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Abstract—Safe and optimal operation of battery energy storage
systems requires correct measurement of voltage, current, and
temperature. Therefore, fast and correct detection of sensor
faults is of great importance. In this paper, model-based and
non-model-based voltage sensor fault detection methods are
developed for a comprehensive comparison. The residual is
generated from the difference of measured voltage and estimated
voltage. In the model-based method, the voltage is estimated
using an extended Kalman filter (EKF). In the non-model-
based method, the voltage is predicted using a recurrent neural
network (RNN) with long short-term memory (LSTM). For both
methods, a scalar generalized likelihood ratio (GLR) detector is
developed to detect changes in the sequence of residual signal
data and compared with a systematically computed threshold.
The parameters threshold (h) and window-size (M) used in the
GLR detector, are computed based on the probability of false
alarm (Pf ) and probability of correct detection (Pd). The GLR
detector demonstrates the ability to effectively detect the voltage
sensor fault with a maximum delay of 500 ms for the model-based
residual and 200 ms for the non-model-based method.

Index Terms—Battery Energy Storage Systems, Sensor faults,
Fault detection and diagnosis, Extended Kalman filter, Machine
learning.

I. INTRODUCTION

In battery energy storage systems (BESS), a battery man-
agement system (BMS) ensures safe and reliable operation by
incorporating several functions such as data collection, state
of charge (SOC) and state of health (SOH) estimation, cell
balancing, charge/discharge control, and fault detection and di-
agnosis [1] [2]. To perform these functions, the BMS relies on
data collected by the voltage, current, and temperature sensors
installed on each cell of the battery pack. Typically, a battery
pack consists of 100s of cells. Hence, the correspondingly
large number of sensors installed implies a high probability of
sensor faults. Such sensor faults can affect optimal operation
of the BMS and may cause safety hazards. For instance, a
voltage sensor fault can lead to overcharging or undercharging,
which eventually may lead to an internal short circuit [3].
Furthermore, this can lead to wrong estimation of SOC and

SOH, which not only define the safety margin of battery
to avoid overcharge or overdischarge, but also help to make
full utilization of battery capacity potential [4]. Therefore, it
is important to detect the voltage sensor fault quickly and
correctly.

The existing literature covers model-based and non model-
based methods, such as machine learning for residual genera-
tion and sensor fault detection in several industrial applications
[5], [6], [7], [8]. Structural analysis is used to find the residual
and the statistical cumulative sum (CUSUM) test is applied
to detect and isolate the current, voltage, and temperature
sensor fault in [9]. A current sensor fault diagnostic method
combining the particle swarm optimization-based residual
generation and the statistical residual evaluation is proposed
by [10]. Model-based residual generators that are sensitive to
different faults are developed using structural analysis and
EKF in [11]. A fault diagnostic scheme based on hybrid
system and dual extended Kalman filter algorithm for sensor
and relay faults in lithium-ion battery pack is presented in
[12]. Neural network-based fault diagnosis is developed for
detecting thermal runaway in [13] and [14]. A novel voltage
prediction using long short-term memory(LSTM) recurrent
neural network (RNN) together with a weather-vehicle-driver
analysis is implemented for fault prognosis in [15].

Much of the existing research is lacking a comprehensive
comparison of model-based and non-model-based methods
for residual generation and fault detection and diagnosis.
This paper attempts to address the existing research gap by
developing a comprehensive comparison framework, where a
model-based method (EKF) and a non-model-based method
(LSTM-RNN) are implemented for residual generation. The
residuals are evaluated by a scalar GLR detector, which is
designed by systematically computing the threshold (h) and
window size (M) based on the values of the probability of
false alarm (Pf ) and probability of correct detection (Pd).

This paper is organized into 6 sections. Section I is the
introduction, covers the main motivation for this research, brief



state-of-the-art literature, contributions compared with the ex-
isting literature, and outline. The lithium-ion battery model is
presented in Section II. A model-based and non-model-based
voltage estimation methods are covered in Section III. Design
of the fault detection algorithm is explained in Section IV.
Simulation results and observations are discussed in Section
V. Conclusions are summarized and presented in Section-VI.

