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Abstract: Vehicle license plate images are often low resolution and blurry because of the large dis‑
tance and relative motion between the vision sensor and vehicle, making license plate identification
arduous. The extensive use of expensive, high‑quality vision sensors is uneconomical in most cases;
thus, images are initially captured and then translated from low resolution to high resolution. For
this purpose, several traditional techniques such as bilinear, bicubic, super‑resolution convolutional
neural network, and super‑resolution generative adversarial network (SRGAN) have been devel‑
oped over time to upgrade low‑quality images. However, most studies in this area pertain to the
conversion of low‑resolution images to super‑resolution images, and little attention has been paid to
motion de‑blurring. This work extends SRGAN by adding an intelligent motion‑deblurring method
(termed SRGAN‑LP), which helps to enhance the image resolution and remove motion blur from
the given images. A comprehensive and new domain‑specific dataset was developed to achieve im‑
proved results. Moreover, maintaining higher quantitative and qualitative results in comparison
to the ground truth images, this study upscales the provided low‑resolution image four times and
removes the motion blur to a reasonable extent, making it suitable for surveillance applications.

Keywords: AI; SRGAN; image super‑resolution; generator; discriminator; generative adversarial
networks; motion blur; surveillance; SRGAN‑LP; machine learning

MSC: 68T45

1. Introduction
Navigant research [1] suggests that the number of vehicles in the world will grow

to two billion by 2035. This huge increase in the number of vehicles poses a significant
challenge to humans in managing them manually. In this regard, smart cities require a
significant focus to manage the flow of vehicles intelligently [2]. Different vision sensors,
position identification sensors, and many more applications are used to ensure the con‑
cept of vehicles communicating autonomously, that is, the flow of traffic or smart parking
management. Several identification tags are used to achieve this; however, vehicle license
plates are the most traditional and unique elements used for the correct identification of
the vehicle type and model year.
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Vehicles are uniquely identified based on an important component known as the li‑
cense plate. Finding a stolen car, tracking a trouble‑making vehicle, smart parking man‑
agement, and automatic toll collection all use vehicle license plates to perform these tasks.
For the smooth execution of such tasks, the correct identification of the vehicle license plate
is indispensable. However, in some cases, the captured license plate images develop some
sort of perturbation, owing to low lightning conditions, low resolution, and motion blur,
making this process difficult. Therefore, several image super resolution (SR) techniques
have been developed over time to overcome these challenges.

Image SR is a technique used to reconstruct high resolution (HR) images based on
provided low resolution (LR) counterparts. The application domain of super resolution
(SR) is vast, and it can be used in remote sensing [3], hyperspectral SR [4,5], and medical
imaging [6–8]. However, in some cases the images acquired by different imaging devices
such as surveillance cameras, cell phones, X‑rays, MRI, and CT‑scans are of low‑resolution.
These images are mostly blurred and contain noise due to relative motion, lamination vari‑
ation, distance variation, and low‑quality imaging devices. Applications such as restora‑
tion [9], surveillance, and medical imaging systems [10,11] require HR images for recog‑
nition and diagnosis, respectively. Although some applications such as Blu‑ray movies,
video conferencing, and web videos are often in HR, to preserve server storage and band‑
width, they are often stored in LR.

To transform an LR image into anHR image, several techniques are available, that can
be classified into two broad categories: traditional image processing techniques and con‑
volutional neural networks (CNNs)‑based SR algorithms [12]. Traditional methods, such
as bi‑linear and bi‑cubic methods, are computationally inexpensive and easy to deploy;
however, these methods have a few limitations that make them inefficient to deploy in
certain circumstances. One of the basic limitations of these methods is that they generate
overly smooth textures in reconstructed images. In addition, these methods typically fail
to reconstruct the original content of an image. However, the modern techniques available
are usually based on deep learning (DL) techniques, specifically CNNs. These techniques
iteratively enhance image quality by minimizing the loss between the original image and
the reconstructed image. Numerous optimization techniques are available to help CNN
models reduce the loss between the original image and the reconstructed image.

