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ABSTRACT
The support vector machine (SVM) classification algorithm
often achieves quite high accuracy on hyperspectral images,
even when trained on small amounts of data. However, SVMs
can still be computationally expensive relative to the desired
throughput and available resources on remote imaging plat-
forms.

In this paper, the possibility of decreasing the computa-
tional costs of SVMs by increasing their sparsity is explored
on a few simple hyperspectral scenes. The number of bands
is reduced by a factor of up to 20, which roughly corresponds
with a 20× reduction in the number of computations, with
only few percent decrease in the overall accuracy. Further-
more, it is found that accuracy is fairly insensitive to the
method by which different bands are selected to be retained
after training.

Index Terms— Classification, Hyperspectral, Machine
Learning, Remote Inspection, Remote Sensing

1. INTRODUCTION

Hyperspectral imaging finds more applications as it becomes
accessible to remote platforms such as unmanned aerial ve-
hicles and small satellites [1, 2, 3, 4, 5]. While many classi-
fication algorithms achieve high accuracy on powerful com-
puters, the operation of classification on edge or embedded
processing platforms is more difficult [6]. Many of the most
accurate classification techniques utilize the neighbors of a
pixel to determine its class [7], but on-board classification
is typically limited to pixel-wise classifiers due to computa-
tional constraints [6].

Relative to other machine learning classification meth-
ods, Support Vector Machines (SVMs) require less memory
to store their weights and typically classify a scene with quite
high accuracy [6, 8]. However, they also have high computa-
tional demands because the inner product between each pixel
and each support vector must be computed. Computational
demands increase when a non-linear kernel function is incor-
porated into the inner product.

The research leading to these results has received funding from the NO
Grants 2014 – 2021, under Project ELO-Hyp, contract no. 24/2020, and the
Research Council of Norway though the AMOS center grant number 223254.
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Fig. 1. The sparsity of the support vector which separates the
soil class from the other classes in the Samson dataset tuned
by varying lambda in the L1-regularized objective function.

In this paper, SVMs are adapted for on-board processing
by using sparsity, via the L1-norm, to restrict the number of
bands (Figs. 1 and 2). Essentially, if a sparse support vec-
tor only uses b out of the total p bands, then the algorithm
is accelerated by a factor of p/b. Previous applications of
sparse SVMs to hyperspectral data have focused its utility
as a tool for bands selection and computation reduction [9].
Linear SVM, rather than the more common radial basis func-
tion SVM, is used because it does not require the exponential
floating point operation, which is relatively slow [6]. As in
[9], the objective function is solved in its primal rather than
dual form. A one-versus-rest decision function is used to re-
duce the total number of computations. The SVMs are tested
on two simple hyperspectral scenes, Samson and Jasper [10].

2. TRAINING A SPARSE SVM

In this section, the sparse SVM problem formulation is recast
into a least-squares problem and the algorithm used to solve it
is introduced. Then, the training dynamics and the effects of
metaparameters are described (Fig. 3). Only execution of the
SVM must be on-board. The training of the support vectors
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Fig. 2. The support vectors which separate the soil class from
the other classes in the Samson dataset show minimal sparsity
for varying lambda in the L2-regularized objective function.

can be done on the ground, without significant computational
limits.

2.1. Problem formulation

Consider a dataset, {(zi, yi)}Ni=1 of N spectra, zi, each with
p bands and a class label yi. Then, the sparse linear SVM
classification objective function is:

min
w,d,u

λ

N∑
i=1

ui + ∥w∥1 (1)

subject to : yi(w
T zi + d) ≥ 1− ui, ui ≥ 0 ∀i,

where w ∈ Rp is the support vector, d ∈ R is the offset,
ui is a slack variable, and λ specifies the importance of clas-
sification accuracy relative to sparsity. The variables w and
d parameterize hyperplane wT z + d = 0 that separates the
classes. Problem (1) can be recast as a linear programming
problem [11] and then as a least-squares problem [12]:

find x ∈ Y : Ax = b, Cx ≤ d, (2)

where, by considering Y as a vector containing all yi’s and
Z be the matrix containing zi vectors, one can compute the
following:

x ∈ Y = [0,∞)2(p+N+1), (3)

A = [1T
2p, λ · 1T

N , 0, 0, −1T
N ], (4)

C =

[
C 0N

02p+N+2 −CT

]
, (5)

where, C = [−Y ◦ ZT , Y ◦ ZT , IN , −Y, Y ]. Here 1
denotes a vector of all ones, 0, I denote the zero and identity
matrix, respectively, and ◦ is the Hadamard product (elemen-
twise multiplication). In this context, A is a vector of size
2(p + N + 1) and C is a matrix of size 2(p + N + 1) ×
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Fig. 3. The evolution of the number of bands with a weight
> 0.1 in the support vector separating the soil from the other
classes during training, for several different values of λ.

