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In incompressible flow problems, the finite element discretization of pressure and velocity can be done through 
either stable spaces or stabilized pairs. For equal-order stabilized methods with piecewise linear discretization, 
the classical theory guarantees only linear convergence for the pressure approximation. However, a higher 
order is often observed, yet seldom discussed, in numerical practice. Such experimental observations may, 
in the absence of a sound a priori error analysis, mislead the selection of finite element spaces in practical 
applications. Therefore, we present here a numerical analysis demonstrating that an initial higher-order pressure 
convergence may in fact occur under certain conditions, for equal-order elements of any degree. Moreover, our 
numerical experiments clearly indicate that whether and for how long this behavior holds is a problem-dependent 
matter. These findings confirm that an optimal pressure convergence can in general not be expected when using 
unbalanced velocity-pressure pairs.
1. Introduction

The Stokes system of incompressible creeping flows is a mixed prob-

lem having a scalar pressure 𝑝 and a velocity vector 𝒖 as primal un-

knowns. The stability and convergence of finite element discretizations 
for this saddle-point problem are subject to the well-known Babuška–

Brezzi theory [1,2], which is violated for instance when both 𝒖 and 𝑝 are 
approximated using the same polynomial degree. Unique solvability can 
be attained by using either stable pairs, such as in Taylor–Hood [3] and 
MINI [4] elements, or stabilized equal-order discretizations. The main 
weakness of equal-order (as well as of MINI) elements is the subopti-

mal pressure convergence resulting from the unbalanced approximation 
properties of the velocity and pressure spaces [5]. When using first-

order elements, for example, the standard theory guarantees only linear 
convergence for the pressure in 𝐿2(Ω), which is one order lower than 
the corresponding best approximation estimate [6]. Nevertheless, the 
order observed in numerical experiments [7–15] is often higher than 1 
even for very fine meshes, which usually goes undiscussed or at least 
unexplained.

Around a decade ago, Eichel et al. [12] proved a half-an-order-

higher pressure convergence for low-order elements in problems with 
very smooth solutions and uniform, orthogonal meshes. To the best of 
our knowledge, however, there is currently no available analysis on a 
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possible higher-order pressure convergence for equal-order elements of 
arbitrary degree and for more general meshes. In fact, Cioncolini and 
Boffi [14] have very recently carried out an empirical numerical inves-

tigation on unstructured meshes to assess whether the assumptions by 
Eichel et al. [12] might have been too strict. Despite providing insight-

ful numerical evidence on the performance of the MINI element, the 
results reported by Cioncolini and Boffi [14] do not allow a definitive 
conclusion regarding this apparent “superconvergence”: in most cases 
a 3/2 slope was indeed verified, while in some examples there was an 
apparent degradation of this higher slope at finer levels.

In this context, we present new theoretical and numerical results on 
the pressure convergence of unbalanced discretizations of the Stokes 
system. Our theory includes equal-order pressure stabilization meth-

ods, as well as the MINI element. Developed by Arnold et al. [4], the 
MINI element provides one of the simplest inf-sup stable spaces for in-

compressible flow problems and consists of enriching a piecewise linear 
velocity space with bubble functions. For the Stokes system, the bubble 
degrees of freedom can be completely decoupled from the first-order 
part of the velocity, resulting in a lowest-order discretization with a 
simple matrix added to the pressure-pressure block [16]. This means 
that the Stokes system discretized with MINI elements can be consid-

ered as either a stable or a low-order stabilized formulation. For this 
https://doi.org/10.1016/j.camwa.2022.01.022

Received 18 November 2021; Received in revised form 16 January 2022; Accepted 1

0898-1221/© 2022 The Authors. Published by Elsevier Ltd. This is an open access a
7 January 2022

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.camwa.2022.01.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2022.01.022&domain=pdf
mailto:douglas.r.q.pacheco@ntnu.no
https://doi.org/10.1016/j.camwa.2022.01.022
http://creativecommons.org/licenses/by/4.0/


D.R.Q. Pacheco and O. Steinbach Computers and Mathematics with Applications 109 (2022) 140–145
reason, we include herein both MINI and equal-order elements under 
the umbrella of pressure-stabilized methods.

Using a Schur complement formulation, we show, under stan-

dard mesh regularity assumptions, that an initial higher-order pres-

sure convergence may take place depending on certain problem- and 
discretization-dependent constants – similarly as in boundary element 
methods [17] when using equal-order elements approximating the 
Cauchy boundary data. In comparison to the existing theory [12], ours 
requires less regularity on the (exact) velocity, allows unstructured 
meshes and accommodates higher-order elements. Finally, we provide 
numerical examples demonstrating that our estimate is sharp: indeed 
such a superconvergence cannot be expected to hold undefinitely, even-

tually breaking down in most cases – even for structured, uniformly 
refined meshes.

