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Abstract
We construct a large family of Fourier interpolation bases for functions analytic in a
strip symmetric about the real line. Interesting examples involve the nontrivial zeros of
the Riemann zeta function and other L-functions. We establish a duality principle for
Fourier interpolation bases in terms of certain kernels of general Dirichlet series with
variable coefficients. Such kernels admit meromorphic continuation, with poles at a
sequence dual to the sequence of frequencies of the Dirichlet series, and they satisfy
a functional equation. Our construction of concrete bases relies on a strengthening
of Knopp’s abundance principle for Dirichlet series with functional equations and a
careful analysis of the associated Dirichlet series kernel, with coefficients arising from
certain modular integrals for the theta group.
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1 Introduction

TheRiemann–Weil explicit formula (sometimes also called theGuinand–Weil explicit
formula) expresses the familiar duality between the prime numbers and the nontrivial
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zeros of the Riemann zeta function ζ(s) in the following compelling way:

1

2π

∫ ∞

−∞
f (t)

(
�′(1/4 + i t/2)

�(1/4 + i t/2)
− logπ

)
dt + f

( i
2

)
+ f

(−i

2

)

= 1

2π

∞∑
n=1

�(n)√
n

(
f̂
( log n

2π

)
+ f̂

(
− log n

2π

))
+
∑
ρ

f

(
ρ − 1/2

i

)
.

(1.1)

Here f (z) is a function analytic in the strip | Im z| < 1/2 + ε for some ε > 0,
| f (z)| � (1 + |z|)−1−δ for some δ > 0 when |Re z| → ∞, and

f̂ (ξ) :=
∫ ∞

−∞
f (x)e−2π i xξdx;

�(n) is the von Mangoldt function defined to be log p if n = pk , p a prime and
k ≥ 1, and zero otherwise, while the second sum in (1.1) runs over the nontrivial
zeros ρ of ζ(s) (counting multiplicities in the usual way). The Riemann–Weil formula
generalizes the classical Riemann–von Mangoldt explicit formula [4, Ch. 17] and
arose to prominence from Weil’s work [30], in which it appeared in a considerably
more general form.

Our nontraditional emplacement of the two series in (1.1) on one side of the equation
is made to connect the Riemann–Weil formula to the object of study of this paper, the
prototype of which is another Fourier duality relation involving the nontrivial zeros
of ζ(s). We follow the convention of denoting these zeros by ρ = β + iγ , but instead
of accounting for multiple zeros (if any) in the usual way, we associate with each ρ the
multiplicitym(ρ) of the zero of ζ(s) at ρ.We letH1 denote the space of functions f (z)
that are analytic in the strip | Im z| < 1/2 + ε and satisfy the integrability condition

sup
|y|<1/2+ε

∫ ∞

−∞
| f (x + iy)|(1 + |x |)dx < ∞

for some ε > 0. Functions h(z) on C with the property that

h(x + iy) �y,l (1 + |x |)−l

for every real y and positive l will be said to be rapidly decaying. To simplify matters,
we state our result only for even functions.

Theorem 1.1 There exist two sequences of rapidly decaying and even entire functions
Un(z), n = 1, 2, ..., and Vρ, j (z), 0 ≤ j < m(ρ), with ρ ranging over the nontrivial
zeros of ζ(s) with positive imaginary part, such that for every even function f in H1
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and every z = x + iy in the strip |y| < 1/2 we have

f (z) =
∞∑
n=1

f̂

(
log n

4π

)
Un(z) + lim

k→∞
∑

0<γ≤Tk

m(ρ)−1∑
j=0

f ( j)
(

ρ − 1/2

i

)
Vρ, j (z)

(1.2)
for some increasing sequence of positive numbers T1, T2, . . . tending to ∞ that does
not depend on neither f nor on z. Moreover, the functions Un(z) and Vρ, j (z) enjoy
the following interpolatory properties:

U ( j)
n

(
ρ−1/2

i

)
= 0, Ûn

(
log n′
4π

)
= δn,n′ ,

V ( j ′)
ρ, j

(
ρ′−1/2

i

)
= δ(ρ, j),(ρ′, j ′), V̂ρ, j

(
log n
4π

)
= 0,

(1.3)

with ρ, ρ′ ranging over the nontrivial zeros of ζ(s) with positive imaginary part, j, j ′
over all nonnegative integers less than or equal to respectively m(ρ) − 1,m(ρ′) − 1,
and n, n′ over all positive integers.

As an immediate corollary we get the following result that appears to be difficult
to obtain without relying on the interpolation formula from Theorem 1.1.

Corollary 1.1

(i) If an even function f inH1 satisfies f̂ ( log n4π ) = f ( j)(
ρ−1/2

i ) = 0 for all n ≥ 1 and
0 ≤ j < m(ρ), where ρ ranges over the nontrivial zeros of ζ(s), then f vanishes
identically.

(ii) An even function f inH1 that is divisible by ζ( 12+is) (in the sense that f (s)/ζ( 12+
is) is holomorphic for | Im z| < 1/2 + ε) is uniquely determined by the values
f̂ ( log n4π ), n ≥ 1.

It is worth emphasizing that both Theorem 1.1 and the above corollary are rather
sensitive to the choice of interpolation points and break down if one removes any
single point from the set { log n4π }n≥1 or from the (multi)set of nontrivial zeros of ζ(s).

Both (1.1) and (1.2) rely crucially on the functional equation

π−s/2�(s/2)ζ(s) = π−(1−s)/2�((1 − s)/2)ζ(1 − s),

but a principal distinction between them is that the deduction of the Riemann-Weil
formula starts from the Euler product representation of ζ(s), while formula (1.2) is
tied to the Dirichlet series representation of ζ(s). Hence we may think of the two
formulas as expressing respectively a multiplicative and an additive duality relation
between the zeta zeros and a distinguished sequence of integers. We observe that
the sequence of integers involved in (1.1) (the prime powers n = pk , corresponding
to the nontrivial terms �(n) f̂ ( log n2π ) in (1.1)) is a rather sparse subsequence of the
corresponding sequence appearing in (1.2) (the square-roots of the positive integers,

corresponding to f̂ ( log
√
n

2π ) in (1.2)).
In view of this inclusion, wemay think of (1.1) as arising from (1.2) in the following

way: The left-hand side of (1.1) defines a linear functional onH1, while the right-hand
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side gives the representation of this functional with respect to the basis functions of
Theorem 1.1. This is the rationale for our way of writing the Riemann–Weil formula.

Assuming for a moment the truth of the Riemann hypothesis and that all the zeta
zeros are simple, we may think of a formula like (1.2) as a confirmative answer to
the following Fourier analytic question: Is it possible to recover, in a non-redundant
way, any sufficiently nice function f on the real line from samples of f and its
Fourier transform f̂ along two suitably chosen sequences in respectively the time and
frequency domain? Here the recovery being non-redundant means that it fails as soon
as any point is removed from either of the two sequences. Clearly, such a favorable
situation requires a delicate interplay between the two sequences.

Radchenko and Viazovska [25] have shown that one obtains a Fourier interpolation
formula of desired type by choosing both sequences to be ±√

n with n ranging over
the nonnegative integers. For simplicity, we restrict again to the case of even functions.

Theorem A ([25]) There exists a sequence of even Schwartz functions an : R → R

with the property that for every even Schwartz function f : R → R we have

f (x) =
∞∑
n=0

f (
√
n)an(x) +

∞∑
n=0

f̂ (
√
n)̂an(x), (1.4)

where each of the two series on the right-hand side converges absolutely for every
real x. The functions an satisfy the following interpolatory properties: an(

√
m) = δn,m

and ân(
√
m) = 0 when m ≥ 1, and in addition

a0(0) = â0(0) = 1

2
, an2(0) = −ân2(0) = −1, an(0) = −ân(0) = 0 otherwise.

(1.5)

The non-redundancy of the representation (1.4) follows from the specific properties
of the functions an as shown in [25]. We note in passing that the methods developed
in the present paper allow us to sharpen this result considerably (see Sect. 7 below).

Returning to the general discussion, we note that the properties (1.5) show that (1.4)
becomes the Poisson summation formula when evaluated at x = 0. We have therefore
a curious analogy between the Poisson summation and Riemann–Weil formulas: They
canbothbeviewedas representingdistinguished linear functionals in termsof aFourier
interpolation basis. Both formulas owe their existence and importance to an inherent
algebraic structure, which in the first case is additive (periodicity) and in the latter
multiplicative.

To construct our interpolation formulas, we will use weakly holomorphic modular
forms for the theta group. The core ingredient in our construction is a function of two
complex variables w and s, which in the case of even functions takes the form

D(w, s) :=
∞∑
n=1

βn(s)n
−w/2,

withβn(s) being the Fourier coefficients of a certain 2-periodic analytic function on the
upper half-plane that is related through a Mellin transform to the functions F+(x, τ )
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considered in [25]. The Dirichlet series w 
→ D(w, s) converges absolutely in a half-
plane depending on s and has a meromorphic extension to C with simple poles at the
three points 1, s, 1 − s. A crucial point is that D(w, s) is related to the Riemann zeta
function in the following precise way:

H(w, s) := ζ(s)

ζ(w)
D(w, s) (1.6)

satisfies the functional equations H(1 − w, s) = −H(w, s) and H(w, 1 − s) =
H(w, s). These properties of H(w, s), along with suitable estimates for D(w, s) and
a familiar contour integration argument applied to

1

2π i

∫ 1/2+ε+i∞

1/2+ε−i∞
f

(
w − 1/2

i

)
H(w, i z + 1/2)dw, (1.7)

are what we will use to establish Theorem 1.1. It is essential that H(w, s) is a Dirichlet
series in w so that (1.7) produces a weighted sum of Fourier transforms of f .

We may now observe that if we replace ζ(s)/ζ(w) by F(s)/F(w) in (1.6), with
F(s) an L-function satisfying a functional equation of the form

Q−s�(s/2)F(s) = Q−(1−s)�((1 − s)/2)F(1 − s)

for some positive Q, then we still have a Dirichlet series in the variable w that is
amenable to our method of proof. This observation allows us to associate Fourier
interpolation bases with the nontrivial zeros of all such L-functions. Hence the single
function D(w, s) generates an abundance of Fourier interpolation bases. We stress
that this situation relies on a special multiplicative structure inherent in the present
setting, namely that the class of Dirichlet series over exponentials of the form n−w/2

is closed under multiplication.
The general phenomenon of Fourier interpolation bases may be thought of as rang-

ing from Theorem A via our Theorem 1.1 to the “degenerate” situation related to the
cardinal series

∞∑
n=−∞

f (n)
sin π(z − n)

π(z − n)
.

We find it enlightening to place our results in this more general context by consider-
ing two necessary conditions for a pair of sequences to generate Fourier interpolation
bases. First, we show that the existence of a kernel function with properties similar to
those of the function H(w, s) is a prerequisite for Fourier interpolation. This observa-
tion yields a precise notion of duality between the two sequences involved in a Fourier
interpolation basis, closely aligned with modular relations as for example studied
in some generality by Bochner [3]. Second, we discuss a recent density theorem of
Kulikov [20], which is a version of the uncertainty principle valid for Fourier inter-
polation bases. We observe that there is a precise correspondence between Kulikov’s
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density condition and the Riemann–von Mangoldt formula for the density of the non-
trivial zeros of zeta and L-functions.

Outline of the paper

We will begin our discussion in Sect. 2 with some general considerations as outlined
in the preceding paragraph. We have included in this section also a brief subsection
pointing out that Fourier interpolation bases generate families of “crystalline” mea-
sures, a topic that in our context goes back toGuinand [9] and that recently has received
notable attention. See for example the recent papers of Kurasov and Sarnak [21], Lev
and Olevskii [22], and Meyer [23].

We then proceed in Sect. 3 to construct the modular integrals that are used to build
the Dirichlet series D(w, s) referred to above. This requires a fairly comprehensive
discussion of modular forms for the theta group. This section builds largely on ideas
that go back to Knopp [15], with an important additional ingredient from [25], namely,
the construction of modular integrals using contour integrals with modular kernels.

Based on the groundwork laid in Sect. 3, we may proceed to prove a weak version
of Theorem 1.1. By this we mean the following: We may prove that (1.2) holds for
functions f that are analytic in a sufficiently wide strip and that has sufficient decay
at ±∞. This is our rationale for proceeding to the proof of Theorem 1.1 in Sect. 4.2
and the corresponding results for other L-functions and Dirichlet series in Sect. 5,
postponing the most technical part of the proof to the later Sect. 6. We hope this
choice of exposition will give the reader easier access to the main ideas underlying
formula (1.2).

Section 6 contains precise estimates for the coefficients of D(w, s), including
bounds for associated partial sums. The estimates obtained in this section appear to
be close to optimal. Indeed, in certain ranges of the parameters that are involved, this
may be concluded up to a logarithmic factor. By the results of this section, we obtain
the precise quantitative restrictions on the function f in Theorem 1.1. We also obtain,
as will be shown in the final Sect. 7, a new version of Theorem A with rather mild
constraints on the function f being represented by the Fourier interpolation formula
(1.4).

2 Generalities on Fourier Interpolation

Themain purpose of this section is to show that Fourier interpolation bases generically
arise from certain kernels that we will refer to as Dirichlet series kernels for suggestive
reasons. We do not explicitly use the results of this section anywhere else in the paper,
but it does provide motivation for some of our constructions.

We start from the assumption that any “reasonable” function f can be represented
as

f (x) =
∑
λ∈�

f (λ)gλ(x) +
∑

λ∗∈�∗
f̂ (λ∗)hλ∗(x), (2.1)
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where � and �∗ are two sequences of real numbers with no finite accumulation
point and the associated functions gλ(x) and hλ∗(x) also are “reasonable”, so that
convergence of the two series is ensured. We also require that this representation
behaves in the expected way under Fourier transformation, so that

f̂ (x) =
∑
λ∈�

f (λ)ĝλ(x) +
∑

λ∗∈�∗
f̂ (λ∗)ĥλ∗(x).

The basic phenomenon that we observe is that the two (general) Dirichlet series

∑
λ∗≥0

hλ∗(x)e−2π iλ∗z and
∑
λ∗≤0

hλ∗(x)e−2π iλ∗z

admit meromorphic extension to C for every x , with simple poles at x and at the
points of the dual sequence �. Moreover, the two Dirichlet series are intertwined by
a functional equation. By duality, an analogous result holds if we reverse the roles of
the two sequences and replace hλ∗(x) by ĝλ(ξ). Conversely, as will be demonstrated
in concrete terms in later sections of this paper, Dirichlet series kernels with such
properties generate, by contour integration, Fourier interpolation formulas, with the
range of validity depending on specific quantitative properties of these kernels.

Guided by the canonical case when the two sequences � and �∗ consist of the
same points ±√

n, n = 0, 1, 2, ..., we will assume that one of the sequences satisfies
a sparseness condition asserting that there is an entire function vanishing on � whose
growth is at most of order 2 and finite type in any horizontal strip. In what follows,
we will let � be the sequence enjoying this property.

Before turning to precise results about general Dirichlet series kernels, we would
like to point out that more liberal assumptions could certainly be made, such as �

and�∗ bemultisets (so that derivatives appear in (2.1)) or the sequence� be located in
a strip. The assumptions ofTheorem2.1below represent a trade-off betweendescribing
a general phenomenon and avoiding excessive technicalities and inessential difficul-
ties.

2.1 The Dirichlet Series Kernel Associated with3

In what follows, we use the convention that a prime on a summation sign, like in
∑′

λ∗ ,
means that a possible term corresponding to λ∗ = 0 should be divided by 2, while all
other terms are summed in the usual way.

