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Abstract: Detecting when and where contact with the quay appears is an important ability
for ships undergoing a docking maneuver. The motion of the quay, environmental forces, and
hydrodynamic effects caused by the interaction between the ship and the quay are all important
factors that affect if a docking procedure succeeds or not. This paper studies how contact with
the quay can be detected using conventional motion sensors. This includes sensor data from
inertial measurement units, global navigation satellite systems, and estimates from an inertial
navigation system. The contact detection task can be interpreted as a binary classification
problem deciding if contact has occurred or not. Three conventional supervised machine learning
methods are studied using experimental data captured in full-scale experiments. Logistic
regression, a support vector machine and a long-term short memory network have been trained
and investigated. The results are promising and a proof of concept illustrating that supervised

machine learning is a viable strategy for quay contact detection using motion sensors.
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1. INTRODUCTION

Automatic docking systems need the ability to detect
when and where contact with the quay appears during
a docking maneuver. This is a critical ability for a ferry
undergoing an automatic docking procedure and for the
mooring system that should be activated immediately
after contact. A docking control system typically requires
specific changes in the thruster input when contact is
obtained to push the ferry towards and stay connected
with the quay. Abrupt changes in the desired control
action and lingering integral action effects are potential
consequences if contact is not detected due to unexpected
contact forces and hydrodynamic effects close to the dock.
These effects must be considered in the control system
after impact.

Detecting when a ferry is in contact with the quay share
many similarities with the more general topic of collision
detection Kockara et al. (2007); Lee et al. (2020). Collision
detection has been a relevant research topic in the auto-
mobile industry for several decades as researched in Amin
et al. (2014); Kumar et al. (2021); Hannan et al. (2011).
Moreover, contact detection has also been important for
research on robotic manipulators that interact with other
bodies, e.g. Bajo and Simaan (2010). However, contact
detection for a ferry is another form of collision detection
due to the low accelerations and force impact that are
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experienced near the end of a docking maneuver. Passenger
ferries typically aim for low speed and a negligible impact
for passenger comfort and to avoid damage. In addition,
there are usually significant vibrations caused by rotating
machinery, and motions caused by waves. Methods that
look for significant changes in the force or acceleration
are therefore not necessarily applicable for ferries. Conse-
quently, this paper addresses how contact with quay can be
detected for passenger ferries where the speed and contact
forces are small.

Several strategies are reasonable for detecting contact with
the quay. One option is to use a positioning system that
estimates the relative position to a specific location on the
quay. However, such a strategy requires a navigation sys-
tem with precision of a few centimeters. Moreover, longer
ships that aim for contact on one of the sides need precise
heading estimates to calculate when and where contact
occurs. This typically means that it is necessary with local
infrastructure on the quay or additional sensors on the
ferry measuring the relative position to the quay along
the ship side. Infrastructure on the quay will restrict the
applicability of the method to specific locations. Another
option is to use a mathematical dynamic ferry model to
compare the predicted motion with the actual ferry motion
measured by sensors on-board the ferry. This approach is
not transferable since a unique model must be identified
for each vessel. Moreover, environmental forces must be
included in the model and particularly wind gusts and
waves from other vessels are troublesome to estimate.

A simple way to detect collisions with high impact is to use
a filter with a threshold on acceleration, velocity and/or
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angular rate. It is also possible to use a threshold for
the expected rate of change. However, it is challenging
to find limits that are applicable in different locations
and weather conditions for collisions with a small impact.
Wind, waves, and ocean currents are factors that affect
the magnitude of these signals, and these forces might
dominate the contact forces. Thresholding strategies have
been tested on experimental data, but the findings indicate
that it is not a robust strategy that can be generalized to
several datasets. Using exteroceptive sensors (cameras or
LIDARs) might be a viable approach but adds cost and
complexity. Moreover, careful placement is crucial, and the
contact point is normally much lower than the deck. This
can be troublesome for larger ships with restricted areas
for mounting since the sensor range and field of view are
limited and especially if first contact can happen anywhere
along the ship side. Sensitivity to weather conditions is also
an obvious concern.