2. The Stokes system

As a model case, we consider the Dirichlet boundary value problem 
for the Stokes system:

−Δ𝒖+∇𝑝 = 𝒇 in Ω , div𝒖 = 0 in Ω , 𝒖 = 𝟎 on Γ , (1)

where Ω ⊂ R𝑛, 𝑛 = 2 or 3, is a connected, bounded domain with Lips-

chitz boundary Γ = 𝜕Ω. The standard variational formulation of (1) is to 
find (𝒖, 𝑝) ∈𝐇1

0(Ω) ×𝐿2(Ω) such that

∫
Ω

∇𝒖 ∶ ∇𝒗𝑑𝑥− ∫
Ω

𝑝div𝒗𝑑𝑥 = ∫
Ω

𝒇 ⋅ 𝒗𝑑𝑥 ,

∫
Ω

𝑞 div𝒖𝑑𝑥+ ∫
Ω

𝑝𝑑𝑥∫
Ω

𝑞 𝑑𝑥 = 0
(2)

is satisfied for all (𝒗, 𝑞) ∈𝐇1
0(Ω) ×𝐿2(Ω), which ensures the scaling con-

dition

∫
Ω

𝑝𝑑𝑥 = 0

for any solution of (2). Using the Riesz representation, we can define 
linear bounded operators 𝐴 ∶𝐇1

0(Ω) →𝐇−1(Ω) and 𝐵 ∶𝐿2(Ω) →𝐇−1(Ω):

⟨𝐴𝒖,𝒗⟩Ω ∶= ∫
Ω

∇𝒖 ∶ ∇𝒗𝑑𝑥 for all 𝒖,𝒗 ∈𝐇1
0(Ω)

⟨𝐵𝑝,𝒗⟩Ω ∶= ∫
Ω

𝑝div𝒗𝑑𝑥 for all 𝒗 ∈𝐇1
0(Ω), 𝑝 ∈𝐿2(Ω).

We also define

⟨𝐿𝑝, 𝑞⟩Ω ∶= ∫
Ω

𝑝𝑑𝑥∫
Ω

𝑞 𝑑𝑥 for all 𝑝, 𝑞 ∈𝐿2(Ω).

Hence we can write the variational formulation (2) in operator form as(
𝐴 −𝐵
𝐵′ 𝐿

)(
𝒖

𝑝

)
=
(

𝒇

0

)
. (3)

Note that we have

⟨𝐴𝒗,𝒗⟩Ω =
𝑛∑

𝑖=1
‖∇𝑣𝑖‖2𝐿2(Ω) = ‖𝒗‖2

𝐇1
0(Ω)

, ⟨𝐴𝒖,𝒗⟩Ω ≤ ‖∇𝒖‖𝐿2(Ω)‖∇𝒗‖𝐿2(Ω)

for all 𝒖, 𝒗 ∈𝐇1
0(Ω), and

⟨𝐵𝑝,𝒗⟩Ω ≤ ‖𝑝‖𝐿2(Ω)‖∇𝒗‖𝐿2(Ω) for all 𝑝 ∈𝐿2(Ω), 𝒗 ∈𝐇1
0(Ω).

Alternatively, we can consider a perturbed system by adding to 𝐿 a 
stabilization operator to yield an invertible pressure-pressure block 𝐷. 
This is the basis for stabilized formulations, where consistency terms 
can also be added to the right-hand side in (3) and to the pressure-

velocity block 𝐵′. In this setting, the system takes the more general 
form
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(
𝐴 −𝐵
𝐶 𝐷

)(
𝒖

𝑝

)
=
(

𝒇

𝑔

)
, (4)

with 𝐷 non-negative and 𝐶 bounded:

‖𝐶𝒗‖𝐿2(Ω) ≤ 𝑐𝐶2 ‖𝒗‖𝐇1
0(Ω)

for all 𝒗 ∈𝐇1
0(Ω).

Since 𝐴 is invertible, we can solve the first equation in (4) to get the 
Schur complement system

𝑆𝑝 ∶= (𝐶𝐴−1𝐵 +𝐷)𝑝 = 𝑔 −𝐶𝐴−1𝒇 =∶ 𝑓. (5)

In other words, we have the variational formulation to find 𝑝 ∈ 𝐿2(Ω)
such that

⟨𝑆𝑝, 𝑞⟩𝐿2(Ω) = ⟨𝑓, 𝑞⟩𝐿2(Ω) for all 𝑞 ∈𝐿2(Ω). (6)

From the properties of 𝐴, 𝐵, 𝐶 and 𝐷, on the continuous level we imme-

diately get that the operator 𝑆 ∶𝐿2(Ω) →𝐿2(Ω) is bounded and elliptic, 
that is,

⟨𝑆𝑞, 𝑞⟩𝐿2(Ω) ≥ 𝑐𝑆1 ‖𝑞‖2
𝐿2(Ω) and ‖𝑆𝑞‖𝐿2(Ω) ≤ 𝑐𝑆2 ‖𝑞‖𝐿2(Ω) for all 𝑞 ∈𝐿2(Ω).

Therefore, we conclude unique solvability of the variational problem 
(6), which will be the basis for deriving our theory.

3. Finite element error analysis

Let us assume a shape-regular triangulation of the domain Ω into 
simplicial elements Ω , and two finite element spaces Πℎ × 𝑋ℎ ⊂

𝐿2(Ω) × 𝐇1
0(Ω) for the discretization of pressure and velocity. We de-

note by ℎ ∶= 𝑛
√|Ω | the size of Ω , and by ℎ ∶= max{ℎ } the global 

mesh size. For a conforming finite element space Πℎ = 𝑆𝜈
ℎ
(Ω) of piece-

wise polynomial basis functions of degree 𝜈, we consider the Galerkin 
formulation to find 𝑝ℎ ∈Πℎ such that

⟨𝑆𝑝ℎ, 𝑞ℎ⟩𝐿2(Ω) = ⟨𝑓, 𝑞ℎ⟩𝐿2(Ω) for all 𝑞ℎ ∈Πℎ .

