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Logical models are a promising method to predict the drug combinations without testing the 

massive number of possible combinations experimentally. In this project we analyzed two logical 

models the AGS cancer model CASCADE 1.0 and the generic cancer model CASCADE 2.0 to 

confirm the previously discovered targets in addition to discovering a new targets that can be used 

as future cancer treatment target. Using different methods like the synergy scores, determinative 

power data and COLOMOTO notebook to find the high frequency nodes among the synergy 

combinations and identify the druggable and non-druggable nodes. The effective model is the 

model that predict all the possible combinations without missing any true positive combination. 

By comparing the resulted nodes from each method, we can find the most common nodes that have 

high score in most of them this will give us a few numbers of possible combination that can be 

tested experimentally rather than testing all the possible combinations. 

 

 

1. Introduction 

Cancer, malignant tumors and neoplasms are synonyms of a group of diseases that affect any organ 

of the body with distinguishing characteristic; the quick development of aberrant cells that quickly 

outgrow their normal bounds and can infiltrate nearby body parts before metastasizing to other 

organs. The widespread occurrence of metastases in the body is considered as the primary cancer 

cause of death. In 2020 cancer led to nearly 10 million deaths or about one in six deaths worldwide. 

Breast, lung, colon, rectum and prostate cancers are the most common and dangerous types of 

cancers that can lead to death  (WHO., 2020). 

Most of the biomedical research now focuses on targeted therapy and since the beginning of using 

omics data the researchers become able to analyze enormous genomic, transcriptomic, proteomic 

and metabolomic data in short periods of time. All of this knowledge helped in facilitating the 

ability to identify new therapeutic targets and identification of synergistic targeted drug 

combinations for treatment of different tumor types (Gilad et al., 2021).  

However, with this massive amount of information about drug targets and all of these biomedical 

researches there are a lot of limitations in the treatment options for many of deadly cancers. This 

is partially due to the fact that the present attempts to discover new drugs are primarily 

concentrated on protein families that have already been proven to be druggable like kinases (Jeon 

et al., 2014).  
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There are three different methods to generate target inhibitors which can lead to the reducing the 

drug development pipelines productivity failure. First, screening large chemical libraries to 

discover new small molecules that have effect on specific cancerous cell targets. Secondly, 

discovering a new therapeutic effect for the existing non-cancerous drugs. Finally, system biology 

recently used to discover a new therapeutic effect for existing medications by analyzing a lot of 

data that is related to cancer cell lines like drug disease networks, gene expression profiles, in 

addition to using target’s structure similarities which plays pivotal roles in identification of novel 

medications (Jeon et al., 2014). Although using target therapies by single agent for treating cancer 

patients totally transformed cancer treatment strategies in the past, using single therapy has some 

drawbacks that decrease efficacy of this method like drug resistance and increased risk of 

producing side effects. So, many strategies have been developed to create models that have the 

ability to predict drug combinations using targeted anti-cancer inhibitors depending on biological, 

molecular and chemical information from cancer cell lines. Multiple pathways that have an 

important role in apoptosis, proliferation and cell survival will be targeted using drug combinations 

and this will overcome the resistance problems, increase therapeutic effects in addition the drug 

combinations will give the ability to reduce dose of each single drug which help in preventing side 

effects (Flobak et al., 2015, 2019; Gilad et al., 2021; Gregory et al., 2020; Jaaks et al., 2022; 

Menden et al., 2019).       

Drug combination means the use of two or more agents that may increase or decrease efficacy of 

each other and produce a novel effect. By utilizing the synergistic pharmacological effects which 

means that the two drugs administered together have greater effect than the effect of each drug 

alone, the efficacy of anti-cancer therapy combination can be further increased without increasing 

the dose of single medication to level that led to producing side effect (Flobak et al., 2015). 

 Combinatorial anti-cancer treatments are considered as a promising strategy for treatment of most 

serious and complex cancer types, but due to the massive number of possible combinations it is a 

challenge to identify the most effective combination. It becomes impossible to test all of these 

combinations experimentally. Therefore, it’s necessary to develop an in-silico methods for 

systematically identification of the most effective combination before testing it in the laboratory 

(Flobak et al., 2015; Xu et al., 2012) 

The development of a logical model with no false positive which means that all the combinations 

that will be predicted to be synergistic will be confirmed using cell growth experiments and also 
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with no false negative synergies which means the combinations that will be predicted to be non-

synergistic will not give a synergistic growth inhibition in the cell growth experiments. This can 

lead to the discovery of a drug combination that has a promising effect on preventing treatment 

resistance and reducing drug side effects. (Flobak et al., 2015; Niederdorfer et al., 2020) 

 

Previous studies in the field of drug target combinations. 

 
Many studies were performed to test the effect of drug target combinations in increasing cancer 

treatment efficacy and decreasing drug resistance. A study performed by O’Neil et al for 12 drugs 

used in combinations and targeted specific genes and proteins in 39 cancer cell lines (O’Neil et al., 

2016). 104 FDA approved drugs were tested against the NCI-60 cell line panel by The National 

Cancer Institute (NCI).  “DREAM challenge” AstraZeneca’s drug combination data set which 

involves 118 drugs, including 59 targeted therapies, which form 910 pairwise drug combinations 

against 85 cancer cell lines (Menden et al., 2019). 

In Flobak et al. study they used a Boolean and multilevel logical model (AGS model- CASCADE 

1.0) to predict the synergies between 21 pairwise combinations of 7 chemical inhibitors (Flobak 

et al., 2015), while in (Flobak et al., 2019) a logical model was used to test the synergy between 

19 combining small-molecule inhibitors. 

High influence nodes are a group of nodes that control the state of the majority of the other nodes 

in the model so, a study that focused on the high influence nodes in the generic model CASCADE 

2.0 to predict the synergistic drug combination of 19 inhibitors working on four cancer cell lines 

from gastric, colorectal and prostate cancer (Niederdorfer et al., 2020). 

All of these studies give us logical models that can be used for predicting the effective drug 

combinations that can be used effectively and efficiently in cancer treatment in addition to 

preventing drug resistance and decreasing drug side effects.   