Theorem 2.1 Let � be a sequence of distinct real numbers such that there exists an
entire function G� vanishing on� and satisfying the growth estimate G�(x+ iy) �η

ecx
2
for some positive c in every strip |y| ≤ η. Let�∗ be another locally finite subset of

the real line, and suppose there exist associated sequences of functions gλ : R → C,
λ ∈ � and hλ∗ : R → C, λ∗ ∈ �∗ with the following properties:

(a) There exists a positive number η0 such that for every real x, the twoDirichlet series
E±(x, z) := 2π i

∑′
∓λ∗≥0 hλ∗(x)e−2π iλ∗z converge absolutely for ± Im z ≥ η0.
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(b) For every ε > 0 and x in R, gλ(x)e−ελ2 → 0 when |λ| → ∞.
(c) For every ε > 0 and z satisfying | Im z| ≥ η0, the function fε,z(x) := e−εx2/(z−x)

can be represented as

fε,z(x) =
∑
λ∈�

fε,z(λ)gλ(x) +
∑

λ∗∈�∗
f̂ε,z(λ

∗)hλ∗(x). (2.2)

Then for every x, the functions z 
→ E±(x, z) extend to meromorphic functions with
simple poles at x and every point λ in � with respective residues ±1 and ±gλ(x), and
the functional equation

E+(x, z) = −E−(x, z)

holds.

Note that the two assumptions (a) and (b) guarantee that the two series in (2.2)
converge absolutely.

Proof of Theorem 2.1 We fix x and consider the function

Fε(z) :=
∑
λ∈�

fε,z(λ)gλ(x),

which by (b) represents a meromorphic function in C. By (2.2), we may write

Fε(z) = fε,z(x) −
∑

λ∗∈�∗
f̂ε,z(λ

∗)hλ∗(x) (2.3)

when | Im z| ≥ η0. We may use assumption (a) to control the sum on the right-hand
side of (2.3) on the two lines Im z = ±η0. To this end, assume first that Im z = η0.
Then since

f̂ε,z(ξ) = −2π3/2i√
ε

∫ 0

−∞
e−2π iwze−π2ε−1(ξ−w)2dw, (2.4)

we have

f̂ε,z(ξ) �
{
e2πη0ξ , ξ ≤ 0,

e−π2ε−1ξ2 , ξ > 0,
(2.5)

uniformly when Im z = η0 and 0 < ε ≤ 1, say. The same argument applies to

f̂ε,z(ξ) = 2π3/2i√
ε

∫ ∞

0
e−2π iwze−π2ε−1(ξ−w)2dw (2.6)

when Im z = −η0, and hence, by (2.3) and (a), Fε(z) is uniformly bounded on | Im z| =
η0 for 0 < ε ≤ 1. This along with our assumption on the sequence � implies that the
function

Fε(z)G�(z)e−cz2
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is bounded on | Im z| = η0, uniformly for 0 < ε ≤ 1. It is also clear by assumption
(b) and the sparseness of � that there exist tn → ∞ such that Fε(tn + iy) → 0 for
any fixed ε, uniformly when |y| ≤ η0. Similarly, there exist τn → −∞ such that
Fε(τn + iy) → 0 for any fixed ε, uniformly when |y| ≤ η0. Hence, by the maximum
modulus principle, Fε(z)G�(z)e−cz2 is bounded in the strip | Im z| ≤ η0. Now a
normal family argument shows that when ε → 0, Fε(z) tends locally uniformly to a
meromorphic function F(z) with simple poles at the sequence �. On the other hand,
it follows from (2.4) and (2.6) along with the uniform bound (2.5) that

F(z) =
{

1
z−x + E+(x, z), Im z = η0
1

z−x − E−(x, z), Im z = −η0.

This relation yields the asserted meromorphic continuation of the two functions
E±(x, z) as well as the functional equation E+(x, z) = −E−(x, z).

2.2 The Dirichlet Series Kernel Associated with3∗

In the preceding section, we put a sparseness condition on � to control the growth of
the entire function G�. In contrast, the dual sequence �∗ could be arbitrarily dense,
and thismeans that the Phragmén–Lindelöf-type argument used abovewould not work
to establish an analogue of Theorem2.1. This obstaclemay be circumvented by relying
instead on Theorem 2.1. To avoid unnecessary technicalities, we begin by stating a
result that follows quite easily from Theorem 2.1 without giving the exact analogue
that we are aiming for.

In what follows, we will use the function

�(x, w) :=
∫ iη0

−iη0
e2π i zwE−(x, z)dz

several times. Here the integral is to be interpreted in the principal value sense, should
z 
→ E−(x, z) have a simple pole at 0. We observe that w 
→ �(x, w) is an entire
function for every real x . It will also be convenient to employ the usual notation H(x)
for the Heaviside step function.

Theorem 2.2 Let the assumptions be as in Theorem 2.1 and assume in addition the
following:

(d) There exists a positive number ν0 such that the two Dirichlet series E∗±(x, w) :=
2π i

∑′
±λ≥0 gλ(x)e2π iλw converge absolutely for ± Imw ≥ ν0.

(e) We have E±(x, tn + iη) � ec|tn | for some c > 0, uniformly for |η| ≤ η0 and for
suitable sequences {tn}n≥1 tending to ±∞.

Then

E∗+(x, w) = −2π ie2π i xwH(x) +
∑
λ∗≥0

′
hλ∗(x)

e−2πη0(w−λ∗)

(w − λ∗)
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+
∑
λ∗≤0

′
hλ∗(x)

e2πη0(w−λ∗)

(w − λ∗)
+ �(x, w)

E∗−(x, w) = −2π ie2π i xw − E∗+(x, w).

We see from the latter two expressions that the two functions E∗±(x, w) have
meromorphic extensions toC.We also observe that in order to obtain the desired coun-
terpart to the functional equation E+(x, z) = −E−(x, z), we should apply Fourier
transformation in the variable x . Such a step would require some additional mild
assumptions that we prefer not to specify. If we take this step for granted and denote
the Fourier transforms of x 
→ E∗±(x, w) by Ê∗±(ξ, w), then we get the desired equa-
tion Ê∗+(ξ, w) = −Ê∗−(ξ, w) and also that Ê∗±(ξ, w) has simple poles at ξ and each
point −λ∗ of −�∗ with respective residues ±1 and ±ĥλ∗(ξ).

One could imagine situations in which assumption (d) fails, for instance because
the nodes λ come arbitrarily close to each other. This could be remedied by using
only assumption (e) to define E∗±(x, w) in a slightly more involved way in terms of
convergence of sequences of partial sums. We find that nothing essential is lost by
refraining from entering such technicalities.

Proof of Theorem 2.2 We set

F+(w) := 1

2π i

∫ ∞−iη0

−iη0
e2π iwz E−(x, z)dz

when Imw > 0. This function is well-defined since E−(x, z) is uniformly bounded on
the line of integration by assumption (a) of Theorem 2.1. By absolute convergence of
the Dirichlet series representation of E−(x, z), we may integrate termwise and obtain
that

F+(w) = − 1

2π i

∑
λ∗≥0

′
hλ∗(x)

e2πη0(w−λ∗)

(w − λ∗)
. (2.7)

Here the series on the right-hand side converges absolutely when w is not one of the
points λ∗, and hence F(w) extends to a meromorphic function in C with poles at λ∗
with λ∗ ≥ 0. Adding the constraint that Imw ≥ max(c, ν0), we now move the line
of integration to z = ξ + iη0, ξ > 0. Using the functional equation E+(x, z) =
−E−(x, z) and assumption (e), we then find by the residue theorem that

F+(w) = −e2π i xwH(x) −
∑
λ≥0

′
gλ(x)e

2π iλw

− 1

2π i

∫ ∞+iη0

iη0
e2π iwz E+(x, z)dz + �(x, w)

2π i
. (2.8)

Hence using theDirichlet series representation of E+(x, z) and integrating termwise in
the first integral on the right-hand side of (2.8), we obtain the alternate representation

F+(w) = − e2π i xwH(x) −
∑
λ≥0

′
gλ(x)e

2π iλw
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+ 1

2π i

∑
λ∗≥0

′
hλ∗(x)

e−2πη0(w−λ∗)

(w − λ∗)
+ �(x, w)

2π i
.

Combining this with (2.7), we find that

E∗+(x, w) := 2π i
∑
λ≥0

′
gλ(x)e2π iλw = − 2π ie2π i xwH(x) +

∑
λ∗≥0

′
hλ∗(x)

e−2πη0(w−λ∗)

(w − λ∗)

+
∑
λ∗≤0

′
hλ∗(x)

e2πη0(w−λ∗)

(w − λ∗)
+ �(x, w), (2.9)

which yields the required expression for E∗+(x, w). By similar calculations applied to
the function

F−(w) := 1

2π i

∫ −iη0

−∞−iη0
e2π iwz E−(x, z)dz

for Imw ≤ max(c, ν0), we arrive at the representation

E∗−(x, w) = − 2π ie2π i xwH(−x) −
∑
λ∗≥0

′
hλ∗(x)

e−2πη0(w−λ∗)

(w − λ∗)

−
∑
λ∗≤0

′
hλ∗(x)

e2πη0(w−λ∗)

(w − λ∗)
− �(x, w).

Combining this formula with (2.9), we obtain the required relation between E∗+(x, w)

and E∗−(x, w).

2.3 Examples

We illustrate the above discussion with two examples where the corresponding Fourier
interpolation identity is known: the Whittaker–Shannon interpolation formula and the
Fourier interpolation formula from [25]. Theorem 1.1, one of the main results of this
paper, yields a third example that will be treated in Sect. 4; a large family of related
formulas will then be presented in the subsequent Sect. 5.3.

2.3.1 The Paley–Wiener Case

Suppose that f is such that the periodized function

F(y) :=
∑
n∈Z

f̂ (y + n)
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is well-defined and in L2(−1/2, 1/2). Then we may express f as

f (x) =
∑
n∈Z

f (n) sinc(π(x − n)) +
∫ ∞

−∞
(
f̂ (y) − F(y)1[−1/2,1/2](y)

)
e2π i xydy

=
∑
n∈Z

f (n) sinc(π(x − n))

+
∫

|y|≥1/2
f̂ (y)e2π i xy

(
1 −

∑
n =0

1[n−1/2,n+1/2](y)e−2π i xn
)
dy.

We may think of this formula as representing the degenerate case when � = Z and
�∗ = (−∞,−1/2] ∪ [1/2,∞). The associated kernels are

E±(x, z) := 2π i
∫

∓y≥1/2
e−2π iy(z−x)

(
1 −

∑
n =0

1[n−1/2,n+1/2](y)e−2π i xn
)
dy,

Ê∗±(ξ, w) := 1[−1/2,1/2](ξ)
(
π i + 2π i

∞∑
n=1

e±2π in(w−ξ)
)
.

We may in this case compute their meromorphic continuations explictly:

E±(x, z) = ∓
(eπ i(z−x)

z − x
− πe−π i z

sin π z
sincπ(z − x)

)
,

Ê∗±(ξ, w) = ±π1[−1/2,1/2](ξ) cot π(w − ξ).

The latter kernel has a pole of residue ±1 at ξ ; all other poles are located in �∗, and
the collection of all such poles when ξ varies in [−1/2, 1/2] is indeed the entire set
�∗.

2.3.2 The
√
n Case

We can reinterpret the results of [25] in terms of Dirichlet series kernels as follows.
As � = �∗ = {±√

n}n∈Z, all of the identities can be symmetrized over x 
→
−x . In particular, this implies that we may assume E−(x, z) = E+(−x,−z). It is
convenient to split the kernels into even and odd parts. First, we look at the even
kernels 1

2 (E+(x, z) + E+(−x, z)). Since for all even Schwartz functions f we have

f (x) =
∑
n≥0

an(x) f (
√
n) +

∑
n≥0

ân(x) f̂ (
√
n),

we get

1

2
(E+(x, z) + E+(−x, z)) = 2π i

∑
n≥0

ân(x)e
2π i

√
nz,
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1

2
(E∗+(x, z) + E∗+(−x, z)) = 2π i

∑
n≥0

an(x)e
2π i

√
nz .

Theorem 2.1 and Theorem 2.2 in this case tell us that the functions z 
→ E+(x, z) and
z 
→ E∗+(x, z), given by a general Dirichlet series over e2π i

√
nz , n ≥ 0 in the upper

half-plane extend to meromorphic functions in C with simple poles at ±√
n, as well

as a simple pole at ±x . Moreover, the analytic extension to the lower half-plane in
each case is given by a general Dirichlet series over e−2π i

√
nz , n ≥ 0.

One can treat the odd kernels 1
2 (E+(x, z) − E+(−x, z)) similarly. In this case we

use the interpolation formula for odd functions [25, Thm. 7]

f (x) = c0(x)
f ′(0) + i f̂ ′(0)

2
+
∑
n≥1

cn(x)
f (

√
n)√
n

−
∑
n≥1

ĉn(x)
f̂ (

√
n)√
n

.

From this we obtain

1

2
(E+(x, z) − E+(−x, z)) = (2π i)

(− ĉ0(x)(π i z) −
∑
n≥1

ĉn(x)√
n

e2π i
√
nz)

and an analogous expression for the dual odd kernel 1
2 (E

∗+(x, z) − E∗+(−x, z)). A
new feature in the odd case is a pole of order two at z = 0, which corresponds to the
fact that the interpolation formula involves f ′(0) and f̂ ′(0).

2.4 The Joint Density of3 and3∗

We now come to a basic necessary condition for existence of formulas like (2.1), that
was recently established by Kulikov [20]. This condition yields a joint bound for the
two counting functions N�(T ) and N�∗(W ), which we define as the number of points
from the respective sequences to be found in the two intervals [−T , T ] and [−W ,W ].
Kulikov made the assumptions that N�(T ) � T L for some positive integer L and that
the functions gλ(x) be polynomially bounded in the two variables λ and x . Assuming
also the validity of (2.1) for all functions f withC∞-smooth and compactly supported
Fourier transform, he showed that for every η > 0, there exists a positive constant C
such that

N�(T ) + N�∗(W ) ≥ 4WT − C log2+η(4WT ) (2.10)

holds whenever W , T ≥ 1. This result relies on sharp estimates of Karnik, Romberg,
andDavenport [13] for the eigenvalue distribution of time-frequency localization oper-
ators. We may view (2.10) as a manifestation of the uncertainty principle as discussed
for instance in the work of Slepian [27]. To simplifymatters, we have again suppressed
the possibility that � and �∗ be multi-sets which however is accounted for in [18].

We observe that in the
√
n case, N�(T ) = 2T 2 + O(1) and N�∗(W ) = 2W 2 +

O(1), so that (2.10) holds since T 2 + W 2 ≥ 2WT . To relate Kulikov’s bound to
Theorem 1.1, we let � consist of the points (ρ − 1/2)/i and �∗ be the sequence of
points±(log n)/(4π) forn ≥ 1.Then N�(T ) = 2N (T ) and N�∗(W ) = e4πW+O(1),
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where we in the first relation use the standard notation N (T ) for the usual counting
function for the nontrivial zeros of ζ(s). Then (2.10) yields

2N (T ) + e4πW ≥ 4WT − C log2+η(4WT ).

If we now set W = (log T − log(2π))/(4π), then we get

N (T ) ≥ T

2π
log

T

2πe
− C log2+η T ,

which clearly holds in view of the Riemann-von Mangoldt formula

N (T ) = T

2π
log

T

2πe
+ O(log T ). (2.11)

There is a similar precise relation between Kulikov’s bound (2.10) and the Riemann-
von Mangoldt formula for any L-function to which the methods developed in this
paper apply. We will return to this point in Sect. 5.3.

We should like to emphasize that Kulikov does not assumeminimality of the system
of functions gλ(x) and hλ∗(x). It seems reasonable to expect that an assumption about
minimality should imply a sparseness condition that would complement (2.10). It
would be interesting to see if a general version of the Riemann–vonMangoldt formula
(2.11) (though with a less precise remainder term) could be obtained as a consequence
of (2.10) along with such a sparsity condition.

2.5 Fourier Interpolation and Crystalline Measures

It is immediate that a formula like (2.1) should imply that the distributional Fourier
transform of

μx := δx −
∑
λ∈�

gλ(x)δλ

will be

μ̂x =
∑

λ∗∈�∗
hλ∗(x)δλ∗ ,

where as usual δξ is the unit mass at the point ξ . This means that any Fourier interpola-
tion formula as a byproduct generates a whole family of measures that are crystalline
in an appropriate sense. We refer to [21–23] for some interesting recent results on
crystalline measures and Fourier quasicrystals. It is our impression that the results
of the present paper, while perhaps shedding some light on Dyson’s thoughts on the
Riemann hypothesis in his acclaimed lecture [6], adds further evidence to the common
belief (see [21]) that a classification of such measures would probably be very difficult
to obtain.
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3 Modular Integrals for the Theta Group

In this section we construct a family of special functions (modular integrals) on the
complex upper half-plane H := {τ ∈ C : Im τ > 0} whose Mellin transforms form
the building blocks for our Dirichlet series kernels.