Using standard arguments we arrive at Cea’s lemma

‖𝑝− 𝑝ℎ‖𝐿2(Ω) ≤
𝑐𝑆2

𝑐𝑆1

inf
𝑞ℎ∈Πℎ

‖𝑝− 𝑞ℎ‖𝐿2(Ω) ,

and from the approximation property of Πℎ we conclude the error esti-

mate

‖𝑝− 𝑝ℎ‖𝐿2(Ω) ≤ 𝑐1 ℎ
𝜈+1 |𝑝|𝐻𝜈+1(Ω) (7)

when assuming 𝑝 ∈𝐻𝜈+1(Ω).
Since the composed operator 𝑆 = 𝐶𝐴−1𝐵 + 𝐷 in general does not 

allow a direct evaluation, we construct a suitable approximation by 
defining, for any 𝑝 ∈ 𝐿2(Ω), a vector 𝒘 = 𝐴−1𝐵𝑝 ∈ 𝐇1

0(Ω), which is the 
unique solution of the variational formulation

⟨𝐴𝒘,𝒗⟩Ω = ⟨𝐵𝑝,𝒗⟩Ω for all 𝒗 ∈𝐇1
0(Ω).

Let 𝑋ℎ ∶= [𝑆𝜇

ℎ
(Ω) ∩𝐻1

0 (Ω)]
𝑛 be a second finite element space of polyno-

mial basis functions with degree 𝜇, for which we consider the Galerkin 
formulation to find 𝒘ℎ ∈𝑋ℎ such that

⟨𝐴𝒘ℎ,𝒗ℎ⟩Ω = ⟨𝐵𝑝,𝒗ℎ⟩Ω for all 𝒗ℎ ∈𝑋ℎ.

From the ellipticity of 𝐴 and the boundedness of 𝐵 we have

‖𝒘ℎ‖2𝐇1
0(Ω)

= ⟨𝐴𝒘ℎ,𝒘ℎ⟩Ω = ⟨𝐵𝑝,𝒘ℎ⟩Ω ≤ ‖𝑝‖𝐿2(Ω)‖𝒘ℎ‖𝐇1
0(Ω)

,

that is,

‖𝒘ℎ‖𝐇1
0(Ω)

≤ ‖𝑝‖𝐿2(Ω) .

Moreover, using standard arguments, we obtain the a priori error esti-

mate
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‖𝒘−𝒘ℎ‖𝐇1
0(Ω)

≤ inf
𝒗ℎ∈𝑋ℎ

‖𝒘− 𝒗ℎ‖𝐇1
0(Ω)

≤ 𝑐2 ℎ
𝜇 |𝒘|𝐇𝜇+1(Ω)

when assuming 𝒘 ∈𝐇𝜇+1(Ω). Then, instead of

𝑆𝑝 = 𝐶𝐴−1𝐵𝑝+𝐷𝑝 = 𝐶𝒘+𝐷𝑝 ,

we now define the approximate operator

𝑆̃𝑝 ∶= 𝐶𝒘ℎ +𝐷𝑝 , (8)

for which we have

‖𝑆𝑝− 𝑆̃𝑝‖𝐿2(Ω) = ‖𝐶(𝒘−𝒘ℎ)‖𝐿2(Ω) ≤ 𝑐𝐶2 ‖𝒘−𝒘ℎ‖𝐇1
0(Ω)

≤ 𝑐3 ℎ
𝜇 |𝒘|𝐇𝜇+1(Ω) .

Moreover, 𝑆̃ ∶𝐿2(Ω) →𝐿2(Ω) is bounded:

‖𝑆̃𝑝‖𝐿2(Ω) = ‖𝐶𝒘ℎ +𝐷𝑝‖𝐿2(Ω) ≤ 𝑐𝐶2 ‖𝒘ℎ‖𝐇1
0(Ω)

+ 𝑐𝐷2 ‖𝑝‖𝐿2(Ω)

≤ (
𝑐𝐶2 + 𝑐𝐷2

)‖𝑝‖𝐿2(Ω) .

Let us assume that 𝑆̃ is elliptic in Πℎ, that is,

⟨𝑆̃𝑞ℎ, 𝑞ℎ⟩𝐿2(Ω) ≥ 𝑐𝑆̃ ‖𝑞ℎ‖2𝐿2(Ω) for all 𝑞ℎ ∈Πℎ ,

which is satisfied when using either inf-sup stable finite elements or 
appropriate stabilization operators. Then, we consider the perturbed 
variational formulation to find 𝑝̃ℎ ∈Πℎ such that

⟨𝑆̃𝑝̃ℎ, 𝑞ℎ⟩𝐿2(Ω) = ⟨𝑓, 𝑞ℎ⟩𝐿2(Ω) for all 𝑞ℎ ∈Πℎ. (9)

We now recall the well-known Strang lemma.

Theorem 3.1. Let 𝑆̃ be the approximate Schur complement operator as 
defined in (8), and 𝑝̃ℎ the corresponding pressure approximation from (9). 
Then, under the assumptions of (7) and, additionally, the ellipticity of 𝑆̃, 
there holds the error estimate

‖𝑝− 𝑝̃ℎ‖𝐿2(Ω) ≤ 𝛼 ℎ𝜈+1 |𝑝|𝐻𝜈+1(Ω) + 𝛽 ℎ𝜇 |𝒘|𝐇𝜇+1(Ω) , (10)

with 𝛼 and 𝛽 independent of ℎ.

