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Abstract: We propose a dynamic approach for curriculum management in university programs,
i.e., for deciding which teaching and learning activities should be performed and in which
order, as classes are being executed, to better aid the students reach the intended learning
objectives. The approach ladders on a continuous-time dynamical model of the learning status
of the individual students on the individual skills to be taught during the program. Such a
model includes constructivist viewpoints on learning and zone of proximal development effects.
Updating the program structure is then cast as an opportune model predictive control task,
together with a moving horizon estimator that constantly infers the knowledge status of the
class from the assessments performed in class. The proposed closed-loop approach is shown
in simulation to significantly outperform the classical open-loop one, i.e., fixing the program

structure in advance.
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1. INTRODUCTION

Courses in higher education programs teach a series of
topics, each for a certain amount of time and at a certain
complexity level. Especially in STEM subjects, the tem-
poral sequences of such topics across the programs often
reflect constructivist points of view. Some concepts ladder
on others, e.g., Laplace transforms ladder on complex
numbers and thus should be taught after them. Using the
term Teaching and Learning Activities (TLAs) to indicate
lectures, exercises sessions, labs, etc., we may approximate
the temporal sequences of topics shown in Fig. 1.
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Fig. 1. A schematic representation of a STEM program
with two courses in parallel per semester. Each course
is composed of a series of TLAs (the various rect-
angles) dedicated to specific subjects. The length of
each rectangle is used to represent how many hours a
TLA is executed, while its shade indicates its difficulty
level.

* The research leading to these results has received funding from
pedagogical funds at Norwegian University of Science and Technol-
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European Community through the Erasmus+ project 2019-1-NOO1-
KA203-060257 “Face It”.

Curating the structure of such a program means reorganiz-
ing the TLAs logically and temporally, plus deciding their
difficult levels so that the restructured program better
promotes learning (in a sense to be defined).

Literature review. To the best of our knowledge, up-
dating the curriculum has always been a complex and
subjective task. There is some research on how students’
engagement and learning are affected by different program
designs, e.g., Tight [2012], Ashwin [2014]. There also exist
two models that seem to be the most widespread ones:
the first is called the Objectives Model, which starts from
defining the intended learning outcomes as measurable
performances, and the second being the Process Model,
which starts from defining course contents and specifying
criteria to assess students’ knowledge of these contents.
Several variations on these models exist (e.g., Tyler’s,
Wheeler’s, and Kerr’s Models) Gatawa [1990].

Likely the most renowned strategy is to follow the black-
boz approach to the sequencing of a curriculum [Crawley
et al., 2014], which was initially proposed as an exercise for
the teachers to understand better the connections among
different parts in higher education programs within the
CDIO standard to the management of university pro-
grams. This approach starts with the teachers representing
every course within a program as a set of inputs (e.g., pre-
requisite knowledge and skills) and outputs (e.g., contri-
butions to the final learning outcomes). Then the teachers
meet to discuss the connections among such elements, and
in this way, draw connections and gather intuitions for
planning and improving the program. However, this tool
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is still qualitative, not based on quantitative indications,
and does not even produce information that is not directly
based on personal interpretations.

There do exist quantitative-based approaches to curate the
learning flows within the curricula. Noticeably, several au-
thors propose solving such tasks by starting with curricu-
lum structure and coherence analyses based on opportune
graph-based representations of the programs themselves,
e.g., Aldrich [2015], Pavlich-Mariscal et al. [2019], Rollande
[2015], and Varagnolo et al. [2021]. Such approaches tend
to translate topological assessments of opportune networks
into indications of what should be taught when (or better
in which order). This also gives the possibility of creating
individualized study plans for students. However, incor-
porating the students’ current knowledge status into this
management process and how to revamp this in a receding
horizon fashion is not the focus of the just mentioned
papers.