II. LITHIUM-ION BATTERY MODEL

A first order RC model, as shown in Fig. 1, is used for
modeling the lithium-ion battery cells based on [16]. The
model consists of an ideal voltage source Voc, a resistor Ro, an
RC branch (the polarization resistor Rp and the polarization
capacitor Cp connected in parallel). In addition, Vt and iL
represent the terminal voltage and load current, respectively.
The state-space model of the first order RC model in discrete-

Fig. 1. Lithium-ion battery model.

time domain can be represented as[
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where zk is the state of charge (SOC) at time step k, iRp,k is the
current through the resistor Rp at time step k, and ARpCp

=

exp
(

−∆t
RpCp

)
. The current supplied by the battery to the load,

ik, is input to the system. The output voltage vk at time step
k is expressed as

vk = OCV(zk)− RpiRp,k − Roik. (2)

The parameters of a lithium-ion battery can be computed
through the two tests: 1) an open circuit voltage (OCV) test,
and 2) a dynamic test performed in a laboratory.

Fig. 2. Parameter identification.

A. Open Circuit Voltage (OCV) Test

In an OCV test, the battery is charged/discharged at a very
low C-rate (C/20). The measured voltage can be considered
approximately as the OCV, i.e., vk ≈ OCV(zk) since the
current is very low. The coulombic efficiency is computed as

η =
total ampere-hours discharged at all instants

total ampere-hours charged at all instants
, (3)

which is a function of temperature. Therefore, the result is
only valid at a certain temperature. The corresponding SOC
can be computed using the measured accumulated ampere-
hours and computed coulombic efficiency. The OCV curve is
an expression of how the OCV varies with the SOC as ob-
tained by averaging the data during charging and discharging.
The OCV curve is also valid at only a certain temperature.
Fig. 3 shows the OCV curve obtained for the Li-ion battery
considered in this work, at temperature 25oC.

B. Dynamic Test

In the dynamic test, the cell is charged/discharged at a
constant current (C/1) to excite the dynamic components.
The voltage, current, temperature, ampere-hours charged, and
ampere-hours discharged are recorded every second. With
these data, the goal is to compute parameter values for Ro and
Rp. Accordingly, the residual between output measurement
and OCV is expressed as

ṽk = vk −OCV(zk) = −RpiRp,k − Roik,

where iRp,k can be computed with subspace system identifica-
tion, and ik is considered a known input. Ro and Rp are then
computed using a least-squares method.

C. Case-Study: Dataset used

In this work, the dataset from [17]-[18] is used. In [18], a
2.9 Ah Panasonic NCA 18650PF cell was tested in a thermal
chamber under varying conditions. The cell specifications can
be found in Table I.

TABLE I
PANASONIC 18650PF CELL SPECIFICATIONS [18]-[19].

Parameter Value
Nominal open circuit voltage 3.6 V

Nominal Capacity Min. 2.75 Ah/Typ. 2.9 Ah
Min/max voltage 2.5 V/4.2 V

Minimum charging temperature 10 °C
Cycles to 80% capacity 500 (100% DOD, 25 °C)

The tests include charging/discharging cycles at 1C, at
C/20, and a series of nine drive cycle tests. The drive cycles
used one, or a mix of US06, HWFET, UDDS, LA92, and a
custom neural network drive cycle. This dataset is suitable for
system identification as it contains data of both OCV tests and
dynamic tests. Moreover, this dataset has a large amount of
data, which can be further used for machine learning-based
estimation of SOC and voltage. Other available datasets either
lack both tests for cell modeling or only have one or two drive
cycles; far from enough for a machine learning algorithm.



The system identification is based on the enhanced self
correcting (ESC) toolbox from [20]. The first step in the
implementation is to identify the OCV relationship. With
the OCV test data included in the dataset, we approximate
the OCV curve as shown in Fig. 3. Using the OCV rela-
tionship and the dynamic test data, the parameters of the
cell model are identified using least-square regression, result-
ing in: Ro = 32mΩ,Rp = 37.8mΩ,Cp = 4.47F, ηk = 0.97,
Q = 2.8Ah.

Fig. 3. Polarization curve: OCV vs SOC at T = 25oC.

III. VOLTAGE ESTIMATION

A. Model based Method: Extended Kalman Filter

The EKF from [21] is implemented in this work. The EKF
is based on the following two assumptions:

• The expected value of a nonlinear function of the un-
known state is assumed equal to the same nonlinear
function evaluated at the expected value of the state.

