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Abstract
In this article, a novel adaptive generalized super-twisting algorithm (GSTA)
is proposed for a class of systems whose perturbations and uncertain control
coefficients may depend on both time and state. The proposed approach uses
dynamically adapted control gains, and it is proven that this ensures global
finite-time convergence. A nonsmooth strict Lyapunov function is used to obtain
the conditions for global finite-time stability. A simulation and experimental
case study is performed using an articulated intervention autonomous underwa-
ter vehicle (AIAUV). It is also shown that the adaptive GSTA causes the tracking
errors of the AIAUV to converge to zero in finite time. In the case study, we
use the singularity-robust multiple task-priority method to create a continuous
trajectory for the AIAUV to follow. The simulation and experimental results
validate and verify that the proposed approach is well suited for controlling an
AIAUV. We also perform a comparison with the super-twisting algorithm with
adaptive gains and the original GSTA to evaluate whether adding adaptive gains
to the GSTA actually improves the tracking capabilities by combining the theo-
retical advantages afforded by the GSTA with the practical advantages afforded
by adaptive gains. Based on this comparison, the adaptive GSTA yields the best
tracking results overall without increasing the energy consumption, and the sim-
ulations and experiments thus indicate that adding adaptive gains to the GSTA
does indeed improve the consequent tracking results and capabilities.

K E Y W O R D S

autonomous underwater vehicle, experimental results, robotics, sliding mode control (variable
structure systems)

1 INTRODUCTION

Sliding mode control (SMC) is a robust and versatile nonlinear control approach that is particularly well suited for
controlling perturbed systems, especially systems perturbed by matched uncertainties and disturbances.1 These prop-
erties are achieved by means of a discontinuous control law. The discontinuous element provides robustness, but
it also introduces chattering, that is, high-frequency switching in the control input. Chattering can be avoided by
using a saturation or sigmoid function instead of the discontinuous signum function.2,3 In this way, a continuous
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control input is achieved, but the sliding system’s trajectories are restricted to within a certain boundary around
the sliding surface, thus sacrificing robustness to disturbances. Alternatively, chattering can also be avoided using
higher-order sliding mode (HOSM) techniques.4-6 Thus, a continuous control input can be achieved without losing any
robustness. HOSM methods drive the sliding variable and its derivatives to zero in the presence of disturbances and
uncertainties.7

The super-twisting algorithm (STA)8 is one of the most powerful second-order continuous SMC algorithms. It attenu-
ates chattering through the introduction of a dynamic extension to the system such that the discontinuous term is hidden
behind an integrator. Thus, it generates a continuous control input that drives the sliding variable and its derivatives to
zero in finite time in the presence of smooth matched disturbances with a bounded gradient.9 The main drawback of this
approach is that the bound on the disturbance gradient must be known. This bound is not always easy to estimate and
is often overestimated, resulting in unnecessarily large control gains. Therefore, in Reference 7, an STA with adaptive
gains was proposed. This approach continuously drives the sliding variable and its derivatives to zero in the presence of a
bounded disturbance with an unknown bound, such that no conservative upper bound on the disturbance gradient needs
to be considered to maintain sliding because of the adaptive gains. In more recent years other adaptation methods for the
gains for the STA have been proposed.10,11 These methods also allow the adaptive gains to decrease. In Reference 10 an
adaptation method based on equivalent control by a first-order low-pass filter is proposed. The method reduces the con-
trol action magnitude of the STA to the minimum possible value while keeping the property of finite-time convergence.
In Reference 11 an adaptation method based on a barrier function is proposed. This method ensures convergence of the
output variable and maintains it in a predefined neighborhood of zero independent from the upper bound of the deriva-
tives of the disturbances. However, it also forces the adaptive gain to decrease together with the output variable and the
control input follows the absolute value of the disturbances.

In recent years, various Lyapunov functions have been designed to obtain convergence conditions and estimates
of the reaching time. However, the corresponding Lyapunov proofs have been conducted under conservative assump-
tions: the perturbations are assumed to depend only on time,8,12 the control coefficient is assumed to be known,8,12-14

or the perturbations are taken to depend on both state and time, but it is assumed that their total time derivative
is a priori bounded by some constant.13,15 Therefore, Reference 9 proposed a generalized super-twisting algorithm
(GSTA) that considers a more general scenario, that is, the case in which both the perturbations and the control coeffi-
cients may depend on both state and time and the control coefficients are uncertain. This approach gives rise to some
additional theoretical properties relative to the regular STA proposed in Reference 8. However, it is still necessary to
know the bounds on the perturbations and control coefficients to obtain bounds on the control gains that are not too
conservative.

In this article, we therefore propose an adaptive GSTA for a class of systems with time- and state-dependent perturba-
tions and uncertain control coefficients, that is, we combine the best properties of the STA with adaptive gains7 and the
GSTA.9 The proposed approach consists of using dynamically adapted control gains to ensure global finite-time (GFT)
convergence. The advantage of the GSTA is that stability is proven for a larger class of systems, that is, systems for which
both the perturbations and the control coefficients may depend on both state and time and the control coefficients are
uncertain. The advantage of adaptive gains is that no conservative upper bounds on the perturbations and uncertain
control coefficients need to be considered to maintain sliding. We prove that the resulting closed-loop system is globally
finite-time stable (GFTS). Please note that the abbreviations GFT and GFTS should not be confused. Compared to the tra-
ditional STA,8 the main difference is therefore that the stability is proven for a larger class of systems, that is, systems for
which both the perturbations and the control coefficients may depend on both state and time and the control coefficients
are uncertain, and that no conservative upper bounds on the perturbations and uncertain control coefficients need to be
considered to maintain sliding because of the adaptive gains.

In References 16 and 17, two alternative adaptive GSTAs have been proposed based on the GSTA presented in Ref-
erence 18, for single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, respectively. The
approach proposed in this article differs from these two algorithms in that it also allows for unknown control coeffi-
cients. In Reference 19, a third alternative adaptive GSTA has also been proposed. The approach proposed in this article
also differs from the algorithm in Reference 19 in that it additionally handles state-dependent disturbances, not merely
time-dependent disturbances. These distinctions are important because they allow us to use the adaptive GSTA proposed
here to control a larger class of systems and, in particular, to control an articulated intervention autonomous underwa-
ter vehicle (AIAUV), which was our motivation for investigating an adaptive GSTA that can handle unknown control
coefficients and state-dependent disturbances.
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7242 BORLAUG et al.

An AIAUV is an underwater vehicle with multiple joints and multiple thrusters.20 An AIAUV is subject to hydrody-
namic and hydrostatic parameter uncertainties, uncertain thruster characteristics, unknown disturbances, unmodeled
dynamics and large coupling forces caused by joint motion, and a robust control approach is therefore essential. We
have previously investigated the use of SMC for trajectory tracking for an AIAUV, since trajectory tracking is essential
to allow an AIAUV to move in confined spaces and to perform intervention tasks (tasks where the robot interacts or
is in contact with the environment). In References 21 and 22, we investigated the use of the STA with adaptive gains
to control an AIAUV, and in References 23 and 24, we investigated the use of the original GSTA for this purpose. In
Reference 25, we compared these two SMC algorithms through both simulations and experiments, and we observed
that the STA with adaptive gains yielded better tracking results than the GSTA, even though the GSTA has better the-
oretical properties as it is proven to provide GFT stability for a larger class of systems. The incorporation of adaptive
gains was thus seen to be very practical and to provide certain tuning advantages. We are therefore interested in com-
bining the practical advantages afforded by adaptive gains with the theoretical advantages of the GSTA to control an
AIAUV. This was our motivation for the theoretical development of the GSTA with adaptive gains which is presented in
this article. Moreover, we subsequently present a simulation and experimental case study performed using an AIAUV
to show the effectiveness of the proposed adaptive GSTA. We also show that the adaptive GSTA causes the tracking
errors of the AIAUV to converge to zero in finite time. In Reference 26, we combined the singularity-robust multiple
task-priority (SRMTP) framework27 with robust SMC algorithms that are finite-time stable. The finite-time convergence
property allowed us to show that multiple set-point regulation tasks would converge asymptotically to zero without the
strict requirement of perfect velocity control. We combined the SRMTP framework with a first-order SMC algorithm and
the adaptive GSTA proposed in this article. However, in Reference 26 we only used the adaptive GSTA as an example
of a SMC algorithm, and the finite-time convergence property was not proved. Therefore, in this article, we wish to
use the SRMTP method to create a continuous trajectory for the AIAUV to follow. Compared to Reference 26 we prove
that the adaptive GSTA is GFTS. Additionally, we use different set-point tasks and we also include experimental results.
The primary task is to control the position and orientation of the front end of the AIAUV, and the secondary task is to
control the position and orientation of the back end. We also present a comparison with the STA with adaptive gains7

and the original GSTA7 to evaluate whether adding adaptive gains to the GSTA actually improves the resulting track-
ing capabilities by combining the theoretical advantages afforded by the GSTA with the practical advantages afforded
by adaptive gains. Additionally, we compare the results with those of a standard proportional-integral-derivative (PID)
controller.

The contributions of this article can be summarized as follows. A novel adaptive GSTA is proposed for a class of sys-
tems whose perturbations and uncertain control coefficients may depend on both time and state. The proposed approach
consists of using dynamically adapted control gains in a GSTA, such that no conservative upper bounds on the perturba-
tions and uncertain control coefficients need to be considered to maintain sliding. A nonsmooth strict Lyapunov function
is used to obtain conditions for GFT stability. It is also shown that the adaptive GSTA causes the tracking errors of an
AIAUV to converge to zero in finite time. A simulation and experimental case study is performed to show the effective-
ness of the proposed algorithm. We also present a comparison with the STA with adaptive gains7 and the original GSTA7

to evaluate whether adding adaptive gains to the GSTA actually improves the resulting tracking capabilities by combining
the theoretical advantages afforded by the GSTA with the practical advantages afforded by adaptive gains. Additionally,
we compare the results with those of a standard PID controller. Preliminary results were presented in Reference 28. In
this article, moreover, we present not only simulations but also experimental results. Furthermore, the simulation results
are new and we use the SRMTP method to create a continuous trajectory for the AIAUV to follow. Moreover, the compar-
ison study is new; comparing the proposed algorithm with the STA with adaptive gains, the original GSTA and a standard
PID controller through both simulations and experiments.