The definition of these functions is most naturally viewed in terms of Eichler coho-
mology for the theta group. Nevertheless, they have a simple elementary description:
we are interested in 2-periodic analytic functions F : H → C that are of moderate
growth (see below) and satisfy

F(τ ) − ε(τ/i)−k F(−1/τ) = (τ/i)−s − ε(τ/i)s−k . (3.1)

Here ε ∈ {±1}, k ≥ 0, and s ∈ C. In what follows, we will always interpret the
expression (z/i)α for z ∈ H as the principal branch, i.e., (z/i)α takes the value xα for
z = i x , x > 0 (equivalently, (z/i)α = eα Log(z/i)).

The condition (3.1) is not sufficient to uniquely pinpoint the function F . Neverthe-
less, it determines F uniquely modulo a finite-dimensional space of modular forms if
we additionally require F to be of moderate growth. Following Knopp [15], we say
that a function ϕ : H → C is of moderate growth if

ϕ(τ) � Im(τ )−α + |τ |β, τ ∈ H,

where α and β are some positive constants. Equivalently, ϕ is of moderate growth if
and only if for some r > 0 we have |ϕ(i 1−z

1+z )| � (1 − |z|)−r for all z in the unit disk
|z| < 1.

For a 2-periodic function F moderate growth is tantamount to having a Fourier
expansion

F(τ ) =
∑
n≥0

ane
π inτ , τ ∈ H,

where the sequence {an}n≥0 has polynomial growth. To make the solution unique, we
require in addition that the first few coefficients an vanish. More precisely, we require
an = 0 for n < νε, where we set

ν− = ν−(k) :=
⌊k + 2

4

⌋
, ν+ = ν+(k) :=

⌊k + 4

4

⌋
. (3.2)

Theorem 3.1 If ϕ : H → C is an analytic function of moderate growth, then for any
k ≥ 0 and ε ∈ {±1} there exists a unique 2-periodic analytic function F : H → C of
moderate growth with a Fourier expansion of the form

F(τ ) =
∑
n≥νε

ane
π inτ , τ ∈ H

such that
F(τ ) − ε(τ/i)−k F(−1/τ) = ϕ(τ) − ε(τ/i)−kϕ(−1/τ). (3.3)
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The proof of uniqueness will come as a simple corollary of some basic properties of
modular forms for the theta group (see Proposition 3.1), while the proof of existence
follows from Proposition 3.3.

Let us denote the function F fromTheorem 3.1 by Fε
k (τ, ϕ). Since ϕs(τ ) = (τ/i)−s

is of moderate growth in H for any s ∈ C, there is a unique function F±
k (τ, s) :=

F±
k (τ, ϕs) with a Fourier expansion

F±
k (τ, s) =

∑
n≥ν±

α±
n,k(s)e

π inτ

such that
Fε
k (τ, s) − ε(τ/i)−k Fε

k (−1/τ, s) = (τ/i)−s − ε(τ/i)s−k .

This is exactly the function that we are interested in.

Remark For k > 2 the existence part of Theorem 3.1 follows from the results of
Knopp on Eichler cohomology [15]. Instead of this we use a construction with contour
integrals as in [25] (in Sect. 3.3 below we will sketchily explain the motivation behind
this construction). The main reason for doing this is, first, because the construction
works for all k ≥ 0, and second, since it can be used to give relatively good estimates
for the size of the coefficients α±

n,k(s) as n → ∞, at least in the range 0 ≤ k ≤ 2.
Let us also note that for k = 0 the existence of the decomposition (3.3) is related

to the result of Hedenmalm and Montes-Rodriguez [11] that the system of functions
eiπnx , eiπn/x , n ∈ Z is weak-star complete in L∞(R).

3.1 Preliminaries on the Theta Group

The group SL2(R) of 2× 2 real matrices with determinant 1 acts in the usual way on
the upper half-plane H by

γ τ = aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ SL2(R).

Since thematrix−I = ( −1 0
0 −1 ) acts trivially, wewill workwith the group PSL2(R) :=

SL2(R)/{±I } instead, but we still prefer to write the elements of PSL2(R) asmatrices.
Let us denote

S :=
(
0 −1
1 0

)
, T :=

(
1 1
0 1

)
.

The theta group �θ ⊂ PSL2(Z) is the subgroup generated by S and T 2. The
group �θ consists of all the elements of PSL2(Z) congruent to ( 1 0

0 1 ) or ( 0 1
1 0 ) mod-

ulo 2 (see [17, p.7 Cor. 4]). The only relation between the generators of �θ is
S2 = 1. This implies that any element γ ∈ �θ can be written in a unique way as
γ = Sε0T 2m1ST 2m2 . . . ST 2mk Sε1 , where ε j ∈ {0, 1}, which we call the canonical
word or the canonical representation for γ .
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Fig. 1 Fundamental domain for �θ and some of its translates

A fundamental domain for �θ is given by (see Fig. 1)

F := {z ∈ H : − 1 < Re z < 1, |z| > 1}.

Since F is a fundamental domain for the group �θ , for any τ ∈ H there exists an
element γ = γτ ∈ �θ such that γ τ is in F . Moreover, if τ does not belong to the set⋃

γ∈�θ
∂F (which is nowhere dense and of measure 0), then the element γ is unique,

and otherwise there are at most two such elements: {γ, Sγ } or {γ, T 2γ }. The element
γτ can be found by repeatedly performing the following operation: first apply some
power of T 2 to get τ into the strip {|Re τ | ≤ 1}, and then, if the resulting point is not
yet in the fundamental domain, apply the inversion S.

3.2 Modular Forms for the Theta Group

In this subsection we will collect the necessary basic facts about modular forms for
the theta group. A more detailed exposition can be found in [2, Ch. 6].

Let θ(τ ) be the Jacobi theta function

θ(τ ) :=
∑
n∈Z

eπ in2τ .

The function θ : H → C is holomorphic, and it satisfies the transformations

(τ/i)−1/2θ(−1/τ) = θ(τ ), θ(τ + 2) = θ(τ ),

which correspond to the two generators of the theta group �θ . More generally, for any
γ = ( a b

c d ) ∈ �θ with c > 0 or c = 0, d > 0, we have

θ(τ ) = ζγ (cτ + d)−1/2θ
(aτ + b

cτ + d

)
,

where (cτ + d)−1/2 is the principal branch and ζγ is a certain 8th root of unity that
can be written explicitly in terms of Jacobi symbols (see [24, Th. 7.1]). Finally, as

a corollary of the Jacobi triple product identity, one has θ(τ ) = η5(τ )

η2(2τ)η2(τ/2)
, where

η(τ) := q1/24
∏

n≥1(1 − qn) is the Dedekind eta function, and thus we see that θ(τ )
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does not vanish anywhere in H. Here and in what follows we define the nome q by
q := e2π iτ and for arbitrary rational number r we will interpret qr as e2π irτ .

3.2.1 The Theta Automorphy Factor

We define the theta automorphy factor jθ (τ, γ ) by

jθ (τ, γ ) := θ(τ )

θ(γ τ)
, γ ∈ �θ .

It satisfies jθ (τ, γ1γ2) = jθ (τ, γ2) jθ (γ2τ, γ1) and jθ (τ, γ )8 = (cτ +d)−4. We define
the slash operator in weight k with theta automorphy factor by

( f |kγ )(τ ) = j2kθ (τ, γ ) f (γ τ).

It is easy to see that this formula defines a right action of �θ on the space of functions
f : H → C. More generally, let χε : �θ → {±1}, where ε = ±1 be the homomor-
phism defined by χε(T 2) = 1 and χε(S) = ε. We then define

( f |εkγ )(τ ) := χε(γ ) j2kθ (τ, γ ) f (γ τ).

Note that all of the above definitions remain valid for real k ≥ 0 (and in fact for all

complex k), if we interpret j2kθ (τ, γ ) as θ2k (τ )

θ2k (γ τ)
and θ2k(τ ) using the principal branch,

i.e.,

θa(τ ) := exp

(
a
∫ τ

i∞
θ ′(z)
θ(z)

dz

)
, a ∈ C.

3.2.2 Modular Forms for 0�

We define Mk(�θ , ε) to be the space of holomorphic modular forms of weight k with
respect to the above slash action, i.e., f : H → C is in Mk(�θ , ε) if and only if f is
a holomorphic function of moderate growth and f |εkγ = f for all γ ∈ �θ . We also
denote by M !

k(�θ , ε) the space of weakly holomorphic modular forms of weight k: a
holomorphic function f : H → C belongs to M !

k(�θ , ε) if f |εkγ = f for all γ ∈ �θ

and its Fourier expansion at each of the cusps has atmost finitelymany negative powers
of q (i.e., f has at worst poles at the cusps).

If we let J (τ ) = J+(τ ) := 16
λ(τ)(1−λ(τ))

= (
θ(τ)
η(τ )

)12 and J−(τ ) := 1−2λ(τ), where

λ(τ) is the modular lambda invariant, then J± is in M !
0(�θ ,±). Moreover, J+(τ ) is

a Hauptmodul for the group �θ and it maps the fundamental domain F conformally
onto the cut plane C � (−∞, 64], as shown in Fig. 2. In particular, since J (τ ) is a
Hauptmodul, any f ∈ M !

k(�θ ,±) can be written as f (τ ) = θ2k(τ )J±(τ )P(J (τ )),
where P is some Laurent polynomial. (A priori P can be a rational function, but since
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Fig. 2 J (z) as a conformal map

f has poles only at the cusps and J (τ ) takes values 0 and ∞ at the two cusps, the
poles of P must be contained in {0,∞}.) Note that the identity

M !
k(�θ ,±) = θ2k J±C[J , J−1]

makes sense for all complex values of k if we interpret θ2k(τ ) as the principal branch.
Since J (τ ) has a pole at the cusp at ∞, if f ∈ Mk(�θ , ε), then f (τ ) =

θ2k(τ )Jε(τ )p(1/J (τ )), where p(x) ∈ C[x] is now a polynomial (without constant
term if ε = +). From

1
2 (

τ
i )

−1/2θ(1 − 1
τ
) = q1/8 + q9/8 + q25/8 + . . . ,

−2−12 J (1 − 1
τ
) = q + 24q2 + 300q3 + . . . ,

8 J−(1 − 1
τ
) = q−1/2 + 20q1/2 − 62q3/2 + . . .

(3.4)

we see that f is in Mk(�θ ,+) if and only if deg(p) ≤ ν+(k) and f is in Mk(�θ ,−)

if and only if deg(p) ≤ ν−(k) − 1. Thus we get the following (see [2, Thm. 6.3]).

Proposition 3.1 Wehave dim Mk(�θ , ε) = νε(k), where ν± are defined in (3.2).More-
over, any f ∈ Mk(�θ , ε)with a Fourier expansion of the form f (τ ) = ∑

n≥ν± cneπ inτ

must vanish identically.

Note that this immediately implies uniqueness in Theorem 3.1, since any two 2-
periodic solutions of the functional equation (3.3) differ by an element of Mk(�θ , ε),
which must vanish by Proposition 3.1.

Finally, let us record some simple asymptotic relations between various functions
in the fundamental domain F . For z → i∞, we have Im(1 − 1/z) = Im(z)|z|−2 �
Im(z)−1 and J (1 − 1/z) ∼ −4096e2π i z , so that log |J (z)| � − Im(z)−1, as z tends
to ±1 in the fundamental domain. From this we deduce that, when expressed in terms
of w = J (z), as w → 0 (which again corresponds to z → ±1 inside the fundamental
domain), we have Im(z) � 1

log |w−1| , and therefore

|θ(z)|2 � |w|1/4 log |w−1|.

Moreover, since J−(z)2 = 1 − 64/J (z), we get that J−(z) = ±√
1 − 64/w.

We also record here the following identity

J ′(z) = −π i θ4(z)J (z)J−(z). (3.5)
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Fig. 3 Deforming the contour of integration

In particular, this implies that if we set w = J (z), then

θ4(z)dz = π−1w−1/2(64 − w)−1/2dw. (3.6)

3.3 Modular Kernels

We define the following two-variable meromorphic functions on the upper half-plane:

K+
k (τ, z) := θ2k(τ )θ4−2k(z)

J ν+(z)

J ν+(τ )

J (τ )J−(z)

J (τ ) − J (z)
=

∞∑
n=ν+

g+
n,k(z)q

n/2,

K−
k (τ, z) := θ2k(τ )θ4−2k(z)

J ν−(z)

J ν−(τ )

J (τ )J−(τ )

J (τ ) − J (z)
=

∞∑
n=ν−

g−
n,k(z)q

n/2.

(3.7)

Here we view the series on the right as formal power series in the variable q1/2.
Note that by construction K±

k (τ, z) is a meromorphic modular form of weight k in τ

(respectively of weight 2 − k in z) for each fixed z (respectively τ ). For fixed τ it has
simple poles for z ∈ �θτ and no other singularities in H. Moreover, (3.5) implies that
the residue of K±

k (τ, z) at z = τ is (π i)−1. From the above estimates for θ(z) and
J (z) near the cusp at z = ±1, we get that for any fixed τ the function K±

k (τ, z) is
rapidly decreasing as z → ±1 non-tangentially.

Let us also record some important properties of the coefficients g±
n,k(z).

Proposition 3.2 The functions g±
n,k : H → C, n ≥ ν± belong to M !

2−k(�θ ,∓), vanish
at the cusp at ±1, and satisfy

g±
n,k(τ ) = q−n/2 + O(q−(ν±−1)/2), τ → i∞. (3.8)

Proof The first two claims follow trivially from the definition, while the last statement
is proved in exactly the same way as Theorem 3 in [25] (see also earlier papers by
Asai, Kaneko, and Ninomiya [1, Sec. 3] and by Zagier [31] where analogues of g±

n,k
for the full modular group appear).
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Proposition 3.3 If ϕ : H → C is a holomorphic function of moderate growth, then

F±
k (τ, ϕ) := 1

2

∫ 1

−1
K±

k (τ, z)ϕ(z)dz, τ ∈ F , (3.9)

where the integral is taken over a semicircle in the upper half-plane, admits an analytic
continuation to H that satisfies the conditions of Theorem 3.1.

Proof We only sketch the proof, since it essentially repeats the proof of Proposition 2
in [25]. The main idea is to show that the contour integral in (3.9) extends analytically
from F to the neighboring fundamental domain SF , that the extension satisfies (3.3)
in F ∪ SF , and from there to extend it iteratively to all of H using the functional
equation.

Note that the integral is well-defined since K±
k (τ, z) has exponential decay in

Im(z)−1 as z → ±1 non-tangentially and ϕ is bounded there by some power of
Im(z)−1. Let us denote the right-hand side of (3.9) by G0(τ ), τ ∈ F . Since the only
singularities of the kernel z 
→ K±

k (τ, z) are at z ∈ �θτ , G0(τ ) extends analytically
across the vertical lines τ ∈ H, Re τ = ±1 and the resulting analytic extension is
2-periodic. Let us show that it also extends across the semicircle and the extension
satisfies the functional equation (3.3).

Let �0 denote the semicircle, and consider two other paths �1 and �2 as in Fig. 3
such that �2 is the image of �1 under the inversion z 
→ −1/z, with all three paths
oriented from −1 to 1. Let us define G1(τ ) := 1

2

∫
�1
K±

k (τ, z)ϕ(z)dz. Note that G1
defines an analytic function in the region U (the shaded region in Fig. 3) between �1
and �2. Let τ be a point in the region between �0 and �1. Then the residue theorem
tells us that

G0(τ ) − G1(τ ) = ϕ(τ),

so that G1(τ ) + ϕ(τ) provides an analytic extension of G0 to U . Moreover, we auto-
matically get (3.3) since G1(τ ) = ±(τ/i)−kG1(−1/τ) for τ ∈ U because of the
corresponding property of K±

k (τ, z).
To obtain an analytic extension to all of H we simply define F(τ ) for τ ∈ γ −1F

as G0|±k γ + ϕγ , where {ϕγ }γ∈�θ is the �θ -cocycle generated by ϕT 2 = 0 and ϕS =
ϕ − ϕ|±k S (see Sect. 6.2). Since the neighboring regions of γ −1F are γ −1SF and
γ −1T±2F , the above continuation properties of F0 imply that F is well-defined and
analytic on H.

