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A B S T R A C T

This paper presents a study focused on wave spectrum estimation in practical scenarios where multiple ships
operate in the same geographical area, potentially forming a network of wave recorders. A novel methodology
is proposed to improve the accuracy and precision of the wave spectrum estimates, by combining sea state
estimation methods and techniques for tuning the wave-to-motion transfer functions. The framework of the
wave buoy analogy is used to derive estimates for each ship through the use of measured ship motion data and
available initial estimates of transfer functions. Simultaneously, the wave-to-motion transfer functions of the
individual ship are tuned by utilizing a weighted version of the wave data inferred on board the other ships in
the network. The overall architecture of the procedure is modular, in the sense that various approaches may be
implemented for obtaining sea state estimates and tuned transfer functions. The methodology is demonstrated
through two case studies, one based on simulated vessel responses, and the other using model test data of ship
motions in a wave tank. Both case studies consider a network of three ships in long-crested waves equipped
with a dynamic positioning system. It is shown that the procedure provides good wave spectrum estimates,
and leads to reduced uncertainty in the estimates via tuning of the vessel transfer functions.
1. Introduction

Sea state estimation (SSE) refers to an ensemble of methods and
techniques used to characterize the properties of the sea-surface wave
at a given time and position. The ocean waves represent the most
important (compromising) met-ocean phenomenon for ships and off-
shore structures, as most of these structures are dominated by wave
loads, with impacts on safety and fuel efficiency (Bitner-Gregersen
et al., 2014). The scarcity of in-situ wave data from vast areas of
the world’s oceans is yet an ongoing problem. Enhancing safety and
efficiency at sea through quantification and mitigation of the inherent
uncertainties to environmental description is increasingly recognized
by the shipping, offshore and renewable energy industries, as well as in
coastal engineering. In the framework of estimation theory, collecting
more information about a considered quantity is one way to reduce the
epistemic (knowledge-based) uncertainty; the other way is to improve
the models and methods of estimation (Bitner-Gregersen et al., 2014).

Advanced automatic control of vessels in varying weather and
changing operational conditions, via the use of dynamic positioning
(DP) systems, requires computationally efficient algorithms to estimate
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the sea state parameters with frequent updates, e.g. Brodtkorb et al.
(2018a,b). In steady-state DP operations, the reliability and accuracy of
the estimates are even more important. On the other hand, installation
and maintenance of offshore marine units can also require several
construction vessels to operate in DP on the same site, where for safety
reasons, it is beneficial for the operators to work with available real-
time in-situ estimates – as well as predictions – of the encountered
wave systems. The technology for communication of data at sea is
becoming better, enabling sharing of information about the sea state
within a fleet of vessels (Nielsen et al., 2019). Emerging network-based
approaches facilitate collaboration between adjacent vessels, to bring
more timely information and improve the situational awareness of the
control systems and (remote) operator. Beyond conventional ships, this
is particularly relevant for the missions of small unmanned surface
vehicles (USVs) (Dallolio et al., 2021), where the awareness of the wave
environment as well as the fidelity of the vessel hydrodynamic model
play an essential role.

The study of wave-ship interactions in the linear theory typically re-
lies on the knowledge of high-fidelity complex-valued transfer functions
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(TRFs), expressed in the frequency domain, and relating mathemati-
cally the wave and ship response spectra (St. Denis and Pierson Jr.,
1953). In the literature, the amplitude of a wave-to-motion TRF is
commonly named the Response Amplitude Operator (RAO). The RAOs,
as functions of wave direction and wave frequency, are estimated for
a ship in a seaway for given operational conditions and hull geometry
description, thus depending on the draught – varying with the loading
conditions – and forward speed. They can be computed through the
equations of motion of the ship, for instance, based on potential flow
theory or closed-form solutions (e.g. Salvesen et al., 1971; Lloyd, 1998;
Jensen, 2001; Jensen et al., 2004).

The principle of the so-called wave buoy analogy (WBA) is to con-
sider the ship as a sailing wave buoy. The inertial and navigational
sensors already installed on board most marine vessels – namely, the
IMU and GPS – can be used to derive an estimate of the waves induc-
ing the measured responses. There exist many different SSE methods
based on measured vessel responses; a comprehensive account is given
in Nielsen (2017). In general, two main frequency-domain methods
have been developed to estimate the on-site directional wave spectrum
based on ship response measurements: (1) parametric methods which
assume the wave spectrum to be composed of parameterized wave spec-
tra, e.g. Montazeri (2016); and (2) non-parametric methods, where the
values of the directional wave spectrum are recovered in a completely
discretized frequency-directional domain without assuming a specific
spectral shape of the spectrum (Iseki and Ohtsu, 2000; Tannuri et al.,
2003). In the context of dynamically positioned ships, records of the
wave-induced heave, roll, and pitch motions, assumed to be unaffected
by the DP control scheme, can be used for SSE (e.g. Tannuri et al., 2003;
Pascoal and Guedes Soares, 2009; Brodtkorb et al., 2018a).

Weaknesses of the use of the WBA in frequency-domain approaches
include the dependency on accurate transfer functions (Tannuri et al.,
2003). In the context of ship operations (e.g. transportation, docking,
lifting, etc.), regularly updated information on the vessel seakeeping
model would be an advantage, having in mind that the draught, inertia
distribution, and vessel heading, among other operational parame-
ters, can be frequently shifted, which challenges the reliability of
precomputed RAOs for online SSE during operations at sea.

Calibration of RAOs refers to a class of system identification tech-
niques to correct available estimates of the RAOs, in order to better
describe the linear response behaviour of a ship under prescribed
operational and environmental conditions. Some studies were focused
on estimating the vessel’s hydrodynamic coefficients – i.e. added mass,
damping, stiffness, and wave excitation – based on relevant vessel
data, wave information, and measurements of the wave-induced re-
sponses (Yuan et al., 2016; Kaasen et al., 2020; Skandali et al., 2020).
Other research efforts were conducted to tune the important parameters
(position of the centre of gravity, mass, transverse metacentric height,
additional roll damping, etc.) upon which the hydrodynamic vessel
model is determined. In particular, the discrete Bayesian updating for-
mula was exploited in a tuning algorithm with promising results (Han
et al., 2021a), although uncertainties from wave information were
not considered. Another algorithm, inspired from the scaled unscented
Kalman filter, was introduced by Han et al. (2021b) to perform simul-
taneous tuning of some chosen vessel model parameters and sea state
characteristics, based on vessel motion measurements and a param-
eterized directional wave spectrum. The performance of the method
was evaluated through numerical case studies, and it proved to reduce
the systematic error and uncertainty of the selected parameters, in
both long- and short-crested waves. Finally, an optimization algorithm
was presented by Nielsen et al. (2021) for direct tuning of RAOs,
using closed-form expressions as initial guess, in addition to vessel
response measurements and ERA5 directional wave spectra, with the
aim to improve the accuracy of wave-induced response predictions. The
optimal tuning parameters were found to minimize the error between
2

the measured response spectrum and the theoretical estimate. 𝛽
1.1. Content and novelty of study

The topics of sea state estimation and tuning of vessel seakeeping
model have historically been treated individually. In fact, those tech-
niques are closely interconnected: on one hand, the correctness of the
RAOs with regard to actual conditions is beneficial to the accuracy of
sea state estimates when the WBA is employed; on the other hand,
calibration procedures for RAOs rely on accurate descriptions of the
wave system. One can therefore consider the two-fold problem of si-
multaneously calibrating, or say, tuning, the RAOs of a given vessel (the
system) and estimating the sea state (the input to the system, or source)
when only ship motion measurements (the output, or observation) are
known. This problem is difficult to solve if a single vessel is considered,
because the RAO-tuning (or system identification) method and the
SSE (source estimation) method are interdependent. Instead, it is herein
proposed to solve the problem by considering a network of multiple
ships operating at the same time in the same geographical area, i.e. a
single-input multi-output (SIMO) system. The idea to consider ships as
a sensor network for SSE was previously introduced by Nielsen et al.
(2019), and the present study constitutes a novel extension of the
concept, able to simultaneously: (1) improve the available estimate of
the wave-to-motion transfer functions, which was not considered in
the original study; (2) and produce an improved estimate of the wave
spectrum – in relation to accuracy and precision – when compared to
existing WBA methods that neglect any uncertainty in the RAOs. The
paper also exhibits further developments in the weighting technique
to fuse wave information derived from several vessels. To evaluate the
potential of the new concept within the field of marine technology, use
is made of a dedicated dataset of model-scale test results for multiple
(three) ships in DP in a wave tank, noticing that such a dataset has not
before been considered in the related literature.