The remainder of this article is organized as follows. In Section 2, the problem statement and main results are
given. The simulation and experimental case study of the AIAUV is reported in Section 3. In Section 4, conclusions and
suggestions for future work are presented.

2 PROBLEM STATEMENT AND MAIN RESULTS

In this section, we prove that the proposed GSTA with adaptive gains causes the system trajectories to globally con-
verge to zero in finite time while accounting for unknown bounds on the uncertain control coefficient and perturbation
term.
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2.1 System dynamics

Consider the dynamic system represented by the differential equation

𝜎̇ = 𝛾(𝜎, t)u + 𝜑(𝜎, t), (1)

where 𝜎 ∈ R is the state vector and u ∈ R is the control input vector. The functions 𝛾(𝜎, t) and 𝜑(𝜎, t) are uncertain
functions depending on the state and time. Following Reference 9, we adopt the following assumptions:

Assumption 1. The functions 𝛾(𝜎, t) and 𝜑(𝜎, t) are Lipschitz continuous functions with respect to t, and 𝛾(𝜎, t), 𝜑(𝜎, t)
∈ 1 with respect to 𝜎.

Remark 1. This means that 𝛾(𝜎, t) and 𝜑(𝜎, t) are limited in how fast they can change with time. The functions also have
to be smooth (cannot contain any breaks, angles or cusps) and their derivatives with respect to 𝜎 have to exist at each
point in the domain of each function. These are commonly accepted conditions as they are needed to guarantee that the
control input is continuous. That is because 𝜎 = 0 → 𝜎̇ = 0 → ueq = −𝜑(⋅)∕𝛾(⋅).

Assumption 2. The uncertain control coefficient function is bounded by

0 < km ≤ 𝛾(𝜎, t) ≤ kM , (2)

where km and kM are positive constants.

Remark 2. This means that the uncertain control coefficient function, 𝛾(𝜎, t), needs to be lower and upper bounded by
positive constants, that is, it needs to be positive and cannot be equal to zero or infinity. This is a commonly accepted
constraint as it is needed for the control input to be valid and to guarantee that the control input is continuous. That is
because 𝜎 = 0 → 𝜎̇ = 0 → ueq = −𝜑(⋅)∕𝛾(⋅).

Assumption 3. The perturbation term 𝜑(𝜎, t) can be split into two components:

𝜑(𝜎, t) = 𝜑1(𝜎, t) + 𝜑2(𝜎, t), (3)

where the first component vanishes at the origin, that is, 𝜑1(0, t) = 0,∀t ≥ 0, and is bounded by

|𝜑1(𝜎, t)| ≤ 𝛼|𝜙1(𝜎)|, 𝛼 > 0. (4)

Remark 3. This means that the vanishing term of the perturbation, 𝜑1(𝜎, t), needs to be upper bounded by a function that
only depend on 𝜎.

Assumption 4. The total time derivative of the nonvanishing component of the perturbation term divided by the control
coefficient 𝛾(𝜎, t) can be represented as

d
dt

(
𝛾

−1(𝜎, t)𝜑2(𝜎, t)
)
= 𝛿1𝜎t)𝛾−1 𝜕𝜑2

𝜕t
− 𝛾−2

𝜑2
𝜕𝛾

𝜕t
+ 𝛿2𝜎t)

(

𝛾

−1 𝜕𝜑2

𝜕𝜎

− 𝛾−2
𝜑2
𝜕𝛾

𝜕𝜎

)

𝜎̇ = 𝛿1(𝜎, t) + 𝛿2(𝜎, t)𝜎̇, (5)

where 𝛿1(𝜎, t) and 𝛿2(𝜎, t) are bounded by positive constants:

|𝛿1(𝜎, t)| ≤ 𝛿1, |𝛿2(𝜎, t)| ≤ 𝛿2. (6)

Remark 4. This means that the nonvanishing term divided by the control coefficient, 𝛾−1(𝜎, t)𝜑2(𝜎, t), can only grow lin-
early in 𝜎. Since 𝛾(𝜎, t) has to be lower and upper bounded by constants (Assumption 2), this means that the nonvanishing
term 𝜑2(𝜎, t) can only grow at most linearly in 𝜎.

Remark 5. Note that Assumptions 1–4 are exactly the same assumptions as made in Reference 9, which means
that even though we add adaptive gains to the GSTA, we do not impose stricter conditions on the dynamic
system.
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2.2 Generalized super-twisting algorithm with adaptive gains

In this section, the equations describing the adaptive GSTA are presented. The GSTA proposed in Reference 9 can be
written as

uAGSTA = −k1𝜙1(𝜎) + z ∈ R

ż = −k2𝜙2(𝜎) (7)

with

𝜙1(𝜎) = ⌈𝜎⌋
1
2 + 𝛽𝜎

𝜙2(𝜎) =
1
2
⌈𝜎⌋0 + 3

2
𝛽⌈𝜎⌋

1
2 + 𝛽2

𝜎, (8)

where ⌈a⌋b = |a|bsgn(a) and k1 ∈ R, k2 ∈ R and 𝛽 ∈ R are constant controller gains. Motivated by Shtessel et al.,7 we
propose to instead let k1 and k2 be adaptive gains defined by the following update laws:

̇k1 =
⎧
⎪
⎨
⎪
⎩

𝜔1

√
𝛾1
2
, if 𝜎 ≠ 0,

0, if 𝜎 = 0,
(9a)

k2 = 2𝜀k1 + 𝜆 + 4𝜀2
, (9b)

where 𝜀 ∈ R, 𝜆 ∈ R, 𝛾1 ∈ R, and 𝜔1 ∈ R are positive constants.

2.3 Closed-loop dynamics

The closed-loop dynamics are obtained by substituting (3) and (7) into (1), yielding

𝜎̇ = −k1𝛾(𝜎, t)𝜙1(𝜎) + 𝜑1(𝜎, t) + 𝛾(𝜎, t)
(

z + 𝛾−1(𝜎, t)𝜑2(𝜎, t)
)
. (10)

By defining 𝜎1 = 𝜎 and 𝜎2 = z + 𝛾−1(𝜎1, t)𝜑2(𝜎1, t), we can represent the closed-loop dynamics as

𝜎̇1 = 𝛾(𝜎1, t)
(
−k1𝜙1(𝜎1) + 𝛾−1(𝜎1, t)𝜑1(𝜎1, t) + 𝜎2

)
(11a)

𝜎̇2 = −k2𝜙2(𝜎1) +
d
dt

(
𝛾

−1(𝜎1, t)𝜑2(𝜎1, t)
)
. (11b)

Theorem 1. Suppose that 𝛾(𝜎1, t) and 𝜑(𝜎1, t) in system (1) satisfy Assumptions 1-4. Then, the closed-loop dynamics in (11)
are GFTS, such that the states 𝜎1 and 𝜎2 converge to zero and z converges to −𝛾−1(0, t)𝜑2(0, t), globally and in finite time, if
the gains k1 and k2 are designed as expressed in (9), 𝛽 > 0, 𝜆 > 0, 𝜔1 > 0, 𝛾1 > 0, and 𝜀 = 𝜔2

2𝜔1

√
𝛾2
𝛾1

, where 𝜔2 > 0 and 𝛾2 > 0.

Remark 6. Note that the proof is for a one-dimensional case; however, since SMC approaches do not use model informa-
tion, the n dimensions can simply be separated into n one-dimensional cases. The proof thus holds for n dimensions as
long as Assumptions 1–4 hold for each dimension. This will be demonstrated in the case study presented in Section 3.

Remark 7. To make the difference between this proof and the results obtained in Reference 9 clear, and since we will
use the Lyapunov function obtained in Reference 9, we start the proof of Theorem 1 by stating the results obtained in
Reference 9.

Proof. From Reference 9, we have that the closed-loop system in (11) is GFTS when constant values of k1, k2 and 𝛽 > 0
are used in (7) and the gains are chosen in accordance with Reference 9(theorem 2.1). This is proven using the Lyapunov
function candidate
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BORLAUG et al. 7245

V0 = 𝜉TP𝜉, P =

[
p1 −1
−1 p2

]

, (12)

where p1p2 > 1 and 𝜉T =
[
𝜙1(𝜎1) 𝜎2

]
. It is shown that the derivative along the trajectory of the system is

̇V 0 ≤ −2𝛾(𝜎1, t)𝜙′1(𝜎1)𝜉TQ(t)𝜉 ≤ −𝜇1V
1
2

0 (𝜎1, 𝜎2) − 𝜇2V0(𝜎1, 𝜎2), (13)

where

𝜇1 =
km𝜖𝜆

1
2
min{P}

𝜆max{P}
, 𝜇2 = 𝛽

2km𝜖

𝜆max{P}
, (14)

and Q(t) is positive definite if the gains are chosen in accordance with Reference 9(theorem 2.1). For the proposed adaptive
GSTA, however, k1 and k2 are not constants. Instead, k1 and k2 are time-varying functions given by (9). Motivated by
Shtessel et al.,7 we use the Lyapunov function candidate defined in (12) to find a k1 that satisfies (9a) such that Q(t) is
positive definite when k2 is chosen as expressed in (9b). From Reference 9, the elements of Q(t) are

Q(t) =

[
q1(t) q2(t)
q2(t) q3(t)

]

=

[
̃k1p̃1 − ̃k2

1
2
(p2 ̃k2 − (̃k1 ̃h + p̃1))

1
2
(p2 ̃k2 − (̃k1 ̃h + p̃1)) ̃h

]

(15)

with

p̃1 =
(

p1 −
𝛿2(𝜎1, t)
𝜙

′
1(𝜎1)

)

⇒ p̃1 ∈ [p1
, p1] =

[

p1 −
𝛿2

𝛽

, p1 +
𝛿2

𝛽

]

,

̃k2 = 𝛾−1(𝜎1, t)
(

k2 −
𝛿1(𝜎1, t)
𝜙2(𝜎1)