Because of the aforementioned considerations, an attrac-
tive option is to find a strategy that avoids local infrastruc-
ture on the quay, additional sensors on-board the ferry,
and a ferry model. A flexible solution that can be used in
several locations is desirable. One interesting option that
fits within this mindset is supervised machine learning
methods where motion sensor data are used to train a
classifier for contact detection. Detecting contact with the
quay can be interpreted as a binary classification problem
classifying if contact has occurred or not. This paper
studies three different classifiers. Two classifiers are based
on traditional methods such as logistic regression (LR) and
support vector machines (SVM), both described in Drei-
seit]l and Ohno-Machado (2002). The third classifier is a
deep learning approach based on the long short-term mem-
ory (LSTM) neural network (Hochreiter and Schmidhuber
(1997)). A recurring pattern must be present in the data
if supervised learning is a viable approach for contact de-
tection. Therefore, the main motivation behind this work
is to investigate whether such a repeatable pattern exist
when the contact forces are minor and without extrema of
a significant magnitude compared to the general motion.

The classifiers are based on time-series data from typical
motion sensors on ships. This includes acceleration and
angular rate measured in an inertial measurement unit
(IMU), and speed and heading measurements from a dual-
antenna global navigation satellite system (GNSS). Data
from these sensors are expected to provide the most use-
ful information when typical ship sensors are considered.
Similar measurements were utilized in Heyn and Skjetne
(2016, 2015) for detection of contact with sea ice. How-
ever, they focused on analysis in the frequency domain
and used multiple IMUs. Nevertheless, there are obvious
similarities between detection of ice-induced motions and
quay contact.

The aim of this paper is not to develop the best or optimal
classifier for contact detection, but to investigate whether
sensor data from an IMU and GNSS can be used to detect
contact with the quay with reasonable accuracy. Therefore,
this paper should be interpreted as a feasibility study
of supervised machine learning methods for quay contact
detection. The chosen sensor suite is a low-cost alternative
without sensors solely used for contact detection. The rest
of the paper is dived into four sections. Section 2 briefly

describes the theoretical foundation for the supervised
learning methods used in this paper. The methods are
well known in the literature and this part is kept short
intentionally. Implementation aspects and preparation of
data are described in Section 3. The full scale experimental
results are presented in Section 4 before the paper is
concluded in Section 5.

2. CONTACT DETECTION CLASSIFIERS

Three supervised learning algorithms have been investi-
gated for the purpose of contact detection. LR, and SVM
are well known in the literature on supervised learning,
and LSTM is known to perform well on sequential data
such as time-series Karim et al. (2018). The sensor data
considered in this work is sequential and this is hence the
main motivation for studying LSTM in this context. The
contact detection task is a binary classification problem
as mentioned previously. Either the ferry has, or has not,
been in contact with the quay.

2.1 Logistic Regression (LR)
LR is described thoroughly in Dreiseitl and Ohno-

Machado (2002). A logistic function is the basis for this
classifier and often modeled as a function

1
16 = e M
where the function h(x) is defined as
h(x) = Bo + Bra1 + oo + Bnan = B x (2)

and n is the number of input variables. x = [1, 21, ..., 2, "
is the input vector and (B3 is a vector of coeflicients
determined during supervised training. The output of
f(x) can be interpreted as the probability of a specific
outcome in the binary classification problem, and the
function is optimized to use coefficients that maximizes
the probability of correct outcome based on the training
data.

2.2 Support Vector Machine (SVM)

The SVM is also a well-known classifier, for example
described in Noble (2006). In a binary classification task,
SVM uses a hyperplane to distinguish between the two
classes. The hyperplane is modeled as

BTx=0 (3)
The weights are determined in training where the hyper-
plane is designed to give the best possible separation be-
tween the outcomes. A perfect separation is rarely possible
for experimental data, and thus an optimization problem
is solved in training to find the best separation. SVM is a
geometric classifier without providing a probability score
directly. However, it is possible to quantify the reliability
of the result based on how far an input vector is from
the hyperplane which separates the outcomes. The most

common method for this is Platt Scaling as described in
Platt (1999).

2.3 Long Short-Term Memory (LSTM)

The LSTM algorithm is a different approach and is
based on deep learning and artificial neural networks.
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The method was originally described in Hochreiter and
Schmidhuber (1997). LSTM is a recurrent neural network
which means that is has a memory that is useful for time-
series and sequential data. The outcome of one classifica-
tion event can therefore affect future outcomes through
a feedback connection. LSTM was originally designed to
counteract the vanishing gradient problem that often arise
in recurrent networks with long-term dependencies. The
key is that only a recent time window of relevant data is
kept in the memory so that previous irrelevant data do not
affect the current outcome. In a contact detection task, it
is only a short window of a few tenths of a second that is
of interest.

