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Observing sparkle from snow is a common phenomenon in Nature but not well studied in the literature. 

We perform a statistical study on digital snow images captured in-situ to analyze sparkle events by 

using contrast and density of sparkle spots descriptors. The method for measuring sparkles from Ferrero 

et al. is adapted, tested, and verified to the case of snow. The dataset is divided into three categories 

representing the type of snow acquired: dense snow, fresh snow, and old snow. Our analysis highlights 

the link between the sparkle of snow, the nature of snow and its grain structure. Sparkle could thus be 

a feature used for snow classification.  
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INTRODUCTION 

 

Snow is not only a nice and cold white surface, but also a complex material with a specific structure. In 

Nature, one may have a richer experience, such as various chromatic phenomena happening on the snow 

surface when illumination and observation conditions are met. This paper focuses on one of those 

particular visual phenomena: the sparkle of snow.  

 

Snow is a complex material and its perception calls on several external factors. More specifically, snow 

is made of grains whose structure can be represented by two main quantities as defined by Fierz et al. 
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[1]: the snow grain shape which describes the morphological form of snow grains, and the snow grain 

size. Some works have been conducted in the literature to identify shape factor and study the influence 

of the grain shape on the quantity of light in snow media  [2] [3], others have used close-range imaging 

or remote sensing to obtain estimates of snow grain sizes [4] [5] [6] [7].  

 

To our knowledge, the sparkle effect generated by snow was not covered specifically in any academic 

work. Yet it is possible to find work on the generation of snow sparkle. There have been some attempts 

in the computer graphics area with Wang et al. [8]. They worked on a stochastic model to simulate 

sparkle spots in real-time for virtual snow scenes used in the video game industry. Other references 

such as Jakob et al. [9] or Wang et al. [10] mention the case of snow in their work, and they test their 

rendering model with this natural material. However, none of those rendering models for sparkle are 

physically-based and therefore take into consideration the nature of the snow material and its 

complexity due to various parameters such as temperature, pressure, snow grain shape and snow grain 

size. 

 

In ASTM E284-17 Standard Terminology of Appearance [11], the sparkle is defined as "the aspect of 

the appearance of a material that seems to emit or reveal tiny bright points of light that are strikingly 

brighter than their immediate surround and are made more apparent when a minimum of one of the 

contributors (observer, specimen, light source) is moved". This definition can be referenced as the visual 

sparkle which can be experienced by a human observer. However, the sparkle considered in this article 

would be close to an imaging sparkle as it is observed through the scope of a digital camera. The term 

of imaging sparkle refers to a pixel source whose values are maxima and superior to pixel values of its 

near surrounding. Then, sparkle is considered as a pixel point and not an accumulation of pixels. 

Moreover, even though the visual and imaging sparkle are defined differently, they are linked. 

Assessing the presence of visual sparkle on a scene would likely lead to the detection of imaging 

sparkle.  
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Sparkle, as a texture effect, has been thoroughly described in various models in the case of metallic 

paintings or surfaces. One of the first model introduced was done by Ershov et al. [12] where they 

present a computational procedure to obtain sparkle texture for image rendering. Another model 

introduced by Kitaguchi et al. [13] uses digital images taken under various exposure times to reconstruct 

a HDR image and have an estimate of sparkle points. In the literature, two kinds of models can be 

described: models which generate visible sparkle on images [9] [14], and models analyzing images to 

measure the sparkle present on them [13] [15]. 

 

The model proposed by Ferrero et al. [15] has been chosen for its easy computational implementation 

and the use of the in-situ images of the dataset. The paper introduces a model for graininess and sparkle, 

both considered as texture effects. These effects are then linked to parameters of the optical system used 

for recording or capturing, the illumination and observation conditions, and the coating parameters of 

surfaces studied. This model concludes by introducing two variables to study when it comes to 

characterizing sparkle. Firstly, the contrast of sparkle spots is considered and is related to specular 

reflectance of the flakes and their size, and to the diffuse reflectance of coatings. And the second 

variable is the density of sparkle spots, which is correlated to the orientation distribution of flakes and 

their flatness. 