The proposed procedure uses the main particulars of the ships and
the measurements of wave-induced ship motions as the only input,
which means that the procedure does not require precomputed vessel
RAOs as input. This is seen as a practical advantage in light of possible
future implementation in on-board systems for online SSE.

1.2. Composition of paper

The paper is organized as follows. The necessary theoretical back-
ground from previous studies on the WBA and tuning of RAOs is
summarized in Section 2. Then, the new concepts and methodology
for the present study are developed in Section 3. Sections 4 and 5
are focused on two different case studies, one based on numerically
simulated data, and the other exploiting data from model-scale ex-
periments. General discussions of the performance of the method are
then given in Section 6, and the paper finishes with conclusions and
recommendations for future work in Section 7.

2. Theory

2.1. Fundamental assumptions and definitions for the seakeeping analysis

The wave process is assumed to be stationary, ergodic, and Gaussian
over the observation time. This enables a linear steady-state approach
in the frequency domain. The wave-induced vessel motions can be well
estimated by using the linear transfer functions and the wave spectrum.

In line with Brodtkorb et al. (2018a,b), the theory is presented
here assuming long-crested waves, which means that the wave system
is uniquely described by a 1-D wave spectrum 𝑆𝜁 (𝜔), where 𝜔 is the
ngular wave frequency. The direction of propagation of the waves 𝜇
s defined relative to North, as shown in Fig. 1. The ship heading angle

is constant and defined so that 𝜓 = 0◦ when the ship has the bow
owards North. The relative wave direction is defined as 𝛽 = 𝜇 − 𝜓 ,
nd it follows that 𝛽 = 0◦ is a following sea, 𝛽 = 180◦ is head sea, and

◦ ◦
= 90 or 270 is beam sea.
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Fig. 1. Definition of the heading angles.
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2.2. Shipboard sea state estimation using multiple ships

Let us assume that 𝑁 ships (𝑁 ≥ 2) are operating in the same
time frame in the same open-water geographical area. The ships are
far enough apart to avoid ship-to-ship interactions from radiated and
diffracted waves, but close enough to experience the same sea condi-
tions. By inspecting re-analysis wave data interpolated along many ship
route paths, two studies (Nielsen, 2021; Nielsen and Ikonomakis, 2021)
revealed a substantial level of spatial variation, for frozen time, in the
sea state parameters, like significant wave height, zero-crossing period,
and mean wave direction. This variability – added up with the temporal
evolution of sea state characteristics – challenges the commonplace
assumption of a stationary seaway in periods of up to three hours,
which is likely violated for ships sailing at the typical service speed (15–
20+ knots). Therefore, it is not trivial to quantitatively set lower and
upper bounds for the characteristic distance separating the ships during
the observation, and herein it is assumed such limits may be affected
by operational factors (e.g. the advance speed) and environmental
conditions (e.g. the severity and changeability of the sea state). This
question should be tackled in future studies. In practical situations
such as ships sailing along the same route path, the number of ships
𝑁 to be included in the proposed procedure will also depend on the
allowable limits for the distance by which they are separated apart.
For the present study, let us assume that a characteristic distance of a
few kilometres between the stationary ships (2–20 km apart) enables
to consider that the 𝑁 ships experience the same original wave system,
ndisturbed by interaction with other ships.

The theoretical foundations for sea state estimation using multiple
hips were laid in Nielsen et al. (2019). The WBA was used in a network
f ships sailing at the same time in the same geographical area. The
tudy introduced fundamental concepts for data fusion, especially the
eighting of ship-specific wave spectrum estimates, and proposed an
ncertainty measure of the so-called weighted wave spectrum.

.2.1. Weighting of the ship-specific wave spectrum estimates
Let us consider the response 𝑅 of a given ship 𝑛 ∈ {1...𝑁}, for

example, the motion in one of the six rigid-body degrees of freedom
(DoF). Throughout our study with multiple ships, the transfer function
of ship 𝑛 for this response is denoted 𝛷(𝑛)

𝑅 (𝜔; 𝛽).
A major advantage in considering a network of ships for SSE is

that the sea state observations derived via measurements collected
from several vessels offer the possibility to compute an – expectedly
more accurate – weighted sea state estimate. The weights attributed to
the individual wave spectrum estimate from each ship are frequency-
dependent. They are calculated in three steps and are based on the
moduli of the transfer functions for a selected response 𝑅. First, Eq. (1)
3
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computes a mean RAO 𝛷̄(𝑛)
𝑅 (𝜔), by averaging the moduli |𝛷(𝑛)

𝑅 (𝜔; 𝛽)| of
the transfer functions with respect to wave heading 𝛽:

̄ (𝑛)
𝑅 (𝜔) ≡ mean

All 𝛽

[

|𝛷(𝑛)
𝑅 (𝜔; 𝛽)|

]

, 𝑛 = 1...𝑁 (1)

his enables to avoid the dependency in the wave direction in the
pectrum weightings.

Secondly, the (frequency-dependent) mean modulus obtained from
q. (1) is normalized by its maximum value with respect to wave
requency — emphasizing here that the maximum value is ship-specific.
his is performed for a single ship 𝑛 in Eq. (2):

(𝑛)
𝑅 (𝜔) ≡

𝛷̄(𝑛)
𝑅 (𝜔)

max𝜔 𝛷̄
(𝑛)
𝑅 (𝜔)

, 𝑛 = 1...𝑁 (2)

Once the normalized modulus 𝜎(𝑛)𝑅 (𝜔) is calculated, the frequency-
dependent weights 𝜌(𝑛)𝑅 (𝜔) are computed as the ratio of the considered
ship’s normalized modulus 𝜎(𝑛)𝑅 (𝜔) and the sum of the normalized
moduli 𝜎(𝑝)𝑅 (𝜔) over all ships 𝑝 = 1...𝑁 , see Eq. (3):

𝜌(𝑛)𝑅 (𝜔) ≡
𝜎(𝑛)𝑅 (𝜔)

∑𝑁
𝑝=1 𝜎

(𝑝)
𝑅 (𝜔)

, 𝑛 = 1...𝑁 (3)

This definition ensures that the weights have a lower bound of 0, a
igher bound of 1, and that the sum of the ship-specific weights equals
at any frequency.

A sensitivity study of the response considered for the weighting
rocess was made by Nielsen et al. (2019), and in particular heave-
ased 𝜌(𝑛)𝑧 (𝜔) and pitch-based 𝜌(𝑛)𝜃 (𝜔) weightings were shown to perform

well for SSE. The present study considers both types of weighting but
introduces as well the combination of heave-based and pitch-based,
that is 𝑅 = {𝑧, 𝜃}, considering their geometric and arithmetic means as
two alternative weightings 𝜌(𝑛)arithm(𝜔) and 𝜌(𝑛)geom(𝜔), respectively; these
are defined in Eqs. (4) and (5):

𝜌(𝑛)arithm(𝜔) ≡
1
2

(

𝜎(𝑛)𝑧 (𝜔) + 𝜎(𝑛)𝜃 (𝜔)
)

∑𝑁
𝑝=1

1
2

(

𝜎(𝑝)𝑧 (𝜔) + 𝜎(𝑝)𝜃 (𝜔)
)

=
𝜎(𝑛)𝑧 (𝜔) + 𝜎(𝑛)𝜃 (𝜔)

∑𝑁
𝑝=1

(

𝜎(𝑝)𝑧 (𝜔) + 𝜎(𝑝)𝜃 (𝜔)
) , 𝑛 = 1...𝑁 (4)

(𝑛)
geom(𝜔) ≡

√

𝜎(𝑛)𝑧 (𝜔) ⋅ 𝜎(𝑛)𝜃 (𝜔)

∑𝑁
𝑝=1

√

𝜎(𝑝)𝑧 (𝜔) ⋅ 𝜎(𝑝)𝜃 (𝜔)
, 𝑛 = 1...𝑁 (5)

here 𝜎(𝑛)𝑧 (𝜔) and 𝜎(𝑛)𝜃 (𝜔) are the heave-based and pitch-based normal-
zed moduli for ship 𝑛, respectively.
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Irrespective of the considered weighting type, the weighted wave
spectrum 𝑆̂𝜁 (𝜔) is finally obtained according to Eq. (6):

̂𝜁 (𝜔) =
𝑁
∑

𝑛=1
𝜌(𝑛)(𝜔) ⋅ 𝑆̂(𝑛)

𝜁 (𝜔) (6)

where 𝑆̂(𝑛)
𝜁 (𝜔) is the ship-specific wave spectrum estimate from ship 𝑛,

and 𝜌(𝑛)(𝜔) is the weighting computed by the arithmetic mean, Eq. (4),
or geometric mean, Eq. (5).