Finally, since ϕ is of moderate growth and F(τ ) is an automorphic integral for the
cocycle generated by ϕ, by the main result of [16] we get that F±

k (τ, ϕ) := F(τ ) is
also of moderate growth.

We will prove more precise statements about the growth of F±
k (τ, ϕ) in Sect. 6.

Remark Let us give a brief explanation of why one would expect a formula like (3.9).
Assume that k = 0 and the sign is “+”. Then the function that we are looking for, when
written in terms ofw = J (τ ), is a holomorphic function onC�[0, 64]with prescribed
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jumps along the segment [0, 64]. By the classical Sokhotski-Plemelj formula, such a
function is given by an integral

∫ 64
0

A(s)
w−s ds, where A(s) is the jump at the point s.

When expressed in terms of the upper half-plane variables τ and z, the Cauchy kernel
simply becomes K+

0 (τ, z) and we obtain (3.9). To get the formula in the general case
we simply divide both sides of the functional equation (3.3) by θ2k(τ )Jε(τ )Jn(τ ) for
an appropriate value n ∈ Z to reduce to the case k = 0, ε = +. Let us also mention
that, in the case of PSL2(Z), such integrals have previously appeared in a work of
Duke, Imamoḡlu, and Tóth [5].

Remark The functions K±
k (τ, z) are sometimes called Green’s functions, see, e.g.,

Eichler’s paper [7, p. 121]. For k > 2 one can instead use the Poincaré series

P±
k (τ, z) := 1

2

∑
γ∈�θ,∞\�θ

χ±(γ ) j−2k
θ (γ, τ )

eπ iγ τ + eπ i z

eπ iγ τ − eπ i z
,

(where�θ,∞ denotes the subgroup of�θ generated by T 2)which differs fromK±
k (τ, z)

by an element of M !
k(�θ ,±) ⊗ M !

2−k(�θ ,∓).

3.4 Definition and Basic Properties of F±
k (�, s)

Using the result of Proposition 3.3 we can now precisely define the special func-
tions F±

k .
For k ≥ 0 we define F±

k : H × C → C by

F±
k (τ, s) := 1

2

∫ 1

−1
K±

k (τ, z)(z/i)−sdz, τ ∈ F (3.10)

and by analytic continuation in τ if τ is in H �F . The function F±
k (·, s) is 2-periodic

and has a Fourier expansion

F±
k (τ, s) =

∞∑
n=ν±

α±
n,k(s)e

π inτ , (3.11)

where α±
n,k(s) are given by

α±
n,k(s) := 1

2

∫ 1

−1
g±
n,k(z)(z/i)

−sdz, (3.12)

and g±
n,k are weakly holomorphic modular forms of weight 2−k defined by (3.7). The

coefficients α±
n,k(s) are of polynomial growth in n for any fixed s ∈ C and

F±
k (τ, s)∓(τ/i)−k F±

k (−1/τ, s) = (τ/i)−s∓(τ/i)s−k, τ ∈ H. (3.13)
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Finally, for any fixed τ ∈ H the function F±
k (τ, s) is an entire function of s and it

satisfies
F±
k (τ, k − s) = ∓F±

k (τ, s). (3.14)

The last claim follows from the uniqueness part of Theorem 3.1 since F±
k (τ, k − s) is

2-periodic in τ and satisfies the same functional equation as F±
k (τ, s), up to sign.

Finally, we remark that α±
n,k(s) is an entire function of exponential type. More

precisely, by making a change of variable z = ie2π i t in (3.12) we obtain

α±
n,k(s) = −π

∫ 1/4

−1/4
g±
n,k(ie

2π i t )e−2π i t(s−1)dt, (3.15)

so that α±
n,k(s) is the Fourier transform of a C∞-smooth function with support in

[−1/4, 1/4]. An analogous calculation also shows that for τ ∈ F the function
s 
→ F±

k (τ, s) is also the Fourier transform of a smooth function with support in
[−1/4, 1/4]. Similarly, we get the following result.

Proposition 3.4 Let k ≥ 0. Then there exists c > 0 such that for all x > 1 we have

|F±
k (i x, s) − α±

0,k(s)| �k e
π
2 | Im s|e−πx−c

√| Im s|.

Proof Making the change of variable z = eit in the definition we get

F±
k (i x, s) − α±

0,k(s) = 1

2

∫ 0

−π/2
(K±

k (i x, ieit ) − g±
0,k(ie

it ))(e−ist∓ei(s−k)t )dt .

If x ≥ 2, then using the leading terms of the asymptotic expansions (3.4) and the fact
that J (i x) > 100 for x ≥ 2, we get

|K±
k (i x, ieit ) − g±

0,k(ie
it )| �k exp(−πx − κ±

cos t ), t ∈ (−π/2, π/2),

where κ+ := 2π(1 − {k/4}) and κ− := 2π(1 − {(k − 2)/4}). Thus we have

|F±
k (i x, s) − α±

0,k(s)| �k e
−πx

∫ π/2

0
e| Im s|t− κ±

cos t dt

= e
π
2 | Im s|e−πx

∫ π/2

0
e−| Im s|t− κ±

sin t dt

≤ π
2 e

π
2 | Im s|e−πx e−2

√
κ±| Im s|,

where we have used the inequalities 1
sin t ≥ 1

t and at + bt−1 ≥ 2
√
ab. Since κ± > 0,

this proves the claim.
If 1 < x < 2, then we split the integral as

∫ −π/4
−π/2 + ∫ 0

−π/4. Then we use the same

estimate for the first integral, while the second integral is of size �k e
π
4 | Im s|, which

can be seen by deforming the contour of integration (similarly to what was done in the
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proof of Proposition 3.3) so as to avoid large values of the denominator J (τ ) − J (z)
in K±

k (τ, z).

3.4.1 Relation to the Interpolation Bases for the
√
n Case

Next, let us relate α±
n,k(s) to the functions b

±
n and d±

n constructed in [25]. If we define

b±
n (x) := 1

2

∫ 1

−1
g±
n,1/2(z)e

π i zx2dz,

d±
n (x) := 1

2

∫ 1

−1
g±
n,3/2(z)xe

π i zx2dz,

(3.16)

(the sign notation differs from that of [25] so that b±
n and d±

n in our context coincide
with respectively b∓

n and d∓
n from [25]) then a routine calculation shows that

�R(s)α±
n,1/2(s/2) = 2

∫ ∞

0
b±
n (x)xs−1dx,

�R(s)α±
n,3/2(s/2) = 2

∫ ∞

0
d±
n (x)xs−2dx,

(3.17)

where we again use the notation �R(s) := π−s/2�(s/2). We remark here that in [25,
Prop. 1, Prop. 3] it is proved thatb±

n (x) is an evenFourier eigenfunctionwith eigenvalue
∓1, d±

n (x) is an odd Fourier eigenfunction with eigenvalue ±i , and moreover that

b±
n (

√
m) = d±

n (
√
m) = δn,m, m ≥ 1. (3.18)

All these properties can be easily checked directly from the definition, using (3.8).

3.4.2 Special Values

We conclude this section by giving explicit evaluations of F±
k (τ, s) for some special

values of s.Wedo this using the fact that (3.11) and (3.13) uniquely determine F±
k (τ, s)

as a function of τ , so that if we can find a 2-periodic function f (τ ) that satisfies (3.13),
then necessarily F±

k (τ, s) − f (τ ) belongs to Mk(�θ ,±).
A trivial example is s = 0, wherewe can take f (τ ) = 1. Thus F±

k (τ, 0) = 1−g(τ ),
where g(τ ) = 0 ifν± = 0 andotherwise g(τ ) is the uniquemodular form inMk(�θ ,±)

with the q-expansion g(τ ) = 1 + O(qν±/2). In particular,

F−
k (τ, 0) = 1, F+

k (τ, 0) = 1 − θ2k(τ ), 0 ≤ k < 2. (3.19)

Similarly, from (3.13) we see that F+
k (τ, k/2) is in Mk(�θ ,+) and looking at the

q-expansion, we see that in fact

F+
k (τ, k/2) = 0, 0 ≤ k < 2.
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A more interesting example is the identity

F−
2 (τ, 1) = π

3
(−E2(τ/2) + 5E2(τ ) − 4E2(2τ)),

where E2 is the weight 2 Eisenstein series, E2(τ ) = 1 − 24
∑

n≥1 σ(n)qn (here
σ(n) = ∑

d|n d is the divisor sum function). To see this we use that by the well-
known functional equation

E2(τ ) − τ−2E2(−1/τ) = 6

π
(τ/i)−1

we have F−
2 (τ, 1) − π

3 E2(τ ) ∈ M2(�θ ,−) and note that the space M2(�θ ,−) is
one-dimensional, spanned by E2(τ/2) − 4E2(τ ) + 4E2(2τ). As a corollary, we have

α−
n,2(1) = 8π(σ(n) − 5σ(n/2) + 4σ(n/4)), n ≥ 1,

where we define σ(x) = 0 if x /∈ N.

4 The Dirichlet Series Kernel Associated with Zeros of �(s)

In this section we assume that the weight k is a positive real number and consider the
function F±

k (τ, s) given by the Fourier expansion

F±
k (τ, s) :=

∑
n≥ν±

α±
n,k(s)e

π inτ ,

where, as before, ν− = �(k+2)/4� and ν+ = �(k+4)/4�. For convenience we extend
the definition of α±

n,k(s) to all n ≥ 0 by setting α±
n,k(s) := 0, 0 ≤ n < ν±.

4.1 TheMellin Transform of F±
k (�, s)

Let us define A±
k (w, s) by

A±
k (w, s) :=

∫ ∞

0
(F±

k (i t, s) − α±
0,k(s))t

w−1dt = π−w�(w)
∑
n≥1

α±
n,k(s)

nw
. (4.1)

Since for fixed s the sequence {α±
n,k(s)} grows polynomially, the above Dirichlet

series converges absolutely for sufficiently large Rew. Similarly, for fixed s we have
(by (3.13))

F±
k (i t, s) = α±

0,k(s) + O(e−π t ), t → ∞,

F±
k (i t, s) = ±α±

0,k(s)t
−k + t−s∓t s−k + O(t−ke−π/t ), t → 0+,
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and hence the integral in (4.1) converges absolutely for Rew > max(k,Re s,Re(k −
s)).

Proposition 4.1 The function w 
→ A±
k (w, s) extends to a meromorphic function in

C with simple poles atw = s, k− s with respective residues 1,∓1, and at most simple
poles at w = 0, k with respective residues −α±

0,k(s), ±α±
0,k(s). Moreover, the function

A±
k satisfies the two functional equations

A±
k (k − w, s) = ±A±

k (w, s),

A±
k (w, k − s) = ∓A±

k (w, s).
(4.2)

Finally, the function w 
→ A±
k (w, s) is bounded in lacunary vertical strips {u + iv |

a ≤ u ≤ b, |v| ≥ T } for sufficiently large T > 0.

Proof The claims follow from the general result of Bochner [3, Th. 4] combined
with (3.13).

More specifically, using the standard trick (see, e.g., [32]) by splitting the integral
defining A±

k (w, s) as
∫ 1
0 + ∫∞

1 and applying (3.14) to the part
∫ 1
0 we obtain

A±
k (w, s) = −α±

0,k(s)(w
−1±(k − w)−1) + (w − s)−1±(k − w − s)−1

+
∫ ∞

1
(F±

k (i t, s) − α±
0,k(s))(t

w−1±tk−w−1)dt .
(4.3)

Since the integral defines an analytic function of (w, s), this immediately implies
meromorphic continuation with given simple poles, and since the integral is clearly
bounded in vertical strips, we also obtain boundedness in lacunary strips for w 
→
A±

k (w, s). Finally, the functional equations (4.2) follow trivially from (4.3) and (3.14).

Note that α+
0,k(s) = 0 for k ≥ 0 and α−

0,k(s) = 0 for k ≥ 2 hence in these cases

(which correspond to ν± > 0) the only singularities of w 
→ A±
k (w, s) are the simple

poles at s and k − s.

Remark Bochner’s Converse Theorem [2, Th. 7.1], [3, Th. 4] implies that the function
w 
→ A±

k (w, s) is essentially uniquely defined by the first equation in (4.2) and
its poles. Let us make this precise in the case when ν± > 0: assume that ψ(w) =∑

n≥ν± ann−w is convergent in some right half-plane and extends to a meromorphic
function in C such that (w − s)(w − k + s)ψ(w) is entire of finite order and �(w) =
π−w�(w)ψ(w) satisfies�(k−w) = ±�(w). Then�(w) is a multiple ofA±

k (w, s).
Thus we see that these functions are in some sense universal: if ψ(w) is any Dirichlet
series such that ψ(w)P(w) is entire of finite order for some polynomial P and such
that �(k − w) = ±�(w), then

�(w) = L f (w) +
∑
j

c j
∂m j

∂sm j
A±

k (w, s j )
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for some c j , s j ∈ C, where f ∈ Mk(�θ ,±) and L f (w) = ∫∞
0 ( f (i t)−a0( f ))tw−1dt .

This gives a considerable strengthening of the abundance principle of Knopp [19].

Using the estimates fromSect. 6we get quite precise information about the behavior
of w 
→ A±

k (w, s) in vertical strips.

Lemma 4.1 Suppose that k/2 ≤ Re s < k < 2 and let κ = max(k, 1) . Then

|A±
k (u + iv, s)| ≤ C(s)π−u |�(u + iv)|(1 + |v|)κ+ε−u, k − κ − ε ≤ u ≤ κ + ε,

for every ε > 0 and all sufficiently big |v|, where C(s) > 0 depends only on s.

A weaker version of Lemma 4.1, with a cruder bound on the growth in the vertical
direction, may be obtained directly from Proposition 3.3. This would in turn suffice
to establish a weaker version of Theorem 1.1, as alluded to in the introduction.

Proof of Lemma 4.1 By the Cauchy–Schwarz inequality, we have

⎛
⎝ ∑

2l≤n<2l+1

|α±
n,k(s)|n−u

⎞
⎠

2

≤ 2l(1−2u)
∑

2l≤n<2l+1

|α±
n,k(s)|2.

Therefore, by applying Proposition 6.4 from Sect. 6 we get

∑
n≤x

|α±
n,k(s)|2 �s x

k+|k−1| log2x,

and thus the Dirichlet series representing w 
→ A±
k (w, s) converges absolutely for

Rew > κ . Let us set

D(w) := πw

�(w)
A±

k (w, s).

Note that D(w) can have poles only at w = k, s, k − s, since the potential pole at
w = 0 is canceled by the pole at w = 0 of �(w). Since the Dirichlet series converges
absolutely for Rew > κ , for arbitrary fixed ε > 0 we have

D(κ + ε + iv) � 1 and D(k − κ − ε + iv) � (1 + |v|)2κ−k+2ε.

Here the second inequality follows because of the absolute convergence of theDirichlet
series, and the second follows by the functional equation for A±

k (k − w, s). Now

F(w) := D(w)(w − 1)(w − s)(w − (k − s))

is an entire function satisfying

F(κ + ε + iv) � (1 + |v|)3 and F(k − κ − ε + iv) � (1 + |v|)2κ−k+3+2ε.
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The deduction of the functional equation for D(w, s) implies the crude bound

|F(u + iv)| � |v|3|�(u + iv)|−1

in the strip k − κ − ε ≤ u ≤ κ + ε. We may therefore use the Phragmén–
Lindelöf principle in a familiar way (see for example [28, Sect. 5.65]) to conclude
that F(w)((κ + 2ε − w)i)(w−κ−ε)−3 is a bounded analytic function in that strip.

