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Abstract—We propose a novel semi-parametric structural
model to estimate the electricity forward curves based on elemen-
tary forward prices. The proposed model (i) explores the non-
arbitrage relations between contracts with overlapping delivery
periods, (ii) considers a parametric structure for price seasonality
and exogenous variables, and (iii) uses non-parametric techniques
to extract the remaining inter-temporal and cross-maturity in-
formation from data. Thus, our model allows users to estimate
and complete the historical prices of any swap contract. We
address the multi-objective estimation problem by hierarchical
optimization. First, arbitrage levels are minimized. Then, the
parametric part of the model is estimated. Finally, smoothness in
the maturity and trading date dimensions are jointly considered
in the estimation of the non-parametric part of the model. Based
on a controlled study with real data from the Nordic power
market, we show that our model outperforms benchmarks in
terms of estimation error for missing data. We also isolate the
effect of accounting for overlaps and smoothing in the trading
dates dimension. Results show that these two key features of our
model are crucial for improving the model accuracy. Finally, we
apply our method to estimate the Brazilian forward curve and
reconstruct the historical data.

Index Terms—Data completion, electricity forward curves,
smoothing, swap and forward prices, structural model.

NOMENCLATURE

Sets

T Set of trading dates T = {t0, t1, . . . , T}
J Set of elementary maturity (number of days)

J = {1, 2, . . . , J}
Nt Set of swaps negotiated on trading date t ∈ T
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Constants

Ft,i Price of the swap i on trading date t
τi Initial delivery time for the swap i
Ti Terminal delivery time for the swap i
r Daily discount rate

Decision Variables

ft,j Price of the daily elementary forward contract of
maturity j on trading date t

εt,j Residual of the elementary forward contract of
maturity j on trading date t

∆t,i Net present value of the arbitrage level of swap
i on trading date t

ηt,i Adjustment term of swap i on trading date t
ζt,i Arbitrage level in prices of the swap i on trading

date t
β Vector of coefficients of xt,j

Vectors

xt,j Vector that defines the structure imposed on the
elementary forward contract of maturity j on
trading date t

ζt Vector composed by the arbitrage levels on the
trading date t

I. INTRODUCTION

FORWARD curves play a central role in power mar-
kets worldwide. The whole settlement process, mark-to-

market calculations to define margin requirements, and all best
practices on risk management must be based on a reliable for-
ward curve estimation. Generators, consumers, and traders use
such derivatives to hedge against spot price volatility. These
contracts are key for power system agents and become espe-
cially more relevant in the context of increasing participation
of intermittent resources (e.g., solar and wind power), mostly
inelastic demand, and network and other physical constraints.
On the regulatory side, contracts reduce the agents’ willingness
to exercise market power to manipulate spot prices. We refer to
[1] and references therein as an updated publication covering
and reviewing many relevant aspects of electricity forward
market applications. Hence, accurate calculations of forward
curves provide relevant gains for almost all segments of the
electricity sector. Notwithstanding, to achieve such accuracy,
we must consider the effects of power system physical char-
acteristics and the specific financial structure of contracts in
the forward curve model.
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For a typical commodity, spot seasonality is significantly
mitigated in forward prices due to the possibility of physical
storage and future delivery. In contrast, the limited storage
capacity of power systems can explain the seasonal aspect
of electricity forward curves. The large-scale use of batteries
is expensive, and the limited capacity of hydro reservoirs
still makes electricity highly influenced by seasonal climatic
patterns. Consequently, a proper pricing scheme capable of
capturing the seasonal profiles of electricity forward contracts
is of utmost importance for electricity markets.

Furthermore, electricity is a flow commodity whose forward
contract comprises delivery periods instead of fixed delivery
dates. Usually referred to in the literature as swaps, forward
contracts have differing and overlapping delivery periods (e.g.,
month, quarter, or year) as illustrated in Fig 1, for monthly,
quarterly, semiannual, and yearly contracts.

Fig. 1. Example of overlapped structure in electricity forward curves.

These peculiarities suggest that usual forward pricing meth-
ods are not directly suitable for the case of electricity. The
two most notorious approaches that attempt to adapt such
methods to electricity are the spot [2], [3], [4] and forward
modeling [5], [6]. The spot modeling approach defines an
analytical expression for the dynamics of spot prices, and then
a closed-form solution for the forward prices is obtained by
no-arbitrage conditions. They allow sophisticated features in
the spot equations but with little flexibility to model factors
that affect only forward prices. In contrast, forward modeling
works directly delineate the forward curve’s stochastic repre-
sentation. In general, forward modeling relies on a portrayal
of the electricity forward curve composed of what we refer
to as elementary prices, illustrated in Fig 1 by the dashed
line. The elementary prices represent the smallest unit of an
electricity forward instrument (e.g., an hour, a day) that can
reconstruct the price and delivery period of traded contracts.
This curve approximates the representation of a fixed-delivery-
date commodity (without overlaps), which facilitates the use
of traditional derivative pricing models. 1

Most studies in this field are based on the maximum
smoothness criterion, which originated in [7]. In [8], forward

1It is important to remark that the literature usually refers to the elementary
prices as forward prices, but we adopt this new terminology to differentiate
them from the traded contracts.

market prices are integrated with forecasts from a bottom-
up spot-price model. The latter is used to represent the sea-
sonality observed in power markets. A bi-objective quadratic
optimization problem is defined, where a combination of the
squared errors between the elementary prices and the forecasts
of the bottom-up model and the total curvature of the curve
is minimized. The optimized prices are constrained by bid
and ask observed in the market. In [6], the authors described
elementary prices as a sum of a seasonality function and a
residual term. Different from [8], the maximum smoothness
criterion was imposed on the residuals instead of directly on
elementary prices to retain seasonal patterns better. Polyno-
mial splines of order four parameterized the residuals, and
a trigonometric function and a bottom-up model were tested
as seasonal functions. The authors formulate two different
optimization models differing in the constraint that relates the
optimized and observed prices: the first is analogous to the one
in [8], where prices were constrained between the bid and ask
levels; the second; matched the optimized swaps with closing
prices.

