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Abstract

Fluid–structure interaction (FSI) incorporates effects of fluid flows on deformable solids and vice versa. Complex biomedical
problems in clinical applications continue to challenge numerical algorithms, as incorporating the underlying mathematical
methods can impair the solvers’ performance drastically. In this regard, we extend a semi-implicit, pressure Poisson-based FSI
scheme for non-Newtonian fluids to incorporate several models crucial for biomechanical applications. We consider Windkessel
outlets to account for neglected downstream flow regions, realistic material fibre orientation and stressed reference geometries
reconstructed from medical image data. Additionally, we incorporate vital numerical aspects, namely, stabilisations to counteract
dominant convective effects and instabilities triggered by re-entrant flow, while a major contribution of this work is combining
interface quasi-Newton methods with Robin coupling conditions to accelerate the partitioned (semi-)implicit coupling scheme.
The numerical examples presented herein aim to finally bridge the gap to real-world applications, considering state-of-the-art
modelling aspects and physiological parameters. FSI simulations of blood flow in an iliac bifurcation derived from medical
images and vocal folds deforming in the process of human phonation demonstrate the versatility of the framework.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

MSC: 74F10; 76A05; 76M10; 74L15; 76D05
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1. Introduction

Rapid progress in computational (bio-)mechanics continues to increase the reliability and significance of patient-
specific simulations. In clinical decision making, treatment planning, prototyping and testing on virtual cohorts,
both costs and ethical concerns can be mitigated when compared to traditional in-vivo studies. As numerical
methods continue to advance, computational tools are employed for increasingly complex tasks, where individual
mathematical models may have an even stronger impact on the overall algorithm. In biomedical engineering, many
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of these applications feature incompressible flow interacting with soft biological tissue, leading to a fluid–structure
interaction (FSI) problem. Whether the task involves blood flow [1–3], human phonation [4–7] or respiration [8,9],
the fundamental theme of a deforming flow domain plays a central role in the system’s behaviour.

To account for fluid domain motion, arbitrary Lagrangian–Eulerian (ALE) techniques [10–12], immersed
boundary methods [13,14] and fictitious-domain approaches [15,16] are the most popular techniques. Ensuring
continuity of velocities, displacements and tractions requires enforcing coupling conditions on the moving fluid–
solid interface via, e.g., Lagrange multipliers [17,18], Nitsche’s method [19,20], mortar techniques [14,21], penalty
approaches [22,23], formulations allowing for globally continuous function spaces [24–27] or other concepts. The
interface data is updated in each step of an iterative, partitioned scheme [28,29], exchanging data of the individual
field’s solvers in each pass, or by solving a single monolithic system [10,17,18,27,30].

In biomedical applications, robust convergence of the coupling algorithm and numerical stability with respect
to physical parameters are particularly important. Depending on the solid and fluid density ratio, the slenderness
of the computational domain and the time step size, the so-called added-mass effect [31,32] can significantly
reduce the efficiency of traditional partitioned setups. Nonetheless, the partitioned design offers increased modularity
and exchangeability, motivating efforts towards easing the numerical treatment. In this regard, it has been shown
that dynamic relaxation [9], interface (quasi-)Newton schemes [33,34], interface Newton–Krylov methods [35,36],
artificial compressibility [37,38] or Robin interface conditions can yield considerable improvements.

Simultaneously, semi-implicit treatment of the momentum and mass balance equations and coupling conditions,
as initially proposed by Fernández [39], led to significant advances in the field. Based on projection or time-
splitting methods for the fluid phase, proper linearisation and extrapolation allows treating the fluid momentum
balance equations, mesh motion equation and possibly other equations outside of the iterative coupling loop (see,
e.g., [11,40–42]). Recent developments enable fully explicit treatment of interface conditions for selected FSI
problems even with large added-mass effect, both for shells [43–46] and three-dimensional continua [47–50].
Depending on the software design, generality, problem parameters and involved models, those fully explicit coupling
schemes for bulk continua are very promising, but are still either limited to the simplest constitutive laws and
first-order temporal accuracy, or involve a multitude of correction steps.

Applying such schemes to practically relevant problems in bioengineering or clinical application is another
important hurdle to be taken. Including additional modelling aspects to account for realistic conditions or targeting
physiologically relevant parameters can have a drastic impact on runtimes and stability. For both coupled velocity–
pressure and projection schemes, well-established methods exist to account for the downstream vasculature via
lumped parameter models and to counteract instabilities arising in the case of backflow. Similarly, numerical
techniques to accelerate the convergence of the FSI coupling algorithm are readily available and thoroughly tested for
coupled velocity–pressure formulations used in the fluid solver, but rarely presented for split-step schemes [41,51].