)

⇒ ̃k2 ∈ [k2, k2] =
[

1
kM
(k2 − 2𝛿1),

1
km
(k2 + 2𝛿1)

]

,

̃k1 =
(

k1 − 𝛾−1(𝜎1, t)
𝜑1(𝜎1, t)
𝜙1(𝜎1)

)

⇒ ̃k1 ∈ [k1, k1] =
[

k1 −
𝛼

km
, k1 +

𝛼

km

]

,

̃h =
(

1 −
p2𝛿2(𝜎1, t)
𝜙

′
1(𝜎1)

)

⇒ ̃h ∈ [h, h] =

[

1 −
p2𝛿2

𝛽

, 1 +
p2𝛿2

𝛽

]

. (16)

For the matrix Q(t) in (15) to be positive definite, we need q1(t) > 0 and det(Q(t)) > 0. If we choose ̃k1 = k1 − 𝛼

km
and

̃k2 = 1
km
(k2 + 2𝛿1), we get that q1(t) and det(Q(t)) are as small as possible. We therefore do not need to consider the case

where ̃k1 = k1 + 𝛼

km
and ̃k2 = 1

km
(k2 − 2𝛿1), since q1(t) and det(Q(t)) then would be larger, and the matrix Q(t) is thus

positive definite if it is positive definite when ̃k1 = k1 − 𝛼

km
and ̃k2 = 1

km
(k2 + 2𝛿1). With this choice of ̃k1 and ̃k2, we can

rewrite Q(t) as

Q(t) =
⎡
⎢
⎢
⎣

(

k1 − 𝛼

km

)

p̃1 −
1

km
(k2 + 2𝛿1) q2(t)

1
2

(
p2
km
(k2 + 2𝛿1) −

((

k1 − 𝛼

km

)
̃h + p̃1

))
̃h

⎤
⎥
⎥
⎦

. (17)

By using k2 as given in (9b) and calculating the determinant of Q(t) in (17), we obtain

det(Q(t)) = q1(t)q3(t) − q2
2(t)

=
((

k1 −
𝛼

km

)

p̃1 −
1

km

(

2𝜀k1 + 𝜆 + 4𝜀2 + 2𝛿1

))

̃h − 1
4

(
p2

km

(

2𝜀k1 + 𝜆 + 4𝜀2 + 2𝛿1

)

−
((

k1 −
𝛼

km

)

̃h + p̃1

))2

= ̃hp̃1k1 −
𝛼

̃hp̃1

km
− 2𝜀̃h

km
k1 −

𝜆

̃h
km

− 4𝜀2
̃h

km
− 2𝛿1 ̃h

km
− 1

4

(
2𝜀p2

km
k1 +

𝜆p2

km
+

4𝜀2p2

km
+

2𝛿1p2

km
− ̃hk1 +

𝛼

̃h
km

− p̃1

)2

. (18)
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7246 BORLAUG et al.

By introducing ka =
𝛼

̃hp̃1
km

+ 𝜆

̃h
km
+ 4𝜀2

̃h
km

+ 2𝛿1
̃h

km
> 0 and kb =

𝜆p2
km
+ 4𝜀2p2

km
+ 2𝛿1p2

km
+ 𝛼

̃h
km
> 0, where ̃h = 1 + p2𝛿2

𝛽

since this will
make det(Q(t)) the smallest, we can rewrite (18) as

det(Q(t)) =
((

̃hp̃1 −
2𝜀̃h
km

)

k1 − ka

)

− 1
4

((
2𝜀p2

km
− ̃h

)

k1 + kb − p̃1

)2

=
((

̃hp̃1 −
2𝜀̃h
km

)

k1 − ka

)

−

((
𝜀

2p2
2

k2
m
−
𝜀

̃hp2

km
+ 1

4
̃h2
)

k2
1 +

(
𝜀kbp2

km
−
𝜀p̃1p2

km
− 1

2
̃hkb +

1
2
̃hp̃1

)

k1 +
1
4

k2
b −

1
2

kbp̃1 +
1
4

p̃2
1

)

=

(

−
𝜀

2p2
2

k2
m
+
𝜀

̃hp2

km
− 1

4
̃h2
)

k2
1 +

(

̃hp̃1 −
2𝜀̃h
km

−
𝜀kbp2

km
+
𝜀p̃1p2

km
+ 1

2
̃hkb −

1
2
̃hp̃1

)

k1 −
1
4

k2
b +

1
2

kbp̃1 −
1
4

p̃2
1 − ka

= (kd − kc)k2
1 + (ke − kf )k1 + kh − kg (19)

with

kc =
𝜀

2p2
2

k2
m
+ 1

4
̃h2
> 0, (20a)

kd =
𝜀

̃hp2

km
> 0, (20b)

ke = ̃hp̃1 +
𝜀p̃1p2

km
+ 1

2
̃hkb > 0, (20c)

kf =
2𝜀̃h
km

+
𝜀kbp2

km
+ 1

2
̃hp̃1 > 0, (20d)

kg =
1
4

k2
b +

1
4

p̃2
1 + ka > 0, (20e)

kh =
1
2

kbp̃1 > 0. (20f)

A solution to

det(Q(t)) = (kd − kc)k2
1 + (ke − kf )k1 + kh − kg > 0 (21)

is then

k1 >
kg − kh

ke − kf
, (22)

where we must choose p1 and p2 such that kf < ke and kd = kc. To ensure that kd = kc, we choose

p2 =
̃hkm

2𝜀
. (23)

By substituting (23) into (20a) and (20b), we obtain

kc =
𝜀

2
(
̃hkm
2𝜀

)2

k2
m

+ 1
4
̃h2 = 1

2
̃h2
,

kd =
𝜀

̃h
̃hkm
2𝜀

km
= 1

2
̃h2
, (24)

thus showing that kd = kc is ensured. To ensure that kf < ke, we calculate
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BORLAUG et al. 7247

kf < ke

2𝜀̃h
km

+
𝜀kbp2

km
+ 1

2
̃hp̃1 <

̃hp̃1 +
𝜀p̃1p2

km
+ 1

2
̃hkb. (25)

By substituting (23) into (25), we obtain

2𝜀̃h
km

+ 𝜀kb

km

̃hkm

2𝜀
+ 1

2
̃hp̃1 <

̃hp̃1 +
𝜀p̃1

km

̃hkm

2𝜀
+ 1

2
̃hkb

2𝜀̃h
km

+
̃hkb

2
+ 1

2
̃hp̃1 <

̃hp̃1 +
̃hp̃1

2
+ 1

2
̃hkb

2𝜀
km

< p̃1. (26)

This means that by choosing p̃1 >
2𝜀
km

or

p1 >
2𝜀
km

+ 𝛿2

𝛽

, (27)

we can ensure that kf < ke. Therefore, by choosing k1 as in (22), p1 as in (27) and p2 as in (23), we obtain det(Q(t)) > 0.
Now, to ensure that q1(t) > 0, we calculate

q1(t) > 0,
(

k1 −
𝛼

km

)

p̃1 −
1

km
(2𝜀k1 + 𝜆 + 4𝜀2 + 2𝛿1) > 0,

(

p̃1 −
2𝜀
km

)

k1 −
𝛼

km
p̃1 −

1
km
(𝜆 + 4𝜀2 + 2𝛿1) > 0. (28)

By choosing

k1 > kq =
(

p̃1 −
2𝜀
km

)−1 (
𝛼

km
p̃1 +

1
km
(𝜆 + 4𝜀2 + 2𝛿1)

)

, (29)

we can ensure that q1(t) > 0. By combining (22) and (29), we obtain

k1 >
kg

ke − kf
+ kq (30)

which will ensure both that det(Q(t)) > 0 and that q1(t) > 0. Note that the term −kh that appears in the numerator in
(22) is removed since kh > kg could lead to q1(t) < 0. Also note that this does not affect det(Q(t)) > 0 since kg

ke−kf
>

kg−kh

ke−kf

because kh > 0. From this, we can conclude that if we choose k1 as in (30), p1 as in (27) and p2 as in (23), then the matrix
Q(t)will be positive definite, thus ensuring that the closed-loop system in (11) will be GFTS when constant gains are used;
in other words, we have proven that there exists a gain k1 such that Q(t) is positive definite. We now need to prove that
when the adaptive gains defined in (9) are adopted, k1 will converge such that (30) is satisfied.

Now, we will use the Lyapunov function candidate

V = V0 +
1

2𝛾1
(k1 − k⋆1 )

2 + 1
2𝛾2

(k2 − k⋆2 )
2
, (31)

where k⋆1 > 0 and k⋆2 > 0 are constants, to prove that the closed-loop dynamics in (11) are also GFTS with the adaptive
gains given in (9). By taking the derivative of (31), we obtain

̇V = ̇V 0 +
1
𝛾1
(k1 − k⋆1 ) ̇k1 +

1
𝛾2
(k2 − k⋆2 ) ̇k2. (32)
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7248 BORLAUG et al.

By using the fact that ̇V 0 ≤ −𝜇1V
1
2

0 (𝜎1, 𝜎2) and subtracting and adding 𝜔1√
2𝛾1

|k1 − k⋆1 | +
𝜔2√
2𝛾2

|k2 − k⋆2 |, we can rewrite (32)
as

̇V ≤ −𝜇1V
1
2

0 −
𝜔1

√
2𝛾1

|k1 − k⋆1 | −
𝜔2

√
2𝛾2

|k2 − k⋆2 | +
1
𝛾1
(k1 − k⋆1 ) ̇k1 +

1
𝛾2
(k2 − k⋆2 ) ̇k2 +

𝜔1
√

2𝛾1
|k1 − k⋆1 | +

𝜔2
√

2𝛾2
|k2 − k⋆2 |.