To sum up, at a given frequency, higher weight is assigned to a ship
that has a larger response amplitude operator for the given frequency.
As an effect of wave filtering, the signal-to-noise ratio is worsened at
frequencies where there is a low response amplitude, which is a source
of uncertainty in the corresponding wave estimate. The weighting
favours the portions of each individual estimate that have suffered the
least wave filtering in relation to the other ships’ responses. The error
of the resulting weighted spectrum is considerably reduced compared
to a baseline case where all individual spectra would be given equal
weight at all frequencies, as was shown in Nielsen et al. (2019).

2.2.2. Uncertainty measure of wave spectrum estimate
A measure of the uncertainty of the weighted wave spectrum es-

timate 𝑆̂𝜁 (𝜔) from Eq. (6) was proposed in Nielsen et al. (2019). It is
based on the discrepancy between the individual ship-specific spectrum
estimates 𝑆̂(𝑛)

𝜁 (𝜔).
The frequency-dependent uncertainty measure 𝛥(𝜔) is defined by:

|𝛥(𝜔)|2 ≡
𝑁−1
∑

𝑛=1

𝑁
∑

𝑙=𝑛+1

[

|𝑆̂(𝑛)
𝜁 (𝜔) − 𝑆̂(𝑙)

𝜁 (𝜔)|
2]

(7)

where, at a given frequency, larger deviations between the spectral
densities express larger uncertainty at the given frequency.

The total uncertainty 𝛹 is calculated in an integrated form consid-
ering the whole range of frequencies:

𝛹 ≡
1
𝑁 ∫ ∞

0 𝛥(𝜔)𝑑𝜔

∫ ∞
0 𝑆̂𝜁 (𝜔)𝑑𝜔

(8)

The defined uncertainty measure should be regarded as a measure of
the variance, or precision, among individual sea state estimates coming
from different observation platforms. It is important to note that it
does not reveal anything about the bias error with respect to the (true)
encountered sea state. Nonetheless, the weighting’s purpose is that, if
many individual sea state estimates can be collected from independent
measurements on board different observation platforms, then the bias
error of the weighted estimate should tend to zero.

2.2.3. Error measure of wave spectrum estimate
To quantify the level of error 𝑒 in the sea state estimates, a difference

metric between the (true) generating wave spectrum 𝑆𝜁 (𝜔) and an
estimate 𝑆̂𝜁 (𝜔) can be defined as the normalized ‘‘area-deficit’’ encased
by the two spectra:

𝑒 ≡
∫ ∞
0 |𝑆𝜁 (𝜔) − 𝑆̂𝜁 (𝜔)|𝑑𝜔

∫ ∞
0 𝑆𝜁 (𝜔)𝑑𝜔

(9)

The computation of this metric is only possible if simulated data is
onsidered, that is when the true wave spectrum is known.

.3. Tuning of transfer functions

Applying a discrete Fourier transform to the time series of a mea-
ured response yields a measured response auto-spectrum 𝑆̃𝑅𝑅(𝜔),
here the tilde indicates that the data is of experimental nature.
ote that, in light of the case studies focused on DP-operated ships,
ero-forward speed is assumed here for the ships.
4

C

On the other hand, a response spectrum 𝑆̂𝑅𝑅(𝜔) can be estimated
heoretically through the relationship given in Eq. (10):

̂𝑅𝑅(𝜔) = |𝛷̂𝑅(𝜔; 𝛽)|
2
⋅ 𝐸(𝜔) (10)

here 𝛷̂𝑅(𝜔; 𝛽) is the estimated transfer function and 𝐸(𝜔) is a generic
otation for the 1-D wave spectrum.

Because of the uncertainty in operational parameters and the pos-
ible violation of the fundamental assumptions (linearity, stationary
onditions) for the seakeeping model, it is proposed in Nielsen et al.
2021) to write a better estimate of the transfer function 𝛷̂𝑅(𝜔; 𝛽) as in
q. (11):

̂𝑅(𝜔; 𝛽) = 𝛷̂𝑅,0(𝜔; 𝛽)(1 + 𝛼𝑅(𝜔)) (11)

here 𝛷̂𝑅,0(𝜔; 𝛽) is the initial estimate and 𝛼𝑅(𝜔) is a tuning co-
fficient, which depends on the wave frequency. The tuning coeffi-
ients for the same response 𝑅 can be grouped into a vector 𝛼𝛼𝛼𝑅 =
𝛼𝑅(𝜔1), 𝛼𝑅(𝜔2),… , 𝛼𝑅(𝜔𝐾 )] of tuning coefficients associated with the
iscretized range of frequencies [𝜔1, 𝜔2,… , 𝜔𝐾 ]. This vector is returned
rom an optimization procedure to minimize – in the least squares sense
the gap between the measured and theoretical response spectra, i.e
̃𝑅𝑅(𝜔) and 𝑆̂𝑅𝑅(𝜔), respectively. The corresponding cost function to be
inimized is given in Eq. (12):

𝑓𝑅(𝛼𝛼𝛼𝑅) ≡
∑𝐾
𝑘=1

|

|

|

𝑆̃𝑅𝑅(𝜔𝑘) − 𝑆̂𝑅𝑅(𝜔𝑘)
|

|

|

2

=
∑𝐾
𝑘=1

|

|

|

𝑆̃𝑅𝑅(𝜔𝑘) − |𝛷̂𝑅(𝜔𝑘; 𝛽)|
2𝐸(𝜔𝑘)

|

|

|

2

=
∑𝐾
𝑘=1

|

|

|

𝑆̃𝑅𝑅(𝜔𝑘) − |𝛷̂𝑅,0(𝜔𝑘; 𝛽)(1 + 𝛼𝑅(𝜔𝑘))|
2𝐸(𝜔𝑘)

|

|

|

2
(12)

here 𝛼𝛼𝛼𝑅 is the optimization variable, which enters the right-hand side
f Eq. (12) through 𝛷̂𝑅.

Note that this is a simplified expression for the cost function,
ompared to the one given in Nielsen et al. (2021), which deals with
on-zero forward speed problems in short-crested waves.

. Methodology

The core of the method for sea state estimation using a network of
hips, through simultaneous SSE and tuning of RAOs, is now presented
n detail.

.1. General overview of the main algorithm

Algorithm 1, given in a pseudo-code format in Appendix A, de-
cribes the iteration process in the general case with 𝑁 ships. The
resent paper does not deal with the topology of the network (Yu et al.,
022), which will be studied in future work. It is herein assumed that
n all-to-all interconnection scheme is in place, meaning that each ship
s directly connected to all the other ships.

.2. Initialization of the wave-to-motion transfer functions by closed-form
xpressions

It is considered that the response 𝑅 is sampled and recorded by
hipborne sensors, e.g. an inertial motion unit (IMU). For a given ship
, we denote (𝑛) as the set of vessel responses for which data is
ccessible.

This study makes use of inexpensive transfer functions calculated by
losed-form expressions (CFEs) developed by Jensen et al. (2004) for a
ox-shaped ship. Such an approach is practical if detailed information
bout the hull geometry is not available, or if the (higher-fidelity)
ransfer functions simply are missing. The required input information
or the procedure is limited to the main dimensions — namely the
ength 𝐿, breadth 𝐵, draught 𝑇 , and block coefficient 𝐶𝐵 , together with
he advance speed and heading. One can reasonably assume that this
asic information is immediately available to most ship operators. The

FEs are evaluated in a fraction of a second, but the fidelity of such
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Fig. 2. Illustration of the sea state estimation step in one iteration of the main algorithm.
a model may be compromised, as the shape of the hull is simplified.
In the implementation, the CFE will be used to calculate initial values
before carrying out an iterative approach where the transfer functions
are tuned. The initial estimate of the transfer function for the response
𝑅 of ship 𝑛 is denoted 𝛷̂(𝑛)

𝑅,0. Note that the (𝜔; 𝛽) indexing will be avoided
in the remaining of the paper, to ease readability.

3.3. The iterative process: simultaneous SSE and RAO-tuning

In each iteration 𝑚 ≥ 0 of the algorithm two main tasks are
performed: the SSE step and the RAO-tuning step.

3.3.1. Implementation of the SSE step
The concept for this step is illustrated in Fig. 2. For each vessel

𝑛 = 1...𝑁 , an estimate of the wave spectrum is computed, employ-
ing the WBA, using: (1) the available measured response spectra
{

𝑆̃(𝑛)
𝑅𝑅(𝜔)

}

𝑅∈(𝑛)
for several responses; (2) and the estimates

{

𝛷̂(𝑛)
𝑅,𝑚−1

}

𝑅∈(𝑛)
of the associated transfer functions available from the

previous iteration 𝑚 − 1. The SSE step returns 𝑁 distinct sea state
estimates,

{

𝑆̂(𝑛)
𝜁,𝑚

}

𝑛=1...𝑁
, discretized in the 2-D space (𝜔𝑗 , 𝛽𝑘).