Project aims: (1) Confirm the previously discovered combinations in different studies like Flobak 

et al., 2015, Neiderdorfer et al., 2020. (2) Analyzing the AGS cancer model CASCADE 1.0 and 

generic cancer model CASCADE 2.0 for discovering new drug combinations that have high 

synergy scores in the predicted data created using the two models. (3) Identifying the 

overrepresented molecular function among the high synergy scores combinations. (4) Identifying 

the percentage of the druggable and non-druggable nodes among the high synergy combinations. 
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(5) Confirming the new predicted combinations using pint, bioLQM and MaBoSS softwares  in 

COLOMOTO notebook. 

 

Questions and hypotheses 

- What percentage of the drug synergy space is currently druggable? 

- To what extent can this be increased if new targets can be included? 

- Which molecular function other than protein phosphorylation provides the most 

            candidate targets? 

- Can a druggome analysis rationalize future drug development? 

- Do all the predicted synergies relate to Cancer cells? 

- Is there graph metric behavior similarity between synergy nodes and the other nodes in the 

models? 

- How to identify new biomarkers that help in understanding the mechanism of synergy? 
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2. Materials and Methods 

AGS cancer model CASCADE 1.0 and the generic cancer model CASCADE 2.0 

network construction 

The data of the two models in our study (AGS cancer model - CASCADE 1.0 & Generic cancer 

model - CASCADE 2.0) and the synergy data are available on the CASCADE pans ( GitHub - 

druglogics/cascade-pan: Pipeline simulations for higher-order drug combinations in the 

CASCADEs ). 

CASCADE 1.0 depends on the (Flobak et al., 2015) data of AGS cell line. The model was created 

using GINsim software  depending on the prior biological knowledge of the AGS intracellular 

signaling pathways, the model depends on pathways of AGS including PI3K/AKT, NFkB, 

JAK/STAT, CTNNB1/TCF, and MAPK pathways. The final network consists of 75 components 

and 149 direct interactions. The model used to predict the synergy between seven inhibitors each 

inhibitor targets a specific node in the network which leads to 21 pairwise combinations.  

CASCADE 2.0 is a model created by (Niederdorfer et al., 2020) study and this study focused on  

4 cell lines; AGS (gastric adenocarcinoma), COLO 205 (colorectal cancer), DU-145 (prostate 

cancer), and SW-620 (colorectal cancer) determined by KEGG and Reactome. The final model 

consists of 144 nodes and 366 interactions, including Prosurvival and Antisurvival as output nodes, 

generated using the prior-knowledge of 11 pathways related to the 4 cell lines. The model used to 

test 18 drug combinations in a set of 153 pairwise.  

How was the simulation data created?  

Gitsbe (Generic Interactions To Specific Boolean Equations) is a pipeline package that produces a 

group of Boolean models that are all fitted to a given set of steady-state or perturbation data using 

a genetic parameterization approach. Then, the output models from gitsbe used by drabme (Drug 

Response Analysis to Boolean Model Ensembles) which does a drug response analysis of a specified 

drug panel and generates anticipated synergy scores for each individual drug combination. Those 

two pipeline packages can be tested in one go using the druglogics-synergy package. The ensemble 

wise output file produced using drabme’s launcher indicates how synergistic the combination was, 

https://github.com/druglogics/cascade-pan
https://github.com/druglogics/cascade-pan
https://github.com/druglogics/cascade-pan
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the more the negative number the more synergistic the combination (Supplementary materials 3 & 

4). 

Databases used to identify drugs available for each node.  

The Drug Gene Interaction Database (DGIdb - Mining the Druggable Genome, n.d.) contains all 

the available drugs for each node so we got a massive number of drugs for each node 

(Supplementary materials 2). Then, the National Cancer Institute (NCI) (NCI Drug Dictionary - 

NCI, 2011), Therapeutic Target Database (Chen et al., 2002), Drug Bank (Knox et al., 2011) and 

Kinase Profiling Inhibitor Database (Kinase Profiling Inhibitor Database | International Centre 

for Kinase Profiling, n.d.), were used to identify the FDA approved, investigational and 

experimental drugs for each target, each node used as a search word and the resulting drugs were 

written on Excel sheet (supplementary materials 2 ). 

Identification of high-influence nodes. 

High-influence nodes are a group of nodes that create a small subnetwork and control the states of 

the majority of other nodes in the model (Pentzien et al., 2018). Numerous research suggested that 

a small number of nodes may be responsible for the dynamic behavior of an entire network 

(Weidner et al., 2021). As mentioned on (Niederdorfer et al., 2020) There is more than one method 

to identify the high influence nodes in the model for example the node influence can be determined 

by observing if a node's activity fixation or inversion altered the synergy predictions relative to the 

wild type (WT) analysis, pathway cross-talk inhibition index (PCI), closeness centrality or 

betweenness Centrality. Overrepresented molecular function can be used and compare the nodes 

in the highly represented GO with the synergy score to see if there is a connection between the 

Mol function and the node influence. The general principles for the selection of any drug 

combination can be used like no overlapping toxicity, prevention of cross resistance, the two drugs 

should have different mechanisms of action and each drug targets a different cell cycle or different 

pathway, moreover the drug-drug interaction that may alter kinetics have to be considered (Zhang 

et al., 2016). Nodes that have high betweenness centrality, closeness centrality, and reduced 

network efficiency if removed from the network were expected to have a great impact on the model 

predictions (Niederdorfer et al., 2020). Finally, the determinative power (DP) is one of the methods 

used to create a subnetwork from these small numbers of nodes that affect the behavior of the 
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majority of the network. DP calculated by adding together all mutual information quantities across 

all nodes that share  the given node as same input (Pentzien et al., 2018).  

 

Identification of the major pathways among the total nodes. 