Other works are getting closer to the strategy we pro-
pose below. Noticeably, Yeralan and Biiytikdagh [2021]
proposes to cast the problem as a linear programming one
and develop a numerical tool that helps teachers’ decision-
making by enabling a quick evaluation of alternative ap-
proaches (a study that focuses on and accommodates many
“what if” scenarios). Duarte et al. [2021] uses a combina-
tion of natural language processing, data visualization, and
a classification of learning objectives to construct program
plan representations that may be leveraged quantitatively,
as we propose here below. Finally, Akbag et al. [2015]
analyzes curricula as directed graphs but adds analyses
similar to those cited before with historical data of the
students and courses — an approach that comes short of
the one proposed here.

To summarize, there seems to be a widespread acceptance
that curricula design and modification processes may ben-
efit from data-driven tools that strive to give objective and
context-independent information (see also Teixeira et al.
[2020]). We claim that these management processes should
be supported with up-to-date and objective information
about the students current status to be effective ! .

Statement of contributions. To the best of our knowledge,
there exists no approach based on a mathematically rigor-
ous definition of the programs management problem ? that
is data-driven (i.e., explicitly using students’ performance
dynamically and recursively), and that exploits physics-
oriented considerations (e.g., natural tendencies to forget
subjects, if they are not repeated often enough).

We here instead propose a control-theoretical solution
to solve the contents management problem as that of
dynamically updating in a receding horizon fashion the
temporal sequence, logical order, and difficulty levels of
the TLAs while accounting for a) the current estimated

1 They should also be on labor market conditions and available
resources at the institution, as suggested in [Posey and Pitter, 2012].
However, this is currently out of our scope.

2 Note that the proposed methodology is also suitable for curating
the contents of single courses. When we thus say “program contents
management problem,” we refer to whole programs and single
courses.

knowledge levels of a given class of students, b) the target
knowledge levels that the students should have at the end
of the program, and ¢) a dynamical model of how the
students nominally uptake and forget the various contents
in time.

In this control-oriented framework,

e the dynamics of the uptaking/forgetting of the con-
tents is an opportune ordinary difference equation
accounting not only for such effects but also construc-
tivist viewpoints about how the contents build on top
of each other;

e the class’s knowledge levels are estimated continually
through a moving horizon estimator that leverages
the model above together with data about the perfor-
mances of the students on the various concepts they
are studying;

e the dynamic update of the program structure is
defined as an opportune model predictive control
task, again based on the same model and the above
moving horizon estimator.

In this paper, we thus discuss the potential benefits and
limitations of the proposed strategy through in-silico con-
siderations (while field tests are under execution, and
results from these will be reported in an extended version
of this manuscript).

Structure. The remainder of the paper is as follows.
Section 2 will present a detailed mathematical model of
the involved dynamics and the proposed receding horizon
strategy. Section 3 will test the given closed-loop approach
to curriculum management in a series of simulation case
studies. The paper is ended by some concluding remarks.

2. A MODEL OF THE LEARNING PROCESS IN
HIGHER EDUCATION

We now describe a simplified model of education that tries
to capture the dynamic phenomena that are affected by
programs management processes. By doing this, we aim
at obtaining a quantitative model that can be used to cast
a model-predictive management process. Each subsection
below thus focuses on a specific phenomenon, and builds
towards the final dynamical model (14) that will then
be used to build the proposed model predictive control
approach.

2.1 Modeling constructivist viewpoints on a program

We let X = {x1,...,2x} be the set of topics taught in
the program. Simplifying, a toy program may be

1 complex numbers
PYRD N Fourier transforms (1)
I ) Laplace t f
3 place transforms
Ty eigenfunctions

To model constructivist viewpoints on X', we assume that
a concept r, may depend on another x; by

e being a prerequisite, in the sense that z, is a
prerequisite for xy if learning x;, requires knowing z,
beforehand (Thus, z, is a necessary but not sufficient
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element for learning ;). For example, complex num-
bers are prerequisites for Laplace transforms;

e providing complementing knowledge, in the
sense that x, complements x; if knowing z, helps
learning x, (even if x, is neither a necessary nor
sufficient condition for learning x;). For example, the
concept of eigenfunctions complements (and thus is
useful for understanding) Fourier transforms, and vice
versa.