In principle, the ships could use different methods for obtaining
an estimate of the 1-D wave spectrum. In this paper, a nonparametric
method, developed earlier by Brodtkorb et al. (2018a,b) for applica-
tions related to DP, was chosen for all ships. Its main feature is an
iterative procedure to match the spectral energy distribution between
the measured response and theoretical calculations based on RAOs. The
method is very efficient in its computations, due to the fundamental
assumptions upon which it is built, as explained below.

The original SSE algorithm assumes long-crested waves and was
invented for ships in stationkeeping, equipped with a dynamic posi-
tioning system, meaning that zero-forward speed is assumed. It also
enables the estimation of the incoming wave direction. However, in
the present study, the relative wave direction 𝛽 is given as input,
simplifying the sea state estimation procedure, and hence only two
symmetric responses, namely heave 𝑧 and pitch 𝜃, are considered. The
roll response is disregarded because there is no need to distinguish
between port and starboard incident waves.

The gains in the iteration scheme are chosen to satisfy the stability
criterion given in Brodtkorb et al. (2018b) with a conservative margin
(i.e. low gains); indeed, it was observed that low values for the gains
benefit the convergence of the main algorithm. The maximum number
of iterations per response was set to 50 in Case study 1 and 25 in
5

Case study 2. Those values were found to yield the best estimation
performance on the selected ships and sea states. The SSE loop is
repeated independently for each pair of responses and each ship. The
reader is referred to the cited original studies for further details.

3.3.2. Implementation of the RAO-tuning step
The concept for this step is illustrated in Fig. 3. For one specific

vessel 𝑛, with 𝑛 ∈ {1...𝑁}, the RAO estimates are improved through
tuning. To perform this tuning task, three inputs are needed for each
response 𝑅: (1) the initial guess of the RAOs 𝛷̂(𝑛)

𝑅,0 (in our case, the CFE),
(2) the measured response spectrum 𝑆̃(𝑛)

𝑅𝑅, and (3) an estimate of the
wave spectrum. Concerning the latter, the input is obtained by data
fusion, applying a ship-specific weighting to the 𝑁 individual wave
spectrum estimates obtained from the SSE step. The weighting function
is computed from the RAOs, as per Eqs. (1) to (6). It is noticed that the
individual sea state estimate 𝑆̂(𝑛)

𝜁,𝑚 produced by ship 𝑛 is not independent
of the corresponding ship RAOs and measured response spectra. Thus,
it is thought that 𝑆̂(𝑛)

𝜁,𝑚 should not be used to tune the RAOs of ship 𝑛, to
avoid the propagation of errors within the model. In the so-called leave-
one-out weighting process, zero weight is given at all frequencies to the
individual wave spectrum estimate produced by the ship that is being
tuned. The weighted wave spectrum used to tune the RAOs of ship 𝑛

is denoted 𝑆̂
(𝑛)

𝜁,𝑚. The RAO-tuning step is repeated for each ship, that is
𝑛 = 1...𝑁 , and a new estimate of the RAOs is produced for each, that is
the set of functions

{{

𝛷̂(𝑛)
𝑅,𝑚

}

𝑅∈(𝑛)

}

𝑛=1...𝑁
is eventually obtained.

As stated in Section 2.3, an optimization problem must be solved
to minimize the cost function of Eq. (12). Contrary to what was done
in Nielsen et al. (2021), bound constraints are imposed on the tuning
coefficients: 𝛼𝑅 is allowed to be in the range [−0.2, 0.2], thus ensuring
that the original closed-form RAOs are not too distorted after tuning.
This constraint is observed to be necessary; otherwise, the sea state
estimates computed via the tuned RAOs become unrealistic themselves,
causing a risk to the stability of the algorithm. This is further discussed
in Section 6.

The Trust-Region Constrained algorithm developed by Byrd et al.
(1999) is exploited to solve the optimization problem, noticing that
implementation in Python 3 is available in the optimization library
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Fig. 3. Illustration of the RAO-tuning step in one iteration of the main algorithm. For clarity, the process is represented for ship number 1 only.
Table 1
Main particulars of the three considered ships for Case study 1.

RV PSV FPSO

Length between perpendiculars, 𝐿𝑝𝑝 28.9 82.8 200.0 [m]
Breadth middle, 𝐵 9.6 19.2 44.0 [m]
Draught, 𝑇 2.63 6.00 12.00 [m]
Displacement, 𝛥 418.06 6362.21 100409.92 [t]
Block coefficient, 𝐶𝐵 0.559 0.651 0.928 [-]

of SciPy, under the function minimize with the method ‘trust-
constr’.1 This optimization algorithm was chosen because it enabled
fast convergence in most of the tested cases. Quasi-Newton methods
(among others, BFGS) were also tried without the bound constraints,
but they did not feature as good convergence performances as the
Trust-Region Constrained algorithm.

4. Case study 1: Numerical simulation with three ships

4.1. Scope

A simulation study is performed with three vessels: the NTNU-
owned research vessel Gunnerus (denoted ‘‘RV’’), a platform supply
vessel (‘‘PSV’’), and a Floating Production Ship Offloading (‘‘FPSO’’).
Their main particulars are given in Table 1. Considering the WBA
framework, the vessels will behave as low-pass filters with respect to
the waves, with different cut-off frequencies since they have different
dimensions.

The responses are simulated in the frequency domain. For this
purpose, different sea states are defined. In total, three scenarios are
examined, with significant wave height 𝐻𝑠, peak period 𝑇𝑝, peak shape
parameter 𝛾, and relative wave headings 𝛽 given in Table 2. The
corresponding wave spectra are plotted in Fig. 4, noticing that the
(generalized) JONSWAP spectrum (Hasselmann et al., 1973) is assumed
in all cases. The value of the significant wave height is unimportant,
since the linear ship motions are directly proportional to 𝐻𝑠, empha-
sizing that normalized error metrics are used in the results sections.
The relative wave headings are also arbitrarily chosen and different
for the three vessels, see Table 2, corresponding to head sea, bow sea
and beam sea conditions for PSV, RV and FPSO, respectively. In the
context of offshore operations, three parallel vessels would be a more
specific configuration, which is briefly considered later in Section 6.
The headings remain unchanged during the three scenarios, to focus
the sensitivity study on the environmental parameters. Notably, three
different peak wave periods are tried, to vary the excitation within the
frequency range of ship motions. With the chosen 𝛾, scenario A models
a unimodal, developing sea state in a fetch-limited situation, typical of
strong wind conditions in a relatively restricted water body. Besides,
scenarios B and C model a fully-developed sea state in the ocean.

1 The default values in the Python function were used for the tolerances
for termination, while the maximum number of algorithm iterations was set
to 1500 (the default was 1000).
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Table 2
Scenarios of simulation for Case study 1, in terms of the relative wave heading and
generating sea state at the vessel’s point of operation. The vessels have zero forward
speed.

Scenario nr. Sea state parameters RV PSV FPSO
𝐻𝑠 [m] 𝑇𝑝 [s] 𝛾 [-] 𝛽 [◦] 𝛽 [◦] 𝛽 [◦]

A 2.0 8.0 3.3 130 160 100
B 2.0 10.0 1 130 160 100
C 2.0 12.0 1 130 160 100

Realism of the study is introduced by working with a set of theoret-
ical RAOs purely used for generating the wave-induced responses. To
serve this purpose, ‘‘ground-true’’ heave and pitch RAOs of the vessels
were obtained from the commercial hydrodynamic codes ShipX and
WAMIT. The RAOs are plotted in Fig. 5 for several relative wave head-
ings, and compared with the closed-form expressions (CFE) (Jensen
et al., 2004) that the study uses in the SSE and tuning algorithms. It
seems important to underline that there is a clear bias in the initial
CFE estimate, compared to the true RAOs. The CFE almost always
underestimate the RAOs, in such a way that the drop in heave and pitch
amplitudes appears at lower frequencies than for the ShipX/WAMIT
RAOs. This questions the validity of the assumption followed in the
theoretical formulation of the RAO-tuning method, according to which
the error between the initial estimate and the true RAO is normally
distributed; cf. the imposed bounds for the tuning coefficients, as indi-
cated in Section 3.3.2. It is admitted that this bias may have negative
consequences on the performance of both the RAO-tuning and SSE
steps. As a general recommendation, one should always try to use
unbiased RAOs for SSE. However, it is understood that the aim of the
tuning step is mainly to reduce such bias, which motivates the use of the
CFE to test (and challenge!) the overall architecture. The use of other
sets of – perhaps less biased – RAO estimates is discussed in Section 6.

