particular actuator are overwritten
by suitable step sequences or oscillating signals. A frequency
analysis of the open-loop model dynamics or the linearized
closed-loop system around trim states can be used to guide



the parametrization of the test signals such that their power
spectral density covers the natural frequencies of the system.
The aim is to sufficiently excite the dynamics such that
the collected aerodynamic data can be used for system
identification.

IV. TEST PROCEDURES

This section describes our testing procedures. To assess the
airworthiness of our algorithms, we use a three-stage ground-
testing process before finally attempting field experiments:
(a) initial verification of promising designs in our laptop
simulators, (b) SITL simulation to verify the platform-
specific implementation of the algorithms, and (c) system
integration testing at the lab.

A. Python Simulator

As an initial verification step, prototype implementations
of promising designs are first tested in simulator environ-
ments implemented in Matlab or Python. Model mismatch
can be introduced in a controlled environment to assess
the algorithms’ robustness to modeling errors. Also, initial
tuning guidelines are established during this stage. Our
Python-based DRL test bench is publicly available online3.
This is the same simulator that is also used for training of
the DRL algorithms, using our OpenAI Gym wrapper4.

B. Software-In-The-Loop (SITL) Simulations

The SITL simulator is based on a combination of a SITL
configuration of our DUNE application, in combination with
ArduPilot’s SITL framework, using a JSBSim simulation
model for the Skywalker X8 based on our previously men-
tioned models. The standard SITL framework is sufficient for
systems where the SBC only sends commands to a low-level
autopilot using the MAVLink interface, e.g. when testing
high-level guidance controllers. However, since we need to
simulate the case where the SBC has direct access to the
actuators, we need to extend this functionality.

Our solution uses MAVLink’s ”RC override” functionality
to emulate the behavior of our physical system. In DUNE,
instead of sending actuator signals to the PWM driver, the
controller output is transmitted to ArduPlane SITL using our
MAVLink interface, using the RC override message. In the
simulator, these values are interpreted as servo setpoints, as
if the UAV was under manual control. Therefore, for this to
work, ArduPlane needs to be in ”MANUAL” mode.

To achieve automated testing of different maneuvers, we
implemented a DUNE Task that essentially provides script-
ing capabilities of a succession of different maneuvers and
system commands, including automated arming, takeoff, and
loitering, mode switching, as well as switching between
ArduPlane and our controllers.

3https://github.com/eivindeb/pyfly
4https://github.com/eivindeb/fixed-wing-gym

C. Lab Testing

We conduct system integration tests on the physical
hardware at the lab, checking all communication channels
and verifying that critical systems work as expected. This
includes the MUX switch, data logging, and telemetry. In
particular, we check edge cases concerning arming/disarming
of the propeller and confirm that the MUX switch does not
interfere with the safety-critical features.

When preparing for field tests, we first communicate the
expected behavior of our system to the pilot and demonstrate
safety-critical features. An important tool we use when
verifying and configuring our controller implementations is
the surface deflection test (”ground test”), where we check
that the control surfaces move in the correct directions in
response to manually tilting the vehicle, or moving the
transmitter sticks. Moreover, the magnitude of the deflection
is an indicator of the controller response.

D. Field Experiments

When performing field experiments, we typically use a
team of three persons: (1) the pilot (first in command),
operating the UAV in the manually controlled modes using
an RC transmitter, (2) ground station operator (second in
command) operating the automatically controlled modes and
setting ArduPilot parameters through Mission Planner, and
(3) one researcher controlling the payload computer through
Neptus. This is typically the researcher that designed the ex-
periment or implemented the algorithm that we test. During
experiments, the team communicates using radio. Additional
personnel, if any, is in charge of taking notes.

The flight testing procedure can be roughly broken down
into the following steps:

1) After all pre-flights checks are passed, the pilot takes
off manually and puts the UAV into loiter mode or a
square pattern of waypoints.

2) With the experimental algorithm running in the back-
ground, we monitor its outputs while comparing them
with the PWM values set by ArduPlane.

3) If everything looks good, we switch to our controller
using the MUX switch mapped to a switch on the
pilot’s radio transmitter. When testing controllers with
dynamic elements such as integral action or distur-
bance observers, the dynamic elements are engaged (or
their states reset) when we perform the switch. This is
to avoid any wind-up or other potential issues.

4) We then observe the behavior of the experimental
controller and test it with increasingly challenging
maneuvers, starting with straight and level flight. If the
UAV performs any sudden maneuvers, or if substantial
oscillations or instability occurs, the pilot takes back
control over the UAV by using the MUX switch. The
pilot’s visual eye contact with the vehicle is aided by
the other operators, constantly monitoring telemetry
data, and warning the pilot if needed.



5) After some initial tuning, we initiate the automated
maneuver sequences for tuning and repeatability of
the collected evaluation data. This is especially useful
when comparing the performance of two controllers.

6) When data collection is complete, we switch the actu-
ator control back to ArduPlane using the MUX switch
before landing.

V. EXPERIMENTAL RESULTS

As a result of this work, we have been able to perform a
series of successful outdoor flight experiments to evaluate the
algorithms described in Section II. A detailed description of
the specific experiments and the results obtained will appear
in separate manuscripts. See [20] and [19] for DRL and
NMPC results, respectively.

In this section, we demonstrate the efficacy of our exper-
imental platform by presenting some of our results, with a
special focus on the switching mechanism. In particular, we
show initial results for GAC, based on [21], and look at one
of our earliest attempts at closed-loop flight using DRL.