(33)
By using the well-known inequality

(x2 + y2 + z2)1∕2
≤ |x| + |y| + |z| (34)

in (31), we obtain

√
V =

(

V0 +
1

2𝛾1
(k1 − k⋆1 )

2 + 1
2𝛾2

(k2 − k⋆2 )
2
) 1

2

≤ V
1
2

0 +
1

√
2𝛾1

|k1 − k⋆1 | +
1

√
2𝛾2

|k2 − k⋆2 |. (35)

We can then derive

−𝜇1V
1
2

0 −
𝜔1

√
2𝛾1

|k1 − k⋆1 | −
𝜔2

√
2𝛾2

|k2 − k⋆2 | ≤ −𝜂
√

V , (36)

where 𝜂 = min(𝜇1, 𝜔1, 𝜔2). Considering (36), we can rewrite (33) as

̇V ≤ −𝜂V
1
2 + 1

𝛾1
(k1 − k⋆1 ) ̇k1 +

1
𝛾2
(k2 − k⋆2 ) ̇k2 +

𝜔1
√

2𝛾1
|k1 − k⋆1 | +

𝜔2
√

2𝛾2
|k2 − k⋆2 |. (37)

By Shtessel et al.7(proposition 1), we have that the adaptation law given in (9) causes the adaptive gains k1 and k2 to be
bounded. Then, there exist positive constants k⋆1 and k⋆2 such that

k1(t) − k⋆1 < 0, k2(t) − k⋆2 < 0 ∀t ≥ 0. (38)

We can therefore reduce (37) to

̇V ≤ −𝜂V
1
2 − |k1 − k⋆1 |

(

1
𝛾1
̇k1 −

𝜔1
√

2𝛾1

)

− |k2 − k⋆2 |

(

1
𝛾2
̇k2 −

𝜔2
√

2𝛾2

)

, (39)

where we must ensure that

−|k1 − k⋆1 |

(

1
𝛾1
̇k1 −

𝜔1
√

2𝛾1

)

− |k2 − k⋆2 |

(

1
𝛾2
̇k2 −

𝜔2
√

2𝛾2

)

= 0 (40)

to achieve finite-time convergence. The satisfaction of (40) should be achieved through the adaptation of the gains k1 and
k2, that is,

̇k1 = 𝜔1

√
𝛾1

2
, (41a)

̇k2 = 𝜔2

√
𝛾2

2
. (41b)

If we select 𝜀 = 𝜔2
2𝜔1

√
𝛾2
𝛾1

, then (9b) and (41b) are equal, since
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BORLAUG et al. 7249

k2 = 2𝜀k1 + 𝜆 + 4𝜀2 ⇒

̇k2 = 2𝜀 ̇k1 ⇒ ̇k2 = 𝜀𝜔1
√

2𝛾1 = 𝜔2

√
𝛾2

2
. (42)

For finite-time convergence, k1(t) must satisfy (30). This means that k1(t) must increase in accordance with (41a) until
(30) is satisfied; since k1(t) increases linearly, (30) will be satisfied in finite time. This guarantees the positive definiteness
of the matrix Q(t). Once (30) is satisfied, finite-time convergence is guaranteed according to (39), and as nicely described
in the Introduction of Reference 29, this implies that the closed-loop system in (11) is GFTS. ▪

3 CASE STUDY: ARTICULATED INTERVENTION-AUV

In this section, we apply the theoretical results of Section 2 for the tracking control of an AIAUV in a case study to
show the effectiveness of the proposed control algorithm. In this case study, the SRMTP method27 is used to create a
continuous trajectory for the AIAUV to follow. We present both simulations and experiments. The purpose of the exper-
iments is to validate the underlying theory and the robustness of the proposed method by showing that the proposed
method also works in experiments and not only in the ideal case presented in simulations. We also present a compari-
son with the STA with adaptive gains7 and the original GSTA7 to evaluate whether adding adaptive gains to the GSTA
actually improves the resulting tracking capabilities by combining the theoretical advantages afforded by the GSTA with
the practical advantages afforded by adaptive gains. Additionally, we compare the results with those of a standard PID
controller.

3.1 AIAUV model

In this section, we present the model of the AIAUV. The AIAUV has n links and n − 1 motorized joints, each of which is
regarded as a one-dimensional Euclidean joint. The AIAUV also has m thrusters. The AIAUV is modeled as an underwater
vehicle-manipulator system, with dynamic equations given in matrix form as follows:30,31

̇

𝜉 = J(𝜂2)𝜁 =
⎡
⎢
⎢
⎢
⎣

RT
Ib(𝜂2) 03×3 03×(n−1)

03×3 J−1
k,o(𝜂2) 03×(n−1)

0(n−1)×3 0(n−1)×3 I(n−1)×(n−1)

⎤
⎥
⎥
⎥
⎦

𝜁, (43a)

M(q) ̇𝜁 + C(q, 𝜁)𝜁 + D(q, 𝜁)𝜁 + g(q,RIb) = 𝜏(q) (43b)

with 𝜉 = [𝜂T
1 𝜂

T
2 qT]T ∈ R6+(n−1), where 𝜂1 = [x y z]T ∈ R3 is the position, 𝜂2 = [𝜙 𝜃 𝜓]T ∈ R3 is the set of Euler

angles describing the orientation of the AIAUV in the inertial frame, and q ∈ R(n−1) is the vector representing the joint
angles; and 𝜁 = [vT

𝜔

T q̇T]T ∈ R6+(n−1), where v and 𝜔 are the body-fixed linear and angular velocities, respectively,
and q̇ is the vector of the joint angle velocities. The rotation matrix RIb expresses the transformation from the inertial frame
to the body-fixed frame, Jk,o is the Jacobian matrix, and I(n−1)×(n−1) is the (n − 1) × (n − 1) identity matrix. The matrix M(q)
is the inertia matrix, C(q, 𝜁) is the Coriolis matrix, D(q, 𝜁) is the damping matrix, g(q,RIb) is the vector of gravitational and
buoyant forces, and 𝜏 is the control input. The dynamic model given in (43) can be formulated with respect to a coordinate
frame with its origin at an arbitrary position on the AIAUV. In this article, we assume that the model is formulated with
respect to the center link of the AIAUV, such that the velocity state vector, 𝜁 , is defined as

𝜁 =
⎡
⎢
⎢
⎢
⎣

vc
Ic

𝜔

c
Ic

q̇

⎤
⎥
⎥
⎥
⎦

∈ R
6+(n−1)

, (44)

where vc
Ic and 𝜔c

Ic are the body-fixed linear and angular velocities, respectively, of the center link of the AIAUV and q̇ is
the vector of the joint velocities. The control input is given by the generalized forces 𝜏(q):
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7250 BORLAUG et al.

𝜏(q) =

[
T(q) 06×(n−1)

0(n−1)×m I(n−1)×(n−1)

][
𝜏thr

𝜏q

]

, (45)

where T(q) ∈ R6×m is the thruster configuration matrix, 𝜏thr ∈ Rm is the vector of the thruster forces and 𝜏q ∈ R(n−1)

represents the joint torques.

3.2 Test case: SRMTP method

In this section, the test case considered in the simulations and experiments is explained. To generate a continuous tra-
jectory for the AIAUV to follow, we will use the SRMTP framework.27 This choice is based on Reference 26, where it
was shown how algorithms giving finite-time convergence, as we here have proved that the adaptive GSTA gives, can be
combined with the SRMTP framework. It was proved that the resulting system would make multiple set-point regulation
tasks converge asymptotically to zero, with strict priority between the tasks, and moreover without the strict requirement
of perfect velocity control which is often made when using SRMTP algorithms. To demonstrate the approach, we consider
the following two set-point regulation tasks:

1. Control the position and orientation of the front end (link 9),
2. Control the position and orientation of the back end (link 1).

This combination of tasks corresponds to the ability of the AIAUV to move to a position of interest and then
perform a double observation task by simultaneously adjusting the position and orientation of its front and back
ends.

The expressions for the task error and task Jacobian for task 1 are as follows:
Task 1: Position and orientation of the front end

𝜒1 =
[

(𝜂̃f
1,If )

T
, 𝜂̃

T
2,f

]T
,

J1 = Jcf ,

where 𝜂̃f
1,If is the position deviation of the front end and 𝜂̃2,f is the orientation deviation of the frond end. The task Jacobian

J1 for task 1 is the front end Jacobian Jcf , which relates the body-fixed velocities of the front end to the body-fixed velocity
of the center link and the joint velocities. The task can then be solved by using the position and orientation of the center
link and the two double-joint modules in front of the center link.

Similarly, the second task utilizes the position and orientation of the center link and the two double-joint modules
behind the center link; accordingly, the expressions for the task error and task Jacobian for task 2 are as follows:

Task 2: Position and orientation of the back end

𝜒2 =
[

(𝜂̃b
1,Ib)

T
, 𝜂̃

T
2,b

]T
,

J2 = Jcb,

where 𝜂̃b
1,Ib is the position deviation of the back end and 𝜂̃2,b is the orientation deviation of the back end. The task Jacobian

J2 for task 2 is the back end Jacobian Jcb, which relates the body-fixed velocities of the back end to the body-fixed velocity
of the center link and the joint velocities.

