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In agreement with the main tenets of the anthropological theory of the didactic (ATD), this
study uncovers dependencies between what students can learn, the established curriculum and
the current state of mathematicians’ mathematics (‘scholarly mathematics’). One main result
is that the mathematics taught, too often taken for granted by curriculum developers and teach-
ers, is in fact problematic not only to students but also to teachers and curriculum developers
and is sometimes a challenge even to current scholarly mathematics. The mathematics taught
during a given historical period within a given institution contains flaws that, when they cease
to go unnoticed, generate crises, in the form of breaches of the prevailing didactic contract.
The resolution of these crises allows the institution and its actors—in particular students and
teachers—to learn new contents and often also leads to the more or less damaging unlearning
of old contents. This key phenomenon is illustrated, at the triple level of the classroom, the
curriculum and scholarly mathematics, with regard to elementary algebra and mathematical
analysis, most importantly in the case of maxima and minima problems.

1. Introduction
Our study is conducted within the framework of the anthropological theory of the didactic (ATD), of
which we will use a minimum of concepts, notably the concept of institution, and some of its usual
symbolic notations, in particular x for a student, y for a teacher, α for the author of a mathematics
textbook, μ for a mathematics researcher, and ξ for a mathematics education researcher (Chevallard,
2019). In the ATD, an institution is anything ‘instituted’, that is, any created reality that is subject to
rules specific to the type of institution considered and of which people can be members (permanent or
temporary). A school is an institution, and so are a class at school, a couple, a scientific community, etc.
Further, we use the concept of didactic contract from the theory of didactic situations, as conceptualized
by Guy Brousseau (see Brousseau, 1997, pp. 31–32). In any institution, the didactic contract is the system
of clauses (explicit or implicit, but supposedly known to all the members of the institution) that, at a given
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2 H. STRØMSKAG AND Y. CHEVALLARD

moment, regulate the study of a question (here, a question of mathematics). Let us stress that this latter
notion applies not only in a classroom but also when the institution is the community of mathematicians,
for example.

In this study we consider situations of the following general type. In a given institution I (which may
be a class, but not only that, as we shall see), a certain activity is carried out in a routinized way using
various means, both material and non-material. At a certain point in time, some actors in the institution
I realize that the means used can be questioned in a certain way. They make this questioning known,
which provokes a more or less important crisis, to which I reacts according to one of the following three
strategies: �1, where the institution I decides to ignore the problem and live with it; �2, where I seeks
to solve the problem, solves it and integrates this solution in an appropriate manner into the means of
its activity; �3, where I ignores the solution brought forth by �2 and changes its system of means in a
somewhat important way, thanks to the fact that a (necessarily different) system that eludes the problem
turns out to be available at an acceptable cost.

In the background of our study, two main questions are present: that of the didactic transposition of
mathematics and that of the treatment of (mathematical) existence and uniqueness problems. The didactic
transposition of mathematics and its ‘outputs’ (Chevallard, 1981, 1989) deals with the mathematics
curriculum, or rather the successive mathematics curriculums, with their changes over time and, above
all, as we shall see, their curricular stases (i.e., epistemic stagnations). One cannot explicate ‘student
thinking’, or more generally anyone’s ‘thinking’, without elucidating the conditions and constraints
under which it is formed: What ‘mathematical thinking’ students carried out when doing, say, algebra
(not to mention mathematical analysis) was undoubtedly very different at the beginning of the 20th
century, and even more so at the beginning of the 19th century, from what today’s research on school
algebra reports (e.g., Kieran, 2018; Arcavi et al., 2016; Schmittau, 2011; Sutherland, 1999). In each
historical period, what students have in mind depends largely on what they are taught and what they
study—and the way they do it. The recent study entitled ‘Algebraic thinking’ (Hodgen et al., 2018),
which presents a review of 146 papers on this topic spanning two decades,1 shows a dominance of
psychological approaches to the teaching and learning of elementary algebra. At the same time, the
study raises an important criticism against the lack of systematic analyses of mathematics tasks used in
research on algebraic thinking. In this respect, the ATD, which takes into account every teaching and
learning institution, and emphasizes the types of mathematics tasks and the ways of dealing with them in
these institutions, can, we believe, allow for a more thorough consideration of what is classically called
‘algebraic thinking’.