Proof. From the triangle inequality and the error estimate (7) we have

‖𝑝− 𝑝̃ℎ‖𝐿2(Ω) ≤ ‖𝑝− 𝑝ℎ‖𝐿2(Ω) + ‖𝑝ℎ − 𝑝̃ℎ‖𝐿2(Ω)

≤ 𝑐1 ℎ
𝜈+1 |𝑝|𝐻𝜈+1(Ω) + ‖𝑝ℎ − 𝑝̃ℎ‖𝐿2(Ω) .

From the ellipticity of 𝑆̃ in Πℎ, we conclude

𝑐𝑆̃ ‖𝑝ℎ − 𝑝̃ℎ‖2𝐿2(Ω) ≤ ⟨𝑆̃(𝑝ℎ − 𝑝̃ℎ), 𝑝ℎ − 𝑝̃ℎ⟩Ω
= ⟨(𝑆̃ −𝑆)𝑝ℎ, 𝑝ℎ − 𝑝̃ℎ⟩Ω
≤ ‖(𝑆̃ − 𝑆)𝑝ℎ‖𝐿2(Ω)‖𝑝ℎ − 𝑝̃ℎ‖𝐿2(Ω) ,

that is,

𝑐𝑆̃‖𝑝ℎ − 𝑝̃ℎ‖𝐿2(Ω) ≤ ‖(𝑆̃ −𝑆)𝑝ℎ‖𝐿2(Ω)

≤ ‖(𝑆̃ −𝑆)(𝑝ℎ − 𝑝)‖𝐿2(Ω) + ‖(𝑆̃ − 𝑆)𝑝‖𝐿2(Ω)

≤ (
𝑐𝐶2 + 𝑐𝐷2 + 𝑐𝑆2

)‖𝑝ℎ − 𝑝‖𝐿2(Ω) + ‖(𝑆̃ −𝑆)𝑝‖𝐿2(Ω)

≤ (
𝑐𝐶2 + 𝑐𝐷2 + 𝑐𝑆2

)
𝑐1 ℎ

𝜈+1 |𝑝|𝐻𝜈+1(Ω) + 𝑐3 ℎ
𝜇 |𝒘|𝐇𝜇+1(Ω) ,

or

𝑐𝑆̃‖𝑝ℎ − 𝑝̃ℎ‖𝐿2(Ω) ≤ 𝑐4𝑐1ℎ
𝜈+1|𝑝|𝐻𝜈+1(Ω) + 𝑐3ℎ

𝜇 |𝒘|𝐇𝜇+1(Ω) , (11)

which concludes the proof with 𝛼 = (1 + 𝑐4∕𝑐𝑆̃ )𝑐1 and 𝛽 = 𝑐3∕𝑐𝑆̃ . □
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The error estimate (10) implies the choice 𝜇 = 𝜈 + 1 to ensure an 
optimal order of convergence. On the other hand, choosing equal-order 
elements, that is, 𝜇 = 𝜈, will asymptotically not result in an improved or-

der of convergence. However, we can now show an initial higher-order 
convergence for the pressure approximation under certain conditions. 
From the triangle and Young’s inequalities and the estimate (7), we get

1
2
‖𝑝− 𝑝̃ℎ‖2𝐿2(Ω) ≤ ‖𝑝− 𝑝ℎ‖2𝐿2(Ω) + ‖𝑝ℎ − 𝑝̃ℎ‖2𝐿2(Ω)

≤ [
𝑐1ℎ

𝜈+1|𝑝|𝐻𝜈+1(Ω)
]2 + ‖𝑝ℎ − 𝑝̃ℎ‖2𝐿2(Ω) .

(12)

As in the previous proof, we have

𝑐𝑆̃ ‖𝑝ℎ − 𝑝̃ℎ‖2𝐿2(Ω) ≤ ‖(𝑆̃ − 𝑆)𝑝ℎ‖𝐿2(Ω)‖𝑝ℎ − 𝑝̃ℎ‖𝐿2(Ω)

and

‖(𝑆̃ −𝑆)𝑝ℎ‖𝐿2(Ω) ≤ 𝑐1𝑐4ℎ
𝜈+1|𝑝|𝐻𝜈+1(Ω) + 𝑐3ℎ

𝜈 |𝒘|𝐇𝜈+1(Ω)

for 𝜇 = 𝜈. We also have

‖𝑝ℎ − 𝑝̃ℎ‖𝐿2(Ω) ≤ ‖𝑝ℎ − 𝑝‖𝐿2(Ω) + ‖𝑝− 𝑝̃ℎ‖𝐿2(Ω)

≤ 𝑐1 ℎ
𝜈+1 |𝑝|𝐻𝜈+1(Ω) + ‖𝑝− 𝑝̃ℎ‖𝐿2(Ω) ,

so that

‖𝑝ℎ − 𝑝̃ℎ‖2𝐿2(Ω) ≤[
𝑐4𝑐1
𝑐𝑆̃

ℎ𝜈+1|𝑝|𝐻𝜈+1(Ω) +
𝑐3
𝑐𝑆̃

ℎ𝜈 |𝒘|𝐇𝜈+1(Ω)

] [
𝑐1ℎ

𝜈+1|𝑝|𝐻𝜈+1(Ω) + ‖𝑝− 𝑝̃ℎ‖𝐿2(Ω)
]

=
𝑐4
𝑐𝑆̃

[
𝑐1ℎ

𝜈+1|𝑝|𝐻𝜈+1(Ω)
]2 + 𝑐3𝑐1

𝑐𝑆̃
ℎ2𝜈+1|𝑝|𝐻𝜈+1(Ω)|𝒘|𝐇𝜈+1(Ω)

+
[
𝑐4𝑐1
𝑐𝑆̃

ℎ𝜈+1|𝑝|𝐻𝜈+1(Ω) +
𝑐3
𝑐𝑆̃

ℎ𝜈 |𝒘|𝐇𝜈+1(Ω)

]‖𝑝− 𝑝̃ℎ‖𝐿2(Ω) .