The relations of what is a prerequisite for what may be
collected in a matrix P € {0,1}*% where the a-th
element in the b-th column of P indicates whether z, is
a prerequisite for x; or not?3. Similarly, the relations of
what complements what may be collected in the matrix
C € {O,I}XXX. For example, for the program in (1)
meaningful choices for P and C would be

0110 0000
0010 0001
P=10000 C=1l0101 (2)
0000 0110

(e.g., both complex numbers and Fourier transforms are
prerequisites for Laplace transforms, and eigenfunctions
provide complementing knowledge for learning Laplace
transforms). In this paper we assume that the teachers
of the program have already agreed on the structure and
values of X', P, and C.

2.2 Modeling the knowledge levels of the students

We consider a time-invariant class of students S :=
{s1,...,85} (e.g., a class of three students, s; = ann,
s2 = bob, and s3 = coy). With a slight abuse of notation,
we indicate with zf(¢t) € [0,1] the knowledge status of
the individual student s about the specific topic z; at
time t. This enables indicating with the column vector
25(t) € [0,1]" the knowledge level of s about the whole
program. For example, with this notation the knowledge
level of s = bob about X in (1) at time ¢ may be

2Py =09 08 02 0.0]". (3)

Symmetrically, the column vector z;(t) € [0,1]° is used
to indicate the knowledge level of the whole class about
a specific topic ¢ at time ¢. For example, the knowledge
level of the whole class (Ann, Bob, and Coy) about x5 =
Laplace transforms at time ¢ may be

TLap.transt. () = [0.1 0.6 0.2]". (4)

The knowledge level of the whole class on the whole

program at time ¢ (in the following, the “whole state”
S X
} —

at time t) is then the column vector z(t) € [0,1
T
[T (1), ..., 2%k ®)] .

Note that the per-student and per-topic knowledge levels
vectors z°(t) and z;(t) (and thus the whole state x(t)) are
latent variables that need to be estimated from students’
assessments data. We postpone describing how to repre-
sent such assessments formally below.

It would then be natural to assume that the ideal target
of the teachers is to organize the program so that it

3 See also Molontay et al. [2020] for alternative strategies on how to
define such a matrix.

makes the whole state x(t) increase component-wise in
time until it becomes a vector of ones as fast as possible.
In the proposed approach we though let the ideal target
that of maximizing some opportune statistics of such
knowledge vector at the end of the program. Our intuition
is indeed that if sacrificing some amount of knowledge
before the program ends may help getting more students
more knowledgeable at the end of the program, then this
strategy shall be preferred. This means that we define
the end goal of the program management strategy that of
maximizing the L1 norm of the “end state”, i.e., of x (tend),
where tenq is the time marking the end of the program .

2.3 Modeling the TLAs executed during the program

We let a program be a series of TLAs (e.g., a specific
lecture, in-class exercise, lab assignment, etc.). We then
represent a generic TLA as a X x 2 dimensional matrix

wj € {07 1}X; hj € [07 ”X (5)

where the two column vectors w; and h; represent re-
spectively which topic is involved in this assessment (thus
the i-th element of w; indicates whether the i-th topic is
involved in the TLA a; or not) and how advanced the TLA
is (thus the i-th element of hjindicates at which taxonomy
level the i-th topic is being involved in a;). E.g., let a; be
an exercise related to our toy program X in (1). Let a;
involve remembering the definition of Laplace transforms
plus manipulating some complex numbers. Assume the
teachers of the program X agree that the difficulty levels
of such manipulations and of defining Laplace transforms
are respectively ® 0.5 and 0.2. a; may then be represented
as

aj = [wj, hy],

1 0.5

00
aj = [wy, h;] = 102" (6)
0

0

Importantly, including the taxonomy levels h;’s within the
description of activity a; enables accounting quantitatively
for the so-called Zone of Proximal Development effects,
i.e., assume that a student s has a given pre-knowledge
level 27 (t) about concept z; at time ¢, and that the teacher
has to choose which TLA to execute so to help student
gain further knowledge about x;. Intuitively, if the TLA
is too easy or too difficult for the student, then its use-
fulness for the learning purposes is suboptimal. Assuming
proximal development effects means then assuming that to
maximize learning there is the need of choosing activities
“with the right difficulty at that specific time” (and since
the knowledge of the student should hopefully increase in
time, then such difficulty should also increase).

