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A Two-Stage Approach for Individual Tree
Segmentation From TLS Point Clouds
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Abstract—Individual tree segmentation in forest scenes provides
a foundation for forest ecosystem modeling and biodiversity as-
sessment applications. Existing approaches work well for cases
where trees do not grow in layers. However, they may fail in the
scenario with understory vegetation occlusion and heavily over-
lapped crowns. In this article, we propose a two-stage solution for
individual tree segmentation. This method combines a semantic
segmentation module and an instance segmentation module. In
the first stage, the semantic segmentation network classifies the
point clouds into tree and nontree points. In the second stage, the
instance segmentation module is utilized by incorporating object
detection and postprocessing refinement. The combination of se-
mantic network and object detection network roughly extracts
trees, filters out the understory vegetation that affects the extraction
of small trees, and improves the extraction probability of small
trees. Meanwhile, the method of object detection extraction trees
can solve tree extraction omissions due to unclear stems. For the
overlap crown, first, object detection limits the border of the tree
crown of an individual tree, and further segmentation was imple-
mented by refining clustering. Experiments show that our method
solves the above-mentioned problems and achieves state-of-the-art
completeness and mean accuracy performances on benchmark
datasets.

Index Terms—Individual tree segmentation, instance
segmentation, semantic segmentation, terrestrial laser scanning
(TLS).

I. INTRODUCTION

PRECISE measurement of forest resources is beneficial for
effectively managing resources and sustainable develop-

ment of forests [5]. As the basic unit of forest resources, the

Manuscript received 15 May 2022; revised 12 July 2022 and 14 August 2022;
accepted 20 September 2022. Date of publication 6 October 2022; date of current
version 17 October 2022. This work was supported by the National Natural
Science Foundation of China under Grant 41771484. (Corresponding author:
Zhen Dong.)

Lihong Chang is with the School of Remote Sensing and Infor-
mation Engineering, Wuhan University, Wuhan 430079, China (e-mail:
2017286190147@whu.edu.cn).

Hongchao Fan is with the School of Remote Sensing and Information En-
gineering, Wuhan University, Wuhan, China, and also with the Department
of Civil and Environmental Engineering Faculty of Engineering, Norwegian
University of Science and Technology, 7491 Trondheim, Norway (e-mail:
hongchao.fan@ntnu.no).

Ningning Zhu is with the State Key Laboratory of Information Engineering in
Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079,
China (e-mail: ningningzhu@whu.edu.cn).

Zhen Dong is with the School of Remote Sensing and Information Engineer-
ing, Wuhan University, Wuhan, China, and also with the State Key Laboratory of
Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan
University, Wuhan 430079, China (e-mail: dongzhenwhu@whu.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2022.3212445

attributes of individual trees like position, tree species, diam-
eter at breast height (DBH), and tree height are the basis of
quantifiable forest analysis, biodiversity assessment, and forest
ecosystem modeling [2], [35]. During the last few years, LiDAR
has provided an efficient method for forest resource inventory
[1], [41]. Airborne LiDAR systems (ALS) are widely applied to
estimate forest carbon stock and forest biomass in large-scale
forest scenes [4], [8]. However, owing to the low point density
and occlusion caused by the tree crown, it is not easy to pre-
cisely acquire the morphological parameters of individual trees.
Meanwhile, the terrain LiDAR system collects point clouds from
a side view and close distance [9]. This method can provide
high-density point clouds of the lower canopy (e.g., tree trunks
and leaves), more suitable for individual tree morphological
parameter calculations [28]. Segmenting the individual tree
based on the TLS data is critical for acquiring individual tree
information [30]. Existing approaches to segmenting individual
trees can be categorized into traditional and deep learning-based
techniques.