The proposed super‑resolution generative adversarial network for license plates
(SRGAN‑LP) was based on one of the most promising techniques for image SR resolution,
known as a super‑resolution generative adversarial network (SRGAN) [13]. The original
architecture of SRGANutilizes three models, that is, a deep generator, a discriminator con‑
sisting of several residual blocks, and a novel function called perceptual loss, for realistic
image reconstruction. However, our solution is largely based on the identification of dig‑
its on the license plate of a vehicle, rather than realistic image generation. Therefore, we
reduced the size of the actual SRGAN generator to a minimum, to reduce computational
cost. In addition, we incorporated the motion deblurringmethod into the original SRGAN
so that the digits and letters were correctly identified. Our extensive experimental results
justify the changes to the original architecture.

Our proposed SRGAN‑LP method is compared with traditional techniques such as
the bilinear, bicubic, and single image‑based super resolution method SRCNN [8]. The ex‑
perimental results show the promising performance of our method. Similarly, the results
were compared with the SRGAN trained on the ImageNet dataset. To justify the effec‑
tiveness of the SRGAN‑LP, we conducted comprehensive experiments on two different
testing sets. First, we used the same testing set of images as the training images, and in
the second phase, we performed experiments on independent images, that is, images in‑
dependently collected from vehicles. Considering all these experiments and comparisons,
we concluded our contributions to vehicle license plate image SR are as follows:
• In light of the usefulness of SRGAN in the current literature, we incorporated motion

deblurring in its architecture, thus achieving good‑quality HR and deblurred images.
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• We reduced the size of the original SRGANby reducing the number of residual blocks
in the generator network from 16 to 8, consequently achieving less inference time
while preserving the same performance.

• We developed a comprehensive and new domain‑specific dataset that originally con‑
tains 3112 images of different regions and color patterns. Furthermore, we diversified
the angles of the images and increased the size of the dataset to 12,388 using different
augmentation techniques.
The remainder of this paper is organized as follows. Sections 2 and 3 present related

work and the proposed methodology, respectively. The experimental results and eval‑
uations are presented in Section 4. Section 5 concludes the paper with a discussion of
future work.

2. Related Work
As image SR and deblurring are applied to tackle various challenges in real‑world

scenarios, the related work is divided into two parts, where 2.1 focuses on the topic of
super resolution and deblurring, and 2.2. specifies existing literature related to intelligent
vehicle license plate recognition.

2.1. Image Super Resolution and Deblurring
Image SR and deblurring [14] has remained a hot research area among the computer

vision research community. Earlier approaches relied onpure imageprocessing techniques
by applying sharpening filters followed by interpolation‑based methods, such as bicubic
and bilinear interpolations [15]. These methods have remained benchmarks for a rea‑
sonable period of time, however, they exhibit a persistent problem of generating overly
smooth textures in the reconstructed images. With the emergence of CNNs, and their
promising results in other fields, researchers have applied them in the SR domain as well.
In this regard, a breakthrough approach, SRCNN [8], applied convolutional layers to en‑
hance an LR image, and the results were very impressive when it was first published. Suc‑
ceeding SRCNN, a very deep convolutional network named VDSR was proposed in [16],
where 16 convolutional layers were added with the implementation of residual learning.
The output of the VDSR produced a better result than the one in the SRCNN. Both SRCNN
and VDSR aimed to increase the peak signal to noise ratio (PSNR) between the recovered
image SR image and the HR image, by reducing the mean square error (MSE) between the
SR and HR images. Although CNN‑based methods performed much higher than the tra‑
ditional methods, however, with the invention of generative adversarial networks (GAN),
and its incredible results, the domain of SR largely shifted to GAN‑based methods.