4 One may want prefer to maximize some other norm, e.g., L2,
elastic net, or even some weighted norm promoting a higher knowl-
edge about some specific topics than others. This is however more a
designer choice than a framework structuring one. So, without loss
of generality, in this paper we keep the final goal that of maximizing
the L1 norm of the end state.

5 We remark that the process of defining such difficulty levels is
a non-trivial task. These numbers should indeed be a sufficiently
accurate description of how complex an activity is. Verifying this is
though well beyond the scope of this paper, and left as a future work.
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2.4 Modeling the program as a set of TLAs

We assume that the teachers have in the years prepared
a set of TLAs, A = {a1,...,aa}, where each element
a; is as above (i.e., a; = [wj,h;]). Given this set, a
program can be modelled as in Fig. 1 essentially the
sequence a = [a(l),a(2),...] of which TLAs are to be
done, potentially with replacement.

As a shorthand we will use the notation a(l : k) =
[a(1),...,a(k)]. Note that we will use k& to denote th
sequencing index, and this is in contrast with the subscript
j, that we instead use to indicate a specific TLA within
the set of potential activities 4. This means that to each
a(k) corresponds a specific j so that a(k) = a;. Moreover
we assume the duration of the program to be fixed and
known in advance (in other words, the total number of
activities to be executed is given and fixed).

Note that the purpose of this paper is to devise a control-
theoretic algorithm for the program contents management
problem, i.e., designing and updating the sequence a
starting from opportune estimates of the current latent
class knowledge status z(t) in a receding horizon fashion.

2.5 Modeling the assessments executed during the program

To formulate the contents management problem in a con-
trol fashion there is the need to close the loop. To do so,
we assume that at the end of each TLA a(k) = [w(k), h(k)]
every student executes a quantitative assessment activity,
and that this measurement is available for such control
purposes ® . Thus, after executing a(k) the system collects
a vector y®(k) € [0,1], s = 1,...,S of individual as-
sessments (one for each student) where each scalar y*(k)
indicates which score student s got after participating in
a(k) (0 indicating no success, 1 total success).

y* (k) is thus a random variable whose distribution depends
on the student knowledge state z*(k). To explicit this
distribution it is useful to define the skill deficiency factor,
i.e., an indication of how ill-prepared student s is when
participating in a(k). To define such number, recall that
w(k) describes which topics are involved in the activity,
while h(k) at which difficulty levels these are involved.
The individual skill deficiency factor may be then defined
as

max (h; (k) — z5(k),0) . (7)

E.g., if a(k) involves Laplace transforms at a taxonomy
level 0.7 and Bob has a current knowledge state about
this topic of 0.5, then Bob has a skill deficiency factor
about Laplace transforms in that activity of 0.2. If instead

6 This assumption is actually a big simplification: our anecdotal
experience suggests that it is actually rare that a teacher collects
and stores quantitative data about the performance of each student
during the various lectures. It is even more rare that this data,
if collected by an individual teacher, is stored and available for
long term planning purposes’. In any case we are interested in
understanding the value of such information — in other words,
we want to check whether in this idealized scenario the value
of such information is negligible or not. In the first case, then
it would have no sense to try to modify the system. If instead
this information seems crucial for solving effectively the programs
management problem, then this result may drive the process of
changing the system.

Top Transt. (k) = 0.8, then Ann has no deficiencies about
Laplace transforms for that activity.

The factor (7) may be defined so to be multi-dimensional,
ie.,

max (h(k) — 2°(k),0) (8)
represents the vector of individual deficiency factors ob-
tained considering the max operator as component wise.
Note that if some elements of h(k) are be zero (i.e., the
activity does not involve some specific topic) then this does
not disrupt the meaning of the vector in (8), that shall be
intended as a quantification of how unprepared a student
is to participate in a specific TLA.