The second question addresses an aspect that has been little studied so far by mathematics education
research, namely the question of the treatment (or the lack of treatment) of existence and uniqueness
problems, which are so frequent in mathematics but, as we will see, much more rarely taken into
consideration (e.g., Moreira & David, 2008; Vaiyavutjamai & Clements, 2006). More generally, given
a mathematical property, �, a person z can either be unaware of �, or can be aware of it but take it for
granted (that is, as obviously true), and thus ignore the possible need for a proof of �. The person z can
also recognize this need but decide to simply admit � as true, or provide a proof of �, which, to a certain
observer w, will appear as erroneous or, on the contrary, as fully valid.

In what follows, we will focus on situations in which z (whether z = x, y, α, μ, or ξ) starts by ignoring
� to realize only later—if ever—that this property should at least be discussed. In the case where z = x,

1 The reviewed papers were published from 1998 to 2017 in proceedings of congresses of the European Society
for Research in Mathematics Education (CERME).
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BREACHES OF THE DIDACTIC CONTRACT AS A DRIVING FORCE BEHIND LEARNING AND NON-LEARNING 3

y or α, we shall see that such a relation to � will sometimes prove to be a didactic ‘help’ for z, or, on
the contrary, will sometimes turn into an epistemological obstacle that hinders teaching and jeopardizes
learning.

2. From peaceful ignorance to irksome awareness
2.1. A peaceful world
In some classroom, the teacher y asks the students xi to calculate the sum of 17 and 15. This
task is performed under the presupposition that the requested sum (1) exists and (2) is unique.
No one in the class—neither the students nor the teacher—can even imagine that it could be
otherwise. The usual technique to calculate the sum 17 + 15 can be represented as follows:
17 + 15 = 10 + 10 + (7 + 5) = 10 + 10 + 12 = 10 + 10 + 10 + 2 = 30 + 2 = 32. Of course, there are
many other calculation strategies, for example these: 17 + 15 = (15 + 2) + 15 = 15 + 15 + 2 = 30 +
2 = 32; 17 + 15 = (17 – 5) + (15 + 5) = 12 + 20 = 32; 17 + 15 = (17 + 3) + (15 – 3) = 20 + 12 = 32;
17 + 15 = (20 – 3) + (20 – 5) = 40 – 8 = 32; etc. This multiplicity of paths to the ‘desired’ goal might
also raise the question, ‘But will we get the same result every time?’ Such a situation might therefore
raise the incongruous problem of the uniqueness of the sum. Note also that, by taking an unusual
calculation path, another question might arise, ‘Will we get anywhere by doing this?’ This might lead
one to raise the perhaps more hidden issue of the very existence of the sum. In contrast, if we always
use the same calculation technique, as is traditional in primary education, such doubts are likely to
be dispelled. We thus enter, and remain immersed in, a didactically facilitating mathematical universe
where the entities we are talking about always exist and are always unique. This, it seems, is everyone’s
first and long-lasting experience of mathematics.

2.2. Challenging the self-evident
In the previous illustration, the underlying institution I was a primary school class. Things change
when you change the institution, and, in the case at hand, when you take the mathematics community
as institution I. In the history of mathematics, as in the history of curriculums, one can observe—we
will admit this—that, for a given domain, there is an alternation between often long periods when the
mathematical entities of this domain seem to be taken for granted by the actors concerned, and periods
when these entities are questioned, at least by some actors, in their very reality. Thus, the obvious
existence and uniqueness of the sum of two integers came to be questioned, in the nineteenth century,
when mathematicians, in particular Richard Dedekind (1831–1916) and Giuseppe Peano (1858–1932),
strove to develop an axiomatic theory of natural numbers (Mendelson, 2015, Chap. 3; Feferman, 1989,
Chap. 3). Needless to say, this applies as well to the theory of real numbers (Feferman, 1989, Chap.
7). However, let us underline here this decisive fact: the lack of a ‘mathematically validated’ definition
of numbers (in the sense of the closing 19th century) had fortunately not prevented the mathematicians
of the previous centuries to do mathematics peacefully. This is an essential aspect of the dialectic of
blissful ignorance and productive awareness that greatly determines, as the case may be, the advances in
the mathematical sciences, the updating of curriculums, and what the teachers and students learn.