The reference velocities, 𝜁r, are calculated in accordance with

𝜁r = J+1 Λ1𝜒1 + N1J+2 Λ2𝜒2, (46)

where J+i = JT
i (JiJT

i )
−1 is the right Moore–Penrose pseudo-inverse of the task Jacobian and N1 is the null space projector

for task 1. The set-points 𝜒i,d were set manually and filtered through a third-order reference filter to avoid discontinu-
ities and large jumps in the calculated reference velocities. The gain parameters in (46) were set to Λ1 = 0.5I6×6 and
Λ2 = 0.5I6×6.
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BORLAUG et al. 7251

3.3 Tracking control law using the adaptive GSTA

In this section, we develop a tracking control law for the AIAUV based on the adaptive GSTA and show that the sliding
surface and, therefore, the tracking errors converge to zero in finite time. Let the sliding surface be defined as

𝜎 = 𝜁 − 𝜁r ∈ R
6+(n−1) (47)

and let the control input be given by

𝜏(q) = uAGSTA ∈ R
6+(n−1)

, (48)

where uAGSTA is given in (7)–(9). Note that no additional terms are added to the control input to compensate for neither
the unknown nor known terms, which are dependent on both state and time, in the AIAUV model. These terms can
therefore be considered as a perturbation. By differentiating (47) and inserting (43), we obtain

𝜎̇ = ̇

𝜁 − ̇

𝜁 r = M−1(⋅)(−C(⋅)𝜁 − D(⋅)𝜁 − g(⋅) + 𝜏(⋅)) − ̇

𝜁 r (49)

and by using the fact that 𝜁 = 𝜁r + 𝜎 from (47), we obtain the following equation describing the dynamics of 𝜎:

𝜎̇ = M−1(⋅)(−C(⋅)(𝜁r + 𝜎) − D(⋅)(𝜁r + 𝜎) − g(⋅) + 𝜏(⋅)) − ̇

𝜁 r. (50)

Now, we can separate (50) into 6 + (n − 1) one-dimensional equations such that Theorem 1 can be used. The dynamics
of 𝜎i can then be described by

𝜎̇i = m−1
i (⋅)(−ci(⋅)(𝜁r,i + 𝜎i) − di(⋅)(𝜁r,i + 𝜎i) − gi(⋅) + 𝜏i(⋅)) − ̇

𝜁 r,i +m−1
≠i (⋅)(−c≠i(⋅)(𝜁r,≠i + 𝜎≠i) − d≠i(⋅)(𝜁r,≠i + 𝜎≠i) − g≠i(⋅)),

(51)
where 𝜁r,i and ̇

𝜁 r,i are the velocity reference and its derivative, respectively, corresponding to 𝜎i = 𝜁i − 𝜁r,i; m−1
i (⋅), ci(⋅) and

di(⋅) are the ith elements on the diagonals of the matrices M−1(⋅), C(⋅) and D(⋅), respectively; gi is element i in the vector g(⋅);
and 𝜏i(⋅) is element i in the control input 𝜏(⋅). The vectors m−1

≠i (⋅) ∈ R6+(n−1)−1, c≠i(⋅) ∈ R6+(n−1)−1 and d≠i(⋅) ∈ R6+(n−1)−1

consist of the elements (i, j), where j = 1 ∶ 6 + (n − 1) but j ≠ i, in the matrices M−1(⋅), C(⋅) and D(⋅), respectively. The
vectors 𝜁r,≠i ∈ R6+(n−1)−1, 𝜎≠i ∈ R6+(n−1)−1 and g≠i(⋅) ∈ R6+(n−1)−1 consists of the elements j, where j = 1 ∶ 6 + (n − 1) but
j ≠ i, in the velocity reference vector 𝜁r, the state vector 𝜎 and the vector g(⋅), respectively.

Now, by introducing 𝜑i(𝜎i, t) = 𝜑1,i(𝜎i, t) + 𝜑2,i(𝜎i, t), where 𝜑1,i(0, t) = 0, and 𝛾i(⋅) = m−1
i (⋅) and substituting 𝜏i(⋅) from

(48) and (7)-(9) into the above expression, we obtain

𝜎̇i = −k1,i𝛾i(⋅)𝜙1(𝜎i) + 𝜑1,i(𝜎i, t) + 𝛾i(⋅)(zi + 𝛾−1
i (⋅)𝜑2,i(𝜎i, t)), (52)

where 𝜑1,i(𝜎i, t) = 𝛾i(⋅)(−ci(⋅)𝜎i − di(⋅)𝜎i) and 𝜑2,i(𝜎i, t) = 𝛾i(⋅)(−ci(⋅)𝜁r,i − di(⋅)𝜁r,i − gi(⋅) −mi(⋅) ̇𝜁 r,i) +m−1
≠i (⋅)(−c≠i(⋅)(𝜁r,≠i +

𝜎≠i) − d≠i(⋅)(𝜁r,≠i + 𝜎≠i) − g≠i(⋅)). By setting 𝜎1,i = 𝜎i and 𝜎2,i = zi + 𝛾−1
i (⋅)𝜑2,i(𝜎i, t), we can then write the dynamics as

𝜎̇1,i = −k1,i𝛾i(⋅)𝜙1(𝜎1,i) + 𝜑1,i(𝜎1,i, t) + 𝛾i(⋅)𝜎2,i,

𝜎̇2,i = −k2,i𝜙2(𝜎1,i) +
d
dt

(
𝛾

−1
i (⋅)𝜑2,i(𝜎1,i, t)

)
. (53)

Now, if 𝛾(⋅)i, 𝜑1,i(⋅) and 𝜑2,i(⋅) satisfy Assumptions 1–4, then Theorem 1 will be satisfied, and the dynamics in (53) will be
GFTS. The sliding surface 𝜎i = 0 is then a GFTS equilibrium point, which means that 𝜎i converges to zero in finite time.

Now, to prove that 𝛾i(⋅), 𝜑1,i(⋅) and 𝜑2,i(⋅) satisfy Assumptions 1–4, we need to adopt the following assumptions
regarding the AIAUV:

Assumption 5. The AIAUV is neutrally buoyant.

Assumption 6. The AIAUV has only revolute joints. The following properties then hold:30

1. Property 1: 0 < 𝜆min(M) ≤ ||M|| ≤ 𝜆max(M).
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7252 BORLAUG et al.

2. Property 2: M = MT
> 0.

3. Property 3: ̇M = C + CT and 𝜁T( ̇M − 2C)𝜁 = 0 ∀ 𝜁 ∈ R6+(n−1).

Assumption 7. The reference trajectory and its derivatives are continuous and bounded by design.

Remark 8. Assumptions 5–7 are valid due to the design of the AIAUV and the reference trajectories. Note that
Assumptions 5 and 6 are common underwater vehicle manipulator system modeling assumptions.

Assumption 8. The following conditions hold:

1. |𝛾i(⋅)ci(⋅)| ≤ k
𝛼,c, where k

𝛼,c is a positive constant,
2. |𝛾i(⋅)di(⋅)| ≤ k

𝛼,d, where k
𝛼,d is a positive constant.

Assumption 9. The following conditions hold:

1. |
d
dt
(ci(⋅))| ≤ k

𝛿1,c1 + k
𝛿2,c1 |𝜎̇i|, where k

𝛿1,c1 and k
𝛿2,c1 are positive constants,

2. |
d
dt
(di(⋅))| ≤ k

𝛿1,d1 + k
𝛿2,d1 |𝜎̇i|, where k

𝛿1,d1 and k
𝛿2,d1 are positive constants,

3. |
d
dt
(gi(⋅))| ≤ k

𝛿1,g + k
𝛿2,g|𝜎̇i|, where k

𝛿1,g1 and k
𝛿2,g1 are positive constants,

4. |
d
dt

(

𝛾

−1
i (⋅)(m−1

≠i (⋅)c≠i(⋅))
)

| ≤ k
𝛿1,c2 + k

𝛿2,c2 |𝜎̇i|, where k
𝛿1,c2 and k

𝛿2,c2 are positive constants,

5. |
d
dt

(

𝛾

−1
i (⋅)(m−1

≠i (⋅)d≠i(⋅))
)

| ≤ k
𝛿1,d2 + k

𝛿2,d2 |𝜎̇i|, where k
𝛿1,d2 and k

𝛿2,d2 are positive constants,

6. |
d
dt

(

𝛾

−1
i (⋅)(m−1

≠i (⋅)g≠i(⋅))
)

| ≤ k
𝛿1,g2 + k

𝛿2,g2 |𝜎̇i|, where k
𝛿1,g2 and k

𝛿2,g2 are positive constants.

Remark 9. For all practical purposes, Assumptions 8 and 9 will be satisfied since the AIAUV is a mechanical system and
has a limited control input, which will cause the velocities of the system to also be bounded. For theoretical purposes,
it should be proven that these assumptions hold; however, this proof will be left as a topic for future work. Some of the
assumptions can also be discarded when the adaptive GSTA is extended to MIMO systems; this is also a topic for future
work.

Now, Assumption 2 holds because of Property 1 in Assumption 6, while Assumptions 3 and 4 hold because of Assump-
tions 8 and 9, respectively. The conditions of Theorem 1 are thus satisfied in each dimension, and therefore, by Theorem 1,
the dynamics in (53) are GFTS. The sliding surface 𝜎 = 0 is therefore a GFTS equilibrium point, which means that 𝜎
converges to zero in finite time.

3.4 Simulation results

In this section, the simulation implementation, set-up and results are presented.

3.4.1 Implementation

The motion of the AIAUV was simulated using MATLAB Simulink. The model was implemented using the method
described in Reference 32 and is based on the Eelume 2020 robot, which is the robot used in the experiments reported in
Section 3.5. The 2020 version of the Eelume robot has a length of 6.15 m and weighs 194.1 kg, and it is shown in Figure 1.
The AIAUV has n = 9 cylindrical links with a radius of 0.1 m, n − 1 = 8 revolute joints and m = 12 thrusters. Note that the
robot has only 5 visible links in Figure 1; however, the links are interconnected by joint modules that allow rotation about
two axes (y and z). Accordingly, we model each joint as two revolute joints interconnected by a small link; this is why
we define the robot as possessing n = 9 links and n − 1 = 8 revolute joints. The properties of each link are presented in
Table 1. In the thrusters column, “4: (X,Z), (X,-Z), Y, -Y” means that the link has four thrusters: two thrusters work in both
the x-direction and the positive/negative z-direction in the link frame, and two thrusters work in the positive/negative
y-direction. The thrusters that work in both the x- and z-directions are tilted by 45 deg to allow them to work in both
directions. Joints 1, 3, 5, and 7 rotate about the z-axis, and joints 2, 4, 6, and 8 rotate about the y-axis. Joint rotation
occurs in the link frame of the corresponding link, for example, joint 1 rotates about the z-axis of link 1. The link frames
are right-handed coordinate systems in which the completely outstretched robot is oriented such that the x-axes point
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BORLAUG et al. 7253

F I G U R E 1 The Eelume 2020 vehicle (Courtesy: Eelume)

T A B L E 1 Eelume 2020 link properties

Link no. Length (m) Mass (kg) Thrusters

1 0.84 26.4 None

2, 4, 6, 8 0.08 2.6 None

3 1.38 43.5 4: (X,Z), (X,-Z), Y, -Y

5 1.63 51.3 4: (X,Z), (X,-Z), Y, -Y

7 1.38 43.5 4: (X,-Z), (X,Z), -Y, Y

9 0.60 19.0 None

T A B L E 2 Physical parameters used in the simulations

Physical parameter Value

Added mass coefficient for the cross section 1

Nonlinear drag coefficient in surge 0.2

Nonlinear drag coefficient in roll 0.1

Nonlinear crossflow drag coefficient 0.5

Linear cross-sectional drag coefficient 0.1

Added mass ratio in surge/heave for a link 0.2

Linear drag parameter in surge 0.1

Linear drag parameter in roll 0.1

forwards and the z-axes point upwards. In the simulations, the AIAUV was assumed to be neutrally buoyant. A thruster
allocation matrix was implemented as proposed in Reference 32. The maximum thrust of each thruster is approximately
60 N, while the limit on the joint torques are 16 Nm. The physical parameters used in the simulations are shown in Table 2.