Both [8] and [6] are commonly applied or used as a
comparison in several studies. In [9], and [10], a model based
on the HJM approach is derived and incorporates features of
the previous works. [11] builds an hourly forward curve for
electricity by introducing an alternative calibration procedure
for the seasonality shape and directly compares their results to
those that would generate citeFleten2003 and [6]. In [12], the
authors extend the use of [6] for hourly forward curves in a
framework that allows the simulation and forecast of electricity
spot prices considering the information in forward prices.

As an alternative to the maximum smoothness criterion,
[13] develop a parsimonious factor model that automatically
describes the seasonal pattern through the estimated factors
instead of assuming, in advance, some premise about its form.
The multivariate model approximates the delivery dates as
the swaps midpoints and acknowledges the distinct impact of
contracts of smaller or greater lengths in the forward curve.
In [14], an hourly elementary forward price was described
as a sum of a periodical pattern and two adjustment terms,
fitted with baseload and peak load prices, respectively. The
periodic behavior was derived by filtering a macroeconomic
trend and periodical components from day-ahead prices. The
spot series is submitted to a Hodrick-Prescott filter to remove
possible outliers. In addition, future prices were segmented
over non-overlapping delivery periods. The development of
the proposed model depends on the delivery periods covering
the whole time horizon.

To the best of our knowledge, no previous works on the
estimation of elementary prices have systematically handled
the overlapping seasonal structure of the electricity forward
curve. By observing Fig 1, it is possible to realize a clear
relationship between the swaps with overlapped delivery pe-
riods. For instance, in a competitive market, it should be
equivalent to trade the portfolio composed of the three monthly
swaps or the quarterly one; otherwise, an arbitrage opportunity
takes place. In this scenario, agents would profit without
risks and, consequently, prices would eventually reach a new
equilibrium without the arbitrage opportunity. This connection
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is an essential source of information that is not considered in
any previous studies since all of them disregard overlaps to
guarantee the viability of their models.

Although most studies deal with seasonality, they do not
have a generic framework that captures relationships between
electricity forward prices and other variables, such as spot
prices or fuel costs, for instance. Moreover, previous works
usually estimate these patterns from historical spot prices and
not from a joint representation of all overlapping contracts,
which requires a long history for a reliable estimate. Indeed,
since they lose important information by disregarding over-
laps, the seasonality estimation in forward prices would be
inaccurate.

Furthermore, none of the previously reported works ad-
dresses the low liquidity of developing markets translated
as missing data. In power markets that are not yet very
consolidated, such as the Brazilian one, it is common to
observe many days without negotiation of specific maturities,
especially the longer-term ones. In addition, even in more
competitive markets, the liquidity of such contracts may not be
high. Therefore, accounting for the absence of data is crucial
since the estimation results are affected by this relevant aspect.

Thus, this work proposes a novel framework and estimation
procedure that assesses a high-resolution forward curve that
acknowledges the relations between swaps with overlapping
delivery periods, the seasonality of forward prices and the
inter-temporal and cross-maturity dependence.

In this context, the main contributions of this work are:
1) A novel semiparametric structural model for the

forward curve. The model considers (i) non-arbitrage
relations between contracts with overlapping delivery
periods, (ii) a parametric structure for price seasonal-
ity and exogenous variables, and (iii) non-parametric
techniques to extract the remaining inter-temporal and
cross-maturity information from data.

2) Develop a hierarchical optimization procedure ad-
dressing the multi-objective estimation of the pro-
posed model. The estimation is based on the following
steps: (i) computation of arbitrage-free prices by mini-
mizing the arbitrage levels through an iterative process,
(ii) establishment of a reduced form model that allows
the assessment of the parametric coefficients of our
model by OLS, (iii) estimation of the non-parametric
term by the novel generalized maximum smoothness
criterion in both maturity and time series dimensions.

3) Provide a dataset of elementary prices for the Brazil-
ian and Nordic electricity markets. From the proposed
model and estimation procedure, we can obtain a dataset
decomposed in elementary forward contracts with a
delivery period of one day. With the daily elementary
prices, agents can calculate the prices of contracts of any
delivery period and maturity. This is especially important
for low liquidity markets, such as the Brazilian.

Among many possible applications, our methodology allows
agents to 1) estimate missing prices of low liquidity products,
2) estimate the forward curve and its complete historical data
in a transparent and scientifically-based manner, which is
crucial for predictive and optimal trading applications, and 3)

estimate the reference prices for new products based on the
elementary forwards. So, these three possible applications il-
lustrate the relevance of the proposed methodology for market
participants, operators, and regulators.

The remainder of this paper is organized as follows. Sec-
tion II presents our novel semiparametric structural model.
Section III develops the hierarchical estimation procedure for
elementary forward contracts. Section IV evaluates the impact
of overlaps and the smoothing technique in the time series
dimension as a crucial source of information. Finally, a case
study with the Brazilian electricity market data is presented in
Section V and conclusions are drawn in Section VI.