• The EKF linearizes the nonlinear system using a trun-
cated Taylor-series expansion around the current operat-
ing point. In Taylor-series expansion, higher-order terms
are assumed negligible and discarded. For this reason, the
EKF performs well for systems with mild nonlinearities.

A typical nonlinear system is represented by

xk+1 = f(xk,uk,wk) (4)
yk = h(xk,uk, vk). (5)

Here, xk,uk, and yk denote state vector, input vector and
output vector, respectively. Process noise wk and measurement
noise vk are assumed to be uncorrelated white Gaussian noise,
with zero mean and covariance matrices having the properties:

E
[
wkw

T
j

]
=

{
Σw̃, k = j
0, k ̸= j;

E
[
vkv

T
j

]
=

{
Σṽ, k = j
0, k ̸= j.

(6)
The EKF performs two steps: prediction and correction in each
time step. Each of these two steps consists of three sub-steps
as shown in Fig. 4. The inputs for the EKF are the mean
(x̂0 = µ0) and error covariance of the initial state (Σx̃0 ).

1) Prediction: There are three sub-steps to perform a priori
estimation of the state, state-error covariance, and output. The
state prediction is approximated using the first assumption of
EKF, by

x̂−k ≈ f
(
x̂+k−1,uk−1, w̄k−1

)
. (7)

The expected value of new state is approximated by assuming
that it is reasonable to propagate x̂+k−1 and w̄−

k−1 through the
state equation. In the state-error covariance prediction step, x̃−k
is approximated as

x̃−k = xk − x̂−k
= f (xk−1,uk−1,wk−1)− f

(
x̂+k−1,uk−1, w̄k−1

)
≈ Âk−1x̃

+
k−1 + B̂k−1w̃k−1.

(8)

The state-error co-variance can be computed by

Σ−
x̃k

= Âk−1Σ
+
x̃k−1

ÂT
k−1 + B̂k−1Σw̃B̂

T
k−1. (9)

The system output is finally by

ŷk ≈ h
(
x̂−k ,uk, v̄k

)
, (10)

and the expected value of the output is computed by assuming
that it is reasonable to propagate the state prediction x̂−k and
the mean sensor noise v̄k through the output equation.

2) Correction: There are three sub-steps that are computing
the Kalman gain, posteriori estimation of state, and state-error
covariance. The output prediction error is first computed by

ỹk= yk − ŷk

= h (xk,uk, vk)− h
(
x̂−k ,uk, v̄k

)
≈ Ĉkx̃

−
k + D̂kṽk,

(11)

and the output-error covariance is computed as

Σỹk
≈ ĈkΣ

−
x̃k
ĈT

k + D̂kΣṽD̂
T
k . (12)

The Kalman gain is computed as

Lk = Σ−
x̃k
ĈT

k

[
ĈkΣ

−
x̃k
ĈT

k + D̂kΣṽD̂
T
k

]−1

. (13)

The state estimate is computed by updating the state prediction
using the estimator gain and yk − ŷk, that is,

x̂+k = x̂−k + Lk (yk − ŷk). (14)

The state-error covariance is then computed by

Σ+
x̃k

= Σ−
x̃k

− LkΣỹk
LT
k . (15)

In this work, matrices Âk, B̂k, Ĉk, D̂k for the Li-ion battery
model (considered in this work) are computed analytically
from the Jacobian of the system model 1-2. Since 1 is already
linear, we only need to linearize the OCV curve in 2:

Âk = A =

[
1 0
0 ARC

]
(16)

B̂k = B =

[
−ηk∆t

Q

1−ARC

]
(17)

Ĉk =
∂

∂xk
h(xk,uk,vk) =

[
∂OCV(zk)

zk
− R1

]
(18)

D̂k =
∂

∂vk
h(xk,uk,vk) = −R0 (19)
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Fig. 4. Flowchart of Extended Kalman Filter.

B. Data-driven method: Machine Learning

Recurrent neural network (RNN) with long short term mem-
ory (LSTM) is used for voltage estimation due its ability to
learn lengthy sequential data dependencies. LSTM-RNN used
in this work, has three layers as shown in Fig. 5. Sequential
data of current and SOC are the inputs to the LSTM-RNN and
sequence of voltage is the output. Number of hidden layers
used in this work are 120. Five drive cycles (US06, NN, and
mixed cycles 2-4) are used as the training set, while one drive
cycle (UDDS) is used as the validation set. LSTM-RNN is
trained for a maximum of 100 epochs with a minibatch size
of 256.