In truth, it should be noted here that the above-mentioned ‘crisis’ regarding the definition of numbers
does not seem to have had any significant repercussions in the world of primary school mathematics.
But let us add another example consisting of a simple ‘thought experiment’ (which the reader can carry
out if they wish). Let us imagine that a mischievous mathematician μ says to one of his colleagues μ′:
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4 H. STRØMSKAG AND Y. CHEVALLARD

‘Have you ever read, or heard of, a proof of the statement that a circle has a unique centre and radius?’
Three hypotheses can be made at this point: (1) the answer of μ′ will be ‘No’; (2) this mathematician will
feel a slight embarrassment in realizing that they have never asked themselves this question; (3) μ′ will
reassure themselves by thinking that the proof of this fact must be trivial. In the latter case, the passage
from happy ignorance to mathematical doubt may constitute for μ′ a somewhat unpleasant surprise, a
short-lived personal ‘crisis’. But this crisis will be easily settled: They will imagine, for example, to take
three points A, B and C on the circle and will consider that the centre—any centre—of the circle lies
on the perpendicular bisector of AB and on the perpendicular bisector of BC and is therefore the point
of intersection of these two lines, so that this circle has indeed a unique centre. After that, it is likely
that μ′ (in the position of a ‘mere mathematician’) will forget this incidence completely. But if μ′ is a
member of a curriculum committee, it is likely that they will not insist on introducing this question into
the secondary school curriculum. Similarly, if the above question is posed by a mathematics teacher y
to another mathematics teacher y′, it is also likely that y′ will ignore this question in the class for which
they are responsible.

2.3. Coming to grips with the unsuspected
In the above cases, the institution I concerned is not substantially modified once the crisis is over. The
use of the strategy �1 maintains the previous institutional world. On the other hand, the institution does
not learn anything new: for good or evil, whether I is a class or the mathematics community, for example,
there is a ‘stasis’ of the institution’s curriculum.2 In other cases, however, it is not possible to return to
the happy ignorance of the good old days.

As far as the secondary school mathematics curriculum is concerned, one of the most striking
experiences for students is undoubtedly the following. When we consider only equations of the first
degree ax + b = 0 with a �= 0, that is to say linear equations, we are immersed in a mathematical
universe where an equation has always one and only one solution—there is existence and uniqueness
of the solution. All changes when we move on to equations of the second degree, ax2 + bx + c = 0
with a �= 0. As we all know, a quadratic equation can have zero solution, or one only, or two. This is a
mathematical fact, independent of anyone’s will, and that every student must learn to accept, recognize,
and manage—unless they flee away from the mathematics taught. In a class that encounters this fact for
the first time, it typically causes a breach of the didactic contract, because, until now, the mathematical
universe did not look ‘like that’. This fact is therefore likely to hinder the reception and understanding
by the class of a structurally new type of mathematical situations.

For the teaching and learning to be successful, such hitherto unseen fact—for the students, not for the
teacher—will also have to be related to previously ‘well known’ mathematical facts. For example, the
students concerned have known for a long time that, given a straight line and a circle, either the straight
line does not intersect the circle, or is tangent to it, or intersects it at two distinct points.3 In algebraic
terms, this is expressed by the fact that the quadratic equation (x − h)2 + (ax + b − k)2 − r2 = 0 has 0, 1,
or 2 solutions, where (x − h)2 + (y − k)2 = r2 (with r > 0) is the equation of the circle and y = ax + b the