 

Following this model, Ferrero et al. developed a procedure to measure quantities of well-defined sparkle 

measurands [15], with experimental results obtained from combinations of several illuminations and 

viewing geometries. This work also presents four descriptors characterizing sparkle distributions and 

correlated to visual attributes: 

• the maximum contrast value of sparkle spots to ensure the Human Visual System is able to 

distinguish sparkle spots from the background, 

• the maximum density of sparkle spots, 

• the visibility inconstancy linked to the variation of contrast values due to illumination and 

viewing geometries, 
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• the anisotropy referring to the variation of density of sparkle with illumination and viewing 

conditions. 

While these four descriptors can be linked to visual attributes, the last two of them are tightly correlated 

with illumination and viewing conditions, meaning they will vary from scene to scene as the 

environment changes. 

 

Ferrero et al. pursued their work on sparkle with two other papers. Measurements of sparkle were 

performed on several samples with different coatings, illumination and viewing conditions at various 

institutes [16]. They used similar indicators (visibility and density of sparkle spots) to describe those 

texture events, and the algorithm used for detection and estimation of those indicators is presented. In 

this work, they also identified two potential sources of errors while characterizing the sparkle: an 

inadequate illumination and collection of solid angles, and a wrong aperture size chosen on the optical 

tool used for observing the sparkle spots. Finally, their work [17] highlights the method they developed 

over the years, some measurement scales for sparkle and graininess and their correlation with subjective 

evaluations. 

 

This article presents a dataset of digital snow images which are all acquired in-situ and show visual 

sparkle events on them. Then, a statistical study of sparkle spots on this dataset is conducted by 

following the method of Ferrero et al., and using the indicators provided by it. The results of this study 

are used to discuss the potential correlation between the sparkle spots on snow and the snow grain 

structure with descriptors such as the snow grain shape and the snow grain size. The goal is to verify if 

the method developed by Ferrero et al. can be used for the case of snow. Results of these statistical 

studies conduct to designing a precise acquisition protocol to identify the snow grain shape, and make 

links between sparkle events and snow grain classification. 

 

The article first introduces the methodology used for the acquisition of images, a description review of 

the dataset, the preprocessing applied to the images before dealing with the algorithm of sparkle 
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detection. The second section provides the results computed, the observations and interpretations, and 

their links to the snow structure. The last part concludes the article and presents future works. 

 

 

 

I. METHODOLOGY 

 

A. Dataset and acquisition of images 

 

The dataset is composed of 492 images in total and can be divided with the following distribution: 452 

images were acquired during daytime and with uncontrolled illumination, and 40 images were captured 

at night with a torchlight as a source of illumination. All images were registered in RGB RAW format 

and their size is 3936 × 2624 pixels. Table 1 is presenting the different types of snow composing the 

dataset and the dates of acquisition for images. Figure 1 is displaying some examples of images 

composing the dataset. 

 

Table 1 – Description of snow content of the dataset. 
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Figure 1 – Examples of images in the dataset studied taken under direct illumination with different 

exposure times. 

 

Acquisitions were performed between February 2022 and April 2022 in Norway, where our department 

is located. A major aspect of this dataset is that all images used were taken outside in uncontrolled 

conditions. It means the snow was left untouched with appropriate temperature and pressure conditions, 

and it was not changed due to a move in a cold room inside. Snow metamorphism [1] is a phenomenon 

causing snow to change based on external and mechanical properties. Thus, having kept snow in its 

natural state is a strength of this dataset. Acquisitions were made with a Nikon D610 DSLR camera, 

producing RGB images. Combined with this camera was a Sigma DG Macro lens with focal varying 

from 28 mm to 300 mm and aperture between f/3.5 and f/6.3. The camera was mounted on a tripod and 

was oriented to observe the scene such as the two configurations shown on Figure 2. 
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Figure 2 – Two setups used for acquisition of snow images. 