The LSTM classifier has three main parts that decide
the outcome. The first component is the cell state (long-
term memory) describing the data stored in the network
currently. The second component is the output of the
previous point in time (previous hidden state). The final
component is the input data at the current time step.
These components will together determine the classifica-
tion outcome of the current data. The flow of the algorithm
can be summarized as:

(1) The forget gate decides which part of the long-term
memory that is relevant based on the current data,
and which part of the memory that can be removed.

(2) The long-term memory is extended with the relevant
part of the new data.

(3) Find the new hidden state (outcome of classification
problem) based on the new data.

Each layer in the network is tuned during training as usual
for neural networks.

3. SENSORS AND EXPERIMENTAL DESIGN

This section presents the sensor suite used to collect
experimental data. Data preparation and the data labeling
process for supervised machine learning are also described.

3.1 Sensor suite

A sensor payload was developed to collect data. The sensor
suite included the following sensors:

e Adis 16490 MEMS IMU measuring specific force and
angular rate at a frequency of 250 Hz with specifica-
tions given in Analog Devices (2022).

e Two uBlox Neo MS8T global navigation satellite sys-
tem (GNSS) receivers equipped with two Harxon HX-
GS288A antennas, ublox (2022).

e IDS UI-5260FA-C-HQ electro-optical camera captur-
ing images at 10 Hz. The camera was used to identify
when contact with the quay occurred for the labeling
process.

The sensor payload was mounted in a pelicase strapped
to the top floor on the starboard side of the ferry. The
location was chosen due to ease of access.

3.2 Experimental data

The experimental data was collected on a passenger ferry
between Vanvikan and Trondheim in Norway. Data from

eight different crossings from Vanvikan to Trondheim have
been collected. The data was collected across several hours
on two different days. Significant tidal variations were
present, and the weather varied. However, it was mostly
calm and cloudy without much influence from waves or
wind. It is mainly the data close to the quay that is
of interest. A contact detection algorithm will only be
initiated close to the dock to limit the risk of false positives
and hence data from open waters is not relevant. Figure 1
displays the passenger ferry used to collect experimental
data at the dock in Trondheim.

Fig. 1. Passenger ferry used to collect data.

The operator steered the ferry so that the front could glide
with the starboard side along the quay. Consequently, the
ferry was pushed out from the dock after the initial contact
and numerous discrete contacts could occur before the
ferry stopped completely. The initial contact is considered
as the most important instance to detect, but it is also
beneficial to identify subsequent occasions with contact.
The contact point on the ferry influences how the ferry
reacts to the collision and therefore the measurements.
The accelerometers are for example affected by where the
impact occurs with respect to the IMU position. Moreover,
contact far from the center would lead to a yaw moment.
The selection of sensor placement is outside the scope of
this paper but will most likely have an impact on the
results.

3.8 Data used for classification

In addition to the measurements from the sensors listed
in the previous section, estimates from an inertial naviga-
tion system are also utilized. A multiplicative extended
Kalman filter (MEKF), as described in Fossen (2021),
was implemented to estimate the navigation states of the
ferry using the IMU and the dual-antenna GNSS receiver
setup. This sensor combination enables the possibility to
estimate the position, velocity, acceleration and attitude.
Therefore, estimates of these states are also available for all
ferry crossings. The classifiers are based on the following
measurements/states which are assumed to contain the
most valuable information:

(1) Raw specific force measured in the body frame at
250 Hz using the IMU.

(2) Raw angular rate measured in the body frame at
250 Hz using the IMU.

(3) Heading estimates from the MEKF with an update
rate of 250 Hz.

(4) GNSS velocity measurements directly from one re-
ceiver. The measurements were upsampled to 250 Hz
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to correspond to the rate of the other measure-
ments/states.

The ferry dynamics are in general slow with time constants
of a few seconds. However, the IMU measurements were
contaminated with high-frequency noise most likely caused
by vibrations from the engines. Consequently, the raw IMU
data was low pass filtered. A cut-off frequency of 10 Hz
was chosen to reduce the noise without filtering out low-
frequency motion that is expected to be relevant during
contact.