(8) may then be used to build the scalar
jmas (h(k) — *(k), ), .
k ? ( )

lw(k)ly
that scalarizes the skills deficiency vector above into a
mean deficiency (with the mean being computed over how
many topics are actually involved in a(k)). Given this

mean deficiency, we assume the performance of student
s at time k when participating in the activity a(k) to be

the random variable
jmax (h(k) — 2°(k),0)|,
yi(k)=1-
) Wi,

Note that with this formulation, the skills deficiency score
approximately corresponds to how much the assessment of
a student will deviate from the perfect score 1.

(10)

2.6 Modeling the effect of participating in a specific
activity on the knowledge status

Participating in activity a(k) should ideally lead to im-
proved knowledge. The zone of proximal development in-
tuitions states that if a student has a given knowledge
level xf(k) about topic x;, then better to make them
perform an activity a(k) whose difficulty level h;(k) does
not differ too much from z$ (k). In other words, the smaller
|hi(k) — i (k)|, the higher the potential of the activity.

Thus, we model the per-topic per-student potential im-
provement brought by a(k) as
be : (11)
B+ [hi(k) — =3 (k)|
so that the perfect alignment xf(k) = h;(k) leads to the
best potential improvement of €, a user-defined hyperpa-
rameter. Conversely, perfect misalignment (z (k) —h;(k) =
+1) leads to a potential improvement of S/ (8 + 1), with
[ as another hyperparameter.

However, the potential improvement shall also account for
the following phenomena.

e If the student is deficient in prerequisite topics, the
potential improvement factor shall diminish accord-
ingly (since participating in an activity for which
one does not know the prerequisites is less useful).
Thus, the potential improvement shall also depend on
the current knowledge status of the topics implicitly
defined by the matrix P.

e If the student is knowledgeable in complementing
topics, the potential improvement factor shall in-
crease accordingly (since participating in an activity
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for which one has complementing knowledge is more
useful). Thus, the potential improvement shall also
depend on the states defined by the complementing
matrix C.

To discount the potential improvement depending on P,
we multiply (11) by
[I =®

ilPji=1

(12)

so that the closer the prerequisite knowledge to zero, the
smaller the uptake about x; can be. Ideally, knowing all
the prerequisites perfectly leads to no reduction of the
potential improvement factor.

To accelerate the potential improvement as a function of
C, we multiply (11) by

m(+%)

JlCji=1

(13)

with C; counting how many complementing topics x; has,
ie., C;i = |Ci|y, Ci being the i-th column of C. Null
knowledge about such complementing topics leads thus
the potential improvement factor to remain as initially
defined, while full knowledge about all these topics leads

C;
this factor to be (1 + 7%) . Note that here v is another

user-definable hyperparameter.

Finally, there is the need for multiplying everything by
a factor w;(k), i.e., a number that is one if activity
a(k) involves topic z;, or zero otherwise. To summarize,
the temporal dynamics associated with the per topic
knowledge levels of a generic student are

Be
B+ |hi(k) — =3 (k)]

x5 (k
[T sw- I (1+23)
JIPji=1 JlCji=1 Vo (14)
where eaT:cf(t) accounts for memory decay over time,
acting upon all skills.

w30+ ) = eTai(0) + wilk) -

2.7 A receding horizon approach to solve the curriculum
management problem

Given models (14) and (10), the problem of estimating
the learners’ knowledge status may be solved using off-the-
shelf Moving Horizon Estimator (MHE) approaches. Given
an estimate Z, finding the currently optimal TLA sequence
can also be solved using off-the-shelf Model Predictive
Control (MPC) approaches. Note that the estimation ap-
proach establishes the class’s knowledge estimates on a
per-student basis. However, solving the MPC problem on
a per-student basis would result in individualized courses;
in this case, we thus consider the “average student” knowl-
edge since considering the constraint that the class shall
follow a unified program.