 

Illumination and viewing conditions are also varying for images within the dataset. 310 images were 

acquired with an elevation angle of 30° for the camera, and 182 images were captured with the camera 

facing orthogonally to the scene (i.e. an elevation angle of 0°). Setups used could be similar to a 

Reflectance Transformation Imaging (RTI) setup. Here, RTI was not possible due to the lack of tools 

to go outside in the snow to perform such acquisitions. Also, the setup used offered more flexibility to 

test the algorithm proposed by the work of Ferrero et al [16]. For 452 images, the sun was the light 

source used as images were captured during daytime. All day images were acquired under a clear sky 

without clouds, meaning the sun had a direct illumination on the scene. Images were taken at different 
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exposure times to cope with the strong direct illumination of some setups to avoid having oversaturated 

images. 

 

In the study of sparkle, azimuth angles for incidence of light sources are commonly used as parameters. 

For this dataset, it was possible to estimate those angles of incidence by looking at shadows cast on 

some of the images, or by taking pictures of the setup with the light source visible. Hence, most angles 

of incidence are estimated and not precisely measured, so their uncertainty could be high. We moderate 

this choice by conducting a statistical study on a large dataset of images to smooth these potential 

uncertainties. 3D lidar scans were made during the image acquisition process. And some images contain 

shadows cast on them, and for most of the scenes, global pictures were taken to ensure the presence of 

the sun in them. As a consequence, it is possible to have estimates of azimuth angles of the sun for those 

images. Furthermore, since those images were taken from locations close to each other, and with the 

knowledge of 3D point clouds, all images have been replaced in the same reference system so that 

azimuth angles can be used for analysis and are not tied to the camera system. Regarding the 40 images 

captured at night, the azimuth angle of the torchlight was controlled and is known. Those images are 

separated from the others for the analysis as they were not acquired in the same geographic location, 

and then it is not possible to replace them in the same reference system. Figure 3 shows the distribution 

of angles put in the same reference system across the dataset of images. 



9 
 

 

Figure 3 – Repartition of incident angles for light sources in the same reference system for all images 

in the dataset. 

 

 

B. Preprocessing of images 

 

Preprocessing of the images is performed according to Ferrero et al. method [16]. It consists in capturing 

an image of an object with known properties such as reflectance or luminance, then use that known 

information to compute a ratio in order to estimate the unknown reflectance or luminance of the rest of 

the scene or other objects. All of that is possible assuming the linearity of the camera, which is made in 

the case of this study as well. The most commonly objects used for these calibrations are white 

calibration tiles, which are considered Lambertian and with known reflective properties.  
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The case of snow is more challenging. In the visible range, snow is commonly white, and its reflective 

properties are higher than the traditional calibration tiles manufactured. The reason is mainly due to 

scattering and subsurface scattering phenomena occurring near the snow surface, so that the amount of 

light reflected is large. Since snow is the main target of this statistical study, the preprocessing needs to 

be refined because the difference between the sparkle (high pixel values or saturated pixels) and the 

snow (white, so high pixel values) is too narrow. In order to perform a white balance on the images, the 

Gray World assumption [18] is performed. Images from our dataset are RGB images. Then, the green 

channel is taken as the reference and the ratios computed are 

 

𝑅̅ =
𝑅

𝐺
 ; 𝐵̅ =

𝐵

𝐺
 

( 1 ) 

to compute the assumption. Then, those 3 channels 𝑅̅, 𝐺, 𝐵̅ are averaged following equation 2 

𝐼 =
𝑅̅ + 𝐺 + 𝐵̅

3
 

( 2 ) 

to obtain an image of intensities 𝐼 that is used to compute sparkle algorithms later described. 