The adenocarcinoma cancer cell line (AGS) network which represents CASCADE 1.0 model 

constructed depending on the prior knowledge of the following pathways MAPK pathways (JNK, 

p38 MAPK and ERK), the PI3K/AKT/mTOR pathways, the Wnt/β-catenin pathway, and the NF-

κB pathway and the connections between them (Flobak et al., 2015). KEGG, SIGNOR and 

PubMed used to extend CASCADE 1.0 network and created CASCADE 2.0 model by adding the 

following pathways: signaling by Rho GTPases, Signaling by RTKs, Apoptosis, Cell Cycle, JAK-

STAT signaling pathway and TGF-beta signaling pathway focusing on the tested drug targets 

(Niederdorfer et al., 2020). As a result, from this extension we noticed that most of the pathways 

among the predicted combinations in CASCADE 1.0 nodes are the same in CASCADE 2.0 model 

prediction. 

Identification of overrepresented molecular function.  

G: profiler database was used to identify the overrepresented molecular function. First, nodes 

which found to have drugs and predicted to have high synergy scores used as an input then run 

inquiry for the two models (CASCADE 1.0 and 2.0). Then, the overrepresented molecular 

functions for the non-draggable nodes were identified to make a comparison and find if there are 

common characteristics among the druggable and non-druggable nodes in the network 

(supplementary materials 1). According to the nodes that have high score synergy we expect that 

kinase activity will be the overrepresented GO (molecular function), as the models and most of 

the nodes that have high synergy combinations and involved in a high number of combinations 

depend on kinases. 
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COLOMOTO notebook 

 

For identification of new drug combinations that may have synergy, COLOMOTO notebook was 

used and many tools like bioLQM (Naldi, 2018) and MaBoSS (Stoll et al., 2017) were used to 

simulate drug perturbations, while pint (Paulevé, 2017) was used to predict new possible 

combinations that have good synergy and wasn’t predicted by the previous studies, in addition to 

confirming the synergy of the high synergy scores combinations predicted by the two models.  

First, in AGS cancer model - CASCADE 1.0 BioLQM perturbation and MaBoSS stochastic 

simulation used to confirm the results from (Flobak et al., 2015) study. The simulation was done 

by fixing the activity to be 0 (inactive) for all the 4 nodes that was predicted to have synergy (MEK 

or TAK1 inhibitors were combined with PI3K or AKT inhibitors) and comparing the change in 

the steady state to the wild type (WT) and calculating the growth inhibition (viability). The effect 

on viability was calculated for both single and double perturbation by subtracting the simulated 

value of Antisurvival output node from the output value of prosurvival node. According to the 

Highest Single Agent model (HSA) the drug combination was classified as a synergistic or non-

synergistic combination if the viability of the double perturbation (combination) reduced more 

than the viability of each single perturbation alone, calculation was done using the following 

equation,  

Viability (Drug A + Drug B) ＜ min [Viability (Drug A, Drug B)]  (Flobak et al., 2015; 

Niederdorfer et al., 2020). 

 

Second, the same method used for generic cancer model - CASCADE 2.0 model to confirm the 

resulted combinations in (Niederdorfer et al., 2020) study. 

finally, for both CASCADE 1.0 and CASCADE 2.0 Pint software was used to predict new 

combinations that may have synergy and the resulted prediction compared with the combinations 

synergy scores to see is there any overlap between the two predictions. BioLQM perturbation and 

MaBoSS stochastic simulation were used to confirm these predictions (Supplementary materials 

7). 
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3. Results 

Histogram for AGS cancer model - CASCADE 1.0 nodes combinations and 

synergy scores 
 

The model predicted a total of 2926 pairwise combinations between the 75 nodes (Supplementary 

materials 3), ~16% (477 combinations) were predicted to have synergy. The combination 

considered as a good synergistic if the Highest Single Agent model (HSA) value is ≤ - 0.11 

(Niederdorfer et al., 2020) (Materials and methods), so in CASCADE 1.0 model ~8% (222 

combinations) predicted to have good synergy score between (-3 and -0.11) (Figure 1)    

 

  

 

Figure 1. Bar chart represents the number of combinations in the CASCADE 1.0 model and the synergy score for each 

combination showing that there are ~8% of combinations predicted to have high synergy with scores ≤ - 0.11. 
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The AGS cancer model-CASCADE 1.0 high frequency nodes among the high score 

synergy combinations  

Among the 222 combinations that were predicted to have high synergy scores according to Highest 

Single Agent model (HSA) we chose the high frequent nodes to do further analysis to prove if any 

of them can be used as a new cancer therapy target. A significant number of nodes were observed 

to have high synergy scores combinations, with high frequency and combined with nodes 

confirmed in a previous studies to be used as FDA approved targets. TCF7 for example  

significantly expressed in colorectal cancer according to the GEPIA website, in addition the 

histopathological grade from GEO data which confirmed that TCF7 was very related to colon 

cancer (Y. Guo et al., 2021). In the AGS cancer model (CASCADE 1.0)  TCF7 was predicted to 

have combinations with high synergy scores (-2.8 to -0.12)  (Supplementary materials 3) and most 

of the nodes combined with TCF7 like MEK, PI3K, PDPK1, RSK and MAP3K7 are previously 

discovered as drug targets with high synergy scores predicted by (Flobak et al., 2015; Niederdorfer 

et al., 2020), so by considering these studies in addition to the synergy scores we can predict TCF7 

can be used as a new drug target.   

LRP_f is a clinical trial target, it’s a cell-surface coreceptor of Wnt/beta-catenin signaling and also 

located in the nucleus and cytosol. LRP protein plays several roles in the cell mediation  like 

proliferation, differentiation and adhesion so it may induce tumor angiogenesis, adhesion or 

invasion through the effect on  DVL1 polymers which inhibit AXIN1/GSK3-mediated 

phosphorylation and destruction of beta-catenin (Vania et al., 2019). 

The mammalian target of rapamycin (mTOR) is a serine/threonine kinase and has the ability to 

control cell growth and autophagy in addition to working as a mitogen, energy and nutrition level 

sensor, moreover its role in AKT1 phosphorylation. In vitro study about using AZD8055 as an 

inhibitor of mTORC kinase shows growth inhibition and antitumor activity which gives an 

indication about the role of mTORC in cancer progression and can be used as drug target (Chresta 

et al., 2010). 