4.2. Results and discussions

4.2.1. Comparison of the weighting functions
The four types of weighting introduced in Section 2.2.1 are repre-

sented for the three ships in Fig. 6, corresponding to the first iteration.
Those weights do not vary significantly over iterations. Note that this
observation is not correlated to the performance of the algorithm, nor
does it reveal any indication of the amount of tuning that the RAOs
undergo, but instead, it is an expected result from the definition of
the weighting functions, cf. Eqs. (1) to (3). In fact, in long-crested
waves, the tuning concerns only one direction, namely the observed
heading 𝛽, which means that only one column of the original RAO
matrix 𝜱̂(𝑛)

𝑅,0 is altered after tuning. On the other hand, the calculation
of the weighting function involves the whole set of RAOs, considering
all possible headings [0◦, 10◦,… , 350◦] – or, equivalently, all columns of
𝜱̂(𝑛)
𝑅,0 –, of which 35 (out of 36) have not undergone tuning, since they

did not correspond to the observed heading. Thus, the effect of tuning
the RAOs is almost imperceptible when evaluating the weights iteration
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Fig. 4. 1-D wave spectra for sea states 1 to 3 in Case study 1. PSD stands for power spectral density.
Fig. 5. Heave and pitch RAOs of the three ships selected for Case study 1. The solid lines represent theoretical RAOs obtained from strip theory (ShipX, for RV and PSV) or a
potential flow solver (WAMIT, for FPSO), while the dashed lines correspond to the closed-form expressions given in Jensen et al. (2004). Note the different vertical scales in the
subplots.
after iteration.2 What is more, in scenarios of short-crested waves, left
for future work, it suffices to say that the tuning will concern a larger
set of headings due to the wave spreading, resulting in more columns of
the original RAO matrix 𝜱̂(𝑛)

𝑅,0 to be altered. Consequently, the weights
ould be seen to vary more significantly over iterations.

In the present study, the weighting using the arithmetic mean was
referred, because (1) it does not give more importance to heave or
itch, and (2) the ships have almost equal contributions at very low
requencies, which supports the idea that the ships all behave as low-
ass filters. At frequencies over 0.1 Hz, arithmetic and geometric mean
re essentially the same. In particular, RV’s estimates are given high
mportance, while the FPSO’s contribution is nearly zero.

.2.2. Effects of the RAO-tuning step after one iteration of the main algo-
ithm

To visualize the effect of tuning the RAOs, it is interesting to
ompare the ship-specific wave spectrum estimates before and after
he tuning step is performed. This is shown in Fig. 7 for scenario
, and additional results are given in Appendix B for the other two
cenarios. Overall, it is seen that the individual wave spectra from the
hree ships after RAO-tuning show a better agreement with one another
nd with the true generating spectrum, compared to the first sea state
stimates using the original (not-tuned) closed-form RAOs. From this
igure, it can be interpreted that the uncertainty with which the sea

2 Alternatively, a heading-dependent weighting function could be intro-
uced, as discussed in Nielsen et al. (2019), but such a function would then
volve notably after iterations, which might be a concern for the convergence
f the algorithm.
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state is estimated is decreased thanks to the tuning step; indeed, there
is a reduced discrepancy, i.e. variance, in the set of wave spectrum
estimates when evaluated frequency by frequency.

The weighted wave spectra from the ships are shown in Fig. 8 for
the three scenarios, before and after tuning of the RAOs, denoted ‘‘CFE’’
and ‘‘Tuned CFE’’ respectively in the figure, and compared with the gen-
erating JONSWAP spectrum. It is observed that the weighted estimate
after the RAO-tuning step is in general better. In particular for scenarios
A and C, the energy density at the peak is more accurately estimated,
compared to the estimate without any tuning. For scenario B, there is
only a very slight improvement of the weighted spectrum estimate over
the whole range of wave frequencies, although the individual estimates
are significantly improved after tuning (see Fig. B.24).

The transfer functions and tuning coefficients used to obtain the
estimates in Fig. 8-(c), i.e. for scenario C, are plotted in Figs. 9 and
10, respectively. It is seen that some of the RAOs, especially for RV (in
heave and pitch), become quite non-physical after tuning. This might
be an issue if the tuned RAOs were used a posteriori for other purposes
than SSE, but this is out of the scope of the present study and is already
discussed by Nielsen et al. (2021). It is remarkable that the tuning step
makes efforts to correct the CFE, but such corrections do not necessarily
result in a better match with the true RAOs. For FPSO in heave, and
PSV in pitch, the agreement is better, however, for RV in heave, the
tuned RAO underpredicts amplitude at frequencies under 0.17 Hz. One
reason why the tuned RAO estimates are worse for RV could be that
the ‘‘leave-one-out’’ tuning method for this vessel makes use of the
wave spectrum estimates from PSV and FPSO only, which are not as
good as those from RV, as seen in Fig. 7-(a). Indeed, the initial sea
state estimates from PSV and FPSO significantly overpredict the energy
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Fig. 6. Ship-specific weighting functions in Case study 1. These are derived from the moduli of different transfer functions. Top left: heave-based weighting; Top right: pitch-based
weighting; Bottom left: arithmetic mean of heave and pitch-based weightings (chosen for Case study 1); Bottom right: geometric mean of heave and pitch-based weightings.

Fig. 7. Exact and estimated wave spectra from the three ships selected for scenario C of Case study 1. Left: estimates before any tuning of the RAOs, that is using the original
closed-form expression; Right: estimates using the tuned RAOs.

Fig. 8. Weighted wave spectra in the three scenarios of Case study 1. The solid lines represent the generating wave spectra, while the lines with plus markers correspond to
estimates in the WBA framework. ‘‘CFE’’ refers to the estimate before tuning the RAOs, that is using the original closed-form expression, while ‘‘Tuned CFE’’ uses the tuned RAOs.
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Fig. 9. Heave and pitch RAOs of the three ships selected for scenario C of Case study 1. The lines with plus markers represent the theoretical RAOs, the dashed lines correspond to
the closed-form expressions (CFE) given in Jensen et al. (2004), and the black dotted lines are the tuned RAOs obtained at the end of the first iteration. Note the superimposition
of the two latter in the case of PSV for heave and FPSO for pitch.
Fig. 10. Tuning coefficients for the heave and pitch RAOs of the three ships selected for scenario C of Case study 1.
density around the peak. From that, it can be inferred that there is
a trend for a somewhat symmetrical behaviour between the SSE and
RAO-tuning steps, meaning that overprediction in a frequency range
within one step is likely to result in an underprediction at the same
frequencies at the other step, and vice-versa.

Since the ship headings do not vary with scenario number, the tuned
RAOs for scenarios A and B are very similar to those from scenario C,
see Fig. 9, and the comments from the last paragraph apply to them
too.

4.2.3. Convergence study of the main algorithm
On average, it takes approximately 60 s to run one iteration of Algo-

rithm 1 on the available laptop (CPU Intel(R) Core(TM) i7-10510U CPU
@ 1.80 GHz, 16 GB memory). Since the computations are relatively
fast, it is possible to investigate what happens for the sea state estimates
9

after running more iterations of Algorithm 1. In particular, the SSE
results are analysed in terms of their precision and accuracy.

As a reminder, the integral-form uncertainty measure is defined in
Eq. (8) as the integral of the frequency-dependent variation among
ship-specific spectrum estimates, normalized by the variance of the
wave process. The evolution of this uncertainty measure versus the
number of iterations (ten in total) is shown in Fig. 11 for the three
scenarios. It is seen that the sea state estimates become significantly
more precise after the first iteration. The uncertainty converges towards
an asymptotic value for scenarios A and B, while it is oscillating for
scenario C. A clear explanation could not be found for why a scenario
leads to a more oscillatory behaviour than the others. Overall, it can be
argued that just one iteration can be sufficient to reduce the uncertainty
of the sea state estimates.

The error of the weighted wave spectrum relative to the generating
wave spectrum is also computed, according to its definition in Eq. (9).
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Fig. 11. Uncertainty measure versus number of iterations, for the three scenarios of Case study 1.
Fig. 12. Normalized error of the sea state estimate versus number of iterations, for the three scenarios of Case study 1.
It is plotted against the number of iterations in Fig. 12. The normalized
error decreases until it reaches a (quite) stable value. The convergence
is slower for scenario A.