2 More exactly, an institution I has in general several curriculums. In the ATD, an institutional curriculum of I is
defined as a sequence of positions, together with the knowledge equipment needed to validly occupy them, which
some members of the institution can come to successively occupy (Chevallard, 2018).
3 Note that this is a property that μ′ may have implicitly used in the reasoning we have attributed to them above:
the two perpendicular bisectors intersect because the points A, B and C of the circle are not aligned, since a straight
line intersects a circle in at most two distinct points.
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BREACHES OF THE DIDACTIC CONTRACT AS A DRIVING FORCE BEHIND LEARNING AND NON-LEARNING 5

equation of the line. Moreover, this algebraic modelling of an initially geometrical problem can result in
old knowledge formulated in a quite new way. Here, the equation (x − h)2 + (ax + b − k)2 − r2 = 0 can
be written as follows: (a2 + 1)x2 + 2(a(b − k) − h)x + h2 + (b − k)2 − r 2 = 0. The reduced discriminant
is �′ = (a(b − k) − h)2 − (a2 + 1)(h2 + (b − k)2 − r2) = a2(b − k)2 + h2 − 2ah(b − k) − (a2 + 1)h2 −
a2(b − k)2 − (b − k)2 + (a2 + 1)r2 = − a2h2 − 2ah(b − k) − (b − k)2 + (a2 + 1)r2 = − (ah + b − k)2 +
(a2 + 1)r2. We have:

�′ > 0 ⇔ (ah + b − k)2 < (a2 + 1)r2 ⇔ (ah + b − k)2

a2 + 1
< r2 ⇔ |ah + b − k|√

a2 + 1
< r.

The expression
|ah + b − k|√

a2 + 1
is that of the distance of the centre of the circle to the line of equation

y = ax + b (see ‘Distance From a Point to a Line’, 2021), so that we can establish over again—
algebraically—well-known geometric results.

More generally, the students will need to learn how to integrate quadratic equations into modelling
activities. A historical example of this otherwise commonplace requirement is provided by an episode
that took place on February 19, 1795, during the fourth lesson that Pierre-Simon de Laplace (1749–1827)
gave at the ephemeral ‘Normal School of the Year III’,4 when this great mathematician examined the
following elementary physics problem: ‘Two lights, one of which [B] is four times as bright as the other
[A], being separated by an interval of three feet, determine on the line joining them the point [P] which
they illuminate equally (see Fig. 1)’ (Laplace, 1992, pp. 68–69).

Fig. 1. The two lights on a line.

It is supposed here that the ‘strength’ of the light emitted by a source decreases as x −2, where x is

the distance to the source. For AB = 3 and AP = x ∈ (0, 3), we have the equality
1

x2 = 4

(3 − x)2 or

4x2 − (3 − x)2 = 0, which is equivalent to (2x − (3 − x))(2x + (3 − x) = 0, or (3x − 3)(x + 3) = 0.
We therefore arrive at AP = x = 1. But what about the second ‘solution’ to the equation obtained, that is
x = −3? This solution corresponds to another point P′ on the other side of A, so that P′A = 3. It is undeni-
able that A and B equally illuminate P′ since 1/P′A2 = 1/32 = 1/9 and 4/P′B2 = 4/(3 + 3)2 = 4/36 = 1/9.
The point P′ is therefore a solution to the physical problem addressed that might have been overlooked
without the use of an algebraic equation. Laplace (1992) concludes:

These unexpected solutions show us the richness of the algebraic language, to the generality of which
nothing escapes when one knows how to read it well. (p. 69).

This example may seem unremarkable. But it illustrates, at a relatively low level of the mathematical
studies, a typical teaching and learning difficulty. To overcome such a difficulty—in this case, to accept
that not everything can be represented by an equation of the first degree, and to accept the consequences

4 On this ‘school’ (i.e., the ‘École normale de l’an III’), see https://parcoursrevolution.paris.fr/en/points-of-
interest/71-ecole-normale-superieure-rue-d-ulm.
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6 H. STRØMSKAG AND Y. CHEVALLARD

of this recognition (for example, the fact of having to learn to factor algebraic expressions)—leads every
time to enter a different, new mathematical world, and this more or less slightly traumatic situation may
incite students to withdraw from that unpleasant learning experience and simply give it up. What we will
now suggest is that this can happen as well at the level of a curriculum, where not only students, but also
teachers and textbook authors are concerned.