Traditional individual tree segmentation from TLS point
clouds generally contains two steps: terrain filtering and sin-
gle tree isolation [26]. Terrain filtering separates point clouds
into the ground and non-ground points [36] and has achieved
promising results so far [13], [18]. After removing the ground
points, the process of individual tree segmentation contains two
subtasks: detection of tree stems and crown segmentation. For
the first part, many researchers have worked on it. For example,
some researchers have used circle or cylinder fitting algorithms
to retrieve the stem [24], [27]. Although such stem detection
algorithms have achieved good performance, they suffer from
problems in natural forests with high understory vegetation and
stem density [11]. Therefore, some researchers have considered
directly classifying point clouds to extract stem or wood points
based on these challenges. These approaches can be classified
into segment-based and point-based. Point-based methods uti-
lize the geometric features of 3-D coordinates based on facts
to acquire the stem or wood points and achieve satisfactory
classification accuracy [38]. However, the classification strategy
requires setting prior parameters, and unreasonable parameters
can affect the classification accuracy of the point clouds. The
segment-based approaches first grouped the point clouds into
segments and then classified the segments by the feature (e.g.,
the size or shape of a segment). Compared with point-based clas-
sification, segment-based methods reduce computing resources.
However, these methods are widely used in urban environments
[25] and require further exploration in forest scenes.
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Fig. 1. Proposed architecture for individual tree segmentation.

Compared to the detection of tree stems, crown segmen-
tation has received less attention. Ren et al. [22] used the
statistical characteristics of point clouds along the vertical di-
rection to extract trees from ground vegetation. Guan et al.
[14] segmented trees from mobile laser scanner data utilizing
Euclidean distance clustering and voxel-based normalized cuts.
Yadav and Lohani [33] identified tree trunks first. Then they
retrieved the crown according to its nearly circular feature on
cross-section and symmetry based on the stem. These methods
are mainly used in urban environments with regularly arranged
trees and little understory vegetation, which encounter difficul-
ties in forest scenes. Several algorithms have been proposed to
deal with the problem of tree crown segmentation in forests.
Olofsson et al. [19] detected the stem and then utilized the
symmetric image to detect the tree crown. Raumonen et al.
[20] segment trees based on morphological rules. The stems
were detected first, and trees were grown step-by-step through
the connectivity assumption and orientation. These methods
perform effectively for a sparse and straightforward forest with
a wide area and lesser overlap between canopies. However, they
are challenging to transfer to more complex forest types. Several
attempts have been made to deal with the crown segmentation
of difficult forest types. Yang et al. [34] first extracted the indi-
vidual stem, then utilized a hierarchical minimum cut method
to segment the crown. The results of crown segmentation were
affected by the order of segmentation. Burt et al. [3] extracted
stems first and then segmented tree crowns by region-based
segmentation and connectivity testing. The shortcoming of this
method is that it occasionally demands the removal of neigh-
boring vegetation manually. Yun and Zheng [39] segmented the
overlapped tree crown based on the seed points identification
and DBSCAN algorithm, and the parameters have many effects

Fig. 2. Illustration of semantic segmentation for nontree points removal.
(a) Original point cloud. (b) Tree points after removing the nontree points.

on the final results. Itakura [40] combined tree detection and
watershed algorithm to segment trees. This method ignored
the vertical forest structure and caused problems with crown
segmentation.

Recently, deep learning-based approaches have developed
rapidly and are broadly used in various fields. Because of the
outstanding potential of feature extraction in point clouds, many
researchers have attempted to apply it to forest scenes, which
mainly include classification and tree extraction. For instance,
Xi and Hopkinson [32] utilized a deep-learning approach to filter
wood points and classify tree species from TLS data. These
classification algorithms have proven effective in wood-leaf
classification, and species classification and effectiveness can
be further explored for different categories. For tree extraction,
some attempts also have been made. Wang et al. [28] applied
faster R-CNN [to extract stems from point clouds. Chen et al.
[7] identified tree crown points based on the PointNet [6] deep
learning framework at the voxel scale. This method requires a
voxel of the point clouds first, which leads to a reduction in
accuracy and time-increasing. Some scholars extracted trees
based on images. For example, Windrim and Bryson [29]
applied faster R-CNN [22] to detect trees from 2-D images based
on ALS datasets. Xi et al. [31] adopted the CenterNet [10] model
to detect crowns from densely overlapped crowns based on TLS
datasets. The detected crown regions were used as a fundamental
reference for the crown-based attribute analysis. Although these
methods achieved good results on crown detection based on 2-D
images, tree segmentation on 3-D points has been ignored.