Thus, due to (12) we get

1
2
‖𝑝− 𝑝̃ℎ‖2𝐿2(Ω) ≤

(
1 +

𝑐4
𝑐𝑆̃

)[
𝑐1ℎ

𝜈+1|𝑝|𝐻𝜈+1(Ω)
]2

+
𝑐3𝑐1
𝑐𝑆̃

ℎ2𝜈+1|𝑝|𝐻𝜈+1(Ω)|𝒘|𝐇𝜈+1(Ω)

+
[
𝑐4𝑐1
𝑐𝑆̃

ℎ𝜈+1|𝑝|𝐻𝜈+1(Ω) +
𝑐3
𝑐𝑆̃

ℎ𝜈 |𝒘|𝐇𝜈+1(Ω)

]‖𝑝− 𝑝̃ℎ‖𝐿2(Ω) .

For the solution 𝒘 =𝐴−1𝐵𝑝 of the continuous problem, we can write

|𝒘|𝐇𝜈+1(Ω) = |𝐴−1𝐵𝑝|𝐇𝜈+1(Ω) ≤ 𝑐𝐴,𝐵|𝑝|𝐻𝜈+1(Ω) .

So, as long as|𝑝|𝐻𝜈+1(Ω)

𝑐𝑆̃

(
𝑐4𝑐1ℎ

𝜈+1 + 𝑐𝐴,𝐵𝑐3ℎ
𝜈
) ≤ 1

2
𝛾 ‖𝑝− 𝑝̃ℎ‖𝐿2(Ω) (13)

is satisfied for some 𝛾 < 1, we get

1 − 𝛾

2
‖𝑝− 𝑝̃ℎ‖2𝐿2(Ω) ≤

(
1 +

𝑐4
𝑐𝑆̃

)[
𝑐1ℎ

𝜈+1|𝑝|𝐻𝜈+1(Ω)
]2

+
𝑐3𝑐1𝑐𝐴,𝐵

𝑐𝑆̃

[
ℎ
𝜈+ 1

2 |𝑝|𝐻𝜈+1(Ω)

]2
,

so that we can finally conclude

‖𝑝− 𝑝̃ℎ‖𝐿2(Ω) ≤
(
𝑐𝐼ℎ

𝜈+1 + 𝑐𝐼𝐼ℎ
𝜈+ 1

2
) |𝑝|𝐻𝜈+1(Ω) . (14)

This estimate provides an explanation for the higher (than 𝜈) order of-

ten observed for the pressure convergence in numerical practice, see for 
instance Refs. [7–15]. Although most assumptions made towards prov-

ing (14) are rather standard, this is not the case for condition (13). In 
fact, how can we interpret such a condition?

For small ℎ, the expression on the left-hand side of (13) behaves 
(on a logarithmic scale) as a line with slope 𝜈. If the right-hand side ‖𝑝 − 𝑝̃ℎ‖ is assumed to be of order 𝜈 + 1∕2 for some range of ℎ, we see 
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Fig. 1. Illustration of two possible scenarios for assumption (13), with LHS and 
RHS respectively denoting the left- and (hypothetically higher-order) right-hand 
sides of the inequality. Either way, the assumption cannot hold indefinitely, 
since sooner or later (as ℎ → 0) the RHS line will be below the LHS line.

that even if condition (13) is satisfied initially, the two lines (left- and 
right-hand side) will eventually intersect as ℎ decreases, and thus (13)

will no longer hold. This is why estimate (14) shows only a possible ini-

tial higher-order convergence. As an alternative scenario, the curve with 
the higher slope may already start below the other curve, so that (13)

will not hold even for the coarsest possible ℎ, see Fig. 1 for a graph-

ical illustration. Besides, due to the several constants in (13), whether

and for how long this higher-order convergence holds may depend on 
various factors such as the problem (domain and solution) and the dis-

cretization. Also for this reason, the higher slope may not break down 
at all within a practical range of mesh sizes.

4. Pressure-based stabilization methods

As realizations of the perturbed (stabilized) system (4), we now give 
three popular examples of pressure-stabilization methods, which will 
also be used in the numerical experiments. For simplicity of presenta-

tion, we consider a purely pressure-based stabilization, that is, when 
𝐶 = 𝐵′ and 𝑔 = 0 in (4). The pressure-pressure operator 𝐷 can be ex-

pressed through

⟨𝐷𝑝, 𝑞⟩Ω ∶= ∫
Ω

𝑝𝑑𝑥∫
Ω

𝑞 𝑑𝑥+ 𝑠(𝑝, 𝑞) for 𝑝, 𝑞 ∈𝐿2(Ω) ,

where 𝑠(⋅, ⋅) is a stabilizing bilinear form. Brezzi and Pitkäranta [18]

designed the first and probably simplest ever stabilization method, the 
pressure Poisson equation (PPE):

𝑠(𝑝ℎ, 𝑞ℎ) = 𝛼
∑


ℎ2 ∫
Ω

∇𝑝ℎ ⋅∇𝑞ℎ 𝑑𝑥 , (15)

with the optimal parameter 𝛼 = 1∕12 for linear elements [5]. Another 
classical example is the polynomial pressure projection (PPP) method 
by Dohrmann and Bochev [9]:

𝑠(𝑝ℎ, 𝑞ℎ) = ∫
(
𝑝ℎ − 𝜋𝜈−1𝑝ℎ

)(
𝑞ℎ − 𝜋𝜈−1𝑞ℎ

)
𝑑𝑥 , (16)
Ω

143
in which 𝜋𝜈−1 is an operator projecting 𝑝ℎ ∈ 𝑆𝜈
ℎ
(Ω) locally onto a 

space with reduced polynomial degree 𝜈 − 1 (refer to Dohrmann and 
Bochev [9] for implementation details).