3. The case of elementary problems of maxima and minima
3.1. Solving problems by elementary algebra: two examples
Let us consider the following exercise (Natansón, 1977, p. 18):

A 200 m long fence can be built with some available boards, using the wall of a factory as one of its
sides (see Fig. 2). It is required to enclose a rectangular yard of maximum area.

Fig. 2. The enclosed rectangular yard (adapted from Natansón, 1977, p. 19).

We must therefore maximize the product P = x(200 − 2x) on the interval (0, 100). Today’s reader will be
tempted to use differential calculus to find the maximum sought. But it must be stressed that, until late in
the 19th century in France and early in the 20th century in Norway, even the first elements of differential
calculus were not taught in secondary schools (Belhoste, 1995, p. 38; Birkeland, 1999, p. 38). In fact,
this type of problems, of which the foregoing exercise is an easy specimen, was solved by elementary
algebra.5 A key theorem—denoted here by the Greek letter θ—used for this was the following:

Given nonnegative numbers a1, a2,..., an, if the sum S = a1 + a2 +... + an is constant, then the product
P = a1a2... an reaches a maximum when these numbers are equal (and therefore equal to S/n).

The students had to learn how to use Theorem θ appropriately. For example, here the sum of the factors of
the product to be maximized, A = x(200 − 2x), is not constant (it is equal to 200 − x). But A is maximum
at the same time as Ā = 2A = 2x(200 − 2x), whose sum of factors S is equal to 200. According to Theorem
θ , the maximum is reached when 2x = 200 − 2x, that is when x = 50.

Let us give another example, a little bit more sophisticated, also taken from Natansón (1977):

Above the centre of a round table hangs a lamp (see Fig. 3). At what height h should the lamp be
placed so that the luminous intensity L on the edge of the table is maximum? It is supposed that at

point A, we have L = k
sin ϕ

l2
, where k is a constant.6 (pp. 37–38).

5 The reader not familiar with this historical fact can skim through the old, classic book by Ramchundra (1859),
aptly entitled A Treatise on Problems of Maxima and Minima Solved by Algebra.
6 Luminous intensity is defined as the quantity of visible light that is emitted in unit time per unit solid angle
(‘Luminous Intensity’, n.d.).
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BREACHES OF THE DIDACTIC CONTRACT AS A DRIVING FORCE BEHIND LEARNING AND NON-LEARNING 7

Fig. 3. The table with a lamp hanging over it (adapted from Natansón, 1977, p. 37).

Since cos ϕ = r

l
we have L = k

r2 sin ϕ × cos2ϕ. L and L = r4

k2 L2 are maximum at the same time.

Since L = sin2ϕ × cos4ϕ, we have
1

4
L = (1 − cos2ϕ)

cos2 ϕ

2

cos2 ϕ

2
. According to Theorem θ,

1

4
L is

maximum when 1 − cos2ϕ = cos2 ϕ

2
, that is to say when cos ϕ =

√
2

3
so that tan ϕ =

√
2

2
. We therefore

have h = r tan ϕ = r

√
2

2
≈ 0.7 r.

Today, the technique we have used here has disappeared to make room for solutions based on

differential calculus: since cos ϕ = r

l
, we have L = k

sin ϕ

l2
= k

r2
sin ϕ cos2ϕ. The derivative of the

function defined on [0, π /2] by f (ϕ) = sin ϕ cos2ϕ is f ′(ϕ) = cos ϕ (3cos2ϕ − 2); therefore f ′ is

positive on [0, ϕm) and negative on (ϕm, π /2], where cos ϕm =
√

2

3
. We can then conclude as above. The

secondary education institution and, with it, the teachers and students involved have thus both unlearned
an old way of doing things (using elementary algebra and Theorem θ), on the one hand, and learned
basic calculus, on the other. What had happened?