3. NUMERICAL RESULTS

We consider the problem of curating an individual course
consisting of 60 hours of frontal lectures, executed on
Mondays, Wednesdays, and Fridays for 2 hours each,
teaching 5 skills (one may indeed let the individual skills

as conceptually large as wanted, e.g., “linear algebra.”
One may thus intend these 5 skills as separate parts of
the course). Such skills are so that the prerequisite and
complementing matrices P and C defined as in (2) are

01111 00000
00011 00100
P=1(00000 C=101000 (15)
00000 00001
00000 00010
We finally assume that this course has a database of 500

TLAs, so that the first 100 are so that w; = [1,0,0,0,0],
and h; = [14(0,1),0,0,0,0], i.i.d., with ¢(0, 1) the uniform
distribution in [0, 1]. The second 100 TLAs are instead so
that w; = [1,1,0,0,0], and h; = [14(0,1),4(0,1),0,0,0].
Similar extending patterns apply to the following three
sets of 100 TLAs. The TLAs are sampled without replace-
ment.

We then compare the dynamic management approach
proposed above against a reference controller constituted
by an open-loop approach executing 30 TLAs with a
predefined order. To choose this order meaningfully, we
note that the P matrix in (15) defines a natural order
for teaching the various skills 1 to x5. The course shall
thus start with 60/5 hours of TLAs that involve only x;.
The first 6 TLAs shall thus be so that w; = [1,0,0,0, 0]
and h; = [j/6,0,0,0,0]. The consecutive set of 6 TLAs
shall then be w; = [1,1,0,0,0] and h; = [(j — 6)/6, (j —
6)/6,0,0,0], thus increasing difficulty and involving more
skills. This extending pattern applies to the following three
sets of 6 TLAs.

We then simulate the dynamics of the to-be-controlled
system equivalently for both the open- and the closed-loop,
i.e., (14). This constitutes a logical flaw: we are indeed
comparing an open-loop approach vs. a receding horizon
estimation & control approach (both designed explicitly
starting from (14)) via simulations that are again based
on (14). This means that we are unfair to the open-loop
approach. However, the results in this paper are intended
to be qualitative and aim at showing that, for meaningful
model parameters, the open-loop approach is dramatically
outperformed.

For the sake of completeness, our choice of parameters and
hyperparameters for instantiating model (14) is T = 2
[hours], & = 0.001, § = 0.25, e = 0.25, and y = 50. These
values have been chosen to reflect anecdotal experience
from how a typical class, with a certain distribution of
initial knowledge, arrives at a final knowledge after a
course.

We thus compare the evolution of the aggregated perfor-
mance index ||z(¢)|| in time for the two strategies in Fig. 2.
As expected, the closed-loop approach performs noticeably
better. The interesting point is though how much better
it performs: since our choice of hyperparameters reflects
anecdotal evidence about how well students currently up-
take knowledge, the figure indicates that if the teacher
had a wide enough set of TLAs and adopted the proposed
approach, the same class would have learned much better.

The reasons why this happens may be explained by in-
specting Fig. 3, showing the trajectories of the individual
estimated and actual knowledge levels states. More pre-
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Fig. 2. Evolution of the aggregated performance index
lz(t)]| in time for the two considered strategies.

cisely, the average knowledge of the class for the closed-
loop approach increases faster, given the set of available
TLAs. This results in more time available for refining the
most advanced skills, typically those in classical courses
with the most risk of suffering from misunderstandings
due to weaker knowledge of their prerequisites.
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Fig. 3. Trajectories of the average knowledge of the class
per skill for the closed-loop approach (top) and open-
loop one (bottom).

4. CONCLUSIONS

We defined a strategy for dynamically curating program
contents while adapting to the current class’ needs and ac-
counting for the final learning target. The proposed closed-
loop approach ladders on two main ingredients: a model
of the learning dynamics and the availability of students’
assessments. These ingredients enable coding an approach
that is capable of outperforming classical strategies for
which the list of which Teaching and Learning Activities
(TLAs) shall be executed is immutable and defined at the
beginning of the learning period.

The proposed strategy needs though information that is
currently unavailable in real-life settings. We believe that

this unavailability is the primary cause of immutable pro-
gram structures. We further believe that by showing the
untapped potential of such information quantitatively, this
paper contributes towards implementing more systematic
data collection in class.
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