A slightly more complicated case is that of the MINI element, in 
which Πℎ = 𝑆1

ℎ
(Ω) and 𝑋ℎ is constructed by enriching a first-order ve-

locity space 𝑋1
ℎ
∶=

[
𝑆1
ℎ
(Ω) ∩𝐻1

0 (Ω)
]𝑛

with a space 𝑋𝑏
ℎ

of standard bubble 
functions, for stabilization. The discretization of the variational problem 
(4) leads to a linear algebraic system(

𝐴ℎ −𝐵ℎ

𝐵⊤
ℎ

𝐿ℎ

)(
𝒖ℎ
𝑝ℎ

)
=
(

𝒇ℎ

0

)
, (17)

with subscript ℎ indicating the discrete counterparts of the respective 
operators/quantities in the infinite-dimensional case (4). It is simple to 
show that the spaces 𝑋1

ℎ
(Ω) and 𝑋𝑏

ℎ
(Ω) are 𝐴-orthogonal, that is,

⟨𝐴𝒗1
ℎ
,𝒗𝑏

ℎ
⟩Ω = 0 for all (𝒗1

ℎ
,𝒗𝑏

ℎ
) ∈𝑋1

ℎ
(Ω) ×𝑋𝑏

ℎ
(Ω).

Thus, by splitting 𝒖ℎ = 𝒖1
ℎ
+ 𝒖𝑏

ℎ
, we get the system

⎛⎜⎜⎜⎝
𝐴1

ℎ
0 −𝐵1

ℎ

0 𝐴𝑏
ℎ

−𝐵𝑏
ℎ[

𝐵1
ℎ

]⊤ [
𝐵𝑏
ℎ

]⊤
𝐿ℎ

⎞⎟⎟⎟⎠
⎛⎜⎜⎝
𝒖1
ℎ

𝒖𝑏
ℎ

𝑝ℎ

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝒇 1
ℎ

𝒇 𝑏
ℎ

0

⎞⎟⎟⎠ ,
which can be rewritten as(

𝐴1
ℎ

−𝐵1
ℎ[

𝐵1
ℎ

]⊤
𝐷ℎ

)(
𝒖1
ℎ

𝑝ℎ

)
=
(

𝒇 1
ℎ

𝑔ℎ

)
,

with 𝐷ℎ ∶= 𝐿ℎ + [𝐵𝑏
ℎ
]⊤[𝐴𝑏

ℎ
]−1𝐵𝑏

ℎ
and 𝑔ℎ ∶= [𝐵𝑏

ℎ
]⊤[𝐴𝑏

ℎ
]−1𝒇 𝑏

ℎ
. That is, the 

bubble degrees of freedom can be easily eliminated (as 𝐴𝑏
ℎ

is diago-

nal), so that we effectively get an equal-order formulation with the 
stabilizing term [𝐵𝑏

ℎ
]⊤[𝐴𝑏

ℎ
]−1𝐵𝑏

ℎ
(further details are given by Soulaimani 

et al. [16]). Although we shall stick to these three methods in our 
numerical examples, most pressure stabilization methods fit into the 
theory presented in Section 3.

5. Numerical examples

We now present a series of numerical examples in order to verify 
our error analysis. Relative pressure errors will be measured as

𝑒
𝑝

𝐿2(Ω)
∶=

‖𝑝− 𝑝ℎ‖𝐿2(Ω)‖𝑝‖𝐿2(Ω)
. (18)

When having (𝒖, 𝑝) ∈𝐇3(Ω) ×𝐻2(Ω), Eichel et al. [12] proved a (ℎ3∕2)
pressure convergence in 𝐿2(Ω) for first-order elements in uniform tri-
angular meshes diagonally refined from a tensor-product grid. Hence, 
we aim to verify here what may happen in a more general setup. 
For this, we consider first-order discretizations of problems having 
(𝒖, 𝑝) ∈𝐇2(Ω) ×𝐻2(Ω) but 𝒖 ∉𝐇3(Ω), which fits our theory but not the 
existing one [12]. For the refinement studies we have Ω = (0, 1)2, start-

ing from the mesh depicted in Fig. 2 and then applying several levels 
of standard (red) uniform refinement. The linear algebraic system is 
solved directly to avoid the influence of iterative solver tolerances.

The first example has the exact solution

𝒖 =
(

0
(sin 2𝜋𝑥+ | sin 2𝜋𝑥|) sin 2𝜋𝑥

)
, 𝑝 = 4𝜋 cos4𝜋𝑥 sin 4𝜋𝑦 ,

where the second-order gradient of the velocity has a discontinuity at 
𝑥 = 1∕2 due to the discontinuous right-hand side vector

𝒇 =
(

−16𝜋2 sin 4𝜋𝑥 sin 4𝜋𝑦
8𝜋2 cos 4𝜋𝑥

[
2cos 4𝜋𝑦− 1 + sign(𝑥− 1∕2)

]) .