3.2. An unseen mathematical flaw belatedly disclosed
The proof of Theorem θ that had become usual in the mathematics secondary curriculum proceeded, in
our words, roughly as follows7:

7 This kind of (flawed) argument is still found in the 20th century: for example, see Dörrie (1965, p. 38).
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8 H. STRØMSKAG AND Y. CHEVALLARD

Suppose that the numbers a1, a2,..., an are not all equal. If ai �= aj, let us replace ai and aj by the

number
ai + aj

2
. The sum S is unchanged but the product P is increased by

(ai + aj

2

)2

– ai aj. Since
(ai + aj

2

)2

– ai aj = 1

4
[(ai + aj)

2 − 4aiaj] =1

4
(ai − aj)

2 > 0, the new product is greater. Let K be

the set of n-tuples (a1, a2,..., an) ∈ R
n+ such that a1 + a2 +... + an = S. If the tuple (a1, a2,..., an) has

two unequal elements, we can thus find another tuple (a′
1, a′

2,..., a′
n) such that a′

1a′
2... a′

n > a1a2...
an. This technique obviously does not work if all the elements of (a1, a2,..., an) are equal: in this case,
it does not allow to obtain a tuple (a′

1, a′
2,..., a′

n) such that a′
1a′

2... a′
n > a1a2... an. ‘Therefore’ the

maximum is reached when a1 = a2 =... = an = S/n.

This traditional proof had the merit of not disrupting the then established mathematical universe of
secondary education because it used only elementary and familiar results. Where is the flaw in it? The
skeleton of the argument can be described as follows:

Consider a set X and an element x0 ∈ X. Let φ be a mapping from X to X and f a function from X into
R. To make the notation easier to follow, we will denote φ(x) by x′. If x0

′ = x0 (i.e., if x0 is fixed point
for φ) and if, for all x ∈ X \{x0}, f (x′) > f (x), then the maximum of f on X is not reached at any point
x �= x0 and therefore is reached at x0.

In the example of interest to us, we have X = {(a1, a2,..., an) ∈ R
n+ | a1 + a2 +... + an = S}. Here, S is a

given number, while φ(x) = φ(a1, a2,..., an) can be taken to be (a′
1, a′

2,..., a′
n) as defined above, where

i and j are the least indices such that ai �= aj, and f (x) = f (a1, a2,..., an) = a1a2... an. The argument
would lead therefore to conclude that f reaches its maximum at x0 = (S/n, S/n, . . . , S/n). In fact, as we
are going to see, although the result is correct, its derivation is wrong.

What is the weak point here? In 1913, Oskar Perron (1880–1975) gave a counterexample that boiled
down to this (see e.g., Cajori, 1991, p. 370): for all x ∈ X =N

∗ = {1, 2, 3, . . . }, let x′ = x2 and f (x) = x. If
x �= 1, f (x′) = f (x2) = x2 > x = f (x); if the above argument applied, we would conclude that the greatest
natural number is . . . 1. Something is surreptitiously present in the reasoning that we are examining: the
unproven hypothesis that there is a maximum. Its conclusion should therefore be rephrased as follows:
‘If x0

′ = x0 and if, for all x ∈ X \{x0}, f (x′) > f (x), and if there exists a maximum of f in X, then this
maximum is not reached at any point x �= x0 and therefore is reached at x0.’ The existence assumption is
satisfied in the case of the n-tuples (a1, a2,..., an) with constant sum S—we will return to this below—but
it is obviously wrong in Perron’s counter-example.

To illustrate the ‘traditional’ error of reasoning, of which, for decades, teachers and textbook authors
seem to have been wholly unaware, here is an example taken from a French algebra exercise book for
secondary education by a respected author, Philippe André (1877); this example concerns the ‘dual’ of
Theorem θ:

891. Find the minimum of x + y + z . . . , when xyz . . . = a.
We have seen (Course of Algebra, no 346) that the minimum takes place when all the factors are equal.
Here is again a proof of this theorem. Let m be the minimum sought: we can write from the exercise
statement.
[1] x + y + z . . . = m
[2] xyz . . . = a.
Assuming in [1] x and y to be unequal, we can replace, without changing the product, these factors by
the equal factors

√
xy,

√
xy; and we will then have.