 

 

C. Sparkle detection and estimation 

 

Algorithms for the detection of sparkle and its study were developed by Ferrero et al. along several 

articles [14] [15] [16] [17]. These methods were originally designed for the use of goniometric 

measuring tools to ensure precise values for azimuth angles and more control over illumination and 

viewing conditions, but can be applied to the study case we built (with higher uncertainties). The 

requirements are: digital images with apparent sparkle coming from the material studied, information 
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on azimuth angles of incident light and reference for the calibration. The following description of steps 

of the algorithm is coming from Ferrero et al. [16]. 

 

The first step is to calibrate the images obtained to get luminance factors 𝛽 for each pixel of the images. 

As mentioned previously, the case of snow is slightly more delicate than using traditional white 

calibration tiles. Therefore, after applying the Gray World assumption, luminance factors are computed 

for each image of the dataset (as referred in [16]). Each image of the collection is large with size of 

3936 × 2624 pixels. Then, in an attempt to reduce computational time, smaller areas are selected from 

original images. Patches were selected from the center of the image to ensure a maximum of focused 

snow on patches and no artefacts visible that are not snow related (presence of a colour checker as seen 

on Figure 1). A parameter on the half-width 𝑠ℎ𝑤 of those patches is introduced and can be modified to 

reduce or expand the area for the sparkle algorithm. Once patches are selected, a procedure to detect 

sparkles spots is applied and follows those steps: 

 

1. Find the pixel with the highest value of luminance factor 𝛽𝑠𝑝. 

2. Once this pixel is found, a small elementary area is selected centered around that pixel with 

size controlled by a parameter called 𝑙ℎ𝑤 described later.  

3. All pixels in this area surrounding the sparkle spot are averaged and give the luminance factor 

of the background 𝛽𝑏𝑔 of the sparkle spot. Luminance factors of the sparkle and the background 

are stored separately to be used later in the analysis. 

4. Pixels from the elementary area are fixed to 0. 

5. Steps (1) to (4) are iterated with the new image until all pixel values reach 0. When computing 

step (2) with the selection of the elementary area, pixel values already put at zero are not 

considered in the computation of the average. Also, if more than two thirds of pixels in the 

elementary area is at 0, the area is not considered, put to zero and the algorithm goes to the next 

maximum of the image.  
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The choice of the size of elementary area 𝑙ℎ𝑤 is to be discussed as it cannot be chosen small for physical 

meaning but not too large as well. Otherwise, there is a risk of avoiding some relevant sparkle spots if 

the distance between two consecutive spots is smaller than 𝑙ℎ𝑤. An impact study on the choice of 𝑠ℎ𝑤 

and 𝑙ℎ𝑤 has been conducted and is presented in a later part. Results of this procedure gives luminance 

factors of sparkle spots and luminance factors for backgrounds of elementary areas.  

 

Ferrero et al. introduced three indicators to quantify sparkle distribution of metallic samples [15] [17], 

and these same quantities can be applied in the case of snow. The first indicator is an illumination 

contrast 𝐶𝑠𝑝 which can be computed by illuminance or luminance factors. The illumination contrast of 

a sparkle spot can be defined for an elementary area by 

 

𝐶𝑠𝑝 =  
𝛽𝑠𝑝 − 𝛽𝑏𝑔

𝛽𝑏𝑔
 

( 3 ) 

with 𝛽𝑠𝑝 and 𝛽𝑏𝑔 luminance factors previously computed. The second indicator is called ensemble 

contrast of sparkle spots 𝐶𝐸 and is defined as the median value of all contrasts of sparkle spots that are 

above a threshold value 𝐶𝑡ℎ. For this study case of snow, this quantity 𝐶𝑡ℎ is evaluated for each patch 

as the middle of the total range of contrast value computed in the image and follows the definition given 

by equation 4 

 

𝐶𝑡ℎ =
𝐶𝑠𝑝,𝑚𝑎𝑥 + 𝐶𝑠𝑝,𝑚𝑖𝑛

2
 

( 4 ) 