2(p + N + 1). Moreover, this problem (2) can be reformu-
lated equivalently as an optimization problem with functional
constraints:

min
x∈Y

f(x) (6)

subject to CT
ξ x− dξ ≤ 0 ∀ξ ∈ Ω2,

where CT
ξ are (block) rows partition of matrix C, and f(x) =

1
2 (Ax− b)2.

2.2. Stochastic subgradient projection algorithm for con-
strained least-squares

Recently, a stochastic subgradient projection algorithm for
constrained least-squares (SSP-LS) problem (6) was proposed
by two of the authors [12]. The SSP-LS algorithm considers
a independent random variable ξk sampled from probability
distribution P1. At each iteration, it performs a first proximal
subgradient step to minimize the objective function and then
a second subsequent stochastic subgradient step to minimize
the feasibility violation of the sampled constraint.

Algorithm 1 SSP-LS
Require: x0 ∈ Y , α > 0, β ∈ (0, 2)

for δ > tol do
Sample ξk ∼ P1

vk ← xk − αAT (Axk − b)
zk ← (1− β)vk + βΠCξk

(vk)

xk+1 ← ΠY(zk)
compute δ

end for

Here, ΠY(·) denotes the projection onto Y and δ =
max(|Ax − b|, ∥max(0, Cx − d)∥). The probability distri-
bution can be chosen e.g., dependent on the (block) rows of
matrix C:
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Fig. 4. The support vectors separating the Samson classes,
trained with λ = 0.05.
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Fig. 5. The ordered magnitude of the band weights for the
soil-vs-rest support vectors trained with varied λ (solid, left).
The ratio of two subsequent weights, peaks indicate the num-
ber of relevant bands (dashed, right).

P1(ξ = ξk) =
∥Cξk∥2F
∥C∥2F

,

where ∥ · ∥F denotes the Frobenius norm of a matrix. It has
been proved in [12] that this stochastic algorithm converges
linearly.

2.3. Training Dynamics

The SSP-LS algorithm successfully converged for the Sam-
son and Jasper hyperspectral datasets, trained with 20% of
the labelled data. The number of bands contributing to the
support vector (magnitude greater than 0.1) showed non-
monotonic behavior during training (Fig. 3). At initializa-
tion, all the bands contributed, but a minimum appeared after
several hundred iterations. After a few thousand iterations,
another local maximum in the number of contributing bands

Fig. 6. The true Samson labels (left) compared to those found
with the λ = 0.05 SVM (right): water (yellow), soil (purple),
trees (teal).

appeared, followed by a slow decrease. Thus, it is critical to
give SSP-LS sufficient time to converge.

Only the parameter λ, which controls the sparsity, af-
fected the training dynamics much. If set below 0.1, the
training required notably more time. The step size, α affected
the number of required iterations little, while β near 1 slowed
the algorithm, but did not alter the overall sequence. For the
experiments shown here, α = 0.5 and β = 1.96. The same
general behavior was seen for training the support vector for
each class, although the final number of pertinent bands and
required iterations varied.

3. SPARSITY AND ACCURACY

The SSP-LS algorithm trained sparse support vectors for all
the classes in both the Samson and Jasper images using a one
versus rest decision function (Fig. 4). The mean was removed
and the standard deviation was normalized before processing.
The ordered magnitude of the weights of the support vector
contains multiple flat regions, as also observed by [9], which
verifies that the support vectors truly are sparse (Fig. 5).

norm λ Soil Trees Water Overall
l1 1.00 0.948 0.995 0.994 0.979

0.50 0.929 0.994 0.997 0.973
0.30 0.917 0.993 0.999 0.970
0.10 0.866 0.996 1.000 0.954
0.05 0.838 0.995 1.000 0.944

l2 1.00 0.961 0.995 0.989 0.982
0.50 0.956 0.995 0.991 0.981
0.30 0.949 0.995 0.993 0.979
0.10 0.929 0.993 0.995 0.972
0.05 0.914 0.993 0.998 0.968