The main results from Case study 1 are gathered in Table 3, in
terms of estimated sea state parameters, normalized error and integral-
form uncertainty, all obtained at the end of iterations 0, 1, and 4. It
is emphasized that 𝐻𝑠, 𝑇𝑝 and 𝑒 values are derived from the weighted

ave spectrum estimates at successive iterations. Iteration 0 makes use
f the original CFE, iteration 1 utilizes the tuned CFE, and, at iteration
, the RAOs have been tuned four times. From this outcome, it is
lear that in all three considered scenarios, the proposed procedure
ucceeds to provide both more accurate and less uncertain estimates
f the sea state. If the SSE results are regarded as a set of ship-specific
ndividual estimates, it seems that the uncertainty evaluated from this
et is minimal after just one iteration of the main algorithm, that is after
uning the CFE only once. This finding is further discussed in Section 6.

. Case study 2: Application of the method to model-scale data

In this section, Algorithm 1 is tested on experimental model-scale
ata, obtained from CH-TPN Wave Tank, São Paulo, Brazil, in 2019.
10
Table 3
Results from Case study 1, at the end of iterations 0, 1, and 4.

Scenario 𝐻𝑠 [m] 𝑇𝑝 [s] 𝑒 [-] 𝛹 [-]
0 1 4 0 1 4 0 1 4 0 1 4

A 2.26 2.17 2.15 8.0 7.7 8.0 0.309 0.292 0.229 0.391 0.307 0.331
B 2.24 2.14 2.04 10.0 10.0 10.0 0.278 0.222 0.168 0.384 0.236 0.313
C 2.18 2.11 2.04 11.1 11.1 11.1 0.216 0.200 0.175 0.344 0.210 0.277

5.1. Presentation of the experimental set-up and tested scenarios

Three model-scale ships, namely ‘‘M510A’’, ‘‘M510B’’, and ‘‘PSVH’’,
with dimensions given in Table 4, have been placed with zero forward
speed in a square wave tank and aligned differently so that different
wave headings were experienced. The vessel motion responses were
recorded for two different long-crested sea states, both of them using
a JONSWAP spectrum to model a developing sea. The corresponding
scenarios are described in Table 5, in terms of wave spectral parame-
ters and relative wave headings. A photograph and a diagram of the
experimental set-up are given in Figs. 13 and 14, where the placement
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Fig. 13. Picture of the experimental set-up at the CH-TPN Wave Tank facility.
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Table 4
Main particulars of the three considered ships for Case study 2.

M510A/M510B PSVH
Full scale Model 1:42 Full scale Model 1:42a

Length overall, 𝐿𝑜𝑎 79.80 1.900 53.30 1.269 [m]
Length between
perpendiculars, 𝐿𝑝𝑝

69.30 1.650 50.69 1.207 [m]

Breadth middle, 𝐵 18.02 0.429 11.38 0.271 [m]
Draught, 𝑇 4.83 0.115 3.95 0.094 [m]
Displacement, 𝛥 4103.10 0.05371 1687.09 0.02208 [t]
Block coefficient, 𝐶𝐵 0.664 0.660 0.687 0.683 [-]

aThe PSVH model was made in scale 1:70, while the M510 models were in scale 1:42.
For the tests with three ships, the scale 1:42 was adopted. The numerical transfer
functions for PSVH obtained in WAMIT were in scale 1:70; they had to be converted
to the new scale 1:42 using Froude scaling.

Table 5
Experimental conditions for Case study 2, in terms of the relative wave heading and
generating sea state in the wave tank. The vessels have zero forward speed.

Scenario nr. Sea state M510A M510B PSVH
𝐻𝑠 [m] 𝑇𝑝 [s] 𝛾 [-] 𝛽 [◦] 𝛽 [◦] 𝛽 [◦]

D 1.2 8.0 3.3 140 210 160
E 1.5 12.0 3.3 140 210 160

f the vessels can be visualized. The wave tank has 148 active flaps
istributed on the four sides that act as an active beach, to avoid
ave reflection at the walls (de Mello et al., 2013). Additionally, three
ave probes (‘‘WP’’) recorded the wave elevation time series during the
hole process, at three locations in the tank; see the drawing in Fig. 14.

In everything that follows, all quantities are given in full scale,
hat is after applying a Froude scaling (1:42) to the frequencies, wave
eriod, significant wave height, RAOs and responses. This facilitates the
nalysis, in view of the results from the previous Case study 1.

.2. Experimental data verification and validity of stationary conditions

The validity of the assumption of stationary and homogeneous wave
onditions in the tank is checked by inspecting the power spectral
ensity (PSD) of the wave elevation measured by WP1, WP2 and
P3, and comparing them to the generating (expected) JONSWAP
ave spectrum. This is shown in Fig. 15 for scenarios D and E. All

ime series (wave elevation and responses) have been trimmed at the
eginning (minus 2000 s, full-scale) and the end (minus 1277 s) of the
11

2

un to avoid transient effects; the remaining length is 3600 s = 1 h.
he PSDs are computed by Welch’s method of time-average of short
odified periodograms (Welch, 1967), which is implemented e.g. in

he scipy.signal.csd function3 available in Python’s module ded-
cated to signal processing. It is observed from Fig. 15 that the PSDs
rom the three wave probes are in good agreement with each other,
nd satisfactorily coincide with the generating spectrum, both in terms
f the peak frequencies and the PSD distributions. Consequently, it is
easonable to assume that the three ships experience – in a statistical
ense – the same sea state. It may be noted that the PSD at the peak is
bit lower than expected, which might be caused by the wave maker
ot providing the specified energy at the peak, or due to some energy
issipation in the tank.

To more accurately know what the wave systems encountered by
he ships are, it would ideally be needed to probe the wave elevation
n the vicinity of the vessels. This is difficult to do in practice, and such
ata was unavailable for these experimental datasets. The performed
heck for homogeneous conditions is therefore quite rough, albeit a
ecessary one. One should remain aware of the fact that the responses
ight be impacted by ship-to-ship interactions. This especially concerns

essel M510A, which is located in a sheltered area, downstream of
SVH. M510B is probably less affected by interaction effects than
510A. To the authors’ knowledge, there was no possible way to

erify these hypotheses, due to the absence of data on the forces and
oments experimented by the ships; thus, great care is required in the

nterpretation of the test results. Using a larger basin would allow for
ore distance between the ships to reduce the ship-to-ship interactions.
r, in a more time-consuming manner, one could make a separate run

or each ship model alone, placed at its respective position, using the
ame wave realization for each tested vessel.

.3. Results and discussions for Case study 2

To make sure that the sea state estimates are compared to the
ctual wave conditions in the tank, the measurements from one arbi-
rarily selected wave probe (WP1) are used in the following as a basis
or comparison, rather than the theoretical JONSWAP spectrum. It is
tressed, however, that the spectrum of WP1 is nothing more than a
ood estimate of the ground-true spectrum at the exact location of the
articular ship.

3 A Parzen window is used and the length of the segments is set to 211 =
048 points, including an overlap of 1024 points between segments.
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Fig. 14. Drawing of the experimental set-up at the CH-TPN Wave Tank facility. Note that those are model-scale dimensions.
Fig. 15. Power spectral density of the wave elevation measured by wave probes WP1 to WP3 and generating JONSWAP wave spectrum for the two scenarios of Case study 2.
Appendix B includes a plot of the ship-specific estimates before and
after the RAO-tuning step for scenario D. The plot for scenario E is given
in Fig. 16.

The weighted wave spectra are shown in Fig. 17 for the two scenar-
ios, before and after tuning of the RAOs. The arithmetic mean-based
12
weighting was again chosen, like in Case study 1. Here, the beneficial
effect of tuning the RAOs is less evident, compared to the results from
Case study 1. In scenario D, the agreement is slightly better using the
tuned RAOs, rather than the original CFE. In scenario E, the first sea
state estimate agrees fairly well with the generating wave spectrum,
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Fig. 16. Measured and estimated wave spectra from the three ships in scenario E of Case study 2.
Fig. 17. Weighted wave spectra from the three ships in Case study 2. The solid lines represent the PSD of wave elevation recorded by a wave probe (WP1), while the lines with
lus markers correspond to estimates in the WBA framework. ‘‘CFE’’ refers to the estimate before tuning the RAOs, that is using the original closed-form expressions, while ‘‘Tuned
FE’’ uses the tuned RAOs.
nd therefore, the wave spectrum estimate is almost unchanged by
sing the tuned RAOs.