In conclusion, the existing methods achieved good perfor-
mance on individual tree segmentation in the straightforward
plot. However, they suffer from the quality of segmentation
in complex plots, and there remains considerable room for
improvement. For instance, Long et al. [17] achieved 30% recall
on tree detection in a single-scan plot, Burt et al. [3] segment
crown, about 30% required further manual segmentation in-
side a tropical forest plot. These reveal in the arguments as
follows. First, the terrain filtering methods only remove the
ground points, whereas the remaining understory vegetation
seriously after ground point filtering deteriorates the perfor-
mance of single tree locating and tree extractions, especially
for areas with understory vegetation attached to the tree stems.
Second, the existing methods focus on single tree locating by tree
stem extraction. At the same time, crown segmentation receives
less attention and achieves non-ideal performance for heavily
overlapped crowns, thus resulting in inaccurate morphological
parameters (e.g., crown diameter and tree height) calculation.
Third, most of the previous methods concentrate on evaluating
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Fig. 3. Point distribution from a bird’s eye view. (a) Top view distribution. (b) Maximum height distribution. (c) Height difference distribution. (d) Point density
distribution.

the tree location results, and the quantification of pointwise
individual tree segmentation has not yet been implemented.
To overcome the limitations mentioned above, we propose a
two-stage individual tree segmentation approach that combines
the semantic segmentation network for the discrimination of tree
and nontree points and the instance segmentation network for
accurate individual tree segmentation. The main contributions
of this study are as follows.

1) A novel two-stage individual tree segmentation approach
is proposed by combining a semantic segmentation mod-
ule and an instance segmentation module.

2) The combination of a semantic segmentation network and
object detection network to extract trees not only resolve
the extraction problem of small trees but also solve tree
extraction omissions due to unclear stems.

3) The combination of an object detection network and re-
fined segmentation provides a solution for the segmenta-
tion of overlapping tree crowns.

This article is organized as follows. Section Ⅱ thoroughly
described the proposed approach. Then, Section Ⅲ presented
the experimental results. After that, Section Ⅳ is a discussion
of the approach. Finally, Section Ⅴ concludes this article.

II. TWO-STAGE APPROACH

The overall framework of the proposed approach is shown
in Fig. 1. The approach contains two main modules: a semantic
segmentation module and an instance segmentation module. The
first is the semantic segmentation module, which effectively fil-
ters out the ground and low vegetation points (see Section II-A).
The second module defines the instance segmentation module
to detect individual trees from the remaining points and refine
them using a series of clustering operators (see Section II-B).

A. Semantic Segmentation for Nontree Points Removal

The general terrain filtering methods filter the ground points
only, and the left understory vegetation points heavily affect
the performance of single tree locating. Therefore, we proposed
the semantic segmentation network to classify the point clouds
into the tree and nontree points to overcome this limitation.
RandLA-net [12] was deployed in this process because of its
high accuracy and efficiency for large-scale point cloud pro-
cessing. The network architecture of RandLA-net is modified
based on the following aspects. First, because it classifies tree

Fig. 4. Result of individual tree detection. (a) Side view of trees containing
connected crowns and small trees. (b) Top view of trees. (c) Detection result.

and nontree points, the prediction classification is set as two.
Second, the negative log-likelihood loss function is applied to the
training model for unbalanced samples. The weights of different
types are determined by the inverse proportion of the data size.
Third, many overlapped samples were collected to reflect the
data distribution fully. Therefore, the final predicted result of
each point was determined by voting on several predicted results,
and the number of votes was set as five.