The third and last indicator introduced is the density of sparkle spots 𝑑𝑠𝑝 which represents the number 

of sparkle spots in the area considered with contrast values 𝐶𝑠𝑝 higher than the threshold value 𝐶𝑡ℎ. This 

value is given in mm-2. As one could expect, this value is linked to the choice of 𝑠ℎ𝑤 so it is important 

to choose an area of study large enough to provide a stable statistic for this metric. Among those three 

indicators presented, only two of them, being the ensemble contrast of sparkle spots 𝐶𝐸 and the density 
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of sparkle spots 𝑑𝑠𝑝, are used as metrics in this study. The contrast of sparkle spots 𝐶𝑠𝑝 is indirectly 

used in the two metrics cited previously. 

 

 

 

II. RESULTS 

 

Four descriptors are given in the literature to describe sparkle events happening at the surface of a 

material: the contrast of sparkle spots, the density of sparkle spots and their variations due to 

illumination and viewing conditions. Moreover, with the use of an algorithm to detect sparkle events 

on digital images, two parameters are introduced: the half-width size 𝑠ℎ𝑤 for the patch selection and 

the half-width size of the elementary area 𝑙ℎ𝑤. Therefore, a study is conducted to decide on the choice 

of both parameters 𝑠ℎ𝑤 and 𝑙ℎ𝑤. Once those two parameters for the algorithm are selected, results can 

be computed. In the dataset, several illumination angles are available as mentioned on Figure 3. 

Furthermore, one snow scene was captured from two points of view. Another aspect to study is the type 

of snow because the age of snow is impacting the size of the snow grain, and images were acquired at 

different dates in time, under various illuminations conditions (i.e. daylight and artificial light at night). 

 

 

A. Study of algorithm's parameters 

 

To adapt the algorithm to the case of this snow dataset, two parameters are introduced: 𝑠ℎ𝑤 and 𝑙ℎ𝑤. In 

their articles, Ferrero et al. suggested choosing a size of patch large enough to ensure materials for the 

statistics, and the choice of the elementary area 𝑙ℎ𝑤 was decided to reproduce the circular area visible 

by a human observer at a distance of 40 cm from the scene in their case. However, they do not provide 

the values they actually used. Therefore, several values of 𝑠ℎ𝑤 and 𝑙ℎ𝑤 are chosen in a given range and 
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the algorithm is run on part of the dataset to test the influence of those parameters on the resulted 

contrast and density values. 

 

Figure 4 – Scatter plots with trend curves resulting from a linear regression. (a) and (b) are obtained by 

fixing 𝑠ℎ𝑤 = 150 pixels and varying 𝑙ℎ𝑤. (c) and (d) are obtained by varying 𝑠ℎ𝑤 and fixing 𝑙ℎ𝑤 = 15 

pixels. 

 

The patch half-width size is chosen among the following values: 80, 100, 120, 150 and 200 pixels. The 

range for the elementary area is: 11, 13, 15, 17 and 19 pixels. The algorithm was run 25 times to cover 

all scenarios on a small part of the dataset to avoid long computation time. Only two scenes from the 

dataset are considered for showing the results displayed on Figure 4 for the first scene and on Figure 5 

for the second scene. Units of the parameters are given in pixels to have a common unit for all images 

of the dataset. Although the pixel unit could be linked to the resolution of the camera, acquisition setups 

for all images of the dataset are different. As mentioned, the dataset is composed of images taken with 
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different setups of acquisition. Then, the first images (chronologically speaking) were taken with a setup 

which has evolved. We do not have the required information for those images to compute the ratio that 

would link the pixel size to an international unit size such as the meter (or centimeter). To avoid having 

inhomogeneous data, we therefore chose to not include it here, but it is considered for future works. 

 

Figure 5 – Same configuration as Figure 4 for another scene observed. 