MDM2 (Ubiquitin-protein ligase E3 Mdm2) also called P53-binding protein due to the cellular 

inhibition of p53. The transcription factor p53 has an important role in DNA repair, metabolism, 

cell-cycle progression, apoptosis and senescence through controlling a large number of genes 

expression, so inhibiting the activity of p53 will suppress cancer growth. MDM2 is a clinical trial 

target used in treatment of acute myeloid leukemia, prostate cancer and solid tumor/cancer by 
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inhibiting p53 through three different mechanisms; promoting its degradation, prevent its binding 

to its DNA target or increasing its export out of the nucleus (Wang et al., 2017).  

Many studies confirmed the participation of SHC1 in signaling by epidermal growth factor 

receptor-2 (HER-2), prolactin (PR), and estrogen receptor (ER) which are considered as biological 

markers in breast cancer initiation and progression. The polyomavirus middle T antigen (MT) 

model which used to study progression of mammary tumor gives evidence regards the involvement 

of shc1 gene in the initiation and progression of breast cancer through downstream signaling of 

RAS/MAPK and PI3K. In addition, the gene products accelerate tumorigenesis in the model that 

indicate the important role of SHC1 in cancer treatment (Wright et al., 2019, p. 52).  

GRB2 (Growth factor receptor-bound protein 2) an adaptor protein involved in many cellular 

events like cell proliferation, metabolism and cell growth. However, GRB2 is still a clinical trial 

target, Grb2 participates in a number of tumor malignancies as a primary driver of oncogenesis 

and starts a variety of defective signaling cascades which gives an indication regards the 

importance of developing new cancer therapies targeting GRB2 (Ijaz et al., 2017., p. 2). 

 Yuan et al. study discussed the overexpression of miRNA-223-3p effect on the proliferation 

inhibition and enhancement of Mantle cell lymphoma (MCL) apoptosis through negative 

regulation of CHUK/NF-ƘB2 signaling pathway. Knocking down CHUK increases MCL cell 

proliferation in vitro, which gives an indication about  the pivotal role of CHUK in Mantle cell 

lymphoma progression and can be considered as a promising target for tumor suppression (Yuan et 

al., 2021). 

ERK is one of the MAPK family and a type of serine/threonine protein kinase, which has a role in 

cell division, development and growth regulation. ERK is usually located in the cytoplasm then 

transferred to the nucleus after activation through phosphorylation and regulates gene expressions 

and transcription factor activity regulations. The ERK1/2 phosphorylated (p-ERK1/2) normally 

increases in normal ovarian tissues and benign tumors, but Continuous activation of the 

ERK/MAPK signaling pathway leads to the formation of tumor cells. On the other side an invitro 

experiment confirmed that by inhibiting the ERK/MAPK signaling pathway helped on preventing 

the formation of the tumor cells and which can be used as cancer growth inhibitor in vivo (Y.-J. 

Guo et al., 2020). 

Rac is one of the Rho family GTPases and plays a key role in cancer metastasis. Many studies 

reviewed the role of Rac in addition to Cdc42 pivotal role in different types of cancer. Rac and 
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Cdc42 become overactive when oncogenic growth factor receptors signals to the guanine 

nucleotide exchange factors that control their GDP/GTP. So, RAC can be used as a promising drug 

target in addition to decreasing resistance to cell surface receptor-targeted therapies (Maldonado 

et al., 2020). 

DUSP1 (Dual-specificity phosphatase-1) overexpression leads to the inactivation of ERK, JNK, 

and p38 by dephosphorylation which are responsible for cell proliferation and apoptosis. Targeting 

JNK-induced apoptosis prompt carcinogenesis in various cancers like gastric, colon, bladder and 

prostate. Knocking down DUSP1 during treatment of ovarian cancer increased sensitivity to 

cisplatin. From this example DUSP1 targeting can be used to overcoming drug resistance and 

increase antitumor drugs efficacy by increasing drugs sensitivity (Shen et al., 2016, p. 1).  

The dishevelled segment polarity protein (DVL) has a key role in mediating Wnt signals. 

Canonical and non-canonical Wnt/β-catenin signaling pathways are activated by dysfunction of 

DVL which lead to cancer formation in different types of cancer. DVL is highly expressed in 

Diffuse gastric carcinoma (DGC) comparing to the normal tissue, in addition DVL has role in 

regulation of CTNNB1 protein which make it a good choice to be a drug target in several cancer 

types (Sremac et al., 2021, p. 1). 

 

 

Histogram for generic cancer model - CASCADE 2.0 node combinations and synergy scores 

The model predicted 10296 pairwise combinations between the 144 nodes (Supplementary 

materials 4), ~16 % of the combinations (1704 combinations) were predicted to be synergized. 

Using the same concept of HSA by considering the good synergy scores to be ≤ - 0.11, so there 

are ~9% of the combinations (157 combinations) were predicted to have high synergy scores 

between (-1.36 and -0.11) (Figure 2). 
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Figure 2. Bar chart represents the number of combinations in the CASCADE 2.0 model and the synergy score for each 

combination showing that there are 157 combinations predicted to have high synergy with scores ≤ - 0.11. 

 

The generic cancer model-CASCADE 2.0 high frequency nodes among the high 

synergy scores combinations 

  

From the 157 high synergy scores combinations we can expect that there will be some overlap 

between the predicted combinations by CASCADE 1.0 and CASCADE 2.0 models as the later 

one is an extension  of the first model and includes all the nodes and all the pathways. However 

we can notice that there is many nodes have combinations in CASCADE 2.0 but not in CASCADE 

1.0 which we will show in the next part. 

MMP_f (Matrix metalloproteinase) is recognized to have important role in cancer progression as 

it was identified as a cell surface protease in the tumor cell which induce metastasis when its 

expression increased especially (MT1-MMP) (Knapinska & Fields, 2019). According to 

Therapeutic Target Database (TTP) MMP_f approved as a successful drug target in addition to 

having FDA approved drug (Prinomastat) for lung cancer treatment in addition to the clinical trial 

drug (Marimastat) for treatment of pancreatic cancer. 