II. PROPOSED SEMIPARAMETRIC STRUCTURAL MODEL

In this work, the proposed framework is based on two math-
ematical representations governing pricing dynamics. There-
fore, this section starts with the algebraic characterization of
arbitrage-free swap prices, followed by the structural model
for swap prices.

A. Arbitrage-free Swap Prices

In a competitive power market with no arbitrage oppor-
tunities, a swap can be recast as a portfolio of contracts
with shorter delivery periods.In this context, elementary prices
are associated with non-overlapping forward contracts with
sufficiently short (the same granularity of the time dimension,
in our study, a day) delivery periods that can recover all traded
swaps.

In imperfect markets, however, the level of arbitrage can be
measured by the net present value (NPV) of a trading strategy
where we buy a swap Ft,i and sell a portfolio of elementary
contracts covering the same delivery period. Mathematically
speaking, we define the arbitrage-level NPV as

∆t,i =

Ti−t∑
j=τi−t

Ft,i − ft,j
(1 + r)j

, ∀t ∈ T , i ∈ Nt, (1)

where ft,j is the price of the daily elementary forward
contract on date t, to be delivered j days ahead. It is important
to emphasize that the elementary forwards are hypothetical
contracts, not observed in the market, used as building blocks
in our methodology. Ft,i is the observed price of the swap
i on the same date t and the interval [τi, Ti] set its delivery
period.

The non-arbitrage condition is the most important premise
adopted in financial models, and it establishes that agents
shouldn’t be able to make a risk-free profit with a self-financed
strategy. In a market without arbitrage, the value of ∆t,i would
be zero, but that can be unrealistic due to the low liquidity,
especially in the long term of the curve. A simple manner of
handling arbitrage-free swap prices consists of modeling only
contracts without overlap. However, this approach neglects
critical information regarding the intersection of delivery pe-
riods that would be exploited to improve model accuracy.
Instead of disregarding overlaps, our approach uses (1) to
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assemble swaps as a function of the non-observed elementary
prices, i.e.,

Ft,i =

Ti−t∑
j=τi−t

ft,j wi,j + ζt,i, ∀t ∈ T ,∀i ∈ Nt, (2)

where

wi,j =
(1 + r)−j∑Ti−t

k=τi−t(1 + r)−k

and

ζt,i =
∆t,i∑Ti−t

k=τi−t(1 + r)−k

is the arbitrage level in prices. Therefore, a swap is then char-
acterized by the associate arbitrage-free price plus the arbitrage
level in price basis. The arbitrage-free swaps are indeed a con-
vex combination of elementary price, i.e.,

∑Ti−t
j=τi−t wi,j = 1.

B. Structural Model for Swap Prices

Structural models are a time series framework that acknowl-
edges the existence of non-observed variables (e.g., elemen-
tary prices) but imposes a predetermined structure to govern
their dynamics. These unobserved quantities, so-called state
variables, act as time-varying coefficients and are estimated
from a relationship to other observed time series. In our
context, we impose a semi-parametric structure to the non-
observed elementary forward prices (hereinafter referred to
as elementary prices), and use the arbitrage relationship (2)
to connect them with traded swaps. Hence, we propose the
following state-space model for the swaps and elementary
prices:

Ft,i =

Ti−t∑
j=τi−t

ft,j wi,j + ζt,i, ∀t ∈ T ,∀i ∈ Nt (3)

ft,j = xTt,j β + ε(t, j), ∀t ∈ T ,∀j ∈ J . (4)

Expression (3) is the measurement equation and translates
the relation between the observation (traded swap prices, Ft,i)
and state variables (elementary prices, ft,j). Equation (4) is
the transition/state equation, where the time evolution of the
state variable is defined. The error term in the measurement
equation ζt,i is the arbitrage level (in price units) while the
residual ε(t, j) is a function of time and maturity. The latter
is not the standard uncorrelated errors usually considered in
state space models since it may carry some lingering structure.
In this study, we do not assume a parametric form for ε(t, j).
Rather, we assume that function ε belongs to a specific set of
smooth functions.

Besides the residuals ε(t, j), a variety of possible structures
could be inserted in the vector xt,j , e.g., dummies to address
calendar effects such as the impact of weekdays and weekends
on prices, dummies or sine and cosine functions to address
seasonality, trends, and exogenous variables in general. The
vector β defines the associated coefficients to be estimated.

III. ESTIMATION PROCEDURE

The estimation procedure defined in this chapter aims to
calculate the elementary forward prices induced by swap
contracts traded on electricity markets. The proposed semi-
parametric structural model is based on the relationship be-
tween the swap prices Ft,i and the elementary contracts, ft,j .
We propose a hierarchical approach based on the following
steps to address the challenge of estimating a semiparametric
structural model. First, we estimate arbitrage-free prices Yt,i
by selecting the elementary prices that minimize the worst-
case arbitrage level for each trading date. Then, we derive a
reduced form to estimate the parametric part of the model,
namely the coefficient β. With fixed β, we estimate the non-
parametric residuals, ε(t, j), via maximum smoothness in time
and maturity dimensions. The following subsections detail the
steps mentioned above.