The idea of GAN was first coined by Goodfellow et al. [17], who trained a generative
model and discriminativemodel simultaneously through an adversarial process. Based on
GAN, Ledig et al. proposed amethod called SRGAN [13]. The SRGAN framework is capa‑
ble of inferring photorealistic natural images for 4x up‑scaling factors. A newmethodology
using GAN was proposed by Mao et al. [18], generating least squares GANs (LSGANs) in
which the least squares loss function is calculated for the discriminator, and it was found
that LSGANs can generate higher quality images than regular GANs. In addition, LS‑
GANs remain more stable during the learning process than regular GANs. Lim et al. [19]
developed an enhanced deep SR network called EDSR. This improvement was achieved
by removing unnecessary modules from the conventional residual networks. They found
that the proposed EDSR was more optimized in terms of generating SR images than the
original GAN. A novel approach for synthesizing HR photorealistic images from seman‑
tic label maps, using conditional generative adversarial networks (conditional GANs), was
proposed byWang et al. [20], which generated 2048× 1024 visually appealing results with
a novel adversarial loss along with new multi‑scale generator and discriminator architec‑
tures.

However, less attention has been paid to deblurring in the SR arena. The formerworks
relied primarily on using Laplacian filters for sharpening; however, sharpening the image
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alone does not usually guarantee the reconstruction of the original content of the image. A
comparatively recent work by Kupyn et al. [21] proposed the idea of DeblurGAN, which
is an end‑to‑end learned method for motion deblurring. The DeblurGAN training process
involves conditional GAN and content loss. They showed that the proposed DeblurGAN
was five times faster than the DeepDeblur [22] model in terms of the structural similarity
measure and visual appearance. Similarly, Nah et al. [23] presented an averaging‑based
technique; however, it lacks generalization capability owing to the lack of diversity in
datasets generated using averaging.

2.2. License Plate Super Resolution and Deblurring
There are two different methods for license plate recognition (LPR): segmentation‑

based [24] and non‑segmentation‑based [25]. Segmentation‑based techniquesmainly trace
back to the traditionalmachine learning techniques, whereas non‑segmentation‑based tech‑
niques largely subsume recent deep learning‑based approaches, including CNNs, for the
identification or reconstruction of license plate images. Segmentation‑based methods first
divide the license plate into segments of characters, which are then recognized using a
projection‑based classifier [26] and connected‑component‑based classifiers [27]. In con‑
trast, a non‑segmentation‑based method was first proposed by Shi et al. [28], where a deep
CNN was applied for feature extraction directly without a sliding window, and a bidi‑
rectional long short‑term memory (LSTM) network was used for sequence labeling. The
literature reveals that non‑segmentation‑based methods are promising for license plate
image‑quality enhancement.

3. Proposed Methodology
The goal of image SR is to obtain an HR image from the provided LR image, as shown

in Figure 1, depicting the proposed SRGAN‑LP.Our aim is to train a generator that predicts
a high‑resolution IH image from the provided low‑resolution IL image with minimum loss.
To perform this process, we construct a generator network G, which is a deep CNNmodel
with parameter θG. For all training images N, we optimize θG as given in Equation (1). A
visual overview of the generator network G is depicted in Figure 2 and details of the input
and output parameters of the proposed method are given in Table 1.

θ̂G = argmin
θG

N

∑
n=1

lS
(

GθG (IL
n ), IH

n

)
(1)

IH = WH ∗ HH ∗ C (2)

Table 1. Description of input and output parameters used in the proposed model.

Symbol Description Symbol Description

D Discriminator model G Generator model
DθD Discriminator parameterized by θD GθG Generator parameterized by θG
A A variable parameter in leaky ReLU used in D θ Model parameters
IH High‑resolution image IS Super‑resolution image
C Color channels IL Low‑resolution image
w Weights of layers b Biases of layers
δ Scaling factor β Motion blur
Λ Number of residual blocks Q Batch size
k Number of filters in a layer s Stride of a convolution filter
lS Perceptual loss N Total number of images in dataset
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lS. Subsequently, lS updates the generator weights. For (c) Testing process, IL is directly inputted to 
the generator trained in the training process and IS is acquired as the resultant HR image. 