This work extends our basic formulation [52], which is a partitioned FSI solver based on a consistent split-step
scheme. Therein, a pressure Poisson equation (PPE) allowing for variable viscosity and including fully consistent
boundary conditions is used to recover the pressure. This enables added-mass-stable coupling by iteratively solving
only the PPE and structure subproblems. However, the original contribution [52] did not demonstrate improved
convergence using Robin interface conditions, used only trivial acceleration schemes and did not include any further
models arising in clinical applications.

Herein, we carefully integrate well-established mathematical models and numerical techniques into the PPE-based
FSI scheme [52], preserving accuracy, efficiency and stability. The approaches to reduce instabilities arising in the
practical parameter range are (i) backflow stabilisation [53], and (ii) Galerkin least-squares stabilisation (GLS) [54]
for dominant convection, each of which shall here be introduced in all necessary detail. To counteract decreasing
convergence speed as the added-mass effect becomes dominant, we consider (iii) Robin interface conditions and
(iv) the interface quasi-Newton inverse least-squares method (IQN-ILS) [33]. Compared to [52], we will show how
this combination can lead to a robust and accurate numerical tool suitable for application in practical problems
– a key contribution of this work. Regarding mathematical models in the cardiovascular and general biomedical
context, we consider (i) three-element Windkessel models to account for the downstream vasculature’s resistance
and capacitance, (ii) remapping of prescribed inflow profiles to non-circular inlets [55], (iii) construction of material
orientation vectors in tube-like geometries with subdivided cross sections and (iv) an algorithm to include prestress
present in geometries constructed from medical images [56]. Building up from [52], we investigate how the velocity
interpolation affects the temporal stability, which can pose a challenge to the coupling scheme, especially when
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considering Windkessel models and adaptive timestepping. Additionally, a new orientation algorithm modified from
[3] to tackle dissected vessel trees is presented, eliminating the need for detecting vessel regions.

The remainder of this article is organised as follows: Section 2 introduces the basic version of the PPE-based FSI
solver [52] and its semi-implicit variants, the semi-implicit Dirichlet–Neumann (SIDN) and semi-implicit Dirichlet–
Robin (SIDR) schemes. Numerical methods, i.e., backflow stabilisation, GLS and IQN-ILS acceleration to increase
robustness and stability and to lower the amount of FSI coupling iterations are introduced in Section 3. Thereafter,
Section 4 describes proper inclusion of lumped-parameter models in the split-step scheme, the construction of
material orientations for complex geometries and a suitable prestress algorithm. In Section 5, several numerical
experiments from vastly different biomechanical FSI applications – blood flow through straight and bifurcating
vessels and airflow through the vocal folds – showcase the versatility and robustness of the framework. Conclusions
and limitations are discussed in the closing Section 6.

2. Problem statement
The FSI problem defined on the moving domain ⌦ t couples incompressible flows of generalised Newtonian

fluids in the fluid domain ⌦ t

f
⇢ ⌦ t with elastic continua occupying ⌦ t

s
= ⌦ t \ ⌦ t

f
. The subdomains share the

interface denoted as ⌃ t := @⌦ t

s
\ @⌦ t

f
, where displacements, velocities and tractions are continuous,

ds = d f ,
@

@t
ds = u f , � f n f = � s n f , (1)

with ds and d f being the solid and fluid displacements from the reference configuration, the fluid velocity u f in
the spatial configuration, the Cauchy stresses � s and � f , @

@t
ds denoting the solid’s material velocity and n f the

unit outward normal on ⌦ t

f
. The fluid domain displacement d f allows to conveniently describe the domain motion

over time in an ALE framework. On a joint static reference frame ⌦̂ := ⌦̂ f [ ⌦̂s , the maps

At : ⌦̂ f ! ⌦ t

f
, At = x̂ + d f (x̂, t), Lt : ⌦̂s ! ⌦ t

s
, Lt = x̂ + ds(x̂, t),

with respective deformation gradients F and Jacobians J

F f := I + rd f , J f := det F f , Fs := I + rds, Js := det Fs,

are defined similar to a total Lagrangian approach typical in solid mechanics. The fluid domain displacement is
constructed via harmonic extension of ds from ⌃̂ into ⌦̂ f via

� �d f = 0 in ⌦̂ f , (2)

d f = ds on ⌃̂ , (3)

d f = 0 on ⌦̂ f \ ⌃̂ , (4)

which results in a sufficiently smooth map At (d f ) from reference to current fluid domain. In the solid subdomain, the
map Lt (ds) is directly constructed from the solid’s displacement ds , governed by the balance of linear momentum
in total Lagrangian form, written as

⇢s

@2

@t2 ds � r · P = 0 in ⌦̂s, (5)

⌘R

s

@

@t
ds + Pn̂s = ⌘R

s
u f + J f � f F�T

f
n̂s on ⌃̂ , (6)