A. Computing Arbitrage-Free Prices

Let arbitrage-free prices be defined as

Yt,i = Ft,i − ζt,i, ∀t ∈ T ,∀i ∈ Nt. (5)

To compute Yt,i, we must calculate the values of ζt,i. To
do that, we use the following optimization problem for each
trading date:

min
ζ,f

θ (6)

s.t. Ft,i =

Ti−t∑
j=τi−t

ft,j wi,j + ζt,i, ∀i ∈ Nt (7)

θ ≥ |ζt,i|, ∀i ∈ N̂t, : γi, (8)

which aims to minimize the sup-norm of ζt. To avoid degen-
eracy (multiple solutions for ζ) in the sup-norm minimization,
we propose the iterative process described in Algorithm 1.

Algorithm 1 Calculate arbitrage-free prices
for all t ∈ T do

Initialize N̂t ← Nt
while |N̂t| > 0 do

Solve: (6)–(8)
Find: i∗ ∈ arg maxi∈N̂t

γi
Add: Constraint ζt,i = ζt,i∗ for i = i∗

Update: N̂t ← N̂t \ {i∗}
end while

The sup-norm is justified by the need to assess a minimum
level of arbitrage opportunities before estimating the model.
We also argue that this procedure can be naturally used as
an outlier detector. It is reasonable to say that a high absolute
value of ζt,i may be associated with an abnormal trade eligible
to be excluded from the analysis. This might occur when there
are negotiations that have not been completed and, therefore,
do not represent the equilibrium prices. More objectively, one
can pre-specify a maximum arbitrage level for the trade to be
included in the estimation.
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B. Reduced Form Model

Embedding (5) and (4) in (3), we obtain the following
reduced form model:

Yt,i = Xt,iβ + ηt,i, ∀t ∈ T ,∀i ∈ Nt, (9)

where,

Xt,i =

Ti−t∑
j=τi−t

xTt,j wi,j and ηt,i =

Ti−t∑
j=τi−t

ε(t, j)wi,j .

Equation (9) depicts how the reduced-form model resembles
a simple linear regression, where the regressors Xt,i of the
arbitrage-free price Yt,i are defined as a vector with weighted
averages of explanatory variables of the elementary prices.
They are deterministic values for each trading date t and
contract i. The error term ηt,i refers to the parcel of the
swap price not explained by the parametric structure imposed
on elementary forwards. They are a weighted average of the
residuals ε(t, j) during the swap delivery period.

The computation of coefficients β is directly related to the
error term, ηt,i, as observed in (9). Therefore, the values of β
are estimated by the ordinary least square (OLS) problem

β∗ ∈ arg min
β

∑
t∈T

∑
i∈Nt

(
Yt,i −Xt,i β

)2
. (10)

C. Generalized Maximum Smoothness for Scarce Data Sets

Previous studies regarding estimating electricity forward
curves through maximum smoothness criteria only address
the cross-maturity relations, i.e., the smoothness is guaranteed
only in the maturity dimension. To understand the impact of
this approach, following [6], we apply the maximum smooth-
ness criteria in the residuals of (4). Here, there is no premise
about the parametric representation for ε(t, j). Instead, we
explicitly refer to the elements of its image, hereinafter εt,j .

Assume that, on a trading date of August 2020, monthly
swaps with delivery for September 2020 and November 2020
were traded. As the objective function of the usual maximum
smoothness criteria is to minimize the curvature of the forward
curve along the maturity dimension, j, it is imperative to
calculate the residuals εt,j that will compose the swap for
October 2020, which has no observed price even though
it is the link between both negotiated contracts. In cases
like this, the maximum smoothness criterion connects the
maturities that constitute the available and missing swaps.
This produces an interpolation effect, a salient feature of the
proposed smoothing framework.

Now, consider a more critical situation. Suppose that only
the monthly contract for September 2020 was traded on a
given date t, and we want to infer the prices that would have
been settled for October and November 2020. As the objective
function minimizes the slope variation on the maturity dimen-
sion, the residuals εt,j for j > Ti, where i is the swap for
September 2020, will be estimated to maintain the final slope
of the maturities composing the traded contract. This means
that if εt,Tt,i

increases, decreases, or persists, the same trend
will be kept indefinitely for all higher maturities. And this is a

potentially undesirable shape for the boundary of the forward
curve.

In similar cases, it is reasonable to assume that the in-
formation of the forward curves for adjacent trading periods
(the days before and after) could be used to interpolate the
elementary prices in the presence of missing data. This is
especially important when dealing with data from low liquidity
markets like Brazil. Therefore, we reformulate the maximum
smoothness approach as a bi-objective optimization problem
that minimizes a linear combination of quadratic penalties for
the concavity over time and maturity. The resulting optimiza-
tion model can be written as follows:

min
ε

λ1

∑
t∈T

∑
j∈Ĵ

(εt,j+1 − 2εt,j + εt,j−1)2

+

λ2

∑
t∈T̂

∑
j∈J

(εt+1,j − 2εt,j + εt−1,j)
2

 (11)

s.t. Yt,i = Xt,i β
∗ +

Ti−t∑
j=τi−t

εt,j wi,j , ∀t ∈ T , i ∈ Nt, (12)

where T̂ = T \ {1, T} and Ĵ = J \ {1, J}.
Parameters λ1 and λ2 must be fixed a priori. To ensure the