 
Figure 2. Architecture of the generator network. “k” represents filter size, “n” is the number of fil-
ters, and “s” is the stride value used in a particular layer. Two types of convolutional blocks are 
used in the generator. A residual block is used for feature extraction, whereas the “UpSampling” 
block is used for converting an image from IS to IH. 
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Figure 1. Overview of the proposed methodology. IH and IL are acquired from the (a) Surveillance
environment. In the (b) Training process, the generator receives IL and removes blur and upscales
the IL to IS. The discriminator and VGG‑19 calculate adversarial loss and content loss between the
original IH and generated IS. Finally, both losses are added proportionately to form perceptual loss
lS. Subsequently, lS updates the generator weights. For (c) Testing process, IL is directly inputted to
the generator trained in the training process and IS is acquired as the resultant HR image.
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Figure 2. Architecture of the generator network. “k” represents filter size, “n” is the number of filters,
and “s” is the stride value used in a particular layer. Two types of convolutional blocks are used in
the generator. A residual block is used for feature extraction, whereas the “UpSampling” block is
used for converting an image from IS to IH.

Equation (1) is used to convert IL to its IH counterpart. Similarly, in Equation (2), IH
represents the HR image. WH and HH represent the width and height of the HR images,
respectively. Similarly, C (BGR, C = 3) represents the number of channels in the image. HR
images were available only during training. IH images are converted to LR IL images by



Mathematics 2023, 11, 892 6 of 13

applying motion blur (β = 16) and a down sampling operation with a specified scale of δ.
For an image with C color channels, we describe IL by a real‑valued tensor of sizeW × H
× C and IH and IS by rW × rH × C.

IL = βδWH ∗ βδHH ∗ C (3)

The IL images are obtained by down sampling using a bicubic kernel with a factor
size of δ = 4, and applying motion blur β to the IH images with the number of channels C
as shown in Equation (3). After the images are converted into IL, they are input to G.

3.1. Adversarial Loss Function
In adversarial loss, the variable IH is an input to the discriminator (D), which is used

to compare the IS and IH images to discriminate between them. For this reason, IH images
are also given to D from the dataset.

Dθd =
1
q

q

∑
i=1

[
log D

(
IH

)
+

(
1 − log D

(
IS
))]

(4)

The aim ofD is to calculate the adversarial loss. Equation (4) representsD and shows
how it is parameterized by θD: In Equation (4), the adversarial loss is calculated, which
later contributes to the perceptual loss calculation. The architecture of the discriminator D
network is illustrated in Figure 3.

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 14 
 

 

Equation (1) is used to convert IL to its IH counterpart. Similarly, in Equation (2), IH 
represents the HR image. WH and HH represent the width and height of the HR images, 
respectively. Similarly, C (BGR, C = 3) represents the number of channels in the image. HR 
images were available only during training. IH images are converted to LR IL images by 
applying motion blur (β = 16) and a down sampling operation with a specified scale of δ. 
For an image with C color channels, we describe IL by a real-valued tensor of size W × H × 
C and IH and IS by rW × rH × C. 

* *L H HI W H Cβδ βδ=  (3)

The IL images are obtained by down sampling using a bicubic kernel with a factor 
size of δ = 4, and applying motion blur β to the IH images with the number of channels C 
as shown in Equation (3). After the images are converted into IL, they are input to G. 

3.1. Adversarial Loss Function 
In adversarial loss, the variable IH is an input to the discriminator (D), which is used 

to compare the IS and IH images to discriminate between them. For this reason, IH images 
are also given to D from the dataset. 