 

From Figure 4-(b) and Figure 5-(b), one can notice a variation of density values with the choice of 𝑙ℎ𝑤 

as the linear regression plots are parallel but not superimposed. The smaller this 𝑙ℎ𝑤 value gets, the 

larger the density, as it is possible to detect more sparkle spots and have fewer overlaps. However, if 

𝑙ℎ𝑤 gets too small, it does not hold a physical meaning as pointed by Ferrero et al. when they chose it. 

Similarly, by observing results from Figure 4-(c) and Figure 5-(c), contrast values are impacted by the 

choice of the size of the patch observed 𝑠ℎ𝑤. Expanding the size of the patch opens the possibility to 

detect other sparkle spots and so increases the contrast values as estimated by the algorithm. However, 
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large values of 𝑠ℎ𝑤 influence the computational time of the algorithm. As a consequence, a trade-off is 

made in the choice of the size of the elementary area. Ultimately, the values of 𝑠ℎ𝑤 = 150 pixels and 

𝑙ℎ𝑤 = 15 pixels are chosen and fixed for the rest of the analysis for the dataset. 

 

 

B. Influence of type of illumination 

 

This part tackles the variation in the estimated contrast and density distributions depending on the 

illumination conditions. One aspect to remind is that the day illumination is symbolizing the sunlight, 

i.e. there was no control over the quantity of light nor the incident angle on the scene. In this study, all 

images were taken under direct illumination. As mentioned by Kirchner et al. [19], being under direct 

(no clouds) or diffuse (cloudy overcast sky) illumination is highly influencing the type of sparkle seen 

on materials. Azimuth angles for incident light are estimated as explained previously. Regarding night 

illumination, images were acquired under a torchlight powerful enough to produce sparkle on the snow 

surface. The algorithm is run on both subsets (day and night) of the dataset to provide contrast and 

density distributions of sparkle spots. 
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Figure 6 – Scatter plots between density of sparkle spots and contrast of sparkle spots for day 

illumination subset (a) and night illumination subset (b). 

 

Figure 6-(a) and Figure 6-(b) represent the scatter between the density of sparkle spots (x-axis) and the 

contrast of sparkle spots (y-axis) for respectively the day illumination and the night illumination. One 

thing to note is the scales for density values are different. The maximum density under daylight is 2.5 

mm-2 while the maximum density under torchlight at night is close to 0.02 mm-2 so a factor of 100 

between them. Even though the gap is important, it is relevant to notice that the shape of the scatter 
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clouds looks similar in both cases, and could either be an inverse proportionality function or a 

decreasing exponential. Our goal is not to estimate this correlation. However, one can note that high 

contrast values are mostly achieved with small values of densities, while low contrast values are spread 

in the range of density values. The impact of the illumination on density values is massive. High density 

means there are more sparkle events happening on the surface considered. Under sunlight, it is less 

surprising to see those high density values. Even though the daylight setups are uncontrolled, the 

behaviour between contrast and density values remains stable between both illumination modes 

considered. For the rest of the analysis, the night subset is excluded, as it does not hold a lot of images 

and contains only one type of snow. 

 

 

C. Influence of the elevation angle of the camera 

 

In the description of the acquisition of data, two configurations for the position of the camera are 

mentioned, such as shown on Figure 2. Therefore, a small study is conducted by separating images 

taken in the two configurations to check the influence of the elevation angle on the result of contrast 

and density for sparkle spots. 
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Figure 7 – Scatter plot between density of sparkle spots and contrast of sparkle spots for subset of 

elevation angle of the camera for 0° (black dots) and 30° (blue stars). 

 

Figure 7 shows the results obtained for those subsets. For both, the trend for a decreasing exponential 

or an inverse proportionality function can be observed, even though the scales for contrast and density 

values are not similar. Since results between the two subsets are quite similar, the distinction on the 

elevation of the camera is not maintained for the rest of the study. However, the elevation information 

is to be considered if an experiment is designed to try to identify snow grain shapes. 