For implementation purposes, a small bound was placed on 𝜎 such that the adaptive gains could be expressed as

̇k1,i =
⎧
⎪
⎨
⎪
⎩

𝜔1,i

√
𝛾1,i

2
, if |𝜎i| > 𝛼m,i

0, if |𝜎i| ≤ 𝛼m,i

(54a)

k2,i = 2𝜀ik1,i + 𝜆i + 4𝜀2
i , (54b)
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7254 BORLAUG et al.

where the design parameter 𝛼m ∈ R6+(n−1) is a small, empirically chosen positive constant. This boundary was introduced
because numerically 𝜎 will never be exactly zero, meaning that in practical implementations the second condition of (9a)
will never be met, which would make the adaptive gains increase to infinity.

3.4.2 Simulations

We used the simulation model presented in Section 3.4.1 to simulate the test case explained in Section 3.2. For the sim-
ulations, the ode3 fixed-step solver with a step size of 0.01 was used. We were not able to directly use the gains obtained
during the experiments; it was necessary to make some small changes to the experimental gains to allow them to work
properly in the simulations. However, we used the experimental gains as the starting point and attempted to modify them
as little as possible. The gains used for the GSTA with adaptive gains are presented in Table 3, where ei is a 1 × i vector of
ones. For the adaptive GSTA, it was necessary only to change the 𝜆 gain for the joints from 0.1 to 1. The results obtained
when using the control law proposed in Section 3.3 are presented in Figure 2, and the evolution of the adaptive gains over
time for the adaptive GSTA can be seen in Figure 3. In Figure 2F label qi corresponds to the torque used for joint i, and
in Figure 3 label x corresponds to the evolution of the adaptive gains k1(t) and k2(t) over time for the x-dimension, label
y corresponds to the evolution of the adaptive gains k1(t) and k2(t) over time for the y-dimension, etc.

For comparison, we also obtained results using the previously mentioned algorithms, that is, the STA with adaptive
gains from Reference 7 and the original GSTA from Reference 7. The STA with adaptive gains proposed in Reference 7
can be expressed as

uSTA(𝜎) = −𝛼|𝜎|1∕2sgn(𝜎) + v,
v̇ = −𝛽STAsgn(𝜎), (55)

where 𝜎 is the sliding surface and the adaptive gains are defined as

𝛼̇ =
⎧
⎪
⎨
⎪
⎩

𝜔1

√
𝛾1
2

if 𝜎 ≠ 0

0, if 𝜎 = 0
(56)

and

𝛽STA = 2𝜀𝛼 + 𝜆 + 4𝜀2
, (57)

where 𝜀, 𝜆, 𝛾1, and 𝜔1 are positive constants. For implementation purposes, a small bound was placed on the sliding
surface such that the adaptive gains could be expressed in the same manner as those for the adaptive GSTA, that is, as
shown in (54). The GSTA proposed in Reference 9 can be expressed as

uGSTA = −k1𝜙1(𝜎) + z,
ż = −k2𝜙2(𝜎) (58)

T A B L E 3 Simulation: control gains for the adaptive GSTA

Gain Values

𝜀 1 × 10−5eT
14

𝜆 eT
14

𝛾1 eT
14

𝜔1 [e6 0.1e8]T

𝛽 [3e6 e8]T

𝛼m 0.05eT
14
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BORLAUG et al. 7255

Front end position Front end orientation

Back end position Back end orientation

Thruster forces Joint torques

(A) (B)

(C) (D)

(E) (F)

F I G U R E 2 Simulation results obtained using the adaptive GSTA for the task-priority case
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7256 BORLAUG et al.

Evolution of 1( ) over time Evolution of 2( ) over time(A) (B)

F I G U R E 3 Simulation: evolution of the adaptive gains over time for the adaptive GSTA

with

𝜙1(𝜎) = ⌈𝜎⌋
1
2 + 𝛽GSTA𝜎,

𝜙2(𝜎) =
1
2
⌈𝜎⌋0 + 3

2
𝛽GSTA⌈𝜎⌋

1
2 + 𝛽2

GSTA𝜎, (59)

where k1, k2 and 𝛽GSTA are the controller gains and 𝜎 is the sliding surface. For both the STA with adaptive gains
and the GSTA, we used the sliding surface defined in (47). We also compare the results with those of a stan-
dard PID controller. The reason we chose to include a PID controller as a representative standard control method
is because it is one of the most widely used types of controllers and is known to yield good results if tuned cor-
rectly. However, it does not provide any stability guarantee. The PID controller considered in this comparison is
defined as

𝜏 = −kp ̃𝜁 + kd ̇𝜁 r − ki
∫

̃

𝜁dt, (60)

where ̃𝜁 = 𝜁 − 𝜁r and kp, kd, and ki are the controller gains.
As mentioned previously, we were not able to use the control gains found during the experiments directly. The gains

used in the simulations are presented in Table 4A for the STA with adaptive gains, in Table 4B for the GSTA and in
Table 4C for the PID controller. For the STA with adaptive gains, we needed only to change the 𝜆 gain for the joints
from 0.1 to 1. For the GSTA, it was necessary to change the 𝛽 gains from [80e6 15e8] to [25e6 45e8], and for the PID
controller, we needed to change the kp gain for the joints from 20 to 40 and the ki gain for the joints from 10 to 15,
to get the control algorithms to work properly in the simulations. The tracking errors for all algorithms are presented
in Figure 4. In Figure 5, we present the thruster forces and joint torques for all algorithms except the adaptive GSTA,
for which the forces and torques have been previously presented in Figure 2. For the STA with adaptive gains, the evo-
lution of the adaptive gains over time can be seen in Figure 6. In Table 5, the root mean square errors (RMSEs) and
maximum errors of the position and orientation for each task are given for all algorithms. In Table 6, the root mean
square (RMS) values of the thruster forces, the derivatives of the thruster forces, the joint torques, and the derivatives
of the joint torques are given for all algorithms. The RMS of the thruster forces and the joint torques provides a mea-
sure of how much control effort that is used, and the RMS of the derivative of the thruster forces and the derivative
of the joint torques provides a measure of how much chattering that is present in the thruster forces and the joint
torques.
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BORLAUG et al. 7257

T A B L E 4 Simulation: control gains

(A) For the STA with adaptive gains

Gain Values

𝜀 1 × 10−5eT
14

𝜆 eT
14

𝛾1 eT
14

𝜔1 [e6 0.1e8]T

𝛼m 0.05eT
14

(B) For the GSTA

Gain Values

k1 [3e6 e8]T

k2 [0.004e6 0.002e8]T

𝛽 [25e6 45e8]T

(C) For the PID controller

Gain Values

kp [250e6 40e8]T

kd [80e6 10e8]T

ki [15e6 15e8]T

3.4.3 Discussion

Figures 2A and 2B shows the commanded and actual position and orientation of the front end corresponding to task 1
when the GSTA with adaptive gains (7) is used. For task 1, we can see some small transient deviations at approximately
200 s and 400 s in the position and in the yaw orientation. These transient errors correspond to a roll movement of the front
end, which may indicate that movement in the roll direction interferes with movement in the other degrees of freedom.
The results for task 2 are shown in Figure 2C and 2D. As shown, the combination of the SRMTP method and the dynamic
control law enables all tasks to be performed simultaneously, as indicated by Borlaug et al.26(theorem 1) in combination with
Section 3.3; however, some transient deviations can also be observed for task 2. We see some small transient errors around
200 and 400 s in position and yaw that correspond to roll movements for task 1 and task 2. We also see small transient
errors in the roll and pitch directions at approximately 550 s, which correspond to movement in the x-direction for task 1.
These deviations occur because task 1 is the primary task, whereas task 2 is the secondary task. The first term in (46)
does not consider the task errors for task 2. The attempt to achieve the desired front end position and orientation will
consequently introduce errors in the back end position and orientation. These deviations disappear as soon as the second
term in (46) compensates for these task errors. From the deviations for task 1, we can also conclude that the subtasks of
task 1 interfere with each other. The simulation results therefore support the theoretical results obtained in Reference 26
as well as in Theorem 1 and Section 3.3, as the finite-time convergence property of the adaptive GSTA is essential for
ensuring that all set-point tasks can be performed simultaneously. From Figure 2E, we can see that the forces used are
smooth and well below 60 N, which is approximately the limit of the thrusters. From Figure 2F, we can see that the joint
torques are smooth and below 16 Nm, which is the limit on the joint torques. The control inputs are therefore feasible.
From Figure 3A and 3B, we can also see that the gains k1(t) and k2(t) increase linearly and converge to suitable values,
which agrees with the theoretical results we found in Section 2. Note that even though the resulting k2(t) in this case is
small, it is both necessary and practical to have both the gains k1(t) and k2(t) adaptive. It is necessary to complete the proof
and practical as we did not know in advance that k2 would be small. By having both k1 and k2 adaptive we are able to use
the algorithm for a larger class of system, and we do not need to have any a prior knowledge of the size of k1 and k2.