Fig. 5. LSTM-RNN topology for voltage prediction.

C. Validation

Fig. 6 and Fig. 7 show the measured (Vm) and estimated
voltages (V̂EKF & V̂LSTM−RNN), as well as the error between

them (Verr), absolute Verr, and absolute relative Verr for
UDDS drive cycle. The Verr histogram plots of EKF and
LSTM-RNN are shown in Fig. 8 and Fig. 9, respectively,
which show that they are approximately Gaussian. Table. II
shows key performance indicators such as mean average error
(MAE), root square mean error (RSME), and maximum abso-
lute relative error (|Verr|max[%]) for EKF and LSTM-RNN. It
can be observed that the KPIs for both methods are within the
error bounds of 5 %. Not only LSTM-RNN performs better
than EKF in all the KPIs, but also LSTM-RNN requires only
measured data for voltage estimation, whereas, EKF requires
tedious laboratory experiments for system identification. Fur-
thermore, LSTM-RNN has the potential to consider different
factors such as temperature and aging when relevant and a
large enough dataset is available.

Fig. 6. Measured voltage (Vm), estimated voltage using EKF (V̂EKF),
voltage error (Verr), absolute Verr, and absolute relative Verr.

Fig. 7. Measured voltage (Vm), estimated voltage using EKF
(V̂LSTM−RNN), voltage error (Verr), absolute Verr, and absolute relative
Verr.



TABLE II
KEY PERFORMANCE INDICATORS FOR EKF AND LSTM-RNN.

Method MAE [%] RSME [%] |Verr|max[%]
EKF 0.58 0.82 4.78

LSTM-RNN 0.23 0.30 1.68

Fig. 8. Histogram of Verr in EKF.

IV. FAULT DETECTION & DIAGNOSIS

Fault detection of the voltage sensor fault in a lithium
ion battery, is achieved by the analysis of a residual. In
this work, the residual is generated from the error obtained
by comparing the measured voltage and estimated voltage.
As shown in the previous sections, the voltage is estimated
using two approaches: 1) model-based EKF, and 2) data-driven
LSTM-RNN.

The Generalised Likelihood Ratio (GLR) test is used for
detecting an unknown change in the magnitude of the voltage
residual. This change in mean corresponds to an additive fault
in the voltage sensor. The scalar GLR decision function gM(k)
takes the form [22]

gM(k) =
1

2σ2M

[
k∑

i=k−M+1

(r(i)− µ0)

]2
(20)

where σ2 and µ0 denote the variance and the mean of the
sequence of residual data, respectively. k and M are time-
step and window size respectively. r(i) is the value of the
residual at ith time-step. Fig. 10 shows the flowchart of the

Fig. 9. Histogram of Verr in LSTM-RNN.

fault detection scheme. The residual (rk) is obtained by the
difference between the measured and estimated voltages. The
sequence of the residual data is analyzed through the scalar
GLR test, where the computed GLR decision function gM(k)
is compared with a threshold (h) to detect a potential fault.

Fig. 10. Flowchart of fault detection.

A. Design of GLR detector

In this subsection, a method for computing the threshold (h)
and window size (M) based on the probability of false alarm
(Pf ) and probability of correct detection (Pd), are presented.

1) Calculation of threshold (h): The probability of false
alarm (Pf ) can be computed based on [22], according to

Pf =

∫ ∞

2h

pχ2(X;N)dX (21)

Where pχ2 is the probability density function of the chi-square
distribution, given by

pχ2(X;N) =

{
1

2N/2 Γ(N
2 )

X
N
2 −1 e−

X
2 if X ≥ 0

0 if X < 0.

where, Γ is the gamma function. The threshold (h) can then
be computed by solving eqn. 21.

2) Calculation of window size (M): The probability of
correct detection (Pd = 1− Pm) can be computed based on
[22],

Pd = 1− Pm =

∫ ∞

2h

pχ2(X;N;λ)dX (22)

where, Pm is the probability of missed detection. Here,
pχ2(X;N;λ) is the probability density function of the non-
central chi-square distribution given by

pχ2(X;N ;λ) =
1

2

(
X

λ

)N
2 −1

e−
X+λ

2 ιN
2 −1

(√
λX
)
,

where λ is the non-centrality parameter given by

λ =
M(µ1 − µ0)

2

σ2
.