We solve the problem using three different stabilization methods, as 
described in Section 4. The results of the refinement study, displayed in 
Table 1, confirm our a priori estimates: for each of the three methods, 
a slope between 1.5 and 2 holds for several levels, but after nine or 
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Fig. 2. Non-orthogonal grid with four triangles.

Table 1

Stokes flow with non-homogeneous boundary conditions: relative pressure error 
and estimated order of convergence (eoc) for three stabilization methods. The 
uniform refinement study starts from a coarse, non-orthogonal grid (cf. Fig. 2).

PPP PPE MINI

Number of elements 𝑒
𝑝

𝐿2 (Ω) eoc 𝑒
𝑝

𝐿2 (Ω) eoc 𝑒
𝑝

𝐿2 (Ω) eoc

4 2.17e-0 1.50e-0 3.65e-0

16 1.17e-0 0.89 1.08e-0 0.47 1.36e-0 1.42

64 9.70e-1 0.27 9.84e-1 0.13 9.43e-1 0.53

256 2.56e-1 1.92 4.42e-1 1.15 2.37e-1 1.99

1,024 7.54e-2 1.76 1.35e-1 1.71 8.53e-2 1.47

4,096 2.36e-2 1.68 3.95e-2 1.77 2.90e-2 1.56

16,384 7.67e-3 1.62 1.19e-2 1.73 9.86e-3 1.55

65,536 2.48e-3 1.63 3.62e-3 1.72 3.35e-3 1.55

262,144 8.75e-4 1.50 1.19e-3 1.61 1.19e-3 1.49

1,048,576 3.17e-4 1.46 4.00e-4 1.57 4.31e-4 1.47

4,194,304 1.29e-4 1.30 1.52e-4 1.39 1.66e-4 1.38

8,388,608 5.50e-5 1.23 6.09e-5 1.32 6.65e-5 1.32

33,554,432 2.54e-5 1.11 2.87e-5 1.08 2.86e-5 1.21

Table 2

Stokes flow with non-homogeneous boundary conditions: relative velocity error 
and estimated order of convergence (eoc) for three stabilization methods. The 
uniform refinement study starts from a coarse, non-orthogonal grid (cf. Fig. 2).

PPP PPE MINI

Number of elements 𝑒𝒖𝐇1 (Ω) eoc 𝑒𝒖𝐇1 (Ω) eoc 𝑒𝒖𝐇1 (Ω) eoc

4 3.15e-1 3.66e-1 3.65e-0

16 2.67e-1 0.24 2.59e-1 0.50 1.36e-0 0.21

64 1.77e-1 0.59 1.79e-1 0.53 9.43e-1 0.67

256 9.27e-2 0.93 1.02e-1 0.80 2.37e-1 0.92

1,024 4.46e-2 1.05 4.70e-2 1.12 8.53e-2 1.03

4,096 2.20e-2 1.02 2.24e-2 1.07 2.90e-2 1.02

16,384 1.09e-2 1.00 1.10e-2 1.02 9.86e-3 1.00

65,536 5.46e-3 1.00 5.47e-3 1.01 3.35e-3 1.00

262,144 2.73e-3 1.00 2.73e-3 1.00 1.19e-3 1.00

1,048,576 1.36e-3 1.00 1.37e-3 1.00 4.31e-4 1.00

4,194,304 6.83e-4 1.00 6.83e-4 1.00 1.66e-4 1.00

8,388,608 3.41e-4 1.00 3.41e-4 1.00 6.65e-5 1.00

33,554,432 1.71e-4 1.00 1.71e-4 1.00 2.86e-5 1.00

ten levels of refinement the convergence starts slowing down towards 
a linear behavior. For comparison, we present in Table 2 the velocity 
convergence in the 𝐇1(Ω) semi-norm, showing that the predicted linear 
order is already reached around the sixth level of refinement.

Then, to illustrate the problem-dependent nature of the initial 
higher-order pressure convergence, we consider another problem with a 
different solution. In the same unit square as before, with homogeneous 
Dirichlet boundary conditions and discontinuous forcing term
144
Table 3

Stokes flow with homogeneous boundary conditions: relative pressure error and 
estimated order of convergence (eoc) for three stabilization methods. The uni-

form refinement study starts from a coarse, non-orthogonal grid (cf. Fig. 2).

PPP PPE MINI

Number of elements 𝑒
𝑝

𝐿2 (Ω) eoc 𝑒
𝑝

𝐿2 (Ω) eoc 𝑒
𝑝

𝐿2 (Ω) eoc

4 5.93e-1 7.84e-1 2.74e-1

16 2.69e-1 1.15 4.44e-1 0.82 1.63e-1 0.75

64 9.43e-2 1.50 1.67e-1 1.41 4.43e-2 1.88

256 3.46e-2 1.45 5.84e-2 1.52 2.94e-2 0.59

1,024 1.14e-2 1.60 1.93e-2 1.60 1.08e-2 1.44

4,096 4.12e-3 1.47 6.48e-3 1.57 4.57e-3 1.24

16,384 1.43e-3 1.53 2.17e-3 1.58 1.74e-3 1.39

65,536 5.69e-4 1.33 7.78e-4 1.48 6.78e-4 1.36

262,144 2.30e-4 1.31 2.92e-4 1.42 2.71e-4 1.32

1,048,576 1.04e-4 1.14 1.20e-4 1.27 1.15e-4 1.23

4,194,304 4.82e-5 1.11 5.26e-5 1.20 5.16e-5 1.16

8,388,608 2.34e-5 1.04 2.45e-5 1.10 2.42e-5 1.09

33,554,432 1.14e-5 1.03 1.17e-5 1.06 1.17e-5 1.05

Table 4

Stokes flow with homogeneous boundary conditions: relative pressure error and 
estimated order of convergence (eoc) for three stabilization methods. The uni-

form refinement study starts from a coarse, orthogonal grid with four triangles.