RTPK_f (Receptor Tyrosine-protein kinase) which is a successful target used for treatment of  

Colorectal cancer through the FDA approved drug (Regorafenib), Gastrointestinal stromal tumor 
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using (Ripretinib) and (Sorafenib )  for treatment of unresectable hepatocellular carcinoma and 

advanced renal cell carcinoma (Wilhelm et al., 2004; Therapeutic Target Database).  

CCND1 (G1/S-specific cyclin-D1) responsible for the phosphorylation and inhibition of members 

of the retinoblastoma (RB) protein family including RB1 and regulates the cell-cycle during G1/S 

transition, this phosphorylation leads to the release of the transcription factor E2F from the RB/E2F 

complex and target genes which are responsible for the progression through the G1 phase, so 

targeting CCND1 will prevent the tumor progression (Uniprot database). 

The transcription factor LEF1 (Lymphoid enhancer-binding factor 1) is a part of the canonical 

Wnt/β-catenin signaling pathway and is involved in tumorigenesis and progression of multiple 

tumors. The expression of LEF1 significantly increased in colorectal cancer (CRC) and many other 

types of cancer, the negative correlation between LEF1 and Notch2 gives indication regards 

tumorigenesis, shorter overall survival time, and higher risk of death in CRC patients. Santiago et 

al. study demonstrated the crucial role of LEF1 in initiating and maintaining carcinogenesis 

(Santiago et al., 2017).  

LRP_f, MDM2, CHUK, DUSP1 and ERK which are predicted in CASCADE 1.0 are also 

predicted in CASCADE 2.0 model with high frequency among the high synergy scores 

combinations. 

 

The high influence nodes (Cytoscape Network analysis) 

Cytoscape software used to analyze the 144 nodes network to identify the Betweenness Centrality, 

Average Shortest Path Length and  Closeness Centrality (Supplementary Materials 6). The analysis 

confirmed the results from (Flobak et al., 2015; Niederdorfer et al., 2020; Jaaks et al., 2022) in 

these previous studies the nodes that used as drug targets have high Betweenness Centrality,  

Average Shortest Path Length and  Closeness Centrality in addition to many other nodes that still 

clinical trials targets and some other targets have clinical trials drugs and have crucial role in cancer 

growth pathways  like CCND1, CHUK, DUSP1, DVL_f, ERK_f, GRB2, LEF1, LRP_f, MDM2, 

MMP_f, RAC_f, RTPK_f, SHC1, TCF7_f and TP53. 
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Identification of the high influence nodes using determinative power analysis (DP) 

Every large biological network includes a subnetwork which represents a small  group of nodes 

that can  draw conclusions about the characteristics of the original network and to comprehend the 

influence of network architecture on the network dynamics (Pentzien et al., 2018). By applying 

the determinative power analysis to the nodes in our models we noticed that most of the high DP 

score nodes comparing to the other nodes on the network are previously discovered in a number 

of studies and used as a cancer drug targets, AKT_f, MAP3K7, MEK_f and PIK3CA are 

previously discovered on (Flobak et al., 2015), while ROCK1, MAPK14, SYK, GSK3_f, JNK_f, 

MYC, CTNNB1, PDPK1, IKBKB and TGFBR2 are used as drug targets in (Niederdorfer et al., 

2020) study. Moreover by comparing the synergy scores and the DP scores we discovered some 

nodes that have high score according to both of the two methods like  ERK_f,  RAC_f, SHC1, 

mTORC2_c, GRB2 and CCND1 in CASCADE 1.0, and ERK_f, RAC_f, LRP_f, RTPK_f, 

TCF7_f, MDM2 and CHUK in CASCADE 2.0. Although there are some nodes like TSC_f, TP53 

and GAB_f that have low synergy scores, but they have high frequency among synergized 

combinations and are observed to have high DP in both CASCADE 1.0 and 2.0 (Supplementary 

Materials 5). 

The major Pathways among the synergized combinations. 

By connecting the pathways to the nodes participated in the high synergy combinations we noticed 

that MAPK signaling pathway patriciate  with 37% among the combinations, PI3K-Akt signaling 

pathway 29%, Cell cycle pathway is one of the pathways among the high synergized combinations 

with 24%, 18% for Signaling by RTKs pathway, 17% for TGF-beta signaling, 11% for  Wnt 

signaling pathway, while NF-kappa B signaling  and mTOR signaling represent small percentage 

among the combinations this may be due to the low number of nodes in the models related to these 

pathways (Supplementary Materials 2). 

Identification of novel pathways  

Identification of new drugs for the new discovered targets or even in the previous studies lead to 

the appearance of some new pathways that can be used as target pathways. P53 signaling pathway 

is one of the new pathways that used by number of inhibitors as target, p53 is a tumor suppressor 

and any deletion or mutation in it leads to growth of different tumor types (Huang, 2021). 
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Interleukin (IL) signaling pathway is also noticed in the overrepresentation analysis of a large 

number of targets, interleukin (IL) is a proinflammatory cytokine that has a role in many 

pathological and physiological processes. The high expression of IL in the cell associated with 

cancer growth (Liu et al., 2017). Ras protein is widely spread in mammalian cells; each cell has at 

least 3 types of Ras proto-oncogenes. promoting Ras proteins mutation leads to increased cell 

proliferation and inhibits apoptosis. 30% of tumor types have oncogenic mutations in Ras gene so 

Ras signaling pathway is one of the common pathways that can be used as target for cancer 

treatment (Adjei, 2001). 