After this process, the rest points are provided for further
individual tree segmentation. As shown in Fig. 2, removing the
non-tree points decreases the computational burden of subse-
quent segmentation and makes tree distribution more obvious.

B. Individual Tree Segmentation

In this process, the individual tree segmentation is com-
posed of three key steps: feature map generation, individual
tree detection, and postprocessing refinement. Object detection
preliminarily defines the tree contour, which is further optimized
in refined segmentation.

1) Feature Maps Generation: According to ecological and
botanical rules, tree crowns are theoretically close to their re-
spective stems/roots in geographic space. When observing the
points of trees from a bird’s perspective, the point clouds of
each tree are gathered around its own highest point, and clusters
segment the entire forest. We projected the point clouds into a
horizontal plane in the bird’s eye view to generate feature maps
based on these features. More specifically, we use reasonable
features for elaborate feature map generation based on the
following observations.

1) As shown in Fig. 3(b), each tree is centered and clustered
around the local peak, and thus, the highest point of each
grid was introduced into the feature map. Specifically, the
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Fig. 5. Key steps of refining segmentation. (a) Process of back projection. (b) Result of some parameters calculation. (c) Result of Pmean, from the first step in
refined segmentation. (d) Parameter T. (e) Result of refined segmentation from the second step.

maximum z value in each grid was set as the maximum
height feature.

2) As shown in Fig. 3(c), the height difference of the tree
radiates outward from the highest point and gradually
decreases. Therefore, we adopted the height difference as
a feature in the feature map. Specifically, the difference
between the maximum z value and the minimum z value
of each grid was set as the height difference feature.

3) As shown in Fig. 3(d), the point density reflects the degree
of point aggregation, and the location of the tree stem
has the highest point density. Therefore, the relative point
density is introduced into the feature map. Specifically, the
relative point density feature was calculated as the ratio
between the number of points and the maximum number
of points in each grid.

Finally, the features of maximum height, height difference,
and relative point density are normalized to 0–255 and set as the
feature maps’ red, green, and blue channels, respectively.

2) Individual Tree Detection: Individual trees were detected
from the feature maps using the YOLOv3 network [21], and
other object detection networks (e.g., [2] and [17]) also can be
used. YOLOv3 detects objects by learning global information
in the image, mainly including the prediction of the bounding
box, confidence, and class score. The input feature map is
divided into M×M grid cells, and the predicted bounding box
is represented by (x, y, w, h). When the method is applied to the
forest scene, YOLOv3 predicts a 3-D tensor for each scale of
output: M×M× [3∗(4+1+1)], which represents four parameter
values of prediction, that is, the scales, the coordinates of the
bounding box, the confidence of bounding box, and the category.
After individual tree detection, each bounding box contains a
complete tree even though on connected crowns, and the small
trees in the lower canopy can also be detected (see Fig. 4).

3) Refined Segmentation: The individual detected tree from
the individual tree detection stage limits the individual tree and
tree crown boundary and simplifies the subsequent calculation.

Fig. 6. Process of refining segmentation. (a), (b), and (c) First, second, and
third category problems, respectively, when back-projecting 2-D images to 3-D
point clouds. (d), (e), and (f) Results of primary tree extraction based on hierar-
chical clustering from first, second, and third category problems, respectively.
(g), (h), and (i) Result of segmentation from first, second, and third category
problem, respectively.

In this process, the pixels are back-projected to point clouds
according to the correspondence between the pixels and the point
clouds [see Fig. 5(a)], and then each point is assigned a unique
instance code. Each bounding box in the feature map is a detected
tree. Theoretically, the points within this bounding box belong
to a detected tree. Unfortunately, the image can reflect the 2-D
planar features but cannot describe the vertical features. Hence,
there are some problems when back-projecting 2-D images to
3-D point clouds to obtain an individual tree. These problems
can be divided into three categories. For the first category [see
Fig. 6(a)], one bounding box contains the points of a small tree
and parts of points from another giant tree above this small
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tree. In the second category (see Fig. 6(b)), one bounding box
detected a large tree, but the small tree under this large tree was
also detected. The third category occurred in areas with heavily
overlapped crowns and high-density trees. Fig. 6(c) shows that
one bounding box contains the main tree and part of another tree.
To solve these problems, a segmentation refinement procedure
was proposed.