A. Geometric Attitude Control (GAC)

See Fig. 4 (a) for an early attempt during the tuning
process of GAC. Initially, after takeoff, the pilot uses Ardu-
Plane’s fly-by-wire A (FBWA) mode to control the UAV’s
roll and pitch angles using manual stick input. At 720 s
(marked by the vertical line), the pilot switches the MUX to
engage closed-loop operation of the GAC. During this initial
test, integral action was disabled, explaining the increased
offset visible after the switch. The switch between the PWM
outputs from the Cube and those from the SBC is seamless,
and any potential communication delays in the hardware
architecture do not seem to have a significant effect on the
controller.

Fig. 4 (b) shows the performance of the GAC controller
after some further tuning. The steady-state offset has been
removed and the test shows good performance through a
series of repeated step responses in both roll and pitch
channels. The parallel pipeline, including a solid backup
system and in-air switching between the two, enabled a safe
and comfortable tuning process. A more thorough evaluation
of the GAC experiments is set to appear in a separate article.

B. Deep Reinforcement Learning (DRL)

Fig. 5 shows one of the first attempts during flight testing
of the DRL controller. Again, after takeoff and checking
that all systems behave as expected, the pilot gave control
over the servos to the DRL controller by flipping the MUX
switch. The closed-loop pitch response was highly oscillatory
(unstable), causing the pilot to switch to manual control of
the UAV. After tweaking a few parameters to scale down the
magnitude of the controller outputs (while the UAV was still
flying), we were able to reduce the oscillations. Fig. 5 shows
a marginally stable response where the pilot was comfortable
leaving the experimental algorithm in control. After some

design iterations with rapid test cycles, we were able to
obtain results comparable to a well-tuned benchmark PID
controller. See [20] for details.

These examples illustrate how our system lowers the
threshold for high-risk tests of experimental low-level al-
gorithms. The main takeaways are (a) the switch does not
interfere when our algorithm works, and in case it doesn’t,
our system saves the day (although we did crash a few
times due to human errors), and (b) the serial communication
between the Cube and the SBC provide state estimates with
a low enough latency to be satisfactory for our purposes.

VI. LESSONS LEARNED

In this section, we discuss some lessons learned based on
the experience gained in this project.

Previous work at our lab has focused on different as-
pects of state estimation for autonomous vehicles, includ-
ing GNSS-aided inertial navigation [35] and estimation of
airflow angles [36], [37]. However, in our work, the focus
has been on control. To provide the SBC with the state
estimates needed to run our control algorithms, we chose a
pragmatic solution instead of spending time on implementing
a custom solution: to utilize the already existing navigation
solution provided by ArduPlane and send this to the SBC
using the MAVLink protocol. Initially, we were worried that
the latency of this link could cause problems with closed-
loop operation of our algorithms, or that the achieved update
frequency would be too low. However, this has not caused
any issues to this day. Instead of spending too much time
and resources on a perfect solution, we choose something
simple and stick with it until something better is needed.

An unexpected problem that was particularly time-
consuming during the preparations of the experiments was
the electromagnetic interference between components of the
flight stack. Being unaware of the fact that this is the source
of error makes it hard to debug components of the system.
For example on our test platform, an earlier controller board
interfered with the GNSS antenna, ultimately causing the
EKF to diverge in a non-deterministic way. It took a consid-
erable amount of time until we discovered a correlation to the
distance between the GNSS antenna and the controller board.
Early integration tests with alternatives for each hardware
component is our lesson learned in this case, assuming
that an engineering team with expertise in electromagnetic
interference is not part of the crew.

Before attempting the first flight experiments of our
model-based designs, we lingered for too long because
initial model validation efforts showed some discrepancies
with flight data. Looking back, we would have rather per-
formed more early flight tests before iteratively improving
the model [26], [38]. The NMPC for instance, has proved
to be robust to modeling errors. Do not underestimate the
robustness of feedback control.

The pilot is an essential part of the crew and can be a good
resource when doing experimental work. Supporting with
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(a) Initial switch to GAC.
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(b) Performance after a short tuning procedure.

Fig. 4: Experimental results with the GAC in control in the first trial (a) and after more tuning (b). The plots show the
tracking response for roll and pitch references (dashed, black). The bottom subplots depict the virtual deflections of the
aileron (blue) and the elevator (orange).
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(a) Early DRL experiment.
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(b) Performance after a few design iterations.

Fig. 5: Experimental results with DRL showing (a) oscillatory attitude response (blue) vs reference angles (dashed, black) in
initial flight experiments, and (b) after a few design iterations the controller achieves good tracking performance. See [20]
for details.



experience from the field and practical aspects of the UAV,
it is a good idea to keep the pilot in close communication
and discuss ideas early to get additional insights into the
feasibility of the case study. Create an open environment
where ideas can be freely discussed.

Having a working experimental platform is a solid foun-
dation for rapid prototyping of practical control designs.
However, it has taken some time to get there. Performing
flight experiments with fixed-wing UAVs is an outdoor sport.
Weather conditions, travel time to the airfield, and the size
of our test crew are all elements that make this a substantial
undertaking.

VII. CONCLUSIONS

We provided a detailed description of a flight-stack archi-
tecture and experiment protocols to test advanced nonlinear
control algorithms. The hardware architecture consists of off-
the-shelf components that researchers can integrate into ex-
isting flight platforms with minimum effort. We demonstrate
the practical use with examples of low-level motion control
algorithms from our lab and conclude with lessons learned
to help other researchers avoid pitfalls that we discovered
while building our test infrastructure.
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