The overrepresented Molecular functions 

AGS cancer model-CASCADE 1.0 was constructed as a self-contained model and the regulatory 

network includes only the nodes that have regulation effect on each other (Flobak et al., 2015), so 

by doing the overrepresentation analysis we noticed that the molecular functions among all the 

targets are very similar and more related to the kinase and Protein serine/threonine kinase activity 

among the synergistic nodes in the two models and among all the nodes that have drugs. While for 

the targets that don’t have drugs the overrepresented molecular function was related to enzyme, 

protein binding in addition to kinase binding and kinase activity which also have the same general 

characteristics of the total nodes in the network. For generic cancer model-CASCADE 2.0 as we 

mentioned that it is an extension of CASCADE 1.0 so we will notice that all the 75 nodes of 

CASCADE 1.0 are also included in CASCADE 2.0 (Supplementary materials 2) so by running the 

overrepresentation analysis we noticed that most of the overrepresented molecular functions are 

the same between the two models in addition to SMAD and I-SMAD binding are noticed in 

CASCADE 2.0 model (Table 1). 

On the other hand, after connecting the synergistic nodes to the overrepresented MF we found that 

these overrepresented MFs were engaged in synergy combinations by ∼30% and most of the 

targets resulted in these MFs were confirmed as a druggable in previous studies (supplementary 

Materials 1), in addition to some new targets which have high synergy and high determinative 

power scores from our project for example CCND1, DUSP1, GRB2, SHC1, TP53 and CHUK. 
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Table (1) Represents comparison of the GO molecular function overrepresented between the targets (A) 

The overrepresented molecular function for the nodes having drugs (Approved or clinical trials drugs) 

among the total nodes. (B) Represent the molecular function for the nodes that don’t have drugs among the 

total nodes. (C) The overrepresented molecular function for the synergized nodes in CASCADE 1.0 model. 

(D) The overrepresented molecular function for the synergized nodes in CASCADE 2.0 model. 

 

     Total Nodes  Synergized Nodes 

A) Druggable Nodes B) Non Druggable Nodes C) CASCADE 1.0 model  D) CASCADE 2.0 model 

Enzyme binding Enzyme binding Protein serine/threonine 

kinase activity 

Enzyme binding 

Protein kinase binding Protein kinase binding Protein serine kinase 

activity 

Protein serine/threonine 

kinase activity 

Kinase binding Kinase binding Enzyme binding Protein kinase binding 

Protein binding Catalytic activity, acting 

on a protein 

Protein kinase activity I-SMAD binding 

Protein kinase activity SMAD binding Protein serine/threonine/ 

tyrosine kinase activity 

Kinase binding 

Phosphotransferase 

activity, alcohol group as 

acceptor 

I-SMAD binding Phosphotransferase 

activity, alcohol group as 

acceptor 

Kinase activity 

Protein -containing 

complex binding 

Protein serine/threonine 

kinase activity 

Catalytic activity, acting 

on a protein 

Phosphotransferase 

activity, alcohol group as 

acceptor 

Binding Protein kinase activity Kinase activity Catalytic activity, acting 

on a protein 

Catalytic activity, acting 

on a protein 

Protein serine kinase 

activity 

MAP kinase activity SMAD binding 

Kinase activity Protein 

serine/threonine/tyrosine 

kinase activity 

Protein kinase binding Transferase activity, 

transferring phosphorus-

containing groups 
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Predicted combination using COLOMOTO notebook 

Pint predicted combinations 

CASCADE 1.0 

Using bioLQM and MaBoSS software the previously discovered combinations (Flobak et al., 2015) 

between MEK or TAK1 inhibitors and PI3K or AKT inhibitors were confirmed, in addition by 

running a bioLQM perturbation for all the nodes against each other we noticed that the stable state 

of the perturbation of TCF node changed comparing to the wild-type (WT), this gives an indication 

that it can be used as a new drug target in the model. Pint software used to confirm this observation 

in addition to predict a new synergistic combination in the model. The output results showed that 

TCF, ERK, RSK and CCND1 are predicted as targets that can affect model goal reachability after 

setting PI3K and MEK as a new initial state to be 0 (inactive) (figure 3). Pint predicted 

combinations are matched with the model synergy predictions since the predicted mutations using 

pint are also have high synergy scores among CASCADE 1.0 predicted combinations (Table 2).  

 

 

Figure 3. The list of mutations predicted by pint to have synergy.  

 

 

Table 2. The synergy scores from CASCADE 1.0 model for the combinations predicted using pint software which 

shows that the predicted combinations have high synergy scores.  

 

 

Double perturbation of TCF and PI3K using bioLQM and MaBoSS showed that there is no growth 

inhibition more than the single perturbation of TCF so we tried to perform triple perturbation 
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between TCF, PI3k and MEK which showed that ~70% probability that the model will reach 

growth of -1 (Antisurvival_b1) this means that there is growth inhibition more than single and 

double perturbation (Supplementary materials 7).  

 

(Note: The results until the prediction of triple perturbation of TCF was done during the BI8040 

course, while prediction and confirmation of ERK, RSK and CCND1in addition to the work on 

CASCADE 2.0 in the coming section is my work in this project) 

CASCADE 2.0 

The COLOMOTO notebook Pint software was used to predict new combinations in the 

CASCADE 2.0 model, then the predicted combinations  compared with the synergy scores from 

the model. We noticed that pint software didn’t predict any double mutation, but the predicted 

triple mutation showed that there are many new targets discovered by this project participate in 

the combinations with one or more of the previously discovered targets and also by comparing the 

predicted combinations with the synergy scores we found that these new combinations have high 

synergy scores (Figure 5).  PPP1CA (serine/threonine phospho-protein phosphatase) was noticed 

to be available in most of the combinations in its  active state. Many signaling pathways are 

regulated by PPPCs family  and any disturbance in this genes regulation leads to the growth of 

different types of cancer through uncontrolled proliferation, differentiation and metastasis (Xie et 

al., 2022). The role of PPP1CA is not totally clear in the predicted combinations but it may be due 

to the logical roles in the model which have to have this node active to give the synergy results. 
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Figure 5. List of targets that were predicted using Pint to have synergy.  

 

In generic cancer model -CASCADE 2.0 the node CCND1 was predicted in many combinations 

but by running bioLQM single perturbation CCND1 had the antisurvival output value at its 

maximum value (-3) which gives an indication that this node can’t be used in any combination as 

it will give no growth inhibition in the double or the triple combination more than CCND1 single 

perturbation and this was confirmed using bioLQM perturbation and MaBoSS stochastic 

simulation (Supplementary materials 7). 