same order of magnitude in both objectives, the parameters λ1
and λ2 were normalized by their respective objective function
values, calculated previously by two separated optimization
problems – one with only the maximum smoothness in the
maturity and the other in the time dimension. Mathematically,
let us denote by g(λ1, λ2) the optimal value of the problem
(11)–(12) as a function of the weights λ1 and λ2. Then, we can
choose a single scaled weight λ ∈ [0, 1] whereby we define
λ1 = (1− λ)/g(1, 0) and λ2 = λ/g(0, 1) to be used problem
(11)–(12). The calibration of λ can be made through out-of-
sample cross-validation tests as reported in our case study.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we study the performance of our model
to complete missing data using a real data set from the
Nordic market. We also evaluate the trade-off between the
weights λ1 and λ2 in the bi-objective function. To run the
case studies, we used a personal computer Intel(R) Core(TM)
i7-8565U CPU @ 1.80GHz with four cores and 8 GB of
RAM. The framework was programmed in Julia language,
and the optimization was solved with Gurobi. We provide
the implementation of our model as an open source code at
https://github.com/LAMPSPUC/ForwardCurveSmoother.

A. Data set and experiment setup

We use real data from the Nordic market, available in
[15]. The data is composed of observed forward prices from
the beginning of 2017 to the end of 2018, as a case of a
consolidated power market with high liquidity and no missing
prices. This allows us to perform a controlled study where
a parcel of the data set is assumed to be missing, and our

https://github.com/LAMPSPUC/ForwardCurveSmoother
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TABLE I
MAPE AND OPTIMAL WEIGHT λ FOR EACH CASE AND MODEL TREATMENTS.

MODEL TREATMENTS

CASES PROBABILITY OF
MISSING PRICES

No overlaps +
No smoothing in time

(Benchmark)

No overlaps +
Smoothing in time

Overlaps +
No smoothing in time

Overlaps +
Smoothing in time

p = 0 % 0.00% (0.0) 0.00% (0.1-0.9) 0.025% (0.0) 0.025% (0.1-0.9)
p = 50% 2.40% (0.0) 1.00% (0.1) 1.78% (0.0) 0.69% (0.1)

CASE 1
Removing observations
of the maturity M+1 p = 90% 4.25% (0.0) 2.79% (0.5) 3.12% (0.0) 2.08% (0.4)

p = 0 % 0.00% (0.0) 0.00% (0.1-0.9) 0.12% (0.0) 0.12% (0.1-0.9)
p = 50% 2.62% (0.0) 0.74% (0.1) 1.35% (0.0) 0.52% (0.7)

CASE 2
Removing observations
of the maturity M+5 p = 90% 4.44% (0.0) 1.87% (0.5) 2.11% (0.0) 0.87% (0.7)

p = 0 % 0.00% (0.0) 0.014% (0.1) 0.12% (0.0) 0.12% (0.1-0.9)
p = 50% 2.33% (0.0) 0.83% (0.1) 0.17% (0.0) 0.17% (0.1-0.9)

CASE 3
Removing observations

of the maturity Q+1 p = 90% 3.87% (0.0) 2.20% (0.1) 0.21% (0.0) 0.21% (0.1-0.9)
p = 0 % 0.00% (0.0) 0.00% (0.1) 0.15% (0.0) 0.15% (0.1-0.2)
p = 50% 2.66% (0.0) 0.64% (0.1) 0.64% (0.0) 0.52% (0.2)

CASE 4
Removing observations

of the maturity Q+4 p = 90% 5.14% (0.0) 2.23% (0.1) 1.06% (0.0) 0.97% (0.3)
p = 0 % 0.00% (0.0) 0.12% (0.1) 0.15% (0.0) 0.15% (0.1-0.6)
p = 50% 3.48% (0.0) 0.70% (0.1) 0.22% (0.0) 0.22% (0.1-0.4)

CASE 5
Removing observations

of the maturity Y+1 p = 90% 7.79% (0.0) 2.55% (0.9) 0.28% (0.0) 0.28% (0.1-0.6)
p = 0 % 0.00% (0.0) 0.021% (0.1) 0.00% (0.0) 0.021% (0.1)
p = 50% 6.46% (0.0) 0.47% (0.1) 6.46% (0.0) 0.47% (0.1)

CASE 6
Removing observations

of the maturity Y+3 p = 90% 15.40% (0.0) 2.97% (0.3) 15.40% (0.0) 2.97% (0.3)

model is used to estimate and complete these prices. Then,
we can use the real data to assess error metrics for different
particularizations of the model. The Nordic price data set
consists of daily prices of monthly, quarterly, and yearly
contracts.

To run the controlled study for data completion, we ran-
domly removed a group of tradings from specific maturi-
ties to reproduce different levels of data scarcity. Thus, for
each chosen maturity series, we simulate a random variable
from a Bernoulli(p) distribution, where p is the probability
of the observation being disregarded. So, if the Bernoulli
variable sampled for a given period and contract values 1,
the observation is considered missing and is not used in the
estimation process. Different values of p were tested, namely,
p = 0%, 50%, and 90%. Furthermore, for each p, we have also
tested distinct values of λ to study the effect of the bi-objective
smoothing technique; we varied λ between 0%− 90%, with a
step size of 10%.

Recalling the mathematical definition of elementary forward
prices in (4), we must first specify their structure besides
the residuals to perform our estimation procedure. For the
following results, seasonality on delivery and trading dates
were included through sine and cosine functions, specifically a
truncated Fourier series with only one harmonic. Let us define

ft,j = µ+ βssin

[
2π(t+ j)

365

]
+ βccos

[
2π(t+ j)

365

]
+ φssin

[
2πt

365

]
+ φccos

[
2πt

365

]
+ ε(t, j), ∀t ∈ T ,∀j ∈ J , (13)

Consequently,

xt,j =

[
1, sin

[
2π(t+ j)

365

]
, cos

[
2π(t+ j)

365

]
,

sin

[
2πt

365

]
, cos

[
2πt

365

]]T

β = [µ, βs, βc, φs, φc]T .