Table 1. Accuracy of SVMs applied to Samson

The accuracy of these support vectors is then compared
in Table 1 to linear support vectors trained with L2 regular-
ization using the liblinear library [13]. Sparsity only imparts
a small penalty on the accuracy of the classification, and al-
though it grows with decreasing λ, it still produces a clear
image (Fig. 6).
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Fig. 7. The number of non-zero bands in the support vectors
(left axis) and the resulting accuracy on the training (dashed)
and test (solid) data, trained with λ = 0.1.

norm λ Trees Water Dirt Road Overall
l1 1.00 0.948 0.994 0.968 0.907 0.974

0.50 0.977 0.997 0.967 0.899 0.976
0.30 0.977 0.998 0.968 0.884 0.975
0.10 0.975 0.999 0.960 0.862 0.971
0.05 0.978 1.000 0.942 0.827 0.965

l2 1.00 0.975 0.993 0.964 0.914 0.974
0.50 0.975 0.993 0.963 0.911 0.974
0.30 0.975 0.994 0.962 0.907 0.973
0.10 0.975 0.994 0.963 0.901 0.973
0.05 0.975 0.996 0.962 0.886 0.972

Table 2. Accuracy of SVMs applied to Jasper

To utilize the improved speed associated with the sparse
vectors, it is necessary to pick how many bands to set to 0,
so that they can be ignored at execution. In [9], the number
of ordered bands is chosen by (i) ordering all the bands by
the magnitude of their weight in the support vector, then (ii)
selecting only those bands which occur in the ordering before
the steepest decrease in magnitude. However, unlike that pre-
vious study, there were multiple disjoint local maxima and the
slope only reached values less than 10, rather than 105.

Two different strategies were tested for selecting bands:
picking a fixed threshold or fixed number of bands. Thresh-
olding, in which all bands below a set threshold were set to
zero, resulted in a different number of bands for each sup-
port vector (Fig. 7). The accuracy remained quite stable over
a wide range of thresholds, even as the number of retained
bands changed. Steep drops of over 20% reduction in accu-
racy occurred at a few points. Surprisingly, the accuracy in-
creased as the number of bands decreased at a few threshold
values.

Selecting the M bands with the largest weights for each
support vector allowed for simpler comparison between sup-
port vectors with different sparsity (Fig. 8). As the sparsity
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Fig. 8. The overall accuracy as a function of the number of
bands retained in each support vector, for each λ setting.
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Fig. 9. The support vectors found for the classes in Jasper
with λ = 0.05.

increases (decreasing λ), the vectors achieve their maximum
accuracy with fewer bands, as few as 4. However, as the total
number of bands is increased, the less sparse support vectors
perform better.

When the experiments were repeated on the Jasper hy-
perspectral image, sparse support vectors were again found
for every class (Fig. 9). The overall accuracy of the sparse
support vectors actually exceeded that of the L2-regularized
vectors for a few values of λ, unlike on the Samson scene (Ta-
ble 2). The general form of the accuracy as a function of the
number of non-zero bands was similar to the Samson scene,
although a bit less structured (Fig. 10).

4. CONCLUSIONS

Sparse support vectors achieve performance similar to stan-
dard linear support vectors. The degree of sparsity can be
controlled and for simple scenes such as Samson and Jasper
it is possible to achieve around 95% overall accuracy using
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Fig. 10. The overall accuracy as a function of the number of
bands retained in each support vector, for each λ setting.

just a few percent of the total bands for each support vec-
tor, corresponding to more than 20× increase in the execution
speed. These bands are different for each of the support vec-
tors, which indicates that the detailed spectral information is
still being used.

However, most SVM libraries are not suited for executing
with a different subset of bands for each comparison, and,
even if they were, switching between subsets would entail
some additional computational cost. This difficulty could be
avoided if an algorithm were developed such that the same
subset of bands were used for each support vector.

Many SVMs applied to hyperspectral data utilize kernels,
which were not explored here. While kernels enable SVMs to
classify more complex data sets, they also vastly increase the
cost of execution. Further research could investigate whether
the methods described above could be used to accelerate
SVMs using radial basis function or polynomial kernels.

The code used to train and execute these SVMs can be
found on the ELO-Hyp github page: github.com/ELO-Hyp/.
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