( ) ( )( )
1

1 log 1 log
d

q
H S

i
D D

qD I Iθ =

 = + −  
 

(4)

The aim of D is to calculate the adversarial loss. Equation (4) represents D and shows 
how it is parameterized by θD: In Equation (4), the adversarial loss is calculated, which 
later contributes to the perceptual loss calculation. The architecture of the discriminator D 
network is illustrated in Figure 3. 

 
Figure 3. Architecture of the discriminator network. “k” represents filter size, “n” is the number of 
filters, and “s” is the stride value used in a particular layer. Two types of convolutional blocks are 
used in the discriminator. One type of convolutional block comprises a convolution, batch normal-
ization, and leaky ReLU layers. The other type of convolutional block lacks the batch normalization 
layer. 

Equation (5) is used to calculate the adversarial loss in terms of the probabilities re-
turned by D. This adversarial loss is then combined with another loss to obtain the final 
objective function of SRGAN. 

Figure 3. Architecture of the discriminator network. “k” represents filter size, “n” is the number of fil‑
ters, and “s” is the stride value used in a particular layer. Two types of convolutional blocks are used
in the discriminator. One type of convolutional block comprises a convolution, batch normalization,
and leaky ReLU layers. The other type of convolutional block lacks the batch normalization layer.

Equation (5) is used to calculate the adversarial loss in terms of the probabilities re‑
turned by D. This adversarial loss is then combined with another loss to obtain the final
objective function of SRGAN.

IS
adv =

1
q

q

∑
i=1

(
− log Dθd

(
IS
))

(5)
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3.2. Content Loss Function
VGG19 was used to calculate the pixel‑wise MSE as a content loss in this architecture.

The content loss used in the MSE is the pixel‑wise difference between the generated image
IS and the original high‑resolution image IH of the dataset, which can be calculated using
Equation (6).

IS
MSE =

1
δ2WH

δW

∑
x=1

δH

∑
x=1

(
IH
x,y − GθG

(
IL
)

x,y

)2
(6)

3.3. Perceptual Loss Function
Perceptual loss is a weighted combination of content loss and adversarial loss, which

tends to reconstruct the original content of an image. Previously, SR problems were com‑
monly based on the MSE loss function; however, in the proposed SRGAN‑LP, MSE com‑
bined with adversarial loss was used to push the G to reconstruct the original content of
the image.

ℓS = lS
X︸︷︷︸

content−loss

+ 10−3lS
Gen︸ ︷︷ ︸

adversarial−loss︸ ︷︷ ︸
perceptual−loss

(7)

The weighted sum of content loss (lS
X) and an adversarial loss component are used

according to Equation (7). After the perceptual loss calculation, backpropagation occurs
and optimizes the G network to learn the distribution more efficiently. The process shown
in Figure 1 continues until the G network starts generating images that are more realistic
and have recognizable digits.

4. Results and Discussion
We conducted extensive experimentation and testing to evaluate the performance of

the proposed SRGAN‑LP using various evaluation techniques. For this purpose, we col‑
lected a large‑scale dataset as discussed in Section 4.1. Similarly, Section 4.2 briefly de‑
scribes the experimental setup, followed by a comprehensive evaluation of the results in
Section 4.3.

4.1. Dataset Acquisition
Data works as the fuel for deep learning models; however, collecting large amounts

of vehicle license plate data with a uniform spatial resolution and almost the same light‑
ning conditions is a challenging task. For this purpose, we accessed a license plate repos‑
itory [11], and downloaded 3700 images with various backgrounds and digit colors as a
raw dataset. To increase the number of images and diversify the angle of images, we used
the data augmentation library “Augmentor” [12]. Using “Augmentor” we incorporated di‑
versity into the images by changing their angles with the standard techniques such as tilt,
skew, and rotate. Subsequently, we synthesized a dataset of 12,388 HR images from this
raw dataset. The model was trained on the HR images using a standard spatial resolution
of 256 × 256 pixels. We maintained a scale factor (δ) of four for the training. For testing
purposes, we segregated 100 images from the synthesized dataset (synthetic test set) and
downloaded another set of 100 images fromGoogle, which is referred to as the real test set
in this section.