To conclude the discussion of A±
k (w, s), note that, as a corollary of (3.19), we

obtain

A+
l/2(w, 0) = −π−w�(w)

∑
n≥1

rl(n)

nw
, l = 1, 2, 3, (4.4)

where rl(n) is the number of representations of n as a sum of squares of l integers. In
particular, A+

1/2(w, 0) = −2π−w�(w)ζ(2w). Similarly, (3.19) implies

A−
l/2(w, 0) = A−

l/2(w, l/2) = 0, l = 1, 2, 3. (4.5)

Using the results from Sect. 3.4.2 one can also easily obtain explicit expressions for
A±

l/2(w, 0) for other values of l.

4.2 Construction of the Dirichlet Series Kernels

We will now construct, in accordance with the general setup of Sect. 2, the Dirichlet
series kernels corresponding to the interpolation formula of Theorem 1.1. This will
provide us with an explicit construction of the functions Un(z) and Vρ, j (z) and will
be used to prove our main result.

We define the Dirichlet series kernels H±(w, s) by

H−(w, s) := ζ ∗(s)
2

A−
1/2(w/2, s/2)

ζ ∗(w)
=
∑
n≥1

h−
n (s)

nw/2 , s = 0, 1,

H+(w, s) := ζ ∗(s)
2

(A+
1/2(w/2, s/2)

ζ ∗(w)
− α+

1,1/2(s/2)
)

=
∑
n≥2

h+
n (s)

nw/2 , s = 0, 1,

(4.6)
where ζ ∗(s) = �R(s)ζ(s) is the completed zeta function. Formulas (4.4) and (4.5)
show that both functions extend analytically also to s = 0, 1. Note that the coefficients
h±
n (s) can be computed using Möbius inversion as

h±
n (s) = ζ ∗(s)

2

∑
d2|n

μ(d)α±
n/d2,1/2

(s/2). (4.7)

From this and (4.4), (4.5) we see that h±
n (s), n ≥ 1 are entire (we also set h+

1 (s) := 0).
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Since ζ ∗(1 − s) = ζ ∗(s), the functional equations (4.2) imply

H±(1 − w, s) = ±H±(w, s),

H±(w, 1 − s) = ∓H±(w, s).
(4.8)

Moreover, from (4.3) and the fact that ζ ∗(w) has simple poles atw = 0, 1, we see that
for a fixed s the function w 
→ H±(w, s) has simple poles at w = s and w = 1 − s
with residues 1 and ∓1, and a pole at w = ρ of order at most m(ρ) for each nontrivial
zero ρ of ζ(s).

From the abovediscussionwe see that, ifwedefine E±(w, s) = H+(w, s)±H−(w, s),
then w 
→ E+(w, s) (respectively w 
→ E−(w, s)) is a Dirichlet series with poles
at w = ρ for nontrivial zeros of ζ and at w = s (respectively w = 1 − s). Accord-
ing to the setup of Sect. 2, this suggests that E±(w, s) (up to an appropriate linear
change of variables that maps the critical line to R) are Dirichlet series kernels asso-
ciated to a Fourier interpolation formula with � = {(ρ − 1/2)/i : ζ ∗(ρ) = 0} and
�∗ = {± log n/(4π)}n≥1. Motivated by this we define U±

n (z) as

U±
n (z) := h∓

n (1/2 + i z). (4.9)

Similarly, we define V±
ρ, j (z) by

H∓(w, 1/2 + i z) =
m(ρ)−1∑
j=0

i j
j ! V±

ρ, j (z)

(w − ρ) j+1 + O(1), w → ρ,

or, equivalently,

V±
ρ, j (z) := 1

2π i

∫
|w−ρ|=ε

i− j (w − ρ) j

j ! H∓(w, 1/2 + i z)dw, (4.10)

where ε is chosen so that ε < |ρ − 1/2±z| and ε < |ρ − ρ′| for all ρ′ = ρ such that
ζ ∗(ρ′) = 0.

We now turn to rigorously proving Theorem 1.1.

4.3 Proof of Theorem 1.1

As in the proof of Lemma 4.1 we will use certain estimates for the coefficients α±
n,k(s)

that are somewhat technical and are proved in Sect. 6.
We define the auxiliary functions

D−(w, s) := �R(s)

2

∑
n≥1

α−
n,1/2(s/2)

nw/2 ,

D+(w, s) := �R(s)

2

∑
n≥1

α+
n,1/2(s/2) − α+

1,1/2(s/2)

nw/2 ,
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and note that

H±(w, s) := ζ(s)

ζ(w)
D±(w, s).

Lemma 4.2 Suppose that 1/2 ≤ Re s < 1. Then

|D±(u + iv, s)| ≤ C(s)(1 + |v|)(2+ε−u)/2, u ≤ 2 + ε, (4.11)

H±(1 + ε + iv, s) =
∑
n≤x

h±
n (s)n−(1+ε+iv)/2 + O

(
(1 + |v|)x−ε/3) (4.12)

for every ε > 0, where C(s) is a positive constant that depends only on s.

Proof The first claim follows from Lemma 4.1. We next prove (4.12). Set A(x) :=∑
n≤x h

±
n (s). Using summation by parts, we get

H±(w, s) =
∑
n≤x

h±
n (s)n−w/2 + w

2

∫ ∞

x
(A(y) − A(x))y−w/2−1dy

when Rew > 1, so it suffices to show that

A(x) �ε x1/2+ε/6

for every ε > 0. But this holds because

A(x) = ζ ∗(s)
2

∑
d≤√

x

μ(d)
∑

n≤x/d2

α±
n,1/2(s/2) � √

x
∑
d≤√

x

1

d
≤ √

x log x

when 1/2 ≤ Re s < 1 by Proposition 6.5.

We also require an additional lemmawhich is a result from a paper by Ramachandra
and Sankaranarayanan [26, Thm. 2].

Lemma 4.3 There exists a positive constant c such that

min
T≤t≤T+T 1/3

max
1/2≤σ≤2

|ζ(σ + i t)|−1 ≤ exp
(
c(log log T )2

)

holds for all sufficiently large T .

We now consider a general function f inH1 and prove a representation that splits
naturally into an even and an odd part, so that the even part yields Theorem 1.1. We
set

F(s) := f

(
s − 1/2

i

)
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let

F+(s) := F(s) + F(1 − s)

2
and F−(s) := F(s) − F(1 − s)

2

be respectively the even and odd part of F(s). The proof naturally splits into three
parts.

Proof of (1.2)

Consider the operator

(RδFδ)(s) := 1

4π i

∫ c+i∞

c−i∞
[
H−δ(w, s) − H−δ(1 − w, s)

]
Fδ(w)dw, (4.13)

where δ = ± and both 1−c < Re s < c and c > 1. The proof follows the usual scheme
of computing these integrals in two different ways. First, using the functional equation
for H±(1−w, s), we express the integrand in (4.13) as Fδ(w) times a Dirichlet series
in w. We then apply (4.12) and the assumption that f is inH1 to infer that

(RδFδ)(s) = 1

2π i

∫ c+i∞

c−i∞
H−δ(w, s)Fδ(w)dw

= 1

2π i

∑
n≤x

h−δ
n (s)

∫ c+i∞

c−i∞
n−w/2Fδ(w)dw + O(x−ε/3)

=
∑
n≤x

(M−1Fδ)(
√
n)h−δ

n (s) + O(x−ε/3),

(4.14)

whereM−1Fδ is the inverseMellin transform of Fδ . SinceUn(z) = U+
n (z) are defined

by (4.9), this gives the first sum on the right-hand side of (1.2) .
On the other hand, by viewing the integral in (4.13) as two contour integrals and

using the residue theorem, we find that

(RδFδ)(s) = Fδ(s) +
∑

ρ:0<γ≤T

Resw=ρ H−δ(w, s)Fδ(w) + E(s, T ), (4.15)

where

E(s, T ) � max
1/2≤u≤2

|ζ(u + iT )|−1T−1/4+ε +
∫

|v|>T
| f (c + i t)|(1 + |v|)(2−c+ε)/2dv

for ε small enough. Indeed, D−δ(u + iv, s) � (1 + |v|)3/4+ε by Lemma 4.2 and
Fδ(u + iv) � (1 + |v|)−1 for sufficiently small ε by the assumption that f is in H1.
Given a large positive integer k, we choose Tk in [2k, 2k+1] such that

max
1/2≤u≤2

|ζ(u + iTk)|−1 ≤ exp
(
c(log log Tk)

2),
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which is feasible in view of Lemma 4.3. Let us defineUn = n−1/4

2π U+
n and Vρ, j = V+

ρ, j
as in (4.9) and (4.10). Thenwe obtain (1.2) by comparing the right-hand sides of (4.14)
and (4.15) and letting k → ∞.

Rapid decay of the basis functions Un(z) and V�,j(z)

By (4.7), the functions h±
n (s) have rapid decay in vertical strips since |ζ ∗(σ + i t)| =

O(taσ e−π t/4) and by (3.15) we have that |α±
m,1/2((σ + i t)/2)| = O(eπ t/4(1+|t |)−k)

for all k > 0. Thus Un(z) is rapidly decaying.
To get the corresponding property of Vρ, j (z), we use (4.10) to infer that it is

sufficient to show that s 
→ ζ ∗(s)A±
1/2(w, s) is rapidly decaying in vertical strips

(uniformly for w in compact sets). In view of (4.3), it is enough to check that

s 
→ ζ ∗(s)
∫ ∞

1
(F±

k (i t, s) − α±
0,k(s))(t

w−1±tk−w−1)dt

is rapidly decaying in vertical strips. This is clear from Proposition 3.4.

The interpolatory properties (1.3)

From (3.17) and (4.7) we see that h±
n (s) is the Mellin transform of

u±
n (x) :=

∞∑
k=1

∑
d2|n

μ(d)b±
n/d2

(kx).

Therefore, form, n ≥ 1, from the interpolatory properties of bε
m(x) (3.18)we conclude

that

uε
n(

√
m) =

∞∑
k=1

∑
d2|n

μ(d)bε
n/d2(k

√
m) =

∑
d|√n/m

μ(d) =
{
1, m = n,

0, m = n.

Since Un is an even function and Ûn(ξ) = n−1/4eπξu−
n (e2πξ ), this implies the inter-

polatory properties of Un at logm
4π . By definition h±

n (s) vanishes at s = ρ to the same

order as ζ ∗(s), and we therefore also get that U ( j)
n (

ρ−1/2
i ) = 0 for 0 ≤ j < m(ρ).

Next, let us check the interpolatory properties of Vρ, j (z). From (4.10) we imme-

diately see that V ( j ′)
ρ, j (

ρ′−1/2
i ) = 0 for 0 ≤ j ′ < m(ρ′), where ρ′ = ρ is a

different nontrivial zero of ζ with Im ρ′ > 0. The property V ( j ′)
ρ, j (

ρ−1/2
i ) = δ j, j ′ for

0 ≤ j ′ < m(ρ) again follows from (4.10), since for any ε > 0 such that ε < |ρ − ρ′|
for all ρ′ = ρ, the difference

V ( j ′)
ρ, j (z) − 1

2π i

∫
|w−ρ|=ε

i j
′− j (w − ρ) j

j !
∂ j ′H−
∂s j ′

(w, 1/2 + i z)dw
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is equal to 0 for ε < |ρ − 1/2±z| and to δ j, j ′ for ε > |ρ − 1/2±z|.
Finally, we need to verify that V̂ρ, j (± log n

4π ) = 0. To this end, we consider

U±(w, x) := �R(w)
∑
n≥1

∑
k≥1 b

±
n (kx)

nw/2

and note that H±(w, s) is the Mellin transform in x ofU±(w, x)/ζ ∗(w). The function
U±(w, x) continues analytically to a meromorphic function of w in C since it is the
Mellin transform of F±

1/2(i t, ϕx ), where ϕx (z) = 1
2 (θ(zx) − 1). Setting x = √

m and
using (3.18), we obtain

U±(w,
√
m) = �R(w)

∑
n≥1

n=k2m

1

nw/2 = ζ ∗(w)m−w/2

first for Rew sufficiently large, and then, by analytic continuation, for all w = 0, 1.
The numbers V̂ρ, j (ξ), j ≥ 0 are simply the coefficients of the principal part of the
Laurent series of w 
→ U±(w, e2πξ )/ζ ∗(w) at w = ρ. Since for ξ = logm

4π the latter

function specializes to an entire function w 
→ m−w/2, we get that V̂ρ, j (± logm
4π ) = 0.

This concludes the proof of Theorem 1.1.

4.4 Relation with the Riemann–Weil Formula

We return briefly to the viewpoint mentioned in the introduction, namely that we may
think of the Riemann–Weil explicit formula as expressing a linear functional W in
terms of our interpolation basis. This functional W acts on functions f in H1 and is
defined by the left-hand side of (1.1):

W f := 1

2π

∫ ∞

−∞
f (t)

(
�′(1/4 + i t/2)

�(1/4 + i t/2)
− logπ

)
dt + f

( i
2

)
+ f

(−i

2

)
. (4.16)

By the equality in (1.1) and the interpolatory properties of the basis functions, we then
find that

WUn =
{

π−1�(n)/
√
n, n a square

0, otherwise,

while

WVρ, j =
{
2, j = 0

0, j > 0.

It would be interesting to know whether these curious properties of the basis functions
could be obtained without resorting to the Riemann–Weil formula. In the same vein,

123



Constructive Approximation

it may be worthwhile searching for further relations between our Fourier interpolation
formula and the Riemann–Weil explicit formula.

5 Fourier Interpolation with Zeros of Dirichlet L-Functions and Other
Dirichlet Series

The methods developed above give without much additional effort Fourier interpola-
tion formulas associated with the nontrivial zeros of Dirichlet L-functions and, more
generally, of functions that are representable byDirichlet series and satisfy a functional
equation of the form L∗(k − s) = ±L∗(s), for

L∗(s) = rs/2�R(s)L(s) or L∗(s) = rs/2�C(s)L(s)

where r is some positive number. Here we use the common notation �R(s) :=
π−s/2�(s/2), �C(s) := 2(2π)−s�(s). We will now present some key results of this
kind, with emphasis on features that have not appeared earlier in our treatise.

We begin with the case of Dirichlet characters χ . We recall that the gamma factor
appearing in the functional equation for L(s, χ) differs depending onwhetherχ is even
or odd, i.e., on whether χ(−n) = χ(n) or χ(−n) = −χ(n). This leads to a principal
difference between the respective Fourier interpolation bases, and it is natural to treat
the two cases separately. In either case, however, we will need the following analogue
of Lemma 4.3.

Lemma 5.1 Let χ be a primitive Dirichlet character. There exists a positive constant
c = cχ such that

min
T≤t≤2T

max
1/2≤σ≤2

|L(σ + i t, χ)L(σ + i t, χ)|−1 ≤ exp
(
c(log log T )2

)
(5.1)

holds for all sufficiently large T .

The proof is word for word the same as that in [26], with ζ(s) replaced by
L(s, χ)L(s, χ). We could prove the same bound for minT≤t≤2T max1/2≤σ≤2 |L(σ +
i t, χ)|−1, which would suffice when χ is real. In the complex case, however, (5.1) is
useful because we integrate along segments that cross the critical strip. Invoking the
functional equation for L(s, χ), we then need lower bounds for both |L(s, χ)| and
|L(s, χ)| along such segments.

5.1 Fourier Interpolation Bases Associated with Even Primitive Characters

Theorem 1.1 only deals with even functions, but the result extends painlessly to arbi-
trary functions in H1, as there is a similar interpolation formula for odd functions.
In the case of complex characters, it is less natural to decompose the interpolation
formula into even and odd parts. We therefore take the opportunity to state and prove
in one stroke an interpolation formula for arbitrary functions.
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Theorem 5.1 Let χ be a primitive even Dirichlet character to the modulus q for some
q ≥ 2. There exist two sequences of rapidly decaying entire functions Un(z), n ∈ Z,
and Vρ, j (z), 0 ≤ j < m(ρ), with ρ ranging over the nontrivial zeros of L(χ, s), such
that for every function f inH1 and every z = x + iy in the strip |y| < 1/2 we have

f (z)= lim
N→∞

∑
0<|n|≤N

f̂

(
sgn(n)(log |n| + log q)

4π

)
Un(z)

+
(

f (−i/2)

L∗(0, χ)
+ f (i/2)

L∗(1, χ)

)
U0(z)

+ lim
k→∞

∑
|γ |≤Tk

m(ρ)−1∑
j=0

f ( j)
(

ρ − 1/2

i

)
Vρ, j (z) (5.2)

for some increasing sequence of positive numbers T1, T2, ... tending to ∞ that is
independent of f and z. Moreover, the functionsUn(z) and Vρ, j (z) enjoy the following
interpolatory properties:

U ( j)
n

(
ρ−1/2

i

)
= 0, Ûn

(
sgn(n′)(log |n′|+log q)

4π

)
= δn,n′ ,

V ( j ′)
ρ, j

(
ρ′−1/2

i

)
= δ(ρ, j),(ρ′, j ′), V̂ρ, j

(
sgn(n)(log |n|+log q)

4π

)
= 0,

(5.3)

with ρ, ρ′ ranging over the nontrivial zeros of L(s, χ), j, j ′ over all nonnegative
integers less than or equal to respectively m(ρ) − 1,m(ρ′) − 1, and n, n′ are in
Z � {0}.