Besides the structure depicted above, we also ensure two
additional characteristics in the resulting forward curve. First,
we impose that the elementary price with maturity zero equals
the spot price for the correspondent trading date. This is the
same as considering a swap whose delivery period is just the
current date. Then, we also add the constraint εt,j−εt,j−1 = 0,
for j equal to the final maturity, to translate the fact that the
long term of the curve is less sensitive [6].

The names of the electricity contract price time series carry
information about the swap’s length and maturity. We use the
letters M, Q, and Y for monthly, quarterly, and yearly con-
tracts, respectively, while an integer represents the maturities.
Thus, always using the trading date as the reference, we refer
to a monthly contract to be delivered in the next month as
M+1, two months ahead as M+2, and so forth. The same
reasoning is used for quarterly and yearly contracts, but now
considering the correspondent delivery time.

We selected the following time series to test the capability
of our model to retrieve data: M+1, M+5, Q+1, Q+4, Y+1,
and Y+3. This allows us to evaluate our model’s behavior in
contracts of different delivery periods and levels of overlaps.
More specifically, we focused on the following characteristics:
• M+1: Monthly contract with the lowest level of overlap;
• M+5: Monthly contract that always composes the delivery

period of a quarterly contract;
• Q+1: Quarterly contract with its delivery period always

overlapped with monthly contracts;
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• Q+4: Quarterly contract that always composes the deliv-
ery period of a yearly contract;

• Y+1: Yearly contract with its delivery period always
overlapped with quarterly contracts;

• Y+3: Yearly contract without overlaps.

B. General results

The salient new features of the proposed framework in
comparison to previously reported works are the following:
our model does not disregard overlaps, and the maximum
smoothness in the time dimension is used in combination
with smoothness in maturity. These two features are crucial
to creating a link among the whole data set within a unified
non-parametric model for the residuals, ε(t, j). Hence, the
following results aim to study the benefits of these features
in different combinations.

Table I shows the mean absolute percentage error (MAPE)
values for each analyzed data set and the respective model
treatment. We define a treatment as a given combination of
features (overlap and smooth in time) in our framework. So,
by comparing the results of the different treatments, we can
isolate and identify the effects and contributions of each fea-
ture alone and in combination with the other. The first column
specifies the time series that had part of its data removed
with probability p. Then, parameter p is varied in the second
column for each time series. The first treatment is analogous
to the one in the literature, where both overlaps and time
smoothing are disregarded, thereby serving as a benchmark
for comparison purposes. To deal with the superposition, in
this case, all contracts overlapping the delivery period of
the examined time series were removed. Furthermore, each
feature was added separately in the second and third treatments
and then considered in combination to compose the fourth
treatment, which constitutes the proposed framework. Values
in the parentheses identify the optimal smoothing weights in
time. In cases where multiple values of weights result in the
same performance, the interval with these values is presented.

For all cases where p = 0%, the metric values were low,
not exceeding 0.15%. This is especially true when we do not
consider overlaps and smoothing in time. Since the parametric
part of the framework has many degrees of freedom, the
benchmark can perfectly fit in-sample observed prices if the
delivery periods have no intersection. When only overlaps are
considered, the MAPE reflects the arbitrage relationships and
exhibits a slight growth. In this case, the remaining low metric
indicates Nordic’s market liquidity and robustness; otherwise,
the increment would be higher.

In the presence of missing data notwithstanding, ignoring
overlaps and time dependency implies considerably worse
MAPE values. Adding one of the features separately brings
significant improvements compared to the benchmark. How-
ever, when simultaneously accounting for the two features
(the proposed approach) in the presence of missing data, the
performance is always better or equal to the alternatives.

In terms of computational burden, our proposed approach is
more computationally intensive than the benchmark because
it relies on a larger optimization problem that can not be

decomposed per period. Notwithstanding, problems involved
are essentially convex least-squares regression-like problems,
which can be solved in polynomial time by off-the-shelf
software. For instance, the computational time of the larger
problem solved in our case study, i.e., with no missing data and
the complete set of contracts comprising 8500 observations
was equal to 697.7 seconds. For the same data set, the
benchmark consumed 177.5 seconds.

Next, we discuss the benefits of each feature and how they
differ depending on the analyzed maturity.

C. Impact of Smoothing in Time

Following the model treatments order in Table I, we evaluate
the impact of adding the maximum smoothness criteria in the
time dimension solely (column two of Table I). The maturities
that are more affected by adding only this feature instead
of only the overlaps (column three) were M+1, M+5, and
Y+3. Regarding the M+1 contract, although its delivery period
sometimes overlaps with quarterly and/or yearly contracts, this
occurs at specific months. Therefore, the arbitrage relationship
is not strong enough to help fill the missing prices. A more
extreme case happens with the Y+3, as it does not intersect
with any other contract, regardless of the trading date. This
means that adding overlaps makes no difference in this case,
and only the time dependency can help improve the price’s
recovery and reduce the MAPEs. For the yearly contract, when
p = 90%, the metric reduces from 15.40% to 2.97% when the
smoothness is added in the time dimension with the weight
λ = 0.3. Fig. 2 shows the relationship between the metric
values and different weights λ for the three sparse data sets
where Y+3 negotiations were removed. Fixing λ = 0 means
that smoothing in time is not present. Based on this result, the
benefit of considering the second objective (smooth in time)
is clear, as we find considerably lower MAPE metrics.