3.4 Labeling and Training data

Robust labeling is key with a limited set of training
data. In this work, labeling of when contact occurred was
conducted with the help of images captured during the
docking process and inspection of the IMU data. Contact
was detected through manual inspection of the images
with an expected accuracy of a single image frame. Images
were captured with a frame rate of 10 Hz, and thus the time
accuracy of each contact is expected to have a worst-case
accuracy of 0.1s. In addition, the IMU data was inspected
within the corresponding period to verify the labeling on
occasions where a visible response was seen in the IMU
data. The time of a single IMU sample was chosen as the
time of contact with the quay.

It is important to emphasize that labeling of sequential
data is a different process than labeling of images for
object detection. Contact with the quay can occur at
several consecutive samples due to the high sample rate
of the sensors and therefore a window of positive samples
exists around each contact. A window of 12 IMU samples
before and 24 samples after the time of contact was labeled
as a positive sample. With an IMU rate of 250 Hz, this
corresponds to a contact length of approximately 0.14s.
Every sample within this window was labeled to originate
from contact with the quay.

The main hypothesis was that a repeatable pattern should
be present before and after contact with the quay. This
means that the period just before and after impact can
contain crucial information. Using measurements from a
single time instant can therefore prevent the classifier
from learning the typical behavior during contact. Con-
sequently, a sliding window of data is needed to capture
the behavior. A sliding window of 38 consecutive measure-
ments was used as feature vector to train the classifiers. If
one of the 38 measurements included contact, the entire
time window was classified as contact during labeling. The
size of the sliding window was motivated by the work
presented in Becker and Ebner (2019), where a sliding
window of 19 samples was used to detect collisions for a
mobile robot using LR. The size of the sliding window has
not been further investigated in this work but was chosen
after testing different values initially.

Table 1 describes the number of instances with contact
in each dataset. The number varies in each dataset be-
cause different operators used different strategies when ap-
proaching the quay. This is therefore the natural behavior
when manually docking the passenger ferry. Moreover, the
motion and forces experienced on the ferry during docking

were different in each dataset due to varying environmental
conditions and the strategy of the human operator.

Table 1. Datasets and number of contacts

Dataset | Number of contacts
1-8 4,5,4,5,2,1, 3,4
Total 28

Another consideration worth highlighting is that the num-
ber of positive samples (contact samples) is much smaller
than the number of negative samples. Contact only occurs
a few times for each crossing (assuming that the ferry is
pushed out of the quay a couple of times before contact
is maintained) and in a very short period. Therefore, the
training data will be dominated by negative samples, and
this will also affect how the results should be assessed.
Data captured earlier than the final five seconds before
the initial contact in each data set were neglected. Even
with this strategy, only 5 % of the data originates from
positive samples. This means that classification accuracy
must be interpreted with care since classifying all samples
as negative would give an accuracy of 95 %.

4. EXPERIMENTAL RESULTS

This section presents experimental results using the data
presented in Section 3. The Python framework scikit-learn
was used to implement LR and SVM and tensorflow was
used to implement LSTM. Detailed tuning of hyperparam-
eters in the training phase is not within the scope and
will only be discussed if assessed to be relevant for the
interpretation of the results. The default parameters for
LR and SVM can be found in LR configuration (2022)
and SVM configuration (2022), respectively. The LSTM
was implemented with two dropout layers to prevent over-
fitting, one hidden LSTM layer and one dense output
layer. This is a simple configuration but considered to be
sufficient for showcasing LSTM in this context.

4.1 Results

Datasets 1-8 mentioned in Table 1 form the basis for
the results. To simplify the training process, all data
from the sensors have been combined into a single time
series (one for each sensor). Figures 2 and 3 show the
IMU data in one dataset after low-pass filtering. Contact
with the quay occurs at five instances in this dataset,
specifically at 957s, 977s, 983s, 997s, and 1002s. The
time instances are marked in the figures as vertical lines.
A notable change can be seen in the accelerometer data
along the x and y axes at these times, but there are other
similar changes that do not originate from contact. The
measured angular velocity does not have the same notable
response. However, a change in the sign of the yaw rate
(bottom plot in Figure 3) can be seen in some of the
instances with contact. This makes sense since the vessel
is steering towards the dock and is pushed away before it
tries to steer towards the dock again. The magnitude of
the yaw rate during contact can potentially say something
about where contact appears since it depends on the
length of the moment arm in yaw. The magnitude of
the measurements vary between the different contacts
as illustrated in Figures 2 and 3. This underlines that
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difficulty of finding general threshold limits and significant
differences in the magnitude were also experienced in
between the datasets.
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Fig. 2. Low pass filtered acceleration measurements. Con-
tact times are marked with vertical red lines.
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Fig. 3. Low pass filtered angular rate measurements.
Contact times are marked with vertical red lines.