 

 

D. Influence of type of snow observed 

 

Table 1 is already presenting the different types of snow composing the dataset and the repartition 

between images. The reason why the type of snow is important in this study is the link there is between 
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the type of snow, the age of snow and the grain structure. The age of snow is directly linked to the 

morphology of the snow grain [1]. When a snow grain is freshly fallen, its size is rather small. Over 

time and with increasing temperature, it expands and therefore both his size and shape are evolving. 

Therefore, the older the snow is, the bigger the grains with a less complex shape. The shape and size of 

snow grains should have an interaction with how sparkle events are emitted. Therefore, the aim of this 

part is to see whether the sparkle spots seen on images are varying with the type of snow. 

 

Figure 8 – Scatter plot between density of sparkle spots and contrast of sparkle spots for all snow 

subsets. 

 

First, all images used to obtain the results in this part are images taken from the day illumination subset. 

As stated in Table 1, there is a total of 452 images used for the results displayed on Figure 8 and Figure 

9. Even though the fresh snow label is on Figure 8, we chose to add Figure 9 for a better readability due 

to smaller scales. Then, as they are now, an accurate description can be made related to the type of 

snow.  
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Figure 9 – Scatter plot between density of sparkle spots and contrast of sparkle spots for fresh snow 

subset. 

 

From Figure 8, the difference made between dense snow (in black) and old snow (in blue) is related to 

the melting process. Dense snow is an accumulation of fallen snow grains that could have been 

accumulated for a long time, hence they could be qualified as old. However, ambient temperature is 

cold enough to maintain the current state of snow grains. Most of the time, those grains get refrozen 

due to colder temperature and the wind. For the case of old snow, temperatures are getting above zero 

degree and then grains are expanding and the transformation from solid to liquid starts. As it can be 

observed on Figure 8 with black dots, dense snow tends to produce sparkle with high densities while 

maintaining contrast values which could be qualified as average. For dense snow as defined here, there 

are more sparkle spots visible and observable on snow surface even though they remain homogeneous. 

In the context of old snow, the observation seems to be opposite, as shown on Figure 8 with blue stars. 

As opposed to dense snow, older snow whose melting process has started tends to produce sparkle spots 

with high contrast values and low densities. So, sparkle events may be more visible and shinier on old 
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snow, but they are less likely to happen, or they would be less packed together. Regarding the fresh 

snow, as illustrated by Figure 9, it does not involve high contrast values nor density values. Actually, 

fresh snow is described as snow grains falling on the ground and accumulating quickly. The structure 

of fresh layer of snow on the surface is not really well-formed, and so fresh snow is less likely to 

generate sparkles on its surface. However, this conclusion needs to be slightly balanced by the small 

number of images available, only 47 according to Table 1.  

 

As a consequence, it is more difficult to see sparkle spots which correlates with low values both for 

contrast and density: sparkle events are less likely to happen on fresh snow as the snow grains are too 

small (under 50 µm) and not well-formed. As opposed to fresh snow, dense snow (with snow grain of 

size around 500 µm and 1 mm) produces a lot of visible sparkles spots and old snow (snow grains above 

4-5 mm) generates less sparkle events, but they are more intense.  

 

 

E. One snow scene from two points of view 

 

Some images from the dataset capture the same scene but observed from two different positions. An 

example of such a scene is displayed on Figure 10.  

 

Figure 10 – Images from the same snow scene but observed from two points of view. 
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Then, all images from this particular scene are gathered and studied for their contrast and density of 

sparkle spots. Since all images are coming from the dense snow subset, performing the analysis on the 

variation of illumination and viewing conditions on a similar scene may provide some information 

related to the geometry and the shape of snow grains. 

 

Figure 11 – (Left) Contrast of sparkle spots distribution. (Right) Variation of contrast depending on 

viewing conditions. 
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Figure 12 – (Left) Density of sparkle spots distribution. (Right) Variation of density depending on 

viewing conditions. 