The center point Pi(xi, yi, zi) of the main tree is determined
in the first step. Calculate the center coordinate Pc(xc, yc, zc)
and minimum z value Zmin of all points, select the points C
where the z value ranges from Zmin to Zmin + d, which means
the distance [see Fig. 5(b)]. Then, point clouds C are grouped
into clusters using the hierarchical clustering algorithm. Select
the center coordinate Pmean(xmean, ymean) [see Fig. 5(c)] of the
applicable cluster close to the center Pc on the xoy-plane as the
center of the main tree.

In the second step, hierarchical Euclidean clustering and
Hierarchical Clustering were used to extract the main tree. Point
clouds V in the bounding box are segmented into a set of point
clouds {R} along the vertical direction according to the count of
segmentation,T [see Fig. 5(d)]. Commencing from Pmean on the
xoy-plane, each Ri, Ri ∈ {R} is segmented by the Euclidean
clustering and hierarchical clustering algorithms. Fig. 6(d)–(f)
shows the results.

After these two steps, there are still some problems. For
example, the first category problem still exists. Therefore, a
mean-shift clustering algorithm was utilized to solve the first
category problem. The final results are shown in Fig. 6(g)–(i).

The effectiveness of clustering depends on the detection pro-
cess. The combination of detection and clustering together leads
to good segmentation.

III. EXPERIMENT

We implemented the proposed approach and tested it using
an international TLS benchmarking project [16] and Qintang
Forest.

A. Experimental Data

This study utilized the TLS point clouds dataset from the
international TLS benchmarking project [16]. The benchmark
datasets were collected from a southern boreal forest in Evo, Fin-
land (61.19 °N, 25.11 °E). Based on the difference in forest-stand
conditions, they collected 24 sample plots. Varying understory
vegetation and stem densities classified these plots into three
categories: easy, medium, and difficult. The “Easy” represented
that few understory vegetation and the stem is visible with lower
density. The “Medium” plot possesses moderate stem density,
and understory vegetation is sparse. The “Difficult” has high
stem density and understory vegetation. The main tree species
in these sample plots were Scots pine, Norway spruce, silver, and
downy. The reference data were gathered through field surveys
and manual measurements. The researchers provided six sample
plots containing field reference data for nonprofit research. Both
single- and multiscan policies are adopted for data collection. We
manually labeled 26 sample plots in a pointwise manner with our
point cloud annotations tool developed based on CloudCompare
(https://www.cloudcompare.org/) by using Qt and OpenGL, and

TABLE I
DETAILED DESCRIPTION OF ANNOTATION DATA

each point in each plot was assigned to a semantic label and an
instance label. Then, the object bounding boxes of the feature
maps were calculated according to the corresponding instance
annotation.

To verify the applicability of the designed method, we intro-
duced and labeled another sample plot located in the Qintang
Forest in Guigang City, Guangxi Zhuang Autonomous Region,
China, hereafter referred to as plot 7. We set up five ground
scanning stations in this area, with a scanning resolution of
0.03 °. We only selected the point clouds within 40 m from the
ground station because of the occlusion. The sample plot was
mainly composed of pine trees and included a small number of
buildings, wire poles, and other artificial structures.

This experiment used six public sample plots with reference
data and Plot 7 as testing samples and other plots as training
samples. Table I provide a detailed explanation of annotation
data. Fig. 7 shows part of the results of the annotation. The
blue and green represent the tree points and nontree points,
respectively.

B. Implementation Details

For RandLA-net, we used the SGD as an optimizer to train the
network. The grid size for the downsample is 5 cm. The method
Xavier used to initialize the weight. The initial learning rate was
set to 0.01, and the learning rate decreased by 0.05 every 10
epochs. The size of the input point clouds for each block was
40960. We sampled 2760 batches from the sample plots. The
epoch number is 100, and the batch size is 6.