The distinguished function U0(z) satisfies U0(0) = U0(1) = 1/2 as well as

U ( j)
0

(
ρ − 1/2

i

)
= 0 and Û0

(
sgn(n)(log |n| + log q)

4π

)
= 0 (5.4)

when, as above, ρ ranges over the nontrivial zeros of L(s, χ), j over all nonnegative
integers less than or equal to m(ρ) − 1, and n over all integers different from 0. The
formula takes however a more involved and interesting form at the special points 0
and 1 as will be exhibited after we have established the theorem. As in the proof
of Theorem 1.1, we will resort to the change of variable z = (s − 1/2)/i and use
Mellin instead of Fourier transform. Most of the proof follows the same lines as that
of Theorem 1.1, and we therefore omit some of the computations.

Proof sketch of Theorem 5.1 We set

Hδ(w, s;χ) := L∗(s, χ)

2L∗(w, χ)
Aδ

1/2(w/2, s/2),

where L∗(s, χ) = qs/2�R(s)L(s, χ). These kernels satisfy the functional equations

Hδ(w, s;χ) = δw(χ)Hδ(1 − w, s;χ), (5.5)
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where w(χ) is the root number of L(s, χ). We now consider the operator

(Tχ F)(s) := 1

4π i

∫ c+i∞
c−i∞

[
H+(w, s;χ)F(w) + w(χ)H+(1 − w, s;χ)F(1 − w)

]
dw

+ 1

4π i

∫ c+i∞
c−i∞

[
H−(w, s;χ)F(w) − w(χ)H−(1 − w, s;χ)F(1 − w)

]
dw,

(5.6)

where both 1 − c < Re s < c and c > 1, with the additional assumption that F(s) is
analytic in 1 − c ≤ Re s ≤ c and

sup
1−c≤σ≤c

∫ ∞

∞
|F(σ + i t)|(1 + |t |)dt < ∞.

Following the corresponding computation in Sect. 4.3, we may compute the integrals
on the right-hand side of (5.6) and get

(Tχ F)(s) = 1

4
L∗(s, χ)

∞∑
n=1

(M−1F)((qn)1/2)
∑
d2|n

μ(d)χ(d)(α+
n/d2

(s) + α−
n/d2

(s))

+ 1

4
L∗(s, χ)w(χ)

∞∑
n=1

(M−1F)((qn)−1/2)(qn)−1/2

∑
d2|n

μ(d)χ(d)(α−
n/d2

(s) − α+
n/d2

(s)),

where we have set α±
n (s) := α±

n,1/2(s/2). On the other hand, viewing the two integrals
on the right-hand side of (5.6) as contour integrals,wemayuse the functional equations
(5.5) and the residue theorem to deduce that

(Tχ F)(s) = f (s) − α−
0 (s)qs/2L(s, χ)

(
F(0)

L∗(0, χ)
+ F(1)

L∗(1, χ)

)

+ 1

2
lim

k→∞
∑

|γ |≤Tk

(
Resw=ρ H+(w, s;χ)F(w) + Resw=ρ H−(w, s;χ)F(w)

)

for some sequence Tk → ∞. To achieve this, we use the sub-convexity bound L(1/2+
i t) � q1/2|t |1/6 log(q|t |) (see [10, p. 149]), along with Lemma 4.2 and Lemma 5.1.
We arrive at (5.2) by equating our two expressions for (Tχ F)(s) and changing back
to Fourier transforms and the variable z = (s − 1/2)/i .

To evaluate (5.2) at s = 1, we recall from (4.4) that

A+
1/2(w/2, 1/2) = −2ζ ∗(w).
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Plugging this into (5.2), we arrive at

f (−i/2) + L∗(1, χ)

L∗(0, χ)
f (i/2)

= q1/2L(1, χ)

∞∑
n=1

(qn)−1/2 f̂
( log n + 1

2 log q

2π

)∏
p|n

(1 − χ(p))

− q1/2L(1, χ)w(χ)

∞∑
n=1

(qn)−1/2 f̂
(− log n − 1

2 log q

2π

)∏
p|n

(1 − χ(p))

+ q1/2L(1, χ) lim
k→∞

∑
|γ |≤Tk

Resw=ρ

ζ(w)

qw/2L(w, χ)
f (w), (5.7)

which has a curious resemblance with the Riemann–Weil Formula.

5.2 Fourier Interpolation Bases Associated with Odd Characters

In this case of odd characters, the gamma factor for L(s, χ) is π−(s+1)/2�((s + 1)/2),
and thus we will use the function A±

3/2(
w+1
2 , s+1

2 ) which involves the same gamma
factor. Note that the abscissa of convergence and the abscissa of absolute convergence
of w 
→ A±

3/2(
w+1
2 , s+1

2 ) are both equal to 2, and we therefore need to require that
functions be analytic in a strip of width 3 + ε. As in the preceding cases, we need
a growth condition in the strip, but we may require less at the boundary of the strip
because the Dirichlet series kernel converges absolutely there. We find it convenient
to restrict to functions f that are analytic in the strip | Im z| < 3/2 + ε and satisfy

| f (x + iy)| � (1 + |x |)−1−ε

for some ε > 0, where we in the latter inequality assume that |y| ≤ (3 + ε)/2. We
letH2 denote the space of all such functions.

Theorem 5.2 Let χ be a primitive odd Dirichlet character to the modulus q for some
q ≥ 3. There exist two sequences of rapidly decaying entire functions Un(z), n ∈ Z,
and Vρ, j (z), 0 ≤ j < m(ρ), with ρ ranging over the nontrivial zeros of L(χ, s), such
that for every function f inH2 and every z = x + iy in the strip |y| < 1/2 we have

f (z)= lim
N→∞

∑
0<|n|≤N

f̂

(
sgn(n)(log |n| + log q)

4π

)
Un(z)

+
(

f (−3i/2)

L∗(0, χ)
+ f (3i/2)

L∗(1, χ)

)
U0(z)

+ lim
k→∞

∑
0<|γ |≤Tk

m(ρ)−1∑
j=0

f ( j)
(

ρ − 1/2

i

)
Vρ, j (z) (5.8)
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for some increasing sequence of positive numbers T1, T2, ... tending to ∞ that does
not depend on neither f nor on z. Moreover, the functions Un(z) and Vρ, j (z) enjoy
the following interpolatory properties:

U ( j)
n

(
ρ−1/2

i

)
= 0, Ûn

(
sgn(n′)(log |n′|+log q)

4π

)
= δn,n′ ,

V ( j ′)
ρ, j

(
ρ′−1/2

i

)
= δ(ρ, j),(ρ′, j ′), V̂ρ, j

(
sgn(n)(log |n|+log q)

4π

)
= 0,

(5.9)

with ρ, ρ′ ranging over the nontrivial zeros of ζ(s), j, j ′ over all nonnegative integers
less than or equal to respectively m(ρ) − 1,m(ρ′) − 1, and n, n′ are in Z � {0}.

As in the case of even characters, the distinguished function U0(z) satisfies (5.4),
and we also have U0(±3i/2) = 1/2. The formula at the special points ±3i/2 will be
somewhat more complicated than (5.7) and will instead of ζ(w) involve the Dirichlet
series

−
∞∑
n=1

r3(n)n−(w+1)/2,

where r3(n) is the number of representations of n as the sum of squares of 3 integers.

Proof We define the Dirichlet series kernel

Hδ(w, s;χ) := L∗(s, χ)

2L∗(w, χ)
Aδ

3/2

(w + 1

2
,
s + 1

2

)

and follow the same argument as in Theorem 5.1.

5.3 Fourier Interpolation with Zeros of Other Dirichlet Series

We may deduce an abundance of further Fourier interpolation formulas based on the
techniques developed in Sect. 4, as will now be briefly explained. Detailed analysis
of these generalizations falls outside the scope of this paper, so we only sketchily
outline the details, and in each case, we will only indicate the construction of the
corresponding Dirichlet series kernels H±(w, s) that lead to the interpolation formula
with� being the (multi-)set given by a suitable rotation of the nontrivial zeros of L(s).

5.3.1 Dedekind Zeta Functions of Imaginary Quadratic Fields and Hecke L-Functions
of Modular Forms

First, we obtain Fourier interpolation formulas associated with zeros of Dedekind zeta
functions ζK (s) for imaginary quadratic fields K . In this case we define

H±(w, s) := ζ ∗
K (s)

ζ ∗
K (w)

A±
1 (w, s),
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where ζ ∗
K (s) = |�K |s/2�C(s)ζK (s) is the completed zeta function and �C(s) =

2(2π)−s�(s). More generally, this construction applies to products of two Dirich-
let L-functions whose (primitive) characters have different parity, i.e., L(s) =
L(s, χ1)L(s, χ2) where χ1 is an even character and χ2 is an odd character. In
this case the corresponding sequence of points on the Fourier side is �∗ =
{± log(2n

√
N )/(2π)}, where N is the conductor, i.e., N = |�K | for L(s) = ζK (s)

and N = q1q2 for L(s) = L(s, χ1)L(s, χ2).
Next, using A±

k (w, s) for an even integer k ≥ 2 we can construct Fourier inter-
polation formulas associated to zeros of Hecke L-functions of modular forms. More
precisely, let f in Sk(�0(N )) be a normalized Hecke newform. Then L(s, f ) =∑

n≥1 ann
−s admits an analytic continuation to C and satisfies L∗(k − s, f ) =

L∗(s, f ), where L∗(s, f ) = Ns/2�C(s)L( f , s) is the completed L-function. In this
case, we define H±(w, s) as

H±(w, s) := L∗(s, f )

L∗(w, f )
A±

k (w, s).

The formula again involves the sequence �∗ = {± log(2n
√
N )/(2π)}.

5.3.2 Dirichlet Series Without Euler Products

Furthermore, we may obtain a continuous family of Fourier interpolation formulas
associated with the sequence of points �∗ = {0,±(log n)/(4π), n ≥ 1} by starting
from kernels of the form

H±
k,ε,s0

(w, s) := Aε
k(s/2, s0)

Aε
k(w/2, s0)

A±ε
k (w/2, s), (5.10)

where s0 is some fixed point satisfying 0 ≤ Re s0 ≤ k. The (multi-)set � dual to �∗
will now be a suitable rotation and translation of the zero set of Aε

k(w/2, s0).
We may however need to put more severe restrictions on the functions represented

by Fourier interpolation formulas associated with kernels such as those defined by
(5.10). Indeed, since the denominator of (5.10) in general can not be represented as
an Euler product, the techniques from [26] must be abandoned. In the absence of
a multiplicative structure, we may resort to the following classical argument, yield-
ing a much cruder bound than that of Lemma 4.3. We use then that the function
A(w) := Aε

k(w/2, s0) grows polynomially in the vertical direction, and hence, by
Jensen’s formula, the number of zeros in a strip of width 1 at height T is O(log T ).
An application of the Borel–Carathéodory theorem shows that

|A(w)|∏
|γ−T |≤1 |s − ρ| ≥ T−C
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for some constant C when | Imw − T | ≤ 1/2. Hence we can find an η, |η| ≤ 1/2,
such that
∫ σ0

1−σ0

|F(σ + i(T + η)|−1dσ ≤ TC
∫ σ0

1−σ0

∏
|γ−T |≤1

|σ + i(T + η) − ρ)|−1dσ � T c log log T

(5.11)
for some constant c. The bound in (5.11) is our replacement for Lemma 4.3, and,
consequently, we need to require that functions decay accordingly.

The individual basis functions arising from kernels of the form (5.10) will have
additional poles at s = 2s0 and s = 2(k − s0), and hence they do not belong to any
nice function space. The situation is particularly bad in the most natural case when
s0 is on the line of symmetry Re s = k/2. Then the inverse Fourier transform of any
basis function is neither integrable nor in any L p space for p < ∞. This is a less
attractive feature of “basis decompositions” stemming from (5.10).

5.3.3 Further Extensions andMore Complicated Gamma Factors

Further extensions are obtained if we apply algebraic operations that preserve func-
tional equations in a suitable way. We may for instance take linear combinations
of L-functions that satisfy the same functional equation. Moreover, we may, for an
arbitrary polynomial P of degree n, multiply for example a Dirichlet L-function by
rns/2P(r−(s−1/2)) with r > 1 an integer and P(0) = 0. Then the polynomial

Q(z) = zn P(1/z)

will appear in the functional equation, where n is the degree of P . In other words, any
complex arithmetic progression with common difference 2π/ log r may be adjoined
to a given multi-set � stemming from the nontrivial zeros of an L-function to which
our methods apply. This allows us, in particular, to establish a Fourier interpolation
formula associated with every Dirichlet L-function L(s, χ), irrespective of whether χ
is primitive or not. As should be clear from the preceding two subsections, by adjoining
such an arithmetic progression, we will find that both the negative and positive part of
the sequence �∗ are “pushed away” by log r/(4π) from the origin.

We can also treat Dirichlet series with more complicated gamma factors, although
in this case the results are less satisfactory in the sense that while we get a Fourier
interpolation formula, in general the resulting functions Un and Vρ, j will no longer
form a basis, and wewill not get the interpolatory properties like in (1.3). For example,
let L(s) satisfy L∗(1 − s) = L∗(s) where L∗(s) = Ns/2�

r1
R

(s)�r2
C

(s)L(s), and let

L0 be another Dirichlet series such that L∗
0(s) = Ns/2

0 �
r1−1
R

(s)�r2
C

(s)L0(s). Then we
can form a Dirichlet series kernel

H±(w, s) := L∗(s)
L∗(w)

L∗
0(w)A±

1/2(w/2, s/2),

which has the expected poles and leads to a Fourier interpolation formula with zeros
of L(s) and �∗ = {0,± log(nN/N0)

4π , n ≥ 1}.
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5.3.4 Density of Interpolation Nodes

Let us finally note that Kulikov’s inequality for � and �∗ (see (2.10)) will hold in
the same marginal way as when � consists of the zeros of ζ(s), whenever these
sequences (or multisets) are constructed as indicated above. Indeed, we may in all the
above cases establish a Riemann–vonMangoldt formula.Wemay for instance observe
that the number of nontrivial zeros ρ = β + iγ of A(w) satisfying |γ | ≤ T will be

T

π
log

T

2πe
+ O(log T ).

We follow the standard approach to prove this, i.e., we apply the argument princi-
ple along with the functional equation, and we use the Hadamard product of A(w)

to control its logarithmic derivative. If we adjoin arithmetic progressions to � by
multiplying, say, a Dirichlet L-function by rns/2P(r−(s−1/2)), then there will be an
additional term

nT

π
log r

in the Riemann–von Mangoldt formula, balancing the “repulsion” by n log r/(4π) of
the sequence �∗ from the origin.

6 Estimates for the Fourier Coefficients of F±
k (�, s)

In this section we will derive estimates for the growth of α±
n,k(s) and certain related

quantities as a function of n. As before, we assume that k ≥ 0.
First, it will be convenient to define two quantities related to γτ , which we recall is

the (generically unique) element of �θ that maps τ ∈ H to the fundamental domainF .
The first quantity is I(τ ), the imaginary part of γτ τ , i.e.,

I(τ ) := Im γτ τ.

It is easy to see that the function I : H → R is continuous and�θ -invariant. The second
quantity isN : H → Z≥0, which we define as one plus the number of inversions S that
appear in the canonical representation of γτ , i.e.,

N(τ ) := j + ε0 + ε1, γτ = Sε0T 2m1 ST 2m2 . . . ST 2m j Sε1 .