 

Table 3. The synergy scores predicted by CASCADE 2.0 model for Pint predicted combinations 

 

 

The predicted results are overlapped very well with the synergy results which gives a good 

impression regards the new nodes that we predict to be promising drug targets  
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BioLQM perturbation and MaBoSS stochastic simulation confirmation of the 

predicted combinations. 

In this section MaBoSS stochastic simulation used to confirm pint predicted combinations. By 

considering the high influence nodes and the synergy scores in addition to the drug availability, 

the nodes have been chosen to run MaBoSS stochastic simulation to confirm or reject the predicted 

combination (Supplementary materials 7).  

 

CASCADE 1.0:  

MaboSS stochastic simulation and bioLQM perturbation used to confirm the predicted 

combinations but by comparing the single perturbation with the double perturbation it showed that 

there is difference in growth inhibition so it gives an indication that there is no synergy in the 

predicted double perturbation except the combination between TCF7 and ERK_f. The single 

perturbation for the nodes has Antisurvival b1 value = -1 while in the double perturbation the 

Antisurvival value = -1,5 which means that there is more growth inhibition due to synergy effect.  

 

CASCADE 2.0:  

The single mutation done for all the nodes in the predicted combinations and the resulted growth 

was Antisurvival = -2. We then tried to run double simulation for the nodes that predicted to have 

high synergy scores and predicted by pint, but we noticed that there is no more growth inhibition 

than the single mutation. Finally, triple simulation was used and the results were Antisurvival at 

its maximum value = -3 which means that there is more growth inhibition than the single and 

double simulations and confirm all the resulted combinations. 
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4. Discussion 

Although the great efforts made by the biomedical researchers to discover a new cancer therapy, 

it is very challengeable to be able to find a single drug that have less side effects in addition to 

avoiding the resistance problem (Flobak et al., 2015; Xu et al., 2012). The scientists started to 

focus on the drug combinations which give the opportunity to decrease the drugs doses to help in 

decreasing side effect and targeting more than one pathway which increase efficacy and decrease 

resistance (Flobak et al., 2015, 2019; Gilad et al., 2021; Gregory et al., 2020; Jaaks et al., 2022; 

Menden et al., 2019). 

In the tech savvy era, creating a logical models that have the ability to predict the drug 

combinations without the need to test these combinations experimentally help in saving a lot of 

time and effort in addition to the ability to find the suitable combination for the patient within the 

timeframe limited by disease progression. Also, the massive number of predicted combinations 

make it not possible to test all of these combinations experimentally. Combinations that have 

synergistic pharmacological effect are currently the main focus of the biomedical researchers as 

the combination has greater effect than the effect of its component if used alone. In addition, 

creating a logical model where its predictions to be synergized can be confirmed experimentally 

to have synergy (True positive), and its prediction for non-synergy combinations also confirmed 

experimentally to have no synergy (True negative) help in predicting the right combination and 

not to lose any possible effective one (Flobak et al., 2015; Niederdorfer et al., 2020).  AGS cancer 

model-CASCADE 1.0 and generic cancer model-CASCADE 2.0 predictions were tested against 

in vitro experiments and synergy prediction are confirmed by the experimental observations, this 

gives an indication regards the efficacy of the models (Niederdorfer et al., 2020). 

The Drug Gene Interaction Database, National Cancer Institute (NCI) Therapeutic Target 

Database, Drug Bank (Knox et al., 2011) and Kinase Profiling Inhibitor Database are used in this 

project to identify all the possible FDA approved drugs for the nodes in the models. The total 

percentage of the currently druggable nodes which have FDA approved drugs among the 

synergized combinations is ~18% and by including the new targets that were discovered to have 

high synergy combinations in addition to having clinical trials or FDA approved drugs for 

treatment of different types of cancer the percentage increase to become ~24% among the 

synergized combinations. 
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MAPK signaling pathway plays a crucial role in the cell growth regulation, apoptosis and 

proliferation and any alteration in this pathway lead to tumorigenesis, so this pathway considered 

as potential target for cancer treatment. Many nodes in the models are related to MAPK pathway 

and also involved by a large percentage in the synergized combinations (Santarpia et al., 2012). 

 PI3K-Akt signaling pathway also involved with a high percentage among the combinations due 

to its role in cancer cells progression. After analyzing the network to identify the overrepresented 

molecular function the results showed that Protein serine/threonine kinase activity, Kinase activity 

And Kinase binding are the most common molecular function to the nodes in the models we can 

conclude the reason that most of the nodes in the network related to kinases. By comparing the 

synergy nodes with the other nodes in the models we can notice that all the nodes have the same 

graph metric behavior and share the same characteristics the confirm the synchronization between 

all the nodes in the models. 
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Table 4. The new nodes that were predicted to have high frequency among the high synergized combinations. A) The 

nodes that have high synergy scores predicted by the two models. B) The high influence nodes predicted using 

Cytoscape network analysis and Determinative power (DP). C) nodes predicted using pint and confirmed by bioLQM 

and MaBoSS simulation. 

 

A) High synergy scores nodes B) High influence nodes C) COLOMOTO predictions 

CASCADE 

1.0 

CASCADE 

 2.0 

Cytoscape Network 

analysis 

Determinative 

power 

CASCADE 

 1.0 

CASCADE 

 2.0 

CHUK CCND1 CCND1 CCND1 ERK CHUK 

DUSP1 CHUK CHUK CHUK RSK_f ERK_f 

DVL_f DUSP1 DUSP1 ERK_f TCF7_f RSK_f 

ERK ERK DVL_f GRB2  RTPK_f 

GRB2 LEF1 ERK_f LRP_f  TCF7_f 

LRP_f LRP_f GRB2 MDM2   

MDM2 MDM2 LEF1 mTORC2_c   

mTORC2 MMP_f LRP_f RAC_f   

RAC RTPK_f MDM2 RTPK_f   

SHC1  MMP_f SHC1   

TCF7  RAC_f TCF7_f   

  RTPK_f    

  SHC1    

  TCF7_f    

 

In this project we worked on analyzing the AGS cancer model-CASCADE 1.0 and the generic 

cancer model-CASCADE 2.0 to find the common features of the nodes in each model, identifying 

the druggable and non-druggable nodes and trying to discover a new drug targets. This was done 

through the use of different methods and software like the nodes that have high synergy scores or 

considered as high influence node within the network or predicted and confirmed using 

COLOMOTO notebook. Table 4 represents the results that we observed by using each method. 