The window size (M) can be computed by solving eqn. 22.
Table. III shows the values of Pf and corresponding h, as
well as Pm and corresponding M for EKF- and LSTM-RNN-
based GLR detectors. It can be observed that h increases to
reduce the probability of false alarm, whereas M increases to
reduce the probability of missed detection. In this work, the
simulation experiment is conducted for 200 minutes, where 10
samples of data is collected each second. Therefore, Pf = 1e-5
is considered, which gives the probability of approximately
1.2 false alarms in each UDDS drive cycle. The threshold
computed by solving eqn. 21 is h = 11.51 for both the
methods. Hence, Pm = 1e-5 is considered, and the window
size computed by solving eqn. 22 is M = 5 and M = 4 for
EKS- and LSTM-RNN-based GLR detectors, respectively.

TABLE III
GLR-DETECTOR PARAMTERS: h & M.

Threshold (h) Window-size (M)
Pf EKF LSTM-RNN Pm EKF LSTM-RNN
1e-2 4.6 4.6 1e-2 2 2
1e-3 6.9 6.9 1e-3 3 2
1e-4 9.2 9.2 1e-4 4 3
1e-5 11.51 11.51 1e-5 5 4
1e-6 13.82 13.82 1e-6 6 5

V. RESULTS

In this section, the simulation results for both fault detection
algorithms are presented for the UDDS drive cycle. In the
considered dataset, the measured values have 10 samples in
each second. The voltage sensor fault is modeled as an additive
bias equal to 2%, 4%,...,20% of the measured voltage, each for
500 seconds duration (5000 samples). Fig. 11 and Fig. 12 show
the voltage sensor fault, measured and estimated voltages,
residual signal, gM, and alarm for EKF- and LSTM-RNN-
based GLR detectors, respectively. The results show that both
GLR algorithms are able to effectively detect all the bias faults
considered. However, the EKF-based GLR detector detects
with a maximum time delay of 500 ms, whereas, the LSTM-
RNN-based GLR detector detects with a maximum delay of
200 ms. The LSTM-RNN has less time delay due to a lower
window size (M). Moreover, when bias faults are ≥ 6 %,
both algorithms have a window size of 1 and no time delay in
detecting the fault. Furthermore, in EKF-based GLR, it can be
observed that there are 46 false alarms when the voltage bias
fault is 2 %, 4 %, and ≤ 6 %. This is due to the fact that the
GLR detector is designed to detect the fault biases equal to
2 % and 4 %, whereas the maximum absolute error is 4.78 %
(see Fig. 6 and Table. II). Therefore, the GLR detector detects
all the instances where the voltage residual is more than 2 %
and 4 %. This can be further proved by the fact that there are
no false alarms when the GLR detector is designed to detect
the bias faults ≥ 6 %. Similarly, two false alarms in LSTM-
RNN based GLR detector can be explained.

Fig. 11. Voltage sensor fault, measured and estimated voltages, residual
signal, gM, and alarm for EKF-based GLR detector.

Fig. 12. Voltage sensor fault, measured and estimated voltages, residual
signal, gM, and alarm for LSTM-RNN-based GLR detector.

VI. CONCLUSION

In this paper, a model-based method (EKF) and a non-
model-based method (LSTM-RNN) are implemented for esti-
mating the voltage. The residual is obtained by comparison of
the measured and estimated voltages in both methods. In the
simple residual analysis methods, the residual r(k) is typically
compared with a predetermined threshold to detect the fault
and raise the alarm. However, such methods often do not
account for measurement noise, and the threshold is chosen
empirically. The scalar GLR algorithm presented in this work
provides a systematic approach to statistically compute the
parameters, such as threshold and window size, and to detect
sensor faults in a stochastic system. The results show that the



GLR detector is capable of efficiently detecting a sensor fault
with a small time delay. The LSTM-RNN-based residual is
faster than the EKF-based counterpart in detecting and clearing
the voltage sensor fault.
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APPENDIX A
THE GLR ALGORITHM