The YOLOv3 network uses DarkNet-53 for training and
testing. Before training, we used the convolution weights of
the pre-trained model to perform transfer learning. The size of

https://www.cloudcompare.org/


CHANG et al.: TWO-STAGE APPROACH FOR INDIVIDUAL TREE SEGMENTATION FROM TLS POINT CLOUDS 8687

Fig. 7. Data annotated in various forms. (a), (b), and (c) Results of semantic
annotation from easy, medium, and difficult sample plots, respectively. (d), (e),
and (f) Results of instance annotation from easy, medium, and difficult sample
plots, respectively. (g), (h), and (i) Top view results of instance annotation from
easy, medium, and difficult sample plots, respectively. (j), (k), and (l) Results
of bounding box annotation from easy, medium, and difficult sample plots,
respectively. (While the green points in (a), (b), and (c) present nontree points,
the blue points represent trees.)

the input image was 416 × 416 pixels. We used SGD as the
optimizer; 0.001 was the value of the initial learning rate. The
value of momentum was 0.9. The 2372 batches were used as
training, and the batch size is 8.

Python3.8 was used to train and test the datasets. Two GeForce
GTX TITAN X were used in the experiments.

In refining individual trees, the distance d is set as 4 and T
of the hierarchical Euclidean and hierarchical clustering was set
as 15.

C. Experimental Results

We presented and evaluated the results from four aspects:
semantic segmentation, individual tree detection, single tree
locating, and parameter calculation.

1) Semantic Segmentation: Because the primary purpose of
semantic segmentation is to extract tree points, we mainly eval-
uated the accuracy of tree point extraction. The quantitative
evaluation metrics for tree point classification are precision,
recall, F1-score, and overall accuracy (OA). TP, FN, FP, and
TN indicate the number of true positives, false positives, false

Fig. 8. Semantic segmentation results. (a), (b), (c), and (g) Original annotation
from the easy plot, medium plot, difficult plot, and Plot 7, respectively. (d), (e),
(f), and (h) Classification results from easy plot, medium plot, difficult plot, and
Plot 7, respectively.

negatives, and true negatives. The process of calculation can be
formulated as follows:

Precision = 100%× TP
TP + FP

(1)

recall = 100%× TP
TP + FN

(2)

F1− score =
2× Precision × recall
(precision + recall)

(3)

OA = 100%× TP + TN
TP + FN + FP + TN

. (4)

The semantic segmentation results in the “Easy” plot,
“Medium” plot, “Difficult” plot, and Plot 7 are shown in
Fig. 8(a)–(c) and (g), respectively, where green and gray repre-
sent tree points and nontree points. Fig. 8(d)–(f) and (h) represent
four types of points: correctly predicted tree points in blue, incor-
rectly predicted tree points in green, correctly predicted nontree
points in red, and incorrectly predicted nontree points in yellow.
Visualization results showed that most points were correctly
classified. The specific accuracy of semantic segmentation is
shown in Table II.

The recalls of all sample plots are more significant than
0.9, which means that most tree points are correctly obtained
under varying forest-stand conditions. The purpose of semantic
segmentation is to filter out the ground and low vegetation
points and detect trees as much as possible. Thus, tree points
are expected to be preserved as much as possible, and nontree
points predicted as tree points are hoped to have a mini impact
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TABLE II
SEMANTIC SEGMENTATION RESULTS

on tree distribution. Therefore, high recall guarantees the correct
distribution of trees.