The transfer functions used to obtain the sea state estimates are
lotted in Figs. 18 and 19. For scenario D, the majority of the tuned
AOs match better the WAMIT RAOs, compared to the original CFE.
or scenario E, the tuned RAOs are pretty much similar to the original
FE. To explain this, it is observed from Fig. 16-(a) that the wave
pectrum estimates for all ships agree with each other; they are precise
ea state estimates. This is also reflected in the uncertainty measure
, see Fig. 20, which does not change much over the iterations. It

s simply the best estimate of the RAOs and sea state one can obtain
ith these three ships in this scenario. One may get incrementally
etter estimates by adjusting the parameters in the algorithms (gains,
olerances, bounds on the tuning coefficient, etc.). It is emphasized that
he parameter values for the RAO-tuning step have not been changed
rom Case study 1 to Case study 2.

The evolution of the integral-form uncertainty measure over a larger
umber of iterations is shown in Fig. 20 for the two scenarios. The same
indings as in Case study 1 apply here, namely a significant decrease of
he relative uncertainty after iteration 1 and a somewhat oscillatory
ehaviour in the next iterations, particularly noticeable in scenario D.

Similarly to what was presented in Case study 1, the main results
rom Case study 2 are gathered in Table 6, in terms of estimated
13
Table 6
Results from Case study 2, at the end of iterations 0, 1, and 4.

Scenario 𝐻𝑠 [m] 𝑇𝑝 [s] 𝛹 [-]
0 1 4 0 1 4 0 1 4

D 1.33 1.28 1.27 7.81 7.81 7.81 0.139 0.101 0.137
E 1.48 1.47 1.45 12.07 12.07 12.07 0.085 0.072 0.072

sea state parameters and integral uncertainty, obtained at the end of
iterations 0, 1, and 4.

6. General discussions on the performance of Algorithm 1

The performance of the whole architecture is very sensitive to the
values given to the parameters for both the SSE step and RAO-tuning
(tolerances, optimization bounds, maximum number of iterations, etc.).
Finding the right values for those parameters is viewed as the biggest
challenge of the proposed computational architecture.

The possible issue of having a systematic bias at higher frequencies
in the CFEs was raised in Section 4.1. In fact, the chosen RAO-tuning
method presents the disadvantage that it can only correct the RAOs
at observed frequencies, i.e. at the frequencies of non-zero amplitude.

There will therefore be no effect of tuning at unobserved frequencies.
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Fig. 18. Heave and pitch RAOs of the three ships in scenario D of Case study 2. The solid lines represent the theoretical RAOs obtained from a linear potential flow theory-based
panel code (WAMIT), the dashed lines correspond to the closed form (CFE) solutions given in Jensen et al. (2004), and the black dotted lines are the tuned RAO estimates obtained
at the end of the first iteration.
This is an issue, in connection with the use of CFEs, because the higher-
frequency bias cannot be properly corrected, resulting in tuned RAOs
that still decline too soon towards higher frequencies. This bias has
repercussions on the sea state estimates obtained by the wave buoy
analogy. Such an effect is amplified by the fact that a non-parametric
method was chosen for the SSE step. Indeed, the systematic bias of
the sea state estimates could be mitigated by imposing a predefined
(realistic) shape of the wave spectrum, for instance, a parameterized
JONSWAP wave spectrum, which, on the other hand, could introduce
different types of inconsistencies. Alternatively, one could use a para-
metric method for the RAO-tuning step, e.g. Nielsen et al. (2022),
where some of the input parameters of the CFEs are optimized to
reduce the systematic bias. It is noted that the network-based approach
is beneficial to mitigate the bias in the weighted sea state estimates,
considering the multiple ships in the network as low-pass filters with
different cut-off frequencies. To investigate the effect of biased versus
unbiased original RAOs, it has been tried in Case Study 2 to use the
WAMIT RAOs (instead of the CFEs) in the algorithm. The produced sea
state estimates before and after tuning are shown in Fig. 21, which can
be compared to Fig. 17. It is seen in Scenarios D and E that the WAMIT
RAOs enable a better agreement with the WP1 spectrum (compared to
the CFEs) in the range of frequencies [0.14–0.18] Hz. However, it is
also noticed in Scenario E that neither the original nor the tuned RAOs
enable an accurate estimation of the peak amplitude, as was already
observed in Fig. 17 for the CFE RAOs. This could be due to an issue
with the measured responses in the experiments, possibly caused by
some unwanted effects in the experimental set-up, such as ship-to-ship
interaction. However, it must be emphasized that the WAMIT RAOs
should also be attached some sort of uncertainty and might as well be
biased at the peak.
14
In the occurrence of nonlinear and/or coupled measured responses,
it is expected that the effectiveness of the scheme would not be sig-
nificantly impacted, since the algorithm would still be able to tune the
RAOs. However, substantial variations would appear in the tuned RAOs
from one time window to the next, indicating the capture of second-
and possibly higher-order effects.

When the computational cost of the presented numerical procedure
is analysed, the functions ComputeSSE and TuneRAO_R, referring
back to Algorithm 1, should be optimized to run as fast as possible.
In this way, frequent updates of the (aggregated) sea state estimate
are facilitated in a near real-time set-up. This will meet the ship
operators’ needs in the event of quickly changing operational and/or
environmental conditions. The specific implementation of the SSE step
used in the two case studies is extremely fast, whereas the RAO-tuning
process – which relies on an optimization procedure – represents the
most time-consuming step. One easy way to reduce the computational
time of the RAO-tuning step would be to reduce the number of tuning
coefficients for which the optimization problem is to be solved. In
Case study 1, the spectra are discretized in 100 frequency components
in the RAOs, which leads to 100 tuning coefficients. It is possible to
work with a lower resolution in practical engineering applications,
especially to enable more frequent updates of the sea state estimates
when online SSE is regarded. However, the results (not presented in
this paper) from running the algorithm in Case study 1 with less
(50) frequency components showed that the accuracy of the estimates
was quite drastically reduced in two out of three scenarios, while the
precision was not significantly impacted by the change in any of the
scenarios.

Another important aspect of the network-based procedure is the
configuration of the ships, and especially their headings relative to the

incoming waves. It was observed that the latter has a significant effect
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Fig. 19. Heave and pitch RAOs of the three ships in scenario E of Case study 2.
Fig. 20. Uncertainty measure versus number of iterations, for the two scenarios of Case study 2.
n the performance of the proposed method. This was verified through
ase study 1. Although the results are, for the sake of conciseness of
he paper, not shown here, a few additional scenarios were considered,
here the three ships had the same relative heading. Three values
ere tried for 𝛽, namely 100◦, 130◦ and 160◦, resulting in poorer
erformances of the algorithm compared to scenarios A, B, and C,
oth in terms of stability and ability to provide more accurate sea
tate estimates after a few iterations. This can be explained by the fact
hat the relative wave heading influences the range of frequency at
15
which the ship has a non-zero response, that is the ship’s bandwidth.
Remembering that the single vessel acts as a linear filter with particular
characteristics on the incoming waves, it is beneficial to work with
a group of ships having a large bandwidth, when a network of wave
recorder systems is considered, as this is favourable for the estimation
capabilities.

Another noteworthy point is the interdependency inherently built
into the architecture. Hereby, it is understood that the procedure
is repeated in several iterations, which means that more and more
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Fig. 21. Weighted wave spectra from the three ships in Case study 2. The solid lines represent the PSD of wave elevation recorded by a wave probe (WP1), while the lines with
plus markers correspond to estimates in the WBA framework. ‘‘WAMIT’’ refers to the estimate using the original WAMIT RAOs, while ‘‘Tuned WAMIT’’ uses the tuned WAMIT
RAOs.
Fig. A.22. Illustration of Algorithm 1 applied to a network of three ships.
interdependency between the two steps (RAO-tuning and SSE) builds
up in the outputs. This can have unwanted effects if the algorithm
enters a vicious circle, in which errors propagate and accumulate from
one step to the other. For example, if the initial RAO estimate is
bad over a range of frequencies, then the quality of the produced sea
state estimate can be as well impacted in that range, which, in turn,
degrades the RAOs even more after tuning, due to imprecision in the
sea state description; and so forth. From Figs. 11, 12 and 20, it can
be argued that stopping the process after the first iteration is the most
reasonable recommendation, for robustness, accuracy and precision of
the sea state estimate. This practical choice results in tuning the RAOs
16
once only, and in subsequently producing a new sea state estimate,
using these tuned RAOs. Nevertheless, only five test scenarios have
been considered in the present study, which is hardly sufficient to
build strong evidence that one iteration is necessarily the best practice.
This hypothesis should be validated against some additional test cases,
which are left for future work.