A. Proof of gM(k) for the change of mean in a Gaussian sequence

Given: a Gaussian sequence r(k) with independent and identically distributed increments.
Prove: the decision function gM(k) takes the form:

gM(k) =
1

2σ2M

[
k∑

i=k−M+1

(r(i)− µ0)

]2
Proof:

For a Gaussian sequence, the cumulative sum of log-likelihood ratios is written as:

Sk(µ1) =

k∑
i=j

ln
pθ1(r(i))

pθ0(r(i))
=

µ1 − µ0

σ2

k∑
i=k−M+1

(
r(i)− µ1 + µ0

2

)
(23)

To maximize Sk(µ1) with respect to µ1, we need to find ∂Sk(µ1)
∂µ1

= 0.

∂Sk (µ1)

∂µ1
=

1

σ2

k∑
i=k−M+1

(
r(i)− µ1 + µ0

2

)
− µ1 − µ0

σ2

M

2
= 0

⇒
k∑

i=k−M+1

r(i)−
k∑

i=k−M+1

µ̂1 + µ0

2
− (µ̂1 − µ0)

M

2
= 0

⇒
k∑

i=k−M+1

r(i)− (µ̂1 + µ0)
M

2
− (µ̂1 − µ0)

M

2
= 0

⇒ µ̂1 =
1

M

k∑
i=k−M+1

r(i)

Substitute µ̂1 into 23, and yield

Sk (µ̂1) =
1

σ2

(
1

M

k∑
i=k−M+1

r(i)− µ0

)
k∑

i=k−M+1

(
r(i)− 1

2

(
1

M

k∑
i=k−M+1

r(i) + µ0

))

Note that

k∑
i=k−M+1

1

M

k∑
i=k−M+1

r(i) =

k∑
i=k−M

r(i),

1

M

k∑
i=k−M+1

µ0 = µ0

Thus we have

max
µ1

Sk(µ1) = Sk(µ̂1) =
1

2σ2M

(
k∑

k−M+1

(r(i)− µ0)
2

)
(24)

gM(k) = max
µ1

Sk (µ1) = gM(k) =
1

2σ2M

[
k∑

i=k−M+1

(r(i)− µ0)

]2
(25)

APPENDIX B
GLR DESIGN METHODOLOGY

The objective is to design the threshold h and window length M to meet a given probability PF of false alarm, and a
probability PD of detection of a change in mean from µ0 to µ1.



Denote the log-likelihood taken over a window length M by SM,

SM(k) =

k∑
i=k−M+1

ln
pθ1(r(i))

pθ0(r(i))

=
1√
Mσ

[
k∑

i=k−M+1

(r(i)− µ0)

]

Note that SM(k) = 2
√
g(k), and it has the following probability:

p (SM(k)) = N (0, 1) under H0

p (SM(k))= N

(√
M(µ1 − µ0)

σ
, 1

)
under H1

The probability law for gM(k) is given by

p (2gM(k)) = χ2
1 under H0 (26)

p (2gM(k)) = χ2
1

(
M(µ1 − µ0)

2

σ2

)
under H1 (27)

where χ2
1(x) denotes the chi-square distribution with one degree of freedom with the non-centrality parameter x.

To enforce the given probabilities of false and correct detection, they are given as:

PF = P(g > h | H0) =

∫ ∞

h

p (g | H0) dg (28)

PD = P(g ≥ h | H1) =

∫ ∞

h

p (g | H1) dg (29)

where p(2g | H0) and p(2g | H1) denote the probability density function of the test function, 2g, conditioned on H0 and H1,
respectively. Accounting to the previously determined probability density functions 26 and 27, yield:∫ ∞

2h

pχ2
1
(X)dX = α (30)∫ ∞

2h

pχ2
1

(
X;

M (µ1 − µ0)
2

σ2

)
dX = β (31)

If data are available for both H0 and H1 cases, the cumulative density functions F(gM | H0;M and F(gM | H1;M can be
estimated from these data for different values of the window length M. From these cumulative density functions, the threshold
h and window length M can be determined to achieve a required probability of false alarm α and a required probability of
correct detection β. They can be expressed as:

α = 1− F (h | H0;M) ⇒ h = F−1(1− α;M) (32)

β = 1− F (h | H1;µ1,M) ⇒ M = F−1 (1− β;µ1,h) (33)

Hence it is possible to determine a window size that provides a desired probability of detection.
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