 

Figure 11 and Figure 12 display the results obtained for the contrast and density of sparkle spots for this 

study case. These results are presented differently from the previous ones. Here, it is more interesting 

to focus on the variations of contrast and density due to the different viewing conditions. The camera is 

looking at the same scene under two perspectives. Hence, snow grains remain constant in the scene, but 

their effect vary with the viewing conditions. Both radial plots on Figure 11 and Figure 12 are plotting 

results correlated to the estimated azimuth angle of the sun on images. On the left image of Figure 10 

(chosen as a reference for the reference system), one can notice shadows cast from the tripod of the 

camera. Using these shadows, the angle is estimated to 30° and then 210° for its counterpart. The angles 

displayed on radial plots are the relative azimuth angle between the camera and the light source. 

 

Focusing on the radial scatter plots, the interesting aspect to notice is that contrast and density values 

do not vary much even though sparkle spots are observed from a different viewing angle. This statement 
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is also supported by looking to the shapes of contrast and density distributions. Even though the number 

of images used (66) is not large enough to make statistical estimation, the shapes of unimodal 

distributions can be distinguished. More accurately, distributions seem to have a centered value and 

other values dispatched around it. It can be interpreted as it follows: contrast and density values 

accumulate towards one average value in a range controlled by a small standard deviation.  

 

A reason why such results can be observed could be correlated to the randomness of the distribution of 

snow grain onto the snow sample considered. Due to this randomness, potential effects due to the 

geometry of snow grains would be averaged and therefore have less impact. But, if we assume the 

distribution could be estimated, another reason would then be the shape of snow grains. In fact, it could 

even give information on the shape. If one assumes a spherical shape for a grain, then such a grain 

would reflect light the same way in all possible directions. Then, regardless of the viewing conditions, 

sparkle spots would have a small variation and could remain stable while the camera rotates around the 

scene. Due to the lack of number of viewing positions for this scene, it is impossible to conclude 

accurately on the type of shape. However, it opens possibilities for designing an acquisition protocol to 

do so. By selecting one single snow scene and fixing the illumination conditions, several captures can 

be performed at various positions around the scene. Then, similar radial scatter plots can be obtained 

and by observing potential symmetries, one might conclude on the nature of the grain shape. 

 

 

 

CONCLUSION 

 

In this article, multiple statistical studies on sparkle from snow are computed on a dataset of images 

acquired in-situ. The dataset covers various types of snow and several illumination and viewing 

conditions. Two indicators are considered in this study: contrast values and density values of sparkle 

spots. The dataset can mainly be divided in three subsets correlated to the type of snow. By observing 
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those three clusters of the dataset, we show it is possible to link the results of the sparkle to the structure 

of snow.  

 

Fresh snow is composed of very small and fine grains whose crystal structure has yet to be formed. As 

such, the likelihood of observing sparkle events on fresh snow is very low. Dense snow is defined by 

snow grains fully formed, with varying shapes and sizes below the millimeter. Most importantly, dense 

snow is observed in a cold environment. So, when illumination conditions are met, one can experience 

numerous homogeneous sparkle events occurring on the surface of dense snow. Finally, old snow is 

mainly dense snow in a warmer environment so that the melting process has started. Snow grains are 

then expanding. Then, sparkles are observable in a smaller number but may be more intense as well.  

 

Results and interpretations between sparkle events and the snow open possibilities for future work. 

Although it has been intensively used for car paintings and metallic materials, the method to detect and 

estimate the sparkle on snow has been tested and proved, and it can be linked to the snow structure. 

From this observation, we consider conducting an experiment of a larger scale that aims to relate more 

precisely the grain size and shape to the indicators of sparkle. This experiment should enable the use of 

sparkle measurement as a powerful tool to classify snow grains. Other possibilities for applying such a 

method could be to study the glint effect on water surface from sea or rivers, or to estimate dust particles 

sizes when taking underwater pictures. 
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