[3]
√

xy + √
xy + z . . . = m.
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BREACHES OF THE DIDACTIC CONTRACT AS A DRIVING FORCE BEHIND LEARNING AND NON-LEARNING 9

But this second sum is smaller than the first; for (Course, no 343) we have
x + y

2
>

√
xy and therefore

2(x + y)

2
> 2

√
xy, or x + y >

√
xy + √

xy. So the minimum sought will occur when all the factors are

equal. (André, 1877, p. 358).

Here, the logical fallacy is placidly present in the very conclusion, ‘So the minimum sought will occur
when all the factors are equal.’

3.3. Cauchy’s long-established but unheeded proof
Surprisingly enough, Theorem θ had long been proved, in essence, by Augustin-Louis Cauchy (1789–
1857) in his famous Cours d’Analyse [Course of Analysis] published in 1821. It unpretentiously
resulted from his Theorem XVII, which is nothing other than the Geometric–Arithmetic Mean theorem,
and which, in the case when the numbers A, B, C, D, . . . , are not all equal, Cauchy stated as

follows: n
√

ABCD . . . <
A + B + C + D + . . .

n
(see Bradley & Sandifer, 2009, pp. 306–307).8 This gives

n
√

P = n
√

a1a2 . . . an <
a1 + a2 + · · · + an

n
= S

n
and thus P <

(S

n

)n

. When a1 = a2 =... = an = S

n
, we

have P =
(S

n

)n

, which proves that P reaches a maximum if, and only if, a1 = a2 =... = an. However,

this proof was ignored and the old secondary mathematics curriculum remained unchanged on this point.
Why was it so?

3.4. An old case trivialized
As an institution, secondary mathematics education thus refused the breach of didactic contract that
would have allowed it (and, if appropriate, its teachers and students) to learn something new and
striking—namely, that the reasoning that had become routine was definitively flawed. Instead of strategy
�1 (‘the institution I decides to ignore the problem and live with it’), it could have adopted strategy �2 (‘I
seeks to solve the problem, solves it and integrates this solution in an appropriate manner into the means
of its activity’), possibly by finally deciding simply to explicitly admit a mathematical result—Theorem
θ—originating in the world of ‘scholarly’ mathematics. This, it seems, did not happen.

One of the reasons for this phenomenon is in all likelihood the following. Far from there being a
divergence between ‘scholarly’ mathematics and secondary school mathematics, there was a relative
harmony between them on the point at issue, insofar as many mathematicians were unable to see the
mistake in a logical-mathematical erroneous conclusion that they themselves shared. Perron, in fact, had
proposed his counterexample in relation to this kind of mistake, made in 1841 by the great geometer
Jacob Steiner (1796–1863), an episode that Morris Kline (1972) recounts thus:

Another interesting theme pursued in the nineteenth century was the solution of maximum and
minimum problems by purely geometric methods, that is, without relying upon the calculus of
variations. Of the several theorems Jacob Steiner proved by using synthetic methods, the most famous
result is the isoperimetric theorem: Of all plane figures with a given perimeter the circle bounds

8 Note also that Natansón (1977, pp. 29–33) accurately presents Cauchy’s proof. See as well ‘Inequality of
Arithmetic and Geometric Means’ (2021, Proof by Cauchy Using Forward–Backward Induction section).
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10 H. STRØMSKAG AND Y. CHEVALLARD

the greatest area. Steiner gave various proofs. . . . Unfortunately, Steiner assumed that there exists
a curve that does have maximum area. Dirichlet tried several times to persuade him that his proofs
were incomplete on that account but Steiner insisted that this was self-evident. Once, however, he did
write (in the first of the 1842 papers): ‘ . . . and the proof is readily made if one assumes that there is
a largest figure.’ (p. 838).

Therefore, if the secondary education institution did not attempt to learn more on this point—just like
Steiner seems to have done—one can see that the breach of contract necessary for some learning to
happen was not at all undemanding even for first-rate mathematicians.