PPP PPE MINI

Number of elements 𝑒
𝑝

𝐿2 (Ω) eoc 𝑒
𝑝

𝐿2 (Ω) eoc 𝑒
𝑝

𝐿2 (Ω) eoc

4 5.45e-1 7.68e-1 3.44e-1

16 2.43e-1 1.16 4.29e-1 0.84 1.13e-1 1.61

64 9.34e-2 1.38 1.64e-1 1.38 4.80e-2 1.24

256 3.29e-2 1.50 5.69e-2 1.53 2.16e-2 1.15

1,024 1.12e-2 1.55 1.88e-2 1.59 9.70e-3 1.16

4,096 3.78e-3 1.57 6.14e-3 1.62 3.86e-3 1.33

16,384 1.27e-3 1.57 2.00e-3 1.62 1.46e-3 1.40

65,536 4.34e-4 1.55 6.66e-4 1.58 5.34e-4 1.45

262,144 1.50e-4 1.53 2.25e-4 1.57 1.92e-4 1.47

1,048,576 5.21e-5 1.52 7.71e-5 1.54 6.87e-5 1.48

4,194,304 1.82e-5 1.51 2.67e-5 1.53 2.44e-5 1.49

8,388,608 6.41e-6 1.51 9.34e-6 1.52 8.66e-6 1.50

33,554,432 2.26e-6 1.50 3.28e-6 1.51 3.06e-6 1.50

𝒇 =
(
6𝑥
0

)
+ 𝜒(𝑥)

(
𝜋(2𝑥− 1)(8𝜋2𝑥4 − 8𝜋2𝑥3 + 2𝜋2𝑥2 − 40𝑥2 + 16𝑥− 1) sin2𝜋𝑦

(240𝑥2 − 144𝑥+ 18) sin2 𝜋𝑦+ 2𝜋2(20𝑥4 − 24𝑥3 + 9𝑥2 − 𝑥) cos2𝜋𝑦

)
,

we get the analytical solution

𝒖 = 𝜒(𝑥)

(
(4𝑥5 − 6𝑥4 + 3𝑥3 − 𝑥2

2 )𝜋 sin 2𝜋𝑦
(𝑥− 20𝑥4 + 24𝑥3 − 9𝑥2) sin2 𝜋𝑦

)
, 𝑝 = 3𝑥2 − 1,

𝜒(𝑥) ∶= 1 + sign
(1
2
− 𝑥

)
,

again with 𝒖 ∈𝐇2(Ω) ⧵𝐇3(Ω). We first perform a refinement study start-

ing from the same non-orthogonal grid shown in Fig. 2. The results, 
depicted in Table 3, highlight the dependence of the initial higher-order 
behavior upon the chosen stabilization method: the PPE and PPP meth-

ods display higher orders for a few levels (breaking down sooner than 
in the previous example), while for the MINI elements the 1.5 slope is 
never reached.

Finally, we consider the same problem but now using orthogonal 
grids: the initial mesh is similar to the one in Fig. 2, but with the inner 
node now centralized at (𝑥, 𝑦) = (1∕2, 1∕2). The results, shown in Table 4, 
are quite interesting: this time, the higher-order convergence does not 
break down within the present range of ℎ, and in fact the MINI elements 
only reach the 1.5 slope at the finest levels. Whether the convergence 
would eventually become linear at finer levels cannot be predicted from 
our theory.

6. Conclusions

In this work, we have presented a numerical analysis on the pres-

sure convergence of some classical finite element discretizations of the 
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Stokes system. Although it is widely known that optimal convergence 
can be attained by going one degree higher in the velocity discretiza-

tion, very little has been published to date on the pressure convergence 
of unbalanced pairs such as in MINI or equal-order elements. Thus, our 
main goal here has been to answer a rather old question surrounding 
finite-element-based incompressible flow approximations: do we really 
lose one full order in the pressure convergence when not using balanced, 
Taylor–Hood-like pairs? By considering the pressure Schur complement 
formulation arising after eliminating the velocity, we have been able 
to show that, depending on certain constants, the pressure may in fact 
converge one or half an order faster than predicted by standard mixed 
finite element theory – but not necessarily for long. We can thus speak 
of a conditional and initial higher-order pressure convergence in unbal-

anced approximations. Taking stabilized first-order elements as a model 
discretization, our numerical examples confirm the theory: a higher 
slope than one may indeed occur, but whether and for how long de-

pends on the exact solution, the triangulation, the stabilization method, 
among other factors. In some cases, the higher slope may actually not 
break down even after several levels of refinement, but our numeri-

cal counter-examples clearly confirm that this cannot be expected in 
general. Although we have considered the Stokes system as a model 
problem, we expect similar results to hold for Navier–Stokes flows. We 
hope and believe that our investigation will bring some clarity into the 
selection of finite element spaces for incompressible flow simulations, 
an important part of conceptual software design.
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