7. Concluding remarks and future work

The paper presented a novel concept for estimating the sea state
encountered by a network of ships operating in dynamic positioning in
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Fig. B.23. Exact and estimated wave spectra from the three ships selected for scenario A of Case study 1. Left: estimates before any tuning of the RAOs, that is using the original
losed-form expression; Right: estimates using the tuned RAOs.
Fig. B.24. Exact and estimated wave spectra from the three ships in scenario B of Case study 1.
Fig. B.25. Measured and estimated wave spectra from the three ships in scenario D of Case study 2.
he same geographical area. Tuning of the vessels’ response amplitude
perators is performed simultaneously to sea state estimation, in a

‘leave-one-out’’ fashion — that is considering only the sea state esti-
ates from all the other ships in the network when trying to tune one

hip’s response amplitude operators. In addition to an initial estimate of
he response amplitude operators, the proposed algorithm only needs
17
measured vessel motion cross-spectra as input. The procedure was
tested through two case studies, one based on simulated ship motions,
and the other using experimental data from model-scale tests in a wave
tank. In total, five different scenarios in unimodal, long-crested waves
were analysed, and they showed that the proposed algorithm is able to

produce accurate estimates of the 1-D wave spectrum. What is more,
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the trials revealed that in some cases, the tuning of the RAOs can
significantly reduce the uncertainty of the wave spectrum estimates,
which also comes with some improvement in accuracy, compared to
the estimates without tuning.

Many simplifications and assumptions were made in this conceptual
study. In particular, in Case study 1, the computations have been
carried out in the frequency domain, without generating any realization
of vessel motion time histories. Instead, the simulated motion spectra
have been used directly as input to Algorithm 1. This is not realistic,
since measurement noise and sampling uncertainty would affect the
quality of the motion spectra in real life. However, this choice was
motivated by the need to keep the simulation as simple as possible to
make it easier to study the performance of the proposed algorithm. That
is also why the algorithm was then tested in a second case study with
real data from model experiments.

Furthermore, it would be interesting to make a sensitivity study of
the number of ships in the network. As pointed out in the discussions,
the sizes of the ships compared to the waves and the relative headings
are also important factors to be studied. More model-scale experimental
results and (full-scale) in-service data will be needed in the future to
investigate the potential of network-based methods for real-time sea
state estimation and prediction.

The overall architecture, as illustrated by Algorithm 1, is generic
and modular in essence, meaning that it is compatible with various
methods for the SSE and RAO-tuning steps. Very important for the full
applicability of the method, the case of multimodal short-crested seas
– where wind waves coexist with one or more swell systems – requires
consideration in a necessary extension of the proposed simultaneous
RAO-tuning and SSE framework. The directional wave spectrum is the
fundamental quantity of wave modelling and the quantity that allows
calculating the consequences of interactions between waves and other
matter (Hauser et al., 2005). Bayesian modelling, see e.g. Iseki and
Ohtsu (2000), is specially adapted to solve for 2-D wave spectra, and
forward speed effects can be included by accounting for the Doppler
shift. Considering the large number of ships sailing in the world’s
oceans and seas, the overarching aim is to test the method eventually in
a network of in-service vessels with advance speeds, regarded as sailing
wave buoys. Parenthetically, possible fluctuations of the ships’ heading
and speed should be appropriately handled to ensure that the spectral
calculations are made over time windows of stationary conditions. The
network could also comprehend several smaller drone vessels (Dallolio
et al., 2021), moored ‘‘classical’’ wave-buoys, or shipborne wave radars.
Overall, such a network of in-situ wave recorders should be able to
frequently provide updated estimates of the encountered sea state, (ide-
ally) immediately available to the operators during operations at sea.
Shipping companies need reliable wave estimates, as well as forecasts,
at the actual positions of the fleet of ships to make calculations of the
added wave resistance and, consequently, more qualified evaluations
of the fuel consumption performance on the specific sea routes; see
e.g. Prpic-Oršic et al. (2018).
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ppendix A. Main algorithm

Algorithm 1 is presented in a general manner, to make it applicable
o a wide range of practical situations, e.g. with short-crested waves
nd/or non-zero vessel forward speed.

In the algorithm, iterations of the SSE (or ComputeSSE(...)) and
AO-tuning (or TuneRAO_R(...)) steps are repeated until the stop-
ing criterion defined by the function StopLoop(...) is reached. A
riori, there could be several possible options for a suitable stopping
riterion – with different input parameters for the StopLoop function
for instance: (1) to stop the process when the RAO estimate does not
ary anymore (below a set threshold) for all ships, (2) to stop when
he uncertainty of the sea state estimates has been sufficiently reduced,
r (3) to set a maximum number of iterations. In this study, option
3) is selected, which turns the ‘‘While’’ loop into a ‘‘For’’ loop, more
onvenient when it comes to comparing different test cases.

It is emphasized that, regardless of the iteration number, the RAO-
uning step always takes the original closed-form expression of the
AOs as input, i.e. its initial version from iteration 0, whereas the SSE
tep uses the tuned RAOs, meaning that it works with the latest version
f the RAOs. The fundamental reasoning behind this distinction is that,
hen fitting the tuning coefficients 𝛼𝑅, it makes little physical sense

o use as an initial guess the coefficient values that were obtained in a
revious iteration, because those are related to an old and deprecated
ea state estimate. Resetting the coefficients 𝛼𝑅 to zero after each
ew iteration limits the propagation of errors in the tuned RAOs from
ne iteration to the next one, as this approach avoids – at least to
ome extent – an unwanted interdependency between successive RAO
stimates.

he use of Algorithm 1 in practice in a network of three ships

In Sections 4 and 5, the algorithm is demonstrated in two case
tudies, in both of which three ships are considered in the network
or SSE. Then, to better visualize the input–output relationships and
he leave-one-out principle, Fig. A.22 illustrates the procedure for the
pecific network configuration.

ppendix B. Individual ship-specific sea state estimates

The ship-specific wave spectrum estimates for scenarios A, B, and
are plotted in Figs. B.23, B.24, and B.25, respectively. For scenarios
and E, the estimates have already been presented in Figs. 7 and 16,
ections 4.2 and 5.3, respectively.
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Algorithm 1: SSE with leave-one-out tuning of transfer functions
for multiple ships

Input : 𝑁 , {𝐿(𝑛), 𝐵(𝑛), 𝑇 (𝑛), 𝐶 (𝑛)
𝐵 , 𝑈 (𝑛)}𝑛=1...𝑁 ,

{{

𝐒̃(𝑛)𝑅𝑅
}

𝑅∈(𝑛)

}

𝑛=1...𝑁

Output:
{

𝐒̂(𝑛)𝜁
}

𝑛=1...𝑁
,
{{

𝚽̂(𝑛)
𝑅

}

𝑅∈(𝑛)

}

𝑛=1...𝑁

1 /* Initialization of the transfer functions
with closed-form expressions. */

2 for 𝑛← 1 to 𝑁 do
3 for 𝑅 ∈ (𝑛) do
4 𝚽̂(𝑛)

𝑅,0 ← ClosedFormSol_R(𝐿(𝑛), 𝐵(𝑛), 𝑇 (𝑛), 𝐶 (𝑛)
𝐵 , 𝑈 (𝑛))

5 end for
6 end for
7 𝑆𝑆𝐸_𝐹𝑜𝑢𝑛𝑑 ← 𝐹𝑎𝑙𝑠𝑒
8 𝑚← 0
9 while SSE_Found is False do
10 𝑚 ← 𝑚 + 1
11 for 𝑛 ← 1 to 𝑁 do
12 /* Sea state estimation step. */

13 𝐒̂(𝑛)𝜁,𝑚 ← ComputeSSE(
{

𝚽̂(𝑛)
𝑅,𝑚−1

}

𝑅∈(𝑛)
,
{

𝐒̃(𝑛)𝑅𝑅
}

𝑅∈(𝑛)
)

14 end for
15 for 𝑛← 1 to 𝑁 do
16 /* RAO-tuning step. */

17 𝐒̂
(𝑛)

𝜁,𝑚 ← WeightedSSE(
{

𝐒̂(𝑝)𝜁,𝑚
}

𝑝∈{1...𝑁}∖𝑛
)

18 for 𝑅 ∈ (𝑛) do

19 𝚽̂(𝑛)
𝑅,𝑚 ← TuneRAO_R(𝐒̂

(𝑛)

𝜁,𝑚, 𝚽̂
(𝑛)
𝑅,0, 𝐒̃

(𝑛)
𝑅𝑅)

20 end for
21 end for
22 /* Check for the stopping criterion. */
23 if StopLoop(...) then
24 𝑆𝑆𝐸_𝐹𝑜𝑢𝑛𝑑 ← 𝑇 𝑟𝑢𝑒
25 end if
26 end while

27 return
{

𝐒̂(𝑛)𝜁,𝑚
}

𝑛=1...𝑁
,
{{

𝚽̂(𝑛)
𝑅,𝑚

}

𝑅∈(𝑛)

}

𝑛=1...𝑁
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