2) Individual Tree Detection: The results of tree detection
were assessed on feature maps. The general evaluation factor,
intersection over union (IOU), was applied as the basis of the
assessment metrics. If the IOU is greater than 0.5, the tree is
correctly detected. The specific quantitative evaluation metrics
are precision (p), recall (r), and F1-score (F1). TP, FN, FP, and
TN indicate the number of true positives, false positives, false
negatives, and true negatives. The process of calculation can be
formulated as follows:

p = 100%× TP
TP + FP

(5)

r = 100%× TP
TP + FN

(6)

F1 =
2× p× r

(p+ r)
. (7)

The specific accuracy of tree detection is shown in Table III.
The recall of all sample plots was more significant than 0.9,
which means that most of the annotation trees were detected
correctly. While the precision of tree detection is less than 0.9.
Recall and precision have a relationship. We want to preserve
the tree as much as possible, so we lose some precision. The
precision of multiple scan data is better than single scan data.

3) Single Tree Locating: In this process, we assumed that
the stem was approximately cylindrical. The DBH and position
of each tree were measured from the diameter and horizontal
coordinates of the fitted cylinder 1.2–1.4 m above the ground.
However, there are existing some problems. For example, the
absence of data makes the DBH and horizontal coordinates
impossible to obtain. Therefore, the average at other heights
would be calculated and considered as the DBH and position. If
the DBH and horizontal center coordinates could not be obtained
owing to the cylinder fitting failure, the averaged horizontal co-
ordinates and vertical difference were calculated as the position
and height of the tree. If the tree’s position and height matched
the reference tree’s parameter, the tree was considered to be

correctly located. Stems with a DBH greater than 5 cm were
classified as detected trees.

The results of individual tree locating were evaluated by the
indicators from the TLS benchmark project. nmatch, nref, and
nextr represent the number of correctly detected trees, reference
trees, and detected trees, respectively. The specific definitions
are given in the following equations:

Completeness =
nmatch

nref
(8)

Correctness =
nmatch

nextr
(9)

Mean accuracy =
2nmatch

(nref + nextr)
. (10)

Table IV shows the results. Compared to the single-scan TLS
datasets, the multiscan TLS datasets achieved better perfor-
mance on the evaluation factor. The completeness and mean
accuracy of locating a single tree decreased with forest stand
complexity increasing. The DBH was underestimated in all
sample plots. The mean bias of DBH was 2.82 and 3.3 cm for the
multiscan and single-scan datasets, respectively. The estimation
results of DBH were comparable to those from [16].

4) Parameters Calculation: Almost all previous methods
evaluated tree location only, and the evaluation of pointwise
individual tree segmentation has not been applied. Therefore,
the results of individual tree segmentation at the point level were
evaluated, and the IOU was utilized as the basis of evaluation
metrics. TP, FN, and FP indicate the points number of true
positives, false positives, and false negatives, respectively. IoUi

represents the IOU that every correctly detected tree i. The
mean IOU is represented by mIoU. N represents the number
of correctly detected trees. The specific definitions are given in
the following equations:

IoUi =
TP

TP + FP + FN
(11)

mIoU =

∑N
i=1 IoUi

N
. (12)

The structural parameters are the primary goal of individual
tree segmentation. Moreover, estimating tree height and crown
diameter is the main challenge. Thus, we evaluated the accu-
racy of the crown diameter and tree height. K is the number
of observation data, ŷi denotes the reference value, and ȳ is
the variable’s mean. The specific definitions are given by the
following equation:

RMSE =

(
1

k

k∑
i=1

(yi − ŷi)
2

)1/2

(13)

RMSE (%) = 100%× RMSE
ȳ

. (14)

In this process, the annotation crown diameters were set as
the reference data, and we evaluated the accuracy of crown
diameters only on multiscan datasets. The specific accuracy of
instance segmentation is shown in Table V.
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TABLE III
ACCURACY ASSESSMENT OF INDIVIDUAL TREE DETECTION

TABLE IV
ACCURACY OF SINGLE TREE LOCATING

TABLE V
RESULTS OF INSTANCE SEGMENTATION AND TREE PARAMETERS EVALUATION
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Fig. 9. Individual tree segmentation results on testing plots. (a), (b), (c), and (d) Visualization results from the easy plot, medium plot, difficult plot, and Plot 7,
respectively.