Fig. 3 illustrates the Y+3 estimated prices from the bench-
mark (red curve) and the proposed model (green curve), with
λ = 0.3 and p = 90% in comparison with the prices observed
in the market. The original prices correspond to the observa-
tions in the data set during the estimation process, while the
missing ones are removed. Examining the benchmark curve
makes clear the practical benefit of considering the smoothness
in the time dimension. The elementary prices of maturities
that recover the missing Y+3 swap prices do not have any
observed price to support their calculation. Thus, they are
solely obtained based on a sum of the parametric shape of
our model and a smooth error in maturity, which, in this case,
maintains the slope of the last maturities with an associated
observed price. However, for the trading dates with observed
Y+3 prices, the model’s fit is almost perfect due to the high
degree of freedom for non-parametric models. This results in
the erratic behavior observed in Fig. 3 for the benchmark.
This issue is addressed for the time series where maximum
smoothness in time is applied, and the recovered prices are
much more consistent with the real-time series.

Regarding the M+5 contract, although its delivery period is
always overlapped with a quarterly contract and sometimes
with a yearly one, the non-arbitrage relationship between
overlapped contracts does not produce the same benefit as



8

Fig. 2. Curves λ x MAPE for the three different levels of sparsity (p =
0%, p = 50% and p = 90%) of the Y+3 contracts.

Fig. 3. Comparison between the estimated Y+3 prices with the benchmark
model and the our framework, with λ = 0.3.

the time link created by smoothing in time. Furthermore, the
combination of both effects provides additional gains, albeit
the marginal contribution of the time link is higher. The
marginal contribution is the loss of performance when one
of the features is not considered compared to the performance
of the model considering both features.

D. Impact of Overlaps

Accounting only for overlaps might be reasonable if the
missing data belong to a maturity whose delivery period is
always overlapped with other contracts, which is the case of
the Q+1, Q+4, and Y+1 time series. Regarding the Q+1 and
Y+1 cases, we observe that their prices can be consistently
described as a combination of three monthly and four quarterly
contracts, respectively. Consequently, in a competitive environ-
ment, the price information of monthly and quarterly contracts
should be enough to derive the Q+1 and Y+1 prices; otherwise,
an agent could profit without facing any risk. Hence, the
MAPE value for both cases is lower when only the overlaps

are added, and incorporating the maximum smoothness in time
does not bring any marginal contribution for both p = 50%
and p = 90%.

Fig. 4 illustrates the Y+1 estimated prices obtained with
the benchmark and the proposed model (with λ = 0.1) for
p = 90%. The shape of the benchmark curve has the same
interpretation as Fig. 3. The MAPE decreased from 7.79% to
0.28%. It is possible to notice that the prices reconstructed
with our framework (or only adding overlaps) are very close
to those observed in the market, whereas the benchmark
estimated prices follow the same noisy pattern described for
the Y+3.

Fig. 4. Comparison between the estimated Y+1 prices with the benchmark
model and the our framework, with λ = 0.1.

Although we understood the impact of adding overlaps and
time smoothing separately in different maturities, considering
both attributes simultaneously always led to better or equal
metrics when only one of the features was contemplated. It is
important to emphasize that we performed a controlled study
where only one maturity had its observations removed at a
time. Therefore, the no-arbitrage relationships were sometimes
enough. However, when missing data occurs in multiple time
series, the marginal contribution of both features tends to
increase.

V. CASE STUDY: BRAZILIAN ELECTRICITY MARKET

This section presents a case study with real data from
the Brazilian over-the-counter (OTC) Energy, BBCE (Balcão
Brasileiro de Comercialização de Energia) [16]. This case
study data set is available at [15]. Table II shows the percent-
age of missing prices of each available time series between
2018 and 2019.

TABLE II
PERCENTAGE OF MISSING PRICES OF EACH TIME SERIES.

Contracts Missing Prices (%)
M+1 1.1%
M+2 5.8%
M+3 30%
M+4 59%
M+5 84%
M+6 94%
Q+1 36%
Q+2 54%
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We used the previous data set from the Nordic electricity
market to choose the weights of our hierarchical procedure’s
bi-objective function. We’ve estimated our semi-parametric
structural model with only M+1 to M+6 and Q+1 to Q+2
contracts. Additionally, we built a scarce data set where the
tradings of each maturity faced the same probability of being
removed as those presented in Table II. We tested the same
values for λ as in Section IV. Because the optimal weight
can differ for each maturity, we calculated an average MAPE
between all-time series and selected λ = 0.3, which resulted
in the lowest aggregated metric as depicted in Fig. 5.

Fig. 5. Average MAPE between all maturities of the Nordic set, when
considering the Brazilian percentage of missing prices.

To verify the liquidity of the Brazilian forward market, we
calculate the arbitrage levels associated with each contract
in each trading day from the first step of our estimation
procedure. This allows us to investigate the market’s degree
of competitiveness since we expect that opportunities to profit
without taking any risk do not exist in a competitive envi-
ronment. The maximum arbitrage observed was equal to 21.6
R$/MWh, which is considerably high and a direct consequence
of the market’s low liquidity.