In cases when γτ is not uniquely defined, i.e., for τ ∈ �θ∂F , we set N(τ ) to be the
larger of the two possible values.

6.1 Estimates for the Contour Integral

Our first step is to show that F±
k (τ, s) is bounded for τ ∈ F . We prove this for the

slightly more general functions F±
k (τ, ϕ) from Theorem 3.1, as long as ϕ is bounded
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Fig. 4 The domain D

on the domain D illustrated in Fig. 4. Explicitly we set

D := {τ ∈ H : |Re τ | < 1,
√
3/4 < |τ | <

√
4/3, |τ±1/2| > 1/2};

the particular shape of D is not important as long as it contains the geodesic from −1
to 1 and lies in F ∪ SF .

Proposition 6.1 Let k ≥ 0 and ϕ : H → C be analytic such that |ϕ(τ)| ≤ Cϕ for τ in
D, where D is defined as above. Then for τ ∈ F we have

|F±
k (τ, ϕ)| �k

{
Cϕ, k±1 /∈ 1 + 4Z ,

Cϕ Im(τ )−1, otherwise .

Proof Without loss of generality we may assume that Re τ is in (−1, 0), |τ | > 1,
and that |τ − i | > 1/10 (for τ close to i we get the claimed bound using the contour
deformation from Fig. 3). We will also assume that Im τ ≤ 1/2 (for Im τ > 1/2 the
claim follows from the same argument, but with simpler estimates). By definition of
F±
k (τ, ϕ) we have

F±
k (τ, ϕ) = 1

2

∫ i

−1
K±

k (τ, z)(ϕ(z)∓(z/i)−kϕ(−1/z))dz.

Set ϕ±(z) := 1
2 (ϕ(z)∓(z/i)−kϕ(−1/z)). Note that ϕ+(i) = 0. Since D is invariant

under z 
→ −1/z, by assumption we have

|ϕ±(z)| �k Cϕ, z ∈ D.

To estimate the integral, we change the variable of integration to w = J (z) and
deform the contour of integration in w from the segment [0, 64] to a curve � in the
lower half-plane (see Fig. 2) in such a way that its preimage under J in F ∪ SF lies
in D. Using (3.6) to make the change of variables, we obtain

F−
k (τ, ϕ) = J−(τ )θ2k(τ )

J ν−−1(τ )

∫ i

−1

J ν−(z)

θ2k(z)

1

J (τ ) − J (z)
ϕ−(z)θ4(z)dz

= 1

π

J−(τ )θ2k(τ )

J ν−−1(τ )

∫ 64

0

1

θ2k(t(w))

ϕ−(t(w))

J (τ ) − w
wν−−1/2(64 − w)−1/2dw,
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where t(w) is the inverse function to z 
→ J (z). Since J (τ ) belongs to the upper
half-plane andw belongs to the lower, we have |J (τ )−w| � √|J (τ )|2 + |w|2. From
this we get

|F−
k (τ, ϕ)| � Cϕ

|J−(τ )θ2k(τ )|
|J ν−−1(τ )|

∫
�

|w|ν−−1/2|64 − w|−1/2

|θ2k(t(w))|√|J (τ )|2 + |w|2 |dw|

�k Cϕ

|J−(τ )θ2k(τ )|
|J ν−−1(τ )|

(
1 +

∫ −ie−1

0

|w|ν−−(k+2)/4|64 − w|−1/2

logk |w−1|√|J (τ )|2 + |w|2 |dw|
)

� Cϕ

|J−(τ )θ2k(τ )|
|J ν−−1(τ )|

(
1 +

∫ e−1

0
log−k(t−1)

t−{(k+2)/4}√|J (τ )|2 + t2
dt
)
.

From this we obtain (using Lemma 6.1 below), for k /∈ 2 + 4Z,

|F−
k (τ, ϕ)| �k Cϕ

|J−(τ )θ2k(τ )|
|J (k−2)/4(τ )| Im(τ )k �k Cϕ

when τ approaches the real line inside the fundamental domain. For k ∈ 2+ 4Z using
the same argument we obtain

|F−
k (τ, ϕ)| �k Cϕ Im(τ )−1 .

For F+
k we calculate

F+
k (τ, ϕ) = θ2k(τ )

J ν+−1(τ )

∫ i

−1

J ν+(z)

θ2k(z)

J−(z)

J (τ ) − J (z)
ϕ+(z)θ4(z)dz

= 1

π

θ2k(τ )

J ν+−1(τ )

∫ 64

0

1

θ2k(t(w))

ϕ+(t(w))

J (τ ) − w
wν+−1dw

and again using Lemma 6.1 we get

|F+
k (τ, ϕ)| � |θ2k(τ )|

|J ν+−1(τ )|
∫

�

|ϕ+(t(w))|
|θ2k(t(w))|

|w|ν+−1√|J (τ )|2 + |w|2 |dw|

�k Cϕ

|θ2k(τ )|
|J ν+−1(τ )|

(
1 +

∫ e−1

0
log−k(t−1)

t−{(k+4)/4}√|J (τ )|2 + t2
dt
)
.

Thus for k /∈ 4Z we have

|F+
k (τ, ϕ)| �k Cϕ

|θ2k(τ )|
|J k/4(τ )| Im(τ )k �k Cϕ,

and for k ∈ 4Z we get |F+
k (τ, ϕ)| �k Cϕ Im(τ )−1.

In the proof above we have used the following simple lemma.
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Lemma 6.1 Let α be a real number and β be a number in (−1, 0]. Then as T → ∞
∫ e−1

0

tβ logα(t−1)√
T−2 + t2

dt �
{
T−β logα T , β < 0 ,

logα+1 T , β = 0, α = −1 .

Proof. For β < 0 we have

∫ e−1

0

tβ logα(t−1)√
T−2 + t2

dt � T
∫ T−1

0
tβ logα(t−1)dt +

∫ e−1

T−1
tβ−1 logα(t−1)dt

= T E−α((1 + β) log T ) log1+α T +
∫ log T

1
e−βx xαdx � T−β logα T ,

where Ea(x) := ∫∞
1

e−xt

ta dt ∼ e−x

x , x → +∞, and the implied constants only depend
on α and β. Similarly, for β = 0 we have

∫ e−1

0

logα(t−1)√
T−2 + t2

dt � T E−α(log T ) log1+α T + logα+1(T )

α + 1
� logα+1 T .

In particular, since ϕ(τ) = (τ/i)−s is obviously bounded in D, the above proposi-
tion applies to F±

k (τ, s) and shows that it is bounded in F .

6.2 Estimates for F±
k (�,')Near the Real Line

To estimate F±
k (τ, ϕ) away from the fundamental domain we repeatedly apply peri-

odicity and the functional equation (3.3). Let us denote by | the slash operator |±k in
weight k twisted by the character of �θ that sends S to ±1. To further simplify the
notation we will write F(τ ) instead of F±

k (τ, ϕ).
Let us denoteψ = 2ϕ±.We define a 1-cocycle {ψγ }γ∈�θ in such away thatψS = ψ

and ψT 2 = 0. In other words, the functions ψγ satisfy

ψγ1γ2 = ψγ2 + ψγ1 |γ2, γ1, γ2 ∈ �θ .

Any such 1-cocycle is uniquely determined by ψS and ψT 2 since �θ is generated by S
and T 2, and since the only relation between the generators is S2 = 1 and by definition
ψ satisfies ψ + ψ |S = 0, the family of functions {ψγ }γ is indeed well-defined. Note
that, more generally, for γ1, . . . , γn ∈ �θ we have

ψγ1γ2...γn = ψγn + ψγn−1 |γn + · · · + ψγ1 |γ2 . . . γn . (6.1)

Since γ 
→ F − F |γ and γ 
→ ψγ are 1-cocycles that take equal values on the
group generators, we have F − F |γ = ψγ for all γ ∈ �θ .

Let τ ∈ H be such that Re τ ∈ (−1, 1) and |τ | < 1, and consider the element
γ ∈ �θ that sends τ0 ∈ ⋃

j∈Z(2 j + F) to τ . Let us write γ as ST 2mn S . . . T 2m1 S,
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mi ∈ Z�{0}, which we can assure by changing τ0 by a translation, if necessary. Then,
using (6.1) and the fact that ψT 2 = 0 we get

ψγ = ψ + ψ |T 2m1 S + · · · + ψ |T 2mn S . . . T 2m1S. (6.2)

Note that the slash action has the property

|( f |kγ )(τ )| = | f (γ τ)| Im(γ τ)k/2

Im(τ )k/2
.

In particular, (6.2) implies

|ψγ (τ0)| Im(τ0)
k/2 ≤ |ψ(τ0)| Im(τ0)

k/2 + |ψ(τ1)| Im(τ1)
k/2 + · · · + |ψ(τn)| Im(τn)

k/2,

where τ j = T 2m j S . . . T 2m1Sτ0, and τ = Sτn . Therefore,

|F(τ )| Im(τ )k/2 ≤ |F(τ0)| Im(τ0)
k/2 + |ψ(τ0)| Im(τ0)

k/2 +
n∑

i=1

|ψ(τi )| Im(τi )
k/2.

(6.3)

Proposition 6.2 With the above notation assume that |ψ(z)| ≤ C for |z| ≥ 1/2. Then

|F(τ )| Im(τ )k/2 �k

⎧⎪⎨
⎪⎩
C(I(τ )k/2 + N(τ )1−k/2) k ∈ (0, 2),

C(I(τ ) + log(1 + Im(τ )−1)) k = 2,

C(I(τ )k/2 + 1) k > 2.

(6.4)

Proof Since |τ0| ≥ 1 by induction we see that for j ≥ 1 we have Im τ j ≤ 1 and
|τ j | ≥ 1. By Proposition 6.1 the first two terms on the right of (6.3) are �k C(1 +
I(τ )k/2) and the remaining sum is trivially bounded by C

∑N(τ )
j=1 Im(τ j )

k/2. Note that

Im τ j ≤ 2/(2 j − 1) (see Lemma 2 in [25]), so that n � Im(τ )−1. Thus

n∑
j=1

Im(τ j )
k/2 �k

⎧⎪⎨
⎪⎩

(n + 1)(2−k)/2 k ∈ (0, 2),

log(n + 1) k = 2,

1 k > 2.

Since n + 1 = N(τ ) and n � Im(τ )−1 this implies the claim.

6.3 Estimates for the Fourier Coefficients

From now on we concentrate on the case ϕ(τ) = (τ/i)−s . Using the estimates for
I(τ ) and N(τ ) from Sects. 6.4 and 6.5 below, we will now obtain various estimates
for α±

n,k(s). For 0 ≤ Re s ≤ k define

c(s) := max|z|≥1/2
|(z/i)−s±(z/i)s−k | ≤ 2k+1eπ | Im s|/2. (6.5)
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Proposition 6.3 Let k > 0 and 0 ≤ Re s ≤ k. Then

α±
n,k(s) �k

⎧⎪⎨
⎪⎩
c(s)nk/2(1 + log2−k n), k ∈ (0, 2),

c(s)n(1 + log n), k = 2,

c(s)nk−1, k > 2,

where c(s) is defined in (6.5).

Proof We have α±
n,k(s) = 1

2

∫ i/n+1
i/n−1 F±

k (τ, s)e−π inτdτ . Therefore, for 0 < k < 2 we
have

|α±
n,k(s)| �k n

k/2 c(s)

2

∫ 1

−1
(I(x + i/n)k/2 + N(x + i/n)1−k/2)dx

�k c(s)n
k/2(1 + log2−k n),

where we have used Proposition 6.6 and Corollary 6.1. Similarly, for k = 2 we have

|α±
n,2(s)| �k n

c(s)

2

∫ 1

−1
(I(x + i/n) + log n)dx � c(s)n(1 + log n),

and for k > 2 we have

|α±
n,k(s)| �k n

k/2 c(s)

2

∫ 1

−1
(I(x + i/n)k/2 + 1)dx � c(s)nk−1,

as claimed.

Similarly, we get an estimate for sums of squares of the coefficients.

Proposition 6.4 Let k ∈ (0, 2) and 0 ≤ Re s ≤ k. Then for x ≥ 2 we have

∑
n≤x

|α±
n,k(s)|2 �k c(s)

2xk+|k−1| log2 x .

Proof Using Proposition 6.2 we get

∑
n≥0

|α±
n,k(s)|2tke−2πnt

= 1

2

∫ 1+i t

−1+i t
|F(τ )|2 Im(τ )kdτ �k c(s)

2
∫ 1

−1
(I(x + i t)k + N(x + i t)2−k)dx .

By Proposition 6.6 and Corollary 6.1 the integral on the right is bounded by
t−|k−1| log2(1/t). Setting t = 1/x gives the claim.

123



Constructive Approximation

Note that from the proof of Lemma 4.1 it follows that for k ≥ 1 and 0 < Re s < k
the Dirichlet series defining A±

k (w, s) converges absolutely for Rew > k. Since for
1 ≤ k < 2 the function w 
→ A−

k (w, s) has a pole at w = k, we see that the above
bound is optimal up to powers of log x in this range.

Finally, we give an approximation to the partial sums
∑

n≤x α±
n,k(s).

Proposition 6.5 Let 0 < k < 2 and k/2 ≤ Re s ≤ k. Then

∑
n≤x

α±
n,k(s) = ±α±

0,k(s)
(πx)k

�(k + 1)
+ (πx)s

�(s + 1)
+ O(c(s)xk/2 log3x).

Proof Let x = N + 1/2, where N ∈ Z and define S(x) = ∑
n≤x α±

n,k(s). To simplify

the notation we will write F(τ ) = F±
k (τ, s). Since

∑N
n=0 e

−π inτ = eπ iτ −e−Nπ iτ

eπ iτ −1
we

have

S(x) = 1

2

∫ 1+i/x

−1+i/x
F(τ )

eπ iτ − e−Nπ iτ

eπ iτ − 1
dτ = i

4

∫ 1+i/x

−1+i/x
F(τ )

e−xπ iτ

sin πτ
2

dτ.

(The integral
∫ 1+i/x
−1+i/x

F(τ )eπ iτ

eπ iτ −1
dτ = −∑

m≥1

∫ 1+i/x
−1+i/x F(τ )eπ imτdτ clearly vanishes.)

Note that 1
sin πτ

2
= 2

πτ
+ O(τ ) for τ ∈ [−1+ i/x, 1+ i/x], and integrating the O(τ )

termgives an error of the order atmost O(xk/2 log2x) as in the proof of Proposition 6.3.
After applying the identity (3.13) to the part of the integral with 2

πτ
we are left with

1

2π i

∫ i+1/x

−i+1/x
(±F(i/r)r−k + r−s∓rs−k)

eπxr

r
dr .

By inverse Laplace transform we have

1

2π i

∫ i∞+1/x

−i∞+1/x

eπxr

rα+1 dr = (πx)α

�(α + 1)
, (6.6)

and thus

1

2π i

∫ i+1/x

−i+1/x
(r−s∓rs−k)eπxr r−1dr = (πx)s

�(s + 1)
∓ (πx)k−s

�(k − s + 1)
+ O(1).

Thus it remains to estimate

± eπ

2π

∫ 1

−1
F
( t x2 + i x

1 + t2x2

)
(i t + 1/x)−k−1eπxi t dt .

We split this integral into two parts: |t | ≤ 1
2
√
x
and 1 ≥ |t | ≥ 1

2
√
x
. To estimate the

integral for |t | ≤ 1
2
√
x
we plug in the Fourier expansion of F . By (6.6) the constant
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term gives a contribution of

±α±
0,k(s)

(πx)k

�(k + 1)
+ O(xk/2).

The rest of the terms are α±
n,k(s)In , where

In := ± eπ

2π

∫ 1
2
√
x

− 1
2
√
x

exp
(−πnx + π int x2

1 + t2x2

)
(i t + 1/x)−k−1eπxi t dt .