From Figure 4, we can clearly see that there are some points that exhibit transient errors introduced by the SRMTP
method. These transient errors appear when the set-point for task 1 or 2 is changed. It can also see that the magnitudes

 10991239, 2022, 13, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6212 by N

orw
egian Institute O

f Public H
ealth, W

iley O
nline L

ibrary on [13/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



7258 BORLAUG et al.

Tracking errors for the front end position Tracking errors for the front end orientation

Tracking errors for the back end position Tracking errors for the back end orientation

(A) (B)

(C) (D)

F I G U R E 4 Simulation: tracking errors for the task-priority case

of these transient errors are different for the different control algorithms. From Figure 4A, we can see that the adaptive
GSTA clearly results in the smallest position errors for task 1, while the STA with adaptive gains yields the second smallest
errors. However, the STA with adaptive gains also introduces some oscillation in z. The PID controller achieves the third
smallest errors, while the GSTA results in the largest errors. Figure 4B shows that this is also the case for the orientation
errors for task 1. However, it appears that the PID controller actually yields better results than the STA with adaptive
gains. The STA with adaptive gains also introduces some oscillations into the states. When we consider the position errors
for task 2 in Figure 4C, we see that the STA with adaptive gains again yields better results than the PID controller, but the
STA with adaptive gains also introduces oscillation in z, while the adaptive GSTA still results in the lowest errors and best
results. When we additionally consider the orientation errors for task 2 in Figure 4D, we see that here also, the adaptive
GSTA achieves the lowest errors. The STA with adaptive gains again introduces some oscillations into the states; however,
it also yields the second smallest errors. These findings are further supported by Table 5, which shows that the adaptive
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BORLAUG et al. 7259

Thruster forces used for the STA with adaptive gains Joint torques used for the STA with adaptive gains

Thruster forces used for the GSTA Joint torques used for the GSTA

Thruster forces used for the PID controller Joint torques used for the PID controller

(A) (B)

(C)

(E) (F)

(D)

F I G U R E 5 Simulation: thruster forces 𝜏thr and joint torques used for the task-priority case
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7260 BORLAUG et al.

Evolution of ( ) over time Evolution of ( ) over time(A) (B)

F I G U R E 6 Simulation: evolution of the adaptive gains over time for the STA with adaptive gains

T A B L E 5 Simulation: comparison of the tracking results

RMSE Maximum error

Algorithm Task 1 Task 2 Task 1 Task 2

AGSTA Position 0.0313 0.0382 0.2295 0.2124

Orientation 0.0113 0.0146 0.0698 0.0787

STA Position 0.0467 0.0581 0.3057 0.2713

Orientation 0.0216 0.0239 0.1227 0.1158

GSTA Position 0.1106 0.1177 0.5683 0.3832

Orientation 0.0483 0.0550 0.1816 0.1755

PID Position 0.0512 0.0763 0.2732 0.2882

Orientation 0.0227 0.0356 0.0891 0.1385

T A B L E 6 Simulation: comparison of the control inputs

RMS

Algorithm 𝝉thr 𝝉̇ thr 𝝉q 𝝉̇q

AGSTA 4.7933 0.4191 1.9777 0.4487

STA 5.8351 0.7371 2.4834 0.8704

GSTA 4.3251 107.6121 1.8879 83.8284

PID 5.4231 0.1324 2.3276 0.0778

GSTA results in the smallest RMSE values and maximum error values in both position and orientation for both tasks. We
can therefore conclude that the adaptive GSTA exhibits the best tracking performance overall, that is, the smallest errors.
The STA with adaptive gains comes in second overall, even though the PID controller has smaller maximum error values
for task 1. The PID controller thus takes third place, while the GSTA comes fourth.

Regarding the thruster and torque use of the different algorithms, we can see from Figures 2E, 2F and 5 that the force
use is quite similar for all of the considered algorithms. However, the GSTA uses less force than the other algorithms and
introduces some chattering, which may be the reason why it results in the highest tracking errors. From Table 6, we can
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BORLAUG et al. 7261

see that there are some small differences among the other algorithms, as well. However, the RMS values of the thruster
forces and the joint torques indicate that the adaptive GSTA uses the least force after the GSTA, even though it produces
the best tracking performance. Nevertheless, the STA with adaptive gains and the PID controller also use very similar
amounts of force. Furthermore, from the RMS values of 𝜏̇ thr and 𝜏̇q, we can see that the only algorithm that introduces
chattering is the GSTA.

3.5 Experimental investigation

The purpose of the experiments was to validate the underlying theory and the robustness of the control approach by
showing that the proposed approach also works in practice and not only in the ideal case presented in simulations. In the
following subsections, we describe the Eelume robot, the experimental set-up employed to validate the proposed adaptive
GSTA controller for trajectory tracking, and the obtained results.

3.5.1 Eelume robot

The Eelume robot used in the experiments was the 2020 version of the robot, which is described by the simulation model
introduced in Section 3.4.1. This new robot has torque control on the joints, which means that we could use our control
algorithms to also control the joint angles by means of the torque, and not just the position and orientation of the vehicle
by means of the thrusters.

3.5.2 Experimental set-up

We performed the experiments at the Marine Cybernetics Laboratory (MC-Lab) at the Norwegian University of Science
and Technology (NTNU), Trondheim, Norway.33 The tank in the MC-Lab has the following dimensions: a length of
40 m, a height of 1.5 m and a width of 6.45 m. We used an underwater motion capture system from Qualisys,34 which
allowed us to track reflective markers attached to the center link of the AIAUV within a working area with dimensions
of approximately 10 m × 1.35 m × 5.45 m. The Qualisys system provided us with real-time measurements of the position
of the center link of the AIAUV. Figure 7 shows the 2020 version of the robot with the reflective markers attached to the
center link.

The system structure used during the experiments is illustrated in Figure 8. The Qualisys system, or camera position-
ing system, sent the measured position and orientation from an external computer, to which the Qualisys system was
connected, via the UDP to a different computer running LabVIEW 2016. The LabVIEW computer was then connected
via UDP to another computer running MATLAB Simulink, in which the SRMTP method, the dynamic controllers and
the thruster allocation were implemented. The computer running MATLAB Simulink was also running Eelume Suite,
which is the program developed by Eelume to connect to the robot. From the Eelume Suite program, we obtained the
orientation of the vehicle and the joint angles. We sent the joint torques and thrust commands from MATLAB Simulink
to Eelume Suite. Eelume Suite then sent and received information to and from the robot through an optical fibre cable.

F I G U R E 7 The Eelume 2020 vehicle with reflective markers attached to the center link
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7262 BORLAUG et al.

Camera
positioning

system
Labview

SRMTP method Dynamic controller Thruster allocation

AIAUV Eelume Suite

MATLAB

F I G U R E 8 Illustration of the system structure

T A B L E 7 Experiments: control gains for the adaptive GSTA

Gain Values

𝜀 1 × 10−5eT
14

𝜆 [e6 0.1e8]T

𝛾1 eT
14

𝜔1 [e6 0.1e8]T

𝛽 [3e6 e8]T

𝛼m 0.05eT
14

To estimate the linear and angular velocities of the vehicle and the joint velocities, we used an extended Kalman filter
based on the kinematic model, which was also implemented in MATLAB Simulink. As inputs to the Kalman filter, we
used the position measurements from the Qualisys system and the orientation and joint measurements from the robot,
as the orientation measurements from the robot were more accurate than those from the Qualisys system. To control
the thrusters, we used current control. The thruster reference was thus proportional to the motor current, that is, we
used a linear mapping to calculate the commanded reference sent from MATLAB Simulink based on the desired force.
The commanded reference was a value in the range of ±100, corresponding to ±23 A on the motor and a force range of
approximately ±60 N.

3.5.3 Experimental results

In this subsection, the experimental results from the test described in Section 3.2 are presented. The gains for the GSTA
with adaptive gains are presented in Table 7. For the adaptive GSTA, the choice of the gains should not be very important
since the gains will autonomously adapt to suitable values, and indeed, it was observed during the experiments that it
was easy to find a starting point for the adaptive gains that yielded good tracking results. The results obtained using the
control law proposed in Section 3.3 are presented in Figure 9, and the evolution of the adaptive gains over time for the
adaptive GSTA can be seen in Figure 10.

For comparison, we also obtained results using the previously mentioned algorithms, that is, the STA with adaptive
gains (55), the original GSTA (58) and a PID controller (60). For the SMC algorithms, we used the sliding surface defined
in (47). The gains found for the STA with adaptive gains, the GSTA and the PID controller during the experiments are
presented in Table 8A–C. The tracking errors for all algorithms are presented in Figure 11. Figure 12 shows the thruster
forces and joint torques for all algorithms except the adaptive GSTA, for which the forces and torques have been previously
presented in Figure 9. For the STA with adaptive gains, the evolution of the adaptive gains over time can be seen in
Figure 13. In Table 9, the RMSEs and maximum errors of the position and orientation for each task are given for all
algorithms. In Table 10, the RMS values of the thruster forces, the derivatives of the thruster forces, the joint torques, and
the derivatives of the joint torques are given for all algorithms.
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Front end position Front end orientation

Back end position Back end orientation

Thruster forces Joint torques

(A) (B)

(C) (D)

(E) (F)

F I G U R E 9 Experimental results using the adaptive GSTA for the task-priority case
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Evolution of 1( ) over time Evolution of 2( ) over time(A) (B)

F I G U R E 10 Experiments: evolution of the adaptive gains over time for the adaptive GSTA

T A B L E 8 Experiments: control gains

(A) For the STA with adaptive gains

Gain Values

𝜀 1 × 10−5eT
14

𝜆 [e6 0.1e8]T

𝛾1 eT
14

𝜔1 [e6 0.1e8]T

𝛼m 0.05eT
14

(B) For the GSTA

Gain Values

k1 [3e6 e8]T

k2 [0.004e6 0.002e8]T

𝛽 [80e6 15e8]T

(C) For the PID controller

Gain Values

kp [250e6 20e8]T

kd [80e6 10e8]T

ki [15e6 10e8]T

3.5.4 Discussion

Figures 9A and 9B shows the commanded and actual position and orientation of the front end corresponding to task 1
when the GSTA with adaptive gains (7) is used. For task 1, we can see a small transient deviation at approximately 400 s
in the yaw orientation. This transient error corresponds to a roll movement of the front end, which may indicate that
movement in the roll direction interferes with movement in the yaw direction. This corresponds with the simulation
results. Some other small oscillations are also evident, but these can simply be attributed to experimental uncertainties.
The results for task 2 are shown in Figures 9C and 9D. It is seen that the combination of the SRMTP method and the
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Tracking errors for the front end position Tracking errors for the front end orientation