The subsequent history of the secondary mathematics curriculum illustrates what we have called
strategy �3 (‘where I ignores the existing solution and changes its system of means in a somewhat
important way, thanks to the fact that a (necessarily different) system that eludes the problem turns out
to be available at an acceptable cost’). The introduction into the curriculum of secondary education of
elements of mathematical analysis was to change the means of solving elementary maxima and minima
problems. Although the subtle conceptual system of analysis was difficult to master, it offered powerful
tools to tackle the problems traditionally solved using Theorem θ. Just to summarize a process that
spanned several decades, let us here give the floor to Griffiths and Hilton (1970), who state what they
humorously call ‘the mostest theorem’ as follows:

If f : X → R is continuous, and X is compact, then f has a maximum and a minimum in X (i.e., there
exist points a, b ∈ X such that f (a) is the greatest and f (b) the least value of f ). (p. 427).

If X = {(a1, a2,..., an) ∈ R
n+ | a1 + a2 +... + an = S}, and the function g is defined on R

n+ by g(x) = g(a1,
a2,..., an) = a1 + a2 +... + an, we have X = g−1(S); the mapping g being continuous, X is a closed
set (Griffiths & Hilton, 1970, p. 422, para. 25.6.11). As X is bounded (since ai ≤ S for i = 1, 2, . . . ,
n), X is compact. The function f being continuous, in accordance with the ‘mostest’ theorem, it attains
a maximum in the compact set X, so that the product P = f (x) = f (a1, a2,..., an) = a1a2... an has a
maximum on X, which was to be proved.

The availability of elementary topology thus trivialized a long open problem. Incidentally, let us
emphasize that the brutal encounter of elementary algebra with issues at the heart of modern analysis
had the long-term effect of locking elementary algebra into an essentially formal small world, while its
original functional power was, it seems, largely forgotten (see Strømskag & Chevallard, 2021).

4. Discussion and conclusion
A key lesson can be drawn from the foregoing study. As the example of the addition of whole numbers
illustrates, the mathematical content to be studied is very often problematic. Far from the idealized image
of the teacher who ‘knows’ (and for whom the mathematics to be taught is not problematic), such a
problematic aspect is to be sought already, most often, either in the current scholarly mathematics, or
in the outcomes of the didactic transposition of scholarly mathematics. Somewhat unexpectedly, the
analyses we have conducted highlight the role played by questions of existence and uniqueness of the
mathematical entities manipulated, at different levels of mathematical activity. The belief in the existence
and uniqueness seems to be a primordial, a priori conviction, which either comes up against mathematical
reality (e.g., a quadratic equation generally has two solutions, not just one), or comes up against that
constitutive requirement of mathematics and science, to prove what one is claiming, even implicitly.
This requirement of proof was felt all the more widely as mathematical activity had more powerful tools
for mathematically ‘treating’ intramathematical or extramathematical reality. This is particularly the case
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with the development of (elementary) algebra, whose power was artificially reduced by the process of
didactic transposition in secondary curriculums since at least the beginning of the 20th century.9 Even
when reduced in this way, algebra retained a remarkable power, albeit based, as it was later discovered, on
a paralogism, the existence of a maximum (or a minimum) being assumed in circumstances where it was
by no means self-evident. The breach of didactic contract that would have resulted from the recognition
and treatment of this paralogism seems never to have been clearly assumed in secondary education,
before mathematical analysis imposed its invasive presence: secondary school then learned calculus and
unlearned elementary algebra.

Let us conclude. In any institution, it happens in a rather unpredictable way that some members of
the institution one day unveil what they believe to be a flaw in the institution’s knowledge as manifested
through its didactic contract. The institution’s handling of such a crisis can make it possible for the
institution to change its curriculum, or to block all changes, thereby sparing the institution a learning
gain that would destabilize it for a more or less long period. To learn or not to learn, that is the question.
Whether we like it or not, the answer to this question is built, at all levels, through the breaches of
contract either accepted or refused, which are the driving force behind the institution’s evolution. This is
a pivotal phenomenon at a time when the big issue facing us is that of an uncompromising redefinition
of mathematics curriculums.
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