A total of 28 contact instances exists in the eight datasets,
which is a small amount. The implications of this for
machine learning are discussed later. Remember that a
sliding window is used and that a single sample with
contact is enough to label the entire sliding window as
contact with the quay. Consequently, the data includes
more than 28 positive samples, but the data originates
from 28 unique contacts. The data is split into a training
and test set where the training set consists of 11 contacts
and the test set of 17 contacts. Cross validation was used
during training.

LR vs SVM

The first part of the results is a comparison between LR
and SVM with data from all sensors listed in Section
3.3. A chosen set of classification results are presented in
Table 2. The classification score threshold is a manually

chosen value between 0 and 1. Classification values above
the threshold is classified as a positive sample (contact).
In binary classification, a classification threshold of 0.5
is typically chosen. However, for imbalanced data sets or
in scenarios where misclassification is critical, it might be
necessary to decrease or increase the threshold. A thresh-
old below 0.5 typically increases the chance of classifying
the positive samples correctly at the cost of more false
positives. A threshold above 0.5 typically means that fewer
positive samples will be detected, but that the number of
false positives decreases.

The receiver operation characteristic curves (ROC) for
LR and SVM using default hyperparameters are shown
in Figures 4 and 5, respectively. The figures indicate that
SVM is more accurate in the training phase and that is also
the case in the results using the test set. The bottom two
rows in Table 2 show the results on the test set when the
parameters in the training phase were tuned to improve
the accuracy in training. Even though the accuracy was
improved in training, only one more contact was detected
in the test set using LR and SVM (at the cost of a false
positive for SVM). Other parameter choices were also
tested and led to increased accuracy in training. However,
the classification results on the test set were not improved
compared to the default configuration. This underlines
the difficulty of using training accuracy for tuning of the
classifier with a small training set.

Table 2. Contact detection results using LR
and SVM. TP = true positives, FP = false
positives, and FN = false negatives

Method Classification | TP FP FN
score
threshold
LR - default hyper- | > 0.8 8 0 9
parameters
SVM - default hy- | > 0.8 11 0 6
perparameters
LR - tuned hyper- | > 0.8 9 0 8
parameters
SVM - tuned hy- | > 0.8 12 1 5
perparameters

Receiver Operating Characteristic Curve for LR
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Fig. 4. Receiver operating characteristic (ROC) for logistic
regression with default hyperparameters. TPR = True
positive rate and FPR = false positive rate.
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Receiver Operating Characteristic Curve for SVM
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Fig. 5. Receiver operating characteristic (ROC) for the
support vector machine classifier with default hyper-
parameters. TPR = True positive rate and FPR =
false positive rate.

Sensor combinations for classification using SVM

The second part of the results will investigate the use-
fulness of each sensor. Several sensor combinations will be
evaluated on SVM, which proved to be more accurate than
LR in the first part of the results. Table 3 summarizes the
main results using different sensor combinations. Note that
the threshold for the classification score has been lowered
in this case.

Table 3. Contact detection using SVM and
different sensor combinations. TP = true pos-
itives, FP = false positives, and FN = false

negatives

Sensors Classification | TP FP FN

score

threshold
Benchmark - all | > 0.8 12 1 5
sensors
Benchmark - all | > 0.2 15 8 2
sensors
Accelerometer > 0.2 14 1 3
Angular rate > 0.2 2 1 15
Acceleration + An- | > 0.2 15 3 2
gular rate (IMU)
Heading + wveloci- | > 0.8 16 14 1
ties
IMU + heading > 0.2 16 2 1
IMU + velocities > 0.2 16 7 1
Acceleration, head- | > 0.2 17 7
ing, and velocity

There are several noteworthy findings in Table 3. The
angular rate sensors are not useful alone. Only one com-
bination of sensors detects all contacts at a cost of many
false positives. The best combination is perhaps using the
IMU measurements together with heading measurements,
which detects 16 out of 17 contacts with two false positives.
Moreover, the false positives in this case occur immediately
after a true contact and is not a severe issue. It is more
problematic with false positives before contact with the
quay occurs since the control strategy might change after
the initial contact. Several other classification score thresh-
olds were also evaluated but only the most interesting
results have been included in Table 3.