One interesting and obvious statement is that arbitrage
levels different from zero are only observed on completely
overlapped contracts. To illustrate this fact, Fig. 6 shows the
composition between the quarterly and three monthly swaps
on August 1st of, 2018, the day with the highest levels of
arbitrage in the Brazilian data set.

Approximately each third of a quarterly swap’s delivery
period is overlapped with a monthly contract, so it is correct
to expect the former’s price to be essentially an average of the
monthly assets. Looking at Fig. 6, we can readily conclude
that this is unfeasible for the trading day under analysis,
as the monthly prices are all lower than the quarterly one.
This is reflected in their absolute arbitrage values, which
were around 21.6R$/MWh. One could argue why do not just
cancel the arbitrage of monthly contracts and keep only the
quarterly with a value different from zero and higher than
21.6R$. This impossibility is a consequence of the algorithm
presented in Section III, which aims to minimize the maximum

Fig. 6. Settled prices of contracts with the highest arbitrage on the Brazilian’s
forward market.

arbitrage level on a date t and, as a solution, has a not
null arbitrage associated with all the overlapped swaps. The
resulting arbitrage-free prices are presented in Fig. 7.

Fig. 7. Contracts with the highest arbitrage on the Brazilian’s forward market
and their arbitrage-free prices.

Another observed arrangement between overlapped con-
tracts is similar to those presented in Fig. 6 and 7, but with
one of the monthly swaps being unavailable. If it occurs, the
elementary forward prices that would compose the missing
asset could be determined to make the others’ arbitrage equal
to zero.

To illustrate the estimated prices from our model, Fig. 8 and
Fig. 9 show the monthly contracts’ outcomes M+6 and M+1,
respectively. In the former, we can understand the smoothing
impact in the time dimension in the series with the highest data
scarcity. It ensures less noisy estimated prices and is more
coherent with what we would expect in reality. In contrast,
the latter highlights that, when we deal with high liquidity
maturities, our model’s fit is almost perfect, even with only the
maturity dependency. Visually, it is impossible to differentiate
between both curves’ reconstructed prices.

Finally, we illustrate in Fig. 10 the estimated forward curve
of a trading day in the Brazilian market, which is the primary
goal of the proposed framework. We provide the estimated
high-resolution (daily) forward curve composed of elementary
prices without an overlapping structure. We show a specific
trading date from the Brazilian power market where all swaps
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Fig. 8. Comparison between the estimated M+6 prices with (λ = 0.3) and
without (λ = 0.0) the maximum smoothness in the time dimension.

Fig. 9. Comparison between the estimated M+1 prices with (λ = 0.3) and
without (λ = 0.0) the maximum smoothness in the time dimension.

were traded. The monthly and quarterly arbitrage-free swaps
are also highlighted. Here, we ensured that the elementary
prices at maturity zero equal the spot price on the analyzed
trading date. The data set of estimated elementary forward
prices is available at [15]. Note that these data can be used to
either estimate the price of new contracts or feed a time series
model to produce probabilistic forecasts for the whole forward
curve. These two fronts are part of our ongoing research and
will be addressed in future publications.

VI. CONCLUSION

In this paper, we presented a new semiparametric forward
curve model that (i) explores the non-arbitrage relations be-
tween contracts with overlapping delivery periods, (ii) consid-
ers a parametric structure for price seasonality and exogenous
variables, and (iii) uses non-parametric techniques to extract
the remaining inter-temporal and cross-maturity information
from data.

In a controlled experiment with the forward prices of the
Nordic power market, we evaluate the importance of the two
main features considered in our model, namely, contract over-
laps and maximum smoothness in the time dimension. Results

Fig. 10. High-resolution forward curve and arbitrage-free swaps from Brazil.

corroborate the benefits of adding both features. In the case of
maturities whose delivery period is a composition of smaller
observed contracts, adding the maximum smoothness criterion
in the time provided no marginal contribution. In contrast,
incorporating the second objective considerably increases the
model’s accuracy in maturities that are not always intersected
with other contracts. In such cases, the marginal contribution
to the model’s accuracy of the smoothness in time can achieve
higher values than that observed for the overlap.

The proposed semiparametric structural model is highly
flexible, and its use can be extended to multiple purposes. The
most direct one is its application associated with traditional
forward pricing models. Another avenue of research is the
probabilistic forecasting of the whole forward curve as an
integrated (unified) model. Electricity forward curve forecast-
ing is a very unexplored field. The tied dependency between
contracts with overlapped delivery periods makes this task
even more complex and scarce in the literature. Our model
bypasses this complexity. Preliminary results with principal
component analysis indicate promising results for forecasting
a lower dimensional model.

Furthermore, it is relevant to mention that the proposed
modeling framework may be of interest to other products
inside or outside electricity market domains. The benefit of the
capacity to extract relevant non-parametric information from
overlapping contracts and time dependencies exhibited by our
model could be valuable to other related products with similar
forward structures (different maturities, delivery periods, etc.).
Additionally, we highlight that our model could be extended
and studied in other contexts, such as outlier detection and
market monitoring. So, we highlight these topics as relevant
future research avenues.

Besides improving the previous applications, the ability to
recover missing data with high accuracy can be a valuable in-
strument for market players, operators, and exchanges. In less
competitive markets, such as the Brazilian one, the benefits of
such methodology is even more significant. Making available
a consistent forward curve, even in the absence of the prices of
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some maturities, increases the market’s transparency and can
foster the development of central clearing counterparts, which
results in more liquid and robust markets.
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