4.2. Experimental Setup
We trained our proposed SRGAN‑LP network on an NVIDIA GTX 1070 GPU with

12 GB memory and 24 GB RAM. For training G, we obtained low‑resolution IL images by
applying amotion blur β of size 16 and a down sampling factor δ of four, thus reducing the
sizes of the images from 256 × 256 to 64 × 64. For D, we used the original high‑resolution
images. Our generator network consists of eight identical residual blocks Λ and two trans‑
posed convolution layers. We used the Adam optimization algorithm [29] for our net‑
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work. For G and D, we maintained learning rates of 10−5 and 10−6, respectively. To train
a composite model, that is, SRGAN‑LP, we used a learning rate of 10−3. We used the deep
learning library Keras [13], with TensorFlow [14] as the backend for the implementation of
this network.

4.3. Performance Evaluation
Qualitative evaluation often involves human ratings, whereas quantitative evaluation

comprises standard evaluation metrics in image processing, such as the PSNR and the
structural similarity index metric (SSIM) [30]. In addition to qualitative and quantitative
evaluations, the proposed SRGAN‑LP was analyzed using optical character recognition
(OCR) results.

4.3.1. Quantitative Evaluation
We conducted a quantitative evaluation for both of our test sets, that is, synthetic and

real test sets, using the PSNR and SSIM [23,31].

PSNR (f, g) = 10log 10(255 2/MSE(f, g)) (8)

Equation (8) shows the formula for calculating the PSNR between the original and
the reconstructed images. f is the original image and g is the reconstructed image obtained
using a certain technique. A higher PSNR value indicates better results for SR.

SSIM ( f , g) = l( f , g) ∗ c( f , g) ∗ s( f , g) (9)

Similarly, Equation (9) represents the SSIM between the original and reconstructed
images. The SSIM is the product of the differences in luminance l, contrast c, and structural
similarity s between the original and generated images. The range of the SSIM is from 0 to
1, and a score closer to 1 is considered the best in the case of SR.

Table 2 shows the average PSNR and SSIM values for the results of the evaluation
conducted on the synthetic test set. The higher values of PSNR and SSIM show the effec‑
tiveness of the proposed SRGAN‑LP on the synthetic test set.

Table 2. Average PSNR (dB) and SSIM of 100 reconstructed test images for the synthetic test set. Bold
scores show the best results, and underlined values represent the second best results.

Bilinear [15] Bicubic [15] SRCNN [8] SRGAN‑ImageNet [13] SRGAN‑LP

PSNR 29.16 28.03 29.38 30.11 41.24
SSIM 0.39 0.42 0.52 0.40 0.81

Table 3 shows the average PSNR and SSIM scores for the results of the evaluation
conducted on the real test set. The above tables reveal the effectiveness of the proposed
method in comparison to baseline techniques such as bilinear, bicubic, and SRCNN [32].
Moreover, the results are also compared with SRGAN trained on the ImageNet dataset.
For further assessment, qualitative results are discussed in the next subsection.

Table 3. Average PSNR (dB) and SSIM of 100 reconstructed test images for the real test set. Bold
scores show the best results and underlined values represent the second best results.

Bilinear [15] Bicubic [15] SRCNN [8] SRGAN‑ImageNet [13] SRGAN‑LP

PSNR 34.74 35.65 33.58 31.11 38.76
SSIM 0.43 0.43 0.89 0.42 0.72

4.3.2. Evaluation Using Inference Time
Deep learning inference time is the time consumed by a deep learning model for a

single prediction. In the context of image reconstruction, that is the time required for a
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model to reconstruct a new image. The inference time depends on the number of model
parameters. In Figure 4a,b, the size of the bubbles represents the number of parameters
of the models. In the experiments, it was evident that the models with a larger parameter
space had a higher inference time, whereas the models with a smaller number of parame‑
ters had a lower inference time. However, traditional models, without parameters, have
remarkably low inference times. Low‑parametermodelswith higher reconstruction scores
can be deployed easily on resource‑constrained devices.
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4.3.3. Qualitative Evaluation
In contrast to quantitative image assessment, which tends to assess image quality

more technically, qualitative analysis involves human expertise. In qualitative analysis,
the reconstructed images are subjected to human raters, who provide their opinions and
assess the quality of the reconstructed images. The MOS score is one of the most widely
used techniques for qualitative image assessments.