LSTM

The final result is a short study on LSTM. LSTM needs
more training data than LR and SVM. Consequently, the
training set was changed to include 17 out of 28 contacts
and 11 contacts remained in the test set. In other words,
six contacts from the previous results were moved from
the test set to the training set. The LSTM was tested
on input data from all sensors. The method managed to
detect 10 out of 11 contacts in the test set with three
false positives. The classification score threshold was 0.8.
This is comparable to the best results using SVM. Note
that the single missing contact could not be detected at a
classification score of 0.2 either. The same contact was also
hard to detect with SVM. However, it was detected when
using acceleration, heading and velocity measurements as
shown in the bottom row of Table 3.

4.2 Discussion

The results in this study indicate that supervised learning
can be a promising approach for detecting contact with the
quay. However, there are some shortcomings that should
be addressed. One weakness is the small amount of data
used in this work. It is time consuming to collect and label
relevant data, and the data was collected on one ferry in
one harbor on two different days. Therefore, it is hard to
generalize the results to other ferries and locations without
collecting more data. Moreover, it is likely that sensor
mounting affects the measurements and therefore also the
classifiers. Consequently, sensor placement and the effect
it has on the performance is a topic that must be studied
for generalization of the results. The classifiers developed
in this work were also tested on data from another location
(without any relevant training for that location). The
docking maneuver was different in this location and the
ferry docked head on instead of on the starboard side.
The results were naturally not of the same accuracy and
indicate that data from the location of interest (or at
least from the same type of docking maneuver) should
be included in the training phase. In addition, data from
varying weather conditions should also be collected to
make the classifiers more robust.

The focus in this work has been to investigate if super-
vised machine learning methods can be used for contact
detection. Therefore, other supervised learning algorithms
should also be evaluated in the future. Moreover, the
accuracy presented here could most likely be improved
by tuning the hyperparameters in the training phase fur-
ther. The number of hidden layers in the LSTM could
also be explored further. Nevertheless, the results have
proven that it is possible to detect contact with the quay
in a repeatable manner without a significant number of
false positives. The acceptable number of false positives
is a topic for discussion and might differ with the type
of ship and docking procedure. Moreover, as mentioned
previously, false positives straight after a true positive is
a much smaller issue than false positives far from a true
positive. When false positives occur is therefore a topic
that should be studied more thoroughly. This is also closely
related to the classification score threshold that is chosen
for a detection to be accepted.
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5. CONCLUSION

The results presented in this research indicate that super-
vised learning is a viable strategy for detecting contact
with the quay. Several sensor combinations and meth-
ods have been investigated showing varying performance
and accuracy. Acceleration measurements combined with
angular rate measurements and heading measurements
proved to be a particularly interesting sensor combination
without many false positives. The tradeoff between false
positives and false negatives is very important and might
vary with the type of mission. Failing to detect contact
is critical in some operations while other missions might
struggle if contact is detected too early. Consequently, the
timing of false positives and negatives is key and a topic for
further research. Moreover, gathering data from different
ships, weather conditions, and harbors are needed to inves-
tigate how much a detection algorithm can be generalized.
The methods chosen in this research are not necessarily
the best ones for the application so other methods should
also be studied in the future.

This paper has investigated motion sensors typically
present on ships. An interesting topic for future work is
fusion of data from additional sensor technologies, such
as exteroceptive sensors or dedicated ranging sensors. For
larger vessels, it might be difficult to place cameras and
LIDARs so that the quay can be detected and tracked
accurately within the sensor range and field of view.
However, if this is solved, other sensors might provide
complementary information that can be used for contact
detection. Another topic of interest is to study the effect
of IMU placement and if multiple IMUs can improve the
accuracy. Finally, investigating if it is possible to use the
same classifier without additional training on other vessels
of the same type is an interesting topic.
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