We can summaries that there are some nodes noticed to be included in more than one method while 

others are only noticed in one method. CCND1, CHUK, DUSP1, ERK, GRB2, LRP_f, MDM2, 

SHC1, TCF7 and RTPK_f are group of nodes involved frequently in most of the analysis methods, 

while DVL_f, RAC, LEF1 and RSK_f appeared only in two of our analysis but they have very 

high synergy scores in addition to having high Betweenness Centrality, Average Shortest Path 
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Length and Closeness Centrality and have a crucial role in cancer progression which make them a 

promising candidate to be used as drug targets in the future. 

 

5. Conclusion 

Even with the ability to create an effective model without any false positive or false negative 

prediction, the predicted combinations are still very low and not easy to find the effective 

combination that can be used for treatment. We expect that druggome analysis is a promising field 

to be used for discovery and testing new drug combinations that can be used for treatment of the 

most dangerous tumors types. For future work we recommend to use COLOMOTO notebook for 

more analysis as there are many methods and software that can be used to predict the more efficient 

combination. 
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Supplementary materials 

1. GO Mol function of total(Druggable and non-druggable) and synergized nodes of 

CASCADE 1.0 & CASCADE 2.0 

https://docs.google.com/spreadsheets/d/1M6C7sxn4BSuPoitFpBQt6Fhx-

_u_DbMrQ8MYKgzMP0c/edit#gid=50177526  

2. Total nodes for CASCADE 1.0 and 2.0 and the Approved drugs 

https://docs.google.com/spreadsheets/d/1NwQvXHmC3jvMMeobiufLrFDawbkQsbBS/edit

#gid=1705763928  

3. CASCADE 1.0 synergy scores 

https://docs.google.com/spreadsheets/d/1Sh3KD83ecGiFZyLw4FPa_Ufhco68GfW0/edit#g

id=1379667106  

4. CASCADE 2.0 synergy scores 

https://docs.google.com/spreadsheets/d/1Sh3KD83ecGiFZyLw4FPa_Ufhco68GfW0/edit#g

id=1340235167  

5. Determinative power scores for identification of high influence nodes 

https://docs.google.com/spreadsheets/d/1opXIWCDnDDi6nXlp7b7oLhyqF1Q3PvVA/edit?

usp=sharing&ouid=113691580111986064094&rtpof=true&sd=true  

6. Cytoscape Network analysis to identify Betweenness Centrality,  Average Shortest Path 

Length and  Closeness Centrality 

https://drive.google.com/file/d/1QQP8HRD6AXCzjWMIws8Ohxpd0SdV3AhF/view?usp=

sharing  

7. COLOMOTO notebook: usage of pint, bioLQm and MaBoSS stochastic simulation to 

predict and confirm new combinations. 

https://drive.google.com/file/d/1aeNOB9PEWzFa51qggqLkXD7YExn8Ep4-

/view?usp=sharing 

8. AGS cancer model-CASCADE 1.0 : http://ginsim.org/node/194   

9. Generic cancer model-CASCADE 2.0 : https://github.com/druglogics/cascade 

 

 

 

https://docs.google.com/spreadsheets/d/1M6C7sxn4BSuPoitFpBQt6Fhx-_u_DbMrQ8MYKgzMP0c/edit#gid=50177526
https://docs.google.com/spreadsheets/d/1M6C7sxn4BSuPoitFpBQt6Fhx-_u_DbMrQ8MYKgzMP0c/edit#gid=50177526
https://docs.google.com/spreadsheets/d/1NwQvXHmC3jvMMeobiufLrFDawbkQsbBS/edit#gid=1705763928
https://docs.google.com/spreadsheets/d/1NwQvXHmC3jvMMeobiufLrFDawbkQsbBS/edit#gid=1705763928
https://docs.google.com/spreadsheets/d/1Sh3KD83ecGiFZyLw4FPa_Ufhco68GfW0/edit#gid=1379667106
https://docs.google.com/spreadsheets/d/1Sh3KD83ecGiFZyLw4FPa_Ufhco68GfW0/edit#gid=1379667106
https://docs.google.com/spreadsheets/d/1Sh3KD83ecGiFZyLw4FPa_Ufhco68GfW0/edit#gid=1340235167
https://docs.google.com/spreadsheets/d/1Sh3KD83ecGiFZyLw4FPa_Ufhco68GfW0/edit#gid=1340235167
https://docs.google.com/spreadsheets/d/1opXIWCDnDDi6nXlp7b7oLhyqF1Q3PvVA/edit?usp=sharing&ouid=113691580111986064094&rtpof=true&sd=true
https://docs.google.com/spreadsheets/d/1opXIWCDnDDi6nXlp7b7oLhyqF1Q3PvVA/edit?usp=sharing&ouid=113691580111986064094&rtpof=true&sd=true
https://drive.google.com/file/d/1QQP8HRD6AXCzjWMIws8Ohxpd0SdV3AhF/view?usp=sharing
https://drive.google.com/file/d/1QQP8HRD6AXCzjWMIws8Ohxpd0SdV3AhF/view?usp=sharing
https://drive.google.com/file/d/1aeNOB9PEWzFa51qggqLkXD7YExn8Ep4-/view?usp=sharing
https://drive.google.com/file/d/1aeNOB9PEWzFa51qggqLkXD7YExn8Ep4-/view?usp=sharing
http://ginsim.org/node/194
https://github.com/druglogics/cascade
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