Figure 5 shows the visual quality of the reconstructed images of the synthetic test set.
These images were presented to human raters to identify the quality of the images and,
more importantly, to identify the digits that were highlighted using the yellow bound‑
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Similarly, Figures 6 and 7 show the visual quality of the reconstructed images of the
real test set. The same images of the real test set were presented to the human raters, and
their opinions on the quality of the reconstructed images are presented in Figure 4.
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4.3.4. Evaluation Using OCR
To further consolidate our experimental results, we subjected both testing sets (syn‑

thetic and real) to OCR. For this purpose, we used an OCR “platerecognizer”, publicly
available in [33]. The accuracy of OCR is based on the number of characters present in an
image versus the number of correctly recognized images. For instance, we have an image
in the test set originally consisting of the characters GX6933; however, the OCR predicts
different values, such as GX693, as shown in Figure 8. This misrecognition negatively con‑
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tributes to the average accuracy of theOCR in recognizing license plate digits. The formula
devised for calculating accuracy is as follows:

Gerr = 100
ne

nc
(10)
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Figure 8. (a) Illustrates the visual results of OCR for the real test set, whereas (b) visualizes the
results for the synthetic test set. Similarly, the green and red dots indicate the correct and incorrect
predictions respectively.

Equation (10) represents the global error calculation rate of OCR for a given image. In
the Equation, ne is the number of errors committed and nc is the number of all characters
present in an image. Using this Equation, we present the following table to illustrate the
performance of the OCR on different reconstruction techniques used in the experiments.

Table 4 shows the average accuracy of all the images present in both the test sets. The
OCR’s accuracy depends significantly on the image’s position. Both test sets contained im‑
ages that posed difficulties to the OCR in achieving accurate character recognition. How‑
ever, the higher accuracy of the proposed method compared with the other methods veri‑
fies the effectiveness of our work, demonstrating its superiority.

Table 4. Average accuracy calculated for synthetic test set and real test set.

Recognition
Accuracy Distorted Image Bicubic [15] Bilinear [15] SRGAN‑ImageNet [13] SRCNN [8] SRGAN‑LP Original

Synthetic Test Set (%) 82 83 80 84 85 92 97
Real Test Set (%) 79 78 79 80 81 93 95

5. Conclusions
This study aimed to enhance the quality of images of vehicle license plates by increas‑

ing the resolution and removing motion blurriness. Manual management of vehicles in
a smart surveillance environment is an arduous task. Therefore, more attention has been
paid to the intelligent management of vehicles in smart surveillance environments. In this
regard, license plates are considered unique identification tags for vehicles. However, ow‑
ing to the high‑speed motion of vehicles, motion blur is the most common phenomenon
occurring in surveillance environments. To tackle this challenge, we proposed SRGAN‑LP,
which intelligently performs deblurring as compared to other methods. Extensive exper‑
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imental results indicate that the proposed method outperforms the existing methods in
terms of achieving a high‑resolution deblurred image.

The results obtained by the proposed method were better both in terms of qualitative
and quantitative evaluations compared to the existing methods. However, the inference
timewas relatively high. Achieving real‑time performance, by reducing the inference time
of the proposed SRGAN‑LP, is suggested as future work. In addition, the evaluation can
be extended using other metrics, and more modules can be added to the system, such as
vehicle recognition [34], vehicle logo recognition [35], and make/model recognition [36],
for better vehicular analysis.
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