Weclaim that In � e−πnx (k−1)/2 when x ≥ 16, say. To see this,we begin by observing
that, by symmetry and a trivial estimate, it suffices to consider

Jn :=
∫ 1

2
√
x

2
x

exp
(−πnx + π int x2

1 + t2x2

)
(i t + 1/x)−k−1eπxi t dt (6.7)

and show that Jn � e−πnx (k−1)/2. To this end, we set

B(t) := exp
( −πnx

1 + t2x2

)
|i t + 1/x |−k−1,

A(t) := πntx2

1 + t2x2
+ πxt − (k + 1) Im log(i t + 1/x),

so that the integrand in (6.7) can be written as B(t) exp(i A(t)). We observe that

B(t) � e−πnx−(k+1)/2

uniformly for |t | ≤ 1/(2
√
x). Moreover,

A′(t) = πn(1/x2 − t2)

(1/x2 + t2)2
+ πx − Im

i(k + 1)

i t + 1/x
� nx

uniformly for 2/x ≤ t ≤ 1/(2
√
x). A calculus argument shows that B(t)/A′(t) is a

decreasing function on that interval, whence a classical bound for oscillatory integrals
[29, Lem. 4.3] yields the asserted bound

Jn � max
2/x≤t≤1/(2

√
x)

B(t)

|A′(t)| � e−πnx (k−1)/2.

Summing this over all n ≥ 1, we obtain the asserted contribution O(x (k−1)/2).
Finally, we split the integral over |t | ≥ 1

2
√
x
into intervals [ 1

2n+1 ,
1

2n−1 ], n ≤ √
x +

1/2. Using the change of variables t 
→ 1
2n+t which sends [−1, 1] to [ 1

2n+1 ,
1

2n−1 ],
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and noting that (2n+t)−1x2+i x
1+(2n+t)−2x2

is very close to 2n + t + 4n2
x i , we get

∫
|t |≥ 1

2
√
x

�
∑

n≤√
x+1

nk−1
∫ 1

−1
|F(t + 4n2i/x)|dt �k xk/2 log2x

∑
n≤√

x+1

n−1

� xk/2 log3x .

This concludes the proof.

6.4 Estimate for I(�)

Proposition 6.6 For 0 < y < 1/2 we have

∫ 1

−1
I(x + iy)αdx �α

⎧⎪⎨
⎪⎩
ll1 α ∈ (0, 1),

log(y−1) α = 1,

y1−α α > 1.

(6.8)

Proof Fix y = N−1. Since Im aτ+b
cτ+d = Im τ

|cτ+d|2 and γ (τ) ∈ F if and only if Im γ (τ)

is maximal among all γ ∈ �θ , we see that

I(x) := I(x + iy) = max

{
y

(cx − d)2 + c2y2

∣∣∣ (c, d) = 1, 2|cd
}

.

Without loss of generalitywe only consider (c, d)with c > 0.Note that N−1 ≤ I(x) ≤
N for all x ∈ [−1, 1]. Let I(x) ≥ T > 2. Therefore (cx − d)2 + c2N−2 ≤ N−1T−1

for some c, d with c > 0, which implies c ≤ √
N/T and |x−d/c| ≤ 1

c
√
NT

. If (c′, d ′)
is a different pair with c′ ≤ √

N/T such that |x − d ′/c′| ≤ 1
c′√NT

, then

1

cc′ ≤ |d/c − d ′/c′| ≤ 1

c
√
NT

+ 1

c′√NT
≤ 2

cc′T
,

which is impossible. Hence the above inequality can hold only for one pair (c, d)with
c ≤ √

N/T . Conversely, if |x − d/c| ≤ 1
c
√
NT

and c ≤ √
N/T , then I(x) ≥ T /2. Let

us denote

u(T ) := 2√
NT

∑
c≤√

N/T

2ϕ(c)

c
,

where ϕ is Euler’s totient function. Then a simple estimate shows that u(T ) ≤ 4/T
for T < N . Moreover, for T > 2 the measure of the set I−1([T , N ]) belongs to the
interval [u(2T ), u(T )]. From this we see that for k ≥ 1

μ(I−1([2k, 2k+1])) ≤ u(2k) ≤ 22−k,
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so that

∫ 1

−1
Iα(x)dx ≤ 22+α

∑
k≤log2(N )

2(α−1)k + 21+α,

which immediately implies (6.8).

6.5 Estimate for N(�)

Proposition 6.7 We have

∫ 1

−1
N(x + iy)dx = 2

π2 log
2 y + O(log y), y → 0.

Corollary 6.1 For y ∈ (0, 1) we have

∫ 1

−1
N(x + iy)αdx � log2α(1 + y−1), 0 < α ≤ 1,

∫ 1

−1
N(x + iy)αdx �α y1−α log2(1 + y−1), α > 1.

Proof For 0 < α ≤ 1 the claim follows from Proposition 6.7 by Hölder’s inequality.
Since N(x + iy) � 1 + y−1, for α > 1 we have

∫ 1

−1
Nα(x + iy)dx � (1 + y−1)α−1

∫ 1

−1
N(x + iy)dx � (y/2)1−α log2(1 + y−1),

from which we obtain the second claim.

Proof of Proposition 6.7 We setU j := {τ : |τ | < 1,N(τ ) ≥ j+1}. From the definition
of N(τ ) it follows that U1 = D = {τ ∈ H : |τ | < 1}. Moreover, from the description
of the greedy algorithm for computing γτ , we have N(τ ) = N(−1/τ)+ 1 for |τ | < 1,
which leads to the recursion U j+1 = ⊔

n =0 ST
2nU j . This implies that

U j+1 =
⊔

n1,...,n j =0

ST 2n1 . . . ST 2n j D, j ≥ 0.

By the definition of U j , we have

N(τ ) = 1 +
∑
j≥1

1U j (τ ) = 1 +
∑
γ∈C

1γ (D)(τ ), |τ | < 1, (6.9)

where C denotes the set of all elements of the form γ = ST 2n1 . . . ST 2n j for j ≥ 0
with n1, . . . , n j = 0.
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Note that the preimage (in �θ ) of (c, d) under the map ( a b
c d )

r
−→ (c, d) is the coset
T 2Z( a b

c d ).Any such coset contains exactly one element of the form ST 2n j . . . ST 2n1Sδ .
A simple inductive argument shows that if ( a b

c d ) ∈ C, then |c| < |d|, and if ( a b
c d ) ∈ CS,

then |c| > |d|. Thus r provides a bijection between C and the setN of all pairs (c, d)

with |c| < |d|, gcd(c, d) = 1, and c ≡ d (mod 2), modulo the equivalence relation
(c, d) ∼ (−c,−d).

Define �(y) := ∫ 1
−1N(x + iy)dx and for Re s > 1 consider

�(s) :=
∫ ∞

0
(�(y) − 2)ys−1dy.

For γ = ( a b
c d ) ∈ �θ , γ (D) is a half-disk with endpoints γ (±1) and radius 1

2 |γ (1) −
γ (−1)| = |c2 − d2|−1. An elementary calculation then shows that for γ = ( a b

c d ) we
have

∫ 1

−1

∫ ∞

0
1γ (D)(x + iy)ys−1dydx = |c2 − d2|−s−1�(s/2)�(3/2)

�((s + 3)/2)
.

Combined with (6.9) and the above description of C we get

�(s) = �(s/2)�(3/2)

�((s + 3)/2)

∑
(c,d)∈N

|c2 − d2|−s−1 = �(s/2)�(3/2)

�((s + 3)/2)

ζ 2
odd(s + 1)

ζodd(2s + 2)
,

where ζodd(s) = ∑
n≥1(2n − 1)−s . To obtain this identity we have used the bijection

(c, d) 
→ (c − d, c + d) between N and the set of all pairs of coprime odd integers
(m, n) with opposite signs, again modulo (m, n) ∼ (−m,−n). The function �(s) is
meromorphic in the half-plane Re s > −1/2 with the only singularity at s = 0 with
principal part

�(s) = 4

π2s3
+ c2

s2
+ c1

s
+ O(1), s → 0

for some c1, c2 ∈ R. Since |�(u + iv)| �u |v|−5/4 for u > −1/2, by a standard
application of the inverse Mellin transform we obtain

�(y) = 2π−2 log2 y − c2 log y + c1 + 2 + Oε(y
1/2−ε), y → 0.

The constants c1, c2 are explicit, albeit complicated, for instance,

c2 = 12 + 4 log 2 − 24 logπ − 288ζ ′(−1)

3π2 = 1.180066... .
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7 The Fourier Interpolation Basis of Theorem A Revisited

Itwas shown in [25, Prop. 4] that (1.4) holds if one assumes f (x), f̂ (x) � (1+|x |)−13.
Using the estimates from Sect. 6.2 we may now weaken these constraints.

Theorem 7.1 Suppose f is an even integrable function on R such that also f̂ is inte-
grable.

Suppose also that both f and f̂ are absolutely continuous and that the two inte-
grability conditions

∫ ∞

−∞
| f ′(x)|(1 + |x |)1/2 log3(e + |x |)dx < ∞,

∫ ∞

−∞
|( f̂ )′(ξ)|(1 + |ξ |)1/2 log3(e + |ξ |)dξ < ∞ (7.1)

hold. Then we may represent f as in (1.4) for every real x, with the two series in (1.4)
being in general only conditionally convergent.

The proof of this theorem relies on the following proposition.

Proposition 7.1 For x > 0 and N ≥ 1 we have

∑
n≤N

b±
n (x) = ±2b±

0 (x)N 1/2+O(N 1/4 log3N )+O(min(x−1/2N 1/4, N 1/2)), (7.2)

where b±
n are defined by (3.16) and the implied constants in the O terms are absolute.

The proposition remains true when x = 0, but in that case it is better to use the two
expressions

N∑
n=1

b−
n (0) = 0 and

N∑
n=1

b+
n (0) = −2N 1/2 + O(1), (7.3)

which are obvious consequences of the facts that b−
n (0) = 0 for all n ≥ 1 and

b+
n (0) = −2 if n is a square and otherwise b+

n (0) = 0.

Proof of Proposition 7.1 From[25, Prop. 2] it follows that that F(τ ) = ∑
n≥0 b

±
n (x)eπ inτ

is of moderate growth and

F(τ )∓(τ/i)−1/2F(−1/τ) = eπ i x2τ∓(τ/i)−1/2eπ i x2(−1/τ). (7.4)

Therefore, we have F(τ ) = F±
1/2(τ, ϕ), where ϕ(τ) = eπ i x2τ . Since ϕ(τ) is bounded

for |τ | ≥ 1/2, Proposition 6.2 implies that (6.4) holds for k = 1/2 and hence

|b±
n (x)| � n1/4(1 + log2 n).
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Then we repeat the argument from the proof of Proposition 6.5, the only difference
being that after applying (7.4) we get, along with the two first terms on the right-hand
side of (7.2), the term

1

2π i

∫ i+1/N

−i+1/N
(e−πx2r±r−1/2e−πx2/r )

eπNr

r
dr . (7.5)

The first term in the integrand in (7.5) yields trivially a contribution that is O(log N ),
and this can be absorbed in the first O term in (7.2). We estimate the contribution
from the second term in the integrand of (7.5) trivially if x ≤ N−1/2 and see that
we then get a term that is O(N 1/2). When x ≥ N−1/2, we estimate the contribution
to the integral from the interval | Im r | ≤ max(1, 2xN−1/2) trivially and use again
the bound for oscillatory integrals from [29, Lem. 4.3] to deal with the remaining
part. We obtain then a term that is O(x−1/2N 1/4) which yields the latter O term in
(7.2).

Proof of Theorem 7.1 We begin by showing that the two series in (1.4) converge. By
symmetry, it suffices to consider the first of them. By partial summation, we find that

N∑
n=K+1

f (
√
n)an(x) = f (

√
N )A(N ) − f (

√
K )A(K ) −

∫ N

K
f ′(√y)

1

2
√
y
A(y)dy,

(7.6)
where A(N ) := ∑

n≤N an(x). By Proposition 7.1 and the relation an(x) = (b+
n (x) +

b−
n (x))/2, we have

A(y) = −b−
0 (0)y1/2 + O(y1/4 log3y) (7.7)

when y = 0, but in view of (7.3), this is also true for y = 0. Since the first term on
the right-hand side of (7.7) is smooth, we may now use integration by parts in (7.6)
along with a change of variables to deduce that

N∑
n=K+1

f (
√
n)̂an(x) � | f (√N )|N 1/4 log3N + | f (√K )|K 1/4 log3K

+
∫ √

N

√
K

| f (y)|dy +
∫ √

N

√
K

| f ′(y)| y1/2 log3y dy. (7.8)

The first two terms on the right-hand side of (7.8) tend to 0 when K , N → ∞ because

f̂ (y) = −
∫ ∞

y
D f̂ (ξ)dξ � y−1/2 log−3y

∫ ∞

y
|D f̂ (ξ)|(1 + |ξ |)1/2 log3(e + |ξ |)dξ.

Here the integral to the right tends to 0 when y → ∞ in view of (7.1). The two
integrals on the right-hand side of (7.8) also tend to 0 when K , N → ∞ by the
respective integrability conditions on f and f ′.
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We now turn to the proof that equality holds in (1.4). To this end, we follow the
proof of [25, Prop. 4]. We write

RM f (x) := M1/2e−πx2/M
∫ ∞

−∞
f (x − y)e−πMy2dy

and

R̂M f (x) := M1/2
∫ ∞

−∞
f̂ (x − y)e−π(x−y)2/M−πMy2dy.

It is plain thatRM f (x) → f (x) when M → ∞, and hence it suffices to prove that

∞∑
n=0

(RM f (
√
n) − f (

√
n)
)
an(x) → 0 and

∞∑
n=0

(R̂M f (
√
n) − f̂ (

√
n)
)
ân(x) → 0

when M → ∞. We consider only the latter convergence, as the two cases are almost
identical. For convenience, we write

�̂M f (y) := R̂M f (y) − f̂ (y) and Dg := g′.

By the same argument of partial summation and integration as used in the first part of
the proof, we find that

∞∑
n=1

�̂M f (
√
n)ân(x) �

∫ ∞

1
|�̂M f (y)|dy

+
∫ ∞

1
|D�̂M f (y)| (1 + y)1/2 log3(e + y)dy. (7.9)

A routine argument, using that f̂ is integrable, shows that the first integral on the
right-hand side of (7.9) tends to 0 when M → ∞. To deal with the second integral,
we write

D�̂M f (y) = M1/2
∫ ∞

−∞
(
D f̂ (y − v) − D f̂ (y)

)
e−πMv2dv

+ M1/2
∫ ∞

−∞
D f̂ (y − v)

(
e−π(y−v)2/M − 1

)
e−πMv2dv

+ M1/2
∫ ∞

−∞
f̂ (y − v)2π(y − v)M−1e−π(y−v)2/Me−πMv2dv (7.10)

and apply again routine arguments, along with our integrability assumptions on f̂ and
D f̂ , to show that each of the corresponding three terms tends to 0 when M → ∞. We
give the details only for the last term in (7.10). To this end, it suffices to observe that

(1 + y)1/2 log3(e + y) � |y − v|δ + |v|δ
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for some δ, 1/2 < δ < 1, so that

∫ ∞

1
M1/2

∣∣∣
∫ ∞

−∞
f̂ (y − v)2π(y − v)M−1e−π(y−v)2/Me−πMv2dv

∣∣∣(1 + y)1/2 log3(e + y)dy

�
(
Mδ/2

∫ ∞

−∞
e−πMv2dv +

∫ ∞

−∞
|v|δe−πMv2dv

)
‖ f̂ ‖1,

and the latter term tends to 0 when M → ∞ since δ < 1.

As was observed in the introduction, formula (1.4) reduces to the Poisson summa-
tion formula when x = 0 in view of (1.5). Since we have the more precise formula
(7.3) (instead of (7.7)) in that case, the above proof therefore shows that the Poisson
summation formula is valid when f , f ′, f̂ , ( f̂ )′ are all integrable. Somewhat related
and refined conditions can be found in the work of Kahane and Lemarié-Rieusset [12].
See also Gröchenig’s paper [8], where it is shown that the Poisson summation formula
holds for functions in the Feichtinger algebra.

On the other hand, by a classical example of Katznelson [14], there exist functions
f with both f and f̂ in L1 for which the Poisson summation formula fails. This shows
that we need indeed an additional assumption, beyond integrability of f and f̂ , for
the Fourier interpolation formula (1.4) to hold for every real x .
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