Tracking errors for the back end position Tracking errors for the back end orientation

(A) (B)

(C) (D)

F I G U R E 11 Experiments: tracking errors for the task-priority case

dynamic control law allows all tasks to be performed simultaneously, as indicated by Borlaug et al.26(theorem 1) in combi-
nation with Section 3.3. Some transient deviations can be observed also for task 2. We see some small transient errors
at approximately 200 and 400 s in position and yaw that correspond to roll movements for task 1 and task 2. We also
see small transient errors in the roll and pitch directions at approximately 550 s, which correspond to movement in the
x-direction for task 1. This also corresponds with the simulation results. The reason why we are unable to eliminate these
deviations is because they are introduced by the SRMTP method, as discussed in Section 3.4.3. The experimental results
therefore support the theoretical results, and we find that all set-point tasks are achieved. From Figure 9E, we can see that
the forces used are well below 60 N, which is approximately the limit of the thrusters. From Figure 9F, we can see that
the joint torques are smooth and below 16 Nm, which is the limit on the joint torques. The control inputs are therefore
feasible. From Figures 10A and 10B, we can see that the gains k1(t) and k2(t) converge to suitable values.
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Thruster forces used for the STA with adaptive gains Joint torques used for the STA with adaptive gains

Thruster forces used for the GSTA Joint torques used for the GSTA

Thruster forces used for the PID controller Joint torques used for the PID controller

(A) (B)

(C) (D)

(E) (F)

F I G U R E 12 Experiments: thruster forces 𝜏thr and joint torques 𝜏q used for the task-priority case
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Evolution of ( ) over time Evolution of ( ) over time(A) (B)

F I G U R E 13 Experiments: evolution of the adaptive gains over time for the STA with adaptive gains

T A B L E 9 Experiments: comparison of the tracking results

Algorithm RMSE Maximum error

Task 1 Task 2 Task 1 Task 2

AGSTA Position 0.0521 0.0760 0.3323 0.4011

Orientation 0.0220 0.0296 0.1040 0.1054

STA Position 0.0651 0.0839 0.4213 0.5638

Orientation 0.0235 0.0321 0.1253 0.1831

GSTA Position 0.0649 0.0915 0.4154 0.5304

Orientation 0.0215 0.0328 0.1267 0.1560

PID Position 0.0851 0.1020 0.4900 0.5545

Orientation 0.0263 0.0366 0.1394 0.1797

T A B L E 10 Experiments: comparison of the control inputs

RMS

Algorithm 𝝉thr 𝝉̇ thr 𝝉q 𝝉̇q

AGSTA 5.0325 7.8897 2.1488 0.3898

STA 3.6394 5.7950 2.2093 0.3645

GSTA 3.6527 3.3307 2.2126 0.3398

PID 3.2469 42.1036 2.1960 5.3478

By comparing the simulation results in Figure 2 with the experimental results in Figure 9, we can see that
the same transient errors introduced by the SRMTP method occur in both the simulations and experiments. In
the experiments, we also see some more oscillations and larger deviations; however, this is to be expected because
of measurement noise, the thruster dynamics, the joint dynamics and other unmodeled dynamics that inevitably
affect the experiment. A comparison of the thruster forces and joint torques reveals that the greatest difference
between the simulations and experiments is that there is a stronger tendency toward chattering in the control inputs
in the experiments; in addition, less force is used in the simulations. Nevertheless, the experimental results and
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7268 BORLAUG et al.

the simulation results are quite similar, indicating that the adaptive GSTA is indeed applicable for controlling the
AIAUV.

From the position error plots in Figure 11, we can clearly see that there are some points that exhibit transient errors
introduced by the SRMTP method. This behavior is less clear in the orientation error plots, although some tendency
toward such a pattern is also seen here. It is also evident that the magnitudes of the transient errors are different for
the different control algorithms, although it is not as easy to distinguish the different algorithms from each other as it
is in the simulation results. We can see from Figure 11A that the adaptive GSTA yields the smallest position errors in
x and y for task 1, although it is difficult to determine which algorithm performs the best in z. The STA with adaptive
gains performs second best, while the performances of the GSTA and the PID controller are not easy to distinguish. In
Figure 11B, it is also difficult to distinguish among the different algorithms based on the results in the roll and pitch
directions for task 1, as the errors are quite small for all algorithms. For the yaw direction, the adaptive GSTA is seen
to result in the smallest error for task 1, and the STA with adaptive gains yields the second best results; however, it is
again difficult to distinguish between the GSTA and the PID controller. When we consider the position errors for task 2
in Figure 11C, we can see that for the x and y directions, the adaptive GSTA yields the smallest errors, while the results
for z show little distinction. When we additionally consider the orientation errors for task 2 in Figure 11D, we see that
here also, it is difficult to distinguish among the different algorithms based on the results for the roll and pitch directions;
however, the adaptive GSTA is seen to result in the lowest error in yaw, although the other algorithms are still difficult
to distinguish from each other in the yaw direction. These findings are also supported by Table 9, from which we can
see that the adaptive GSTA results in the smallest RMSE values and maximum error values in both position and orienta-
tion for both tasks, with the exception of the RMSE orientation results for task 1, for which it is actually the GSTA that
produces the lowest value. We can therefore conclude that the adaptive GSTA achieves the best tracking performance
overall, that is, the smallest errors. In terms of the RMSE values and the maximum errors, the STA with adaptive gains
and the GSTA actually yield very similar results. The GSTA usually achieves the best results for task 1, while the STA
with adaptive gains achieves the best results for task 2. By contrast, the PID controller exhibits the highest RMSE val-
ues for both tasks and the highest maximum error values for task 1. Meanwhile, the highest maximum error values for
task 2 correspond to the STA with adaptive gains. In Figure 11C,D, an outlier is evident in the results for the STA with
adaptive gains; this outlier is probably the reason why the maximum error for task 2 is so high for the STA with adaptive
gains.

Regarding the thruster and torque use of the different algorithms, we can see from Figures 9E and 9F and 12 that there
are no large differences in the amounts of force used. Nevertheless, Table 10 reveals some small differences among the
algorithms. The RMS values of the thruster forces indicate that the adaptive GSTA uses the greatest amount of force, which
may be the reason why the adaptive GSTA achieves the best overall performance. Nevertheless, the other algorithms also
use very similar amounts of thruster force. The RMS values of the joint torques also are all very similar. From the RMS
values of 𝜏̇ thr, we can see that there is some chattering in the thruster inputs for all algorithms; however, the most rapid
changes are observed with the PID controller. From the 𝜏̇q results, we can see that there is no chattering in the torque
control inputs of the SMC controllers, while the PID controller introduces some rapid changes.

By comparing Figure 4 with Figure 11, we can see that overall, the tracking errors are smaller in the simulations,
which can also be confirmed by comparing Table 5 with Table 9. This is to be expected because of measurement
noise, the thruster dynamics, the joint dynamics and other unmodeled dynamics that inevitably affect the experi-
ment. However, the GSTA actually shows better tracking performance in the experiments. This probably means that
we could have found gains in the simulations that would have yielded better results. When we compare the forces
used, by comparing Figures 2E and 2F and 5 with Figures 9E and 9F and 12, we can see evidence of more chatter-
ing in the control inputs during the experiments, which can also be confirmed by comparing Table 6 with Table 10.
One other interesting observation is that while the adaptive GSTA uses less force in the simulations than in the
experiments, the other algorithms actually use more force in the simulations than in the experiments. This may be
because we tuned the gains of the controllers up in the simulations to obtain results similar to those obtained in the
experiments.

One thing worth noting is that the results of this performance comparison between the STA with adaptive gains,
the original GSTA and the PID controller are similar to those previously obtained in Reference 25. This strengthens the
evidence from Reference 25 that adaptive gains are beneficial, as the results we obtain do not depend on our tuning
capabilities. We also see that adding adaptive gains to the GSTA, thereby combining the theoretical advantages afforded
by the GSTA and the practical advantages afforded by adaptive gains, improves the consequent tracking results and
capabilities.
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BORLAUG et al. 7269

4 CONCLUSIONS AND FUTURE RESEARCH

A novel adaptive GSTA is proposed for a class of systems whose perturbations and uncertain control coefficients may
depend on both time and state. The proposed approach consists of using dynamically adapted control gains, such that
no conservative upper bounds on the perturbations and uncertain control coefficients need to be considered to maintain
sliding. We prove that the resulting closed-loop SISO system is GFTS. A simulation and experimental case study performed
using an AIAUV is reported. It is also shown that the proposed adaptive GSTA causes the tracking errors of the AIAUV
to converge to zero in finite time. In the case study, the SRMTP method is used to create a continuous trajectory for the
AIAUV to follow. The primary task is to control the position and orientation of the front end of the AIAUV, and the
secondary task is to control the position and orientation of the back end. The simulation and experimental results validate
and verify that the proposed approach is well suited for controlling an AIAUV. The results are almost equally good between
the simulations and experiments. The tracking errors are larger in the experiments than in the simulations; however,
this is to be expected because of measurement noise, the thruster dynamics, the joint dynamics and other unmodeled
dynamics that inevitably affect the experiment.

We also present a comparison with the STA with adaptive gains and the original GSTA to evaluate whether adding
adaptive gains to the GSTA actually improves the tracking capabilities by combining the theoretical advantages afforded
by the GSTA with the practical advantages afforded by adaptive gains. Based on this comparison, the adaptive GSTA yields
the best tracking results overall without increasing the energy consumption, and the simulations and experiments thus
indicate that adding adaptive gains to the GSTA does indeed improve the consequent tracking results and capabilities.

Future work will include investigating an adaptation method that allows the adaptive gains to be decreased and
extending the adaptive GSTA to MIMO systems.
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