The results demonstrated that the accuracy of individual
tree segmentation on multiscan TLS datasets was superior to
single-scan TLS datasets from mIOU indicators. The average
mIoU was 0.821 and 0.744 for the multiscan and single-scan
datasets, respectively, implying that the trees were generally
well segmented. With forest stand complexity increasing, the
mIOU decreased, whereas the RMSE increased. The RMSE
and RMSE% of the tree height assessment were approximately
2.11 m, 13.92%, and 4.29 m, 23.58% for the single-scan and
multiscan datasets, respectively, comparable with TLS bench-
marking project [16]. The visualization results of individual tree
segmentation are shown in Fig. 9.

IV. DISCUSSION

A. Single Tree Locating

This study proposed a two-stage method for single-tree
segmentation from TLS data and achieved comparable results
in locating single trees. Our approach achieved state-of-the-art

Fig. 10. Trees that are easily missed by the stem detection method.

performance regarding mean accuracy, whether multiscan or
single scan (see Tables VI and VII). Meanwhile, the accuracy of
DBH is comparable to [16]. There are two main reasons for
this result. First, semantic segmentation filtered out the low
vegetation points, making the distribution features of trees on
the feature map more obvious while reducing the probability of
low vegetation being mistaken for trees. Second, we detected
the trees from feature maps, which can detect trees with unclear
stems but apparent structures easily missed by the stem detection
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TABLE VI
COMPARISONS OF SINGLE TREE LOCATING BASED ON MULTISCAN TLS BENCHMARK

TABLE VII
COMPARISONS OF SINGLE TREE LOCATING BASED ON SINGLE SCAN TLS BENCHMARK DATASET

Fig. 11. Assessments of crown diameter estimations. (a), (b) and (c) Easy plot, medium plot, and difficult plot, respectively.

method. As shown in Fig. 10, the stems are difficult to extract
by techniques such as leaf tree classification and cylindrical
fitting because of the problematic diagnosis of features; however,
our method can extract a tree based on its morphological
characteristics.

B. Crown Segmentation

The RMSE and RMSE% of crown diameter showed that
the crown could be segmented well. We further analyze the
regression of crown diameter. The results are shown in Fig. 11.
R2 for the linear regression for crown diameter estimation in the
three types of plots were 0.925, 0.729, and 0.719, respectively.
The slopes were 1.017, 0.875, and 0.712. The underestimated
crown diameter was caused by refined segmentation, in which
the boundary points were discarded.

C. Applicability to Other Forest Scenes

The proposed approach was carried out on Plot 7 with different
forest conditions and point densities. The mean accuracy of
98.8% on single tree locating and 0.845 mIoU on tree pointwise
segmentation showed that our method can be used in the forest
stand which is different from training data.

V. CONCLUSION

Individual tree segmentation of forest point clouds is a signif-
icant and primary step in forest resource inventory. This study
presented a two-stage individual tree segmentation approach
combining a semantic and an instance segmentation network.

We evaluated the designed approach on the Qintang forest and
benchmark datasets that contain diverse forest stand with various
species, varying stem densities, and a wealth of understory
vegetation. Individual tree segmentation was assessed at a point



8692 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

level for the first time. Furthermore, we compared the designed
approach with the current methods, the higher completeness
and mean accuracy for the easy, medium, and difficult plots
showed that we attained state-of-the-art results on individual tree
segmentation. Meanwhile, the proposed instance segmentation
module detects individual trees from the elaborate feature maps.
Then, the individual detected trees are back-projected to point
clouds and refined using a series of clustering operators. This
achieves good performance for crown segmentation and tree
height calculation. However, this method is verified mainly in
coniferous forests. Therefore, the diversity of forest conditions
and TLS data is still restricted. Meanwhile, this method only
concentrated on the individual tree segmentation and ignored
the separation of wood and leaf. Therefore, further studies will
be conducted about the usability of this method on the kinds of
forests, and we will consider the separation of wood and leaf.
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