Pn̂s = � keds � ce

@

@t
ds on �̂R,s, (7)

ds = g
s

on �̂D,s, (8)

where ⇢s is the solid’s density, P the first Piola–Kirchhoff stress tensor, n̂s the unit outward normal on ⌦̂s , ⌘R

s
is a

Robin parameter, ke and ce are parameters to model viscoelastic support and g
s

are Dirichlet data. Eq. (6) is a Robin
condition defined on the interface, linearly combining the traction and velocity continuity conditions to improve
convergence behaviour (see, e.g., [29,50,51]). The first Piola–Kirchhoff stress tensor of a quasi-incompressible,
fibre-reinforced neo-Hookean solid is defined as [57]

P := µs J
�2/3
s

✓
Fs �

1
3

I1 F�T

s

◆
+
b

2
�
J

2
s

� 1
�

F�T

s
+ Fs

X

i=4,6


2k1Gi exp

�
k2G

2
i

� @Gi

@C

�
, (9)
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where we additionally introduce Gi := J
�2/3
s [c I1 + (1 � 3c)Ii ] � 1 for ease of notation and C := FT

s
Fs , which

yields

@Gi

@C
= J

�2/3
s

⇢
c I + (1 � 3c)Ai �

1
3

C�1 [c I1 + (1 � 3c)Ii ]
�

.

Here, µs is the solid’s shear rate, s is the bulk modulus, k1, k2 and c are (collagen) fibre parameters and the
invariants I1 := tr(C) and Ii := C : Ai , with Ai := mi ⌦ mi and mean fibre directions mi , where the fibre
contribution is active under tension only (Ii > 1) and zero otherwise. For later reference, we further provide
relations for a standard quasi-incompressible neo-Hookean solid (10), the St. Venant–Kirchhoff model (11) and
linear elasticity (12),

P := µs J
�2/3
s

✓
Fs �

1
3

I1 F�T

s

◆
+
b

2
�
J

2
s

� 1
�

F�T

s
(10)

P := �s Fs trEs + 2µs Fs Es, with Es :=
1
2
�
FT

s
Fs � I

�
(11)

P := �s Ir · ds + µs

⇥
rds + (rds)

T
⇤
, (12)

where �s and µs in Eqs. (11)–(12) are Lamé parameters. Adopting the ALE framework, the momentum and mass
balance equations in the current fluid domain ⌦ t

f
read

⇢ f

@

@t
u f

����
At

+ ⇢ f ru f

�
u f � um

�
� r · � f =0 in ⌦ t

f
, (13)

r · u f =0 in ⌦ t

f
, (14)

u f =
@

@t
ds on ⌃ t , (15)

u f =g
f

on � t

D, f
, (16)

� f n f =t f on � t

N , f
, (17)

with the fluid velocity u f and pressure p f , mesh velocity um :=
@
@t

d f

��
At

, @
@t

·
��
At

denoting the ALE time derivative
and boundary data g

f
and t f on the respective boundary segments. On the interface, a pure Dirichlet condition

expressed via the solid’s material velocity @
@t

ds is enforced, leading to a Dirichlet–Robin coupling algorithm. The
stress tensor for a generalised Newtonian fluid is

� f := �p f I + 2µ f r
Su f , (18)

with the fluid’s local viscosity µ f depending on the shear rate �̇ ,

�̇ :=

r
1
2
rSu f : rSu f ,

and rSu f :=
1
2

h
ru f +

�
ru f

�T
i

being the symmetric velocity gradient. The inhomogeneous viscosity allows
incorporating shear-thickening or shear-thinning effects, e.g., via [58]

⌘ (�̇ ) := ⌘1 + (⌘0 � ⌘1)
⇥
 f +

�
� f �̇

�a⇤ ⇠�1
a , (19)

where ⌘0 and ⌘1 are upper and lower viscosity limits and  f , � f , a and ⇠ are fitting parameters.
System (13)–(17) can be reformulated through the pressure Poisson equation [52,59]

��p f = r ·
⇥
⇢ f ru f

�
u f � um

�
� 2r

Su f rµ f

⇤
+
⇥
r ⇥

�
r ⇥ u f

�⇤
· rµ f in ⌦ t

f
(20)

and fully consistent Dirichlet and Neumann boundary conditions

p f = � µ f r · u f + n f ·

⇣
2µ f r

Su f n f � t f

⌘
on � t

N , f
, (21)

n f · r p f = � ⇢ f n f ·

"
@

@t
g f

����
At

+ ru f

�
u f � um

�
#

� µ f n f ·
⇥
r ⇥

�
r ⇥ u f

�⇤
+ 2n f ·

⇣
r

Su f rµ f

⌘
on � t

D, f
, (22)
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Table 1
Parameters in the generalised-↵ time integration scheme for Newmark-� [61], HHT-↵
[62], WBZ-↵ [63] and CH-↵ [64] time integration.

Newmark-� HHT-↵ WBZ-↵ CH-↵

↵m 0 0 ⇢1�1
1+⇢1

2⇢1�1
1+⇢1

↵f 0 1�⇢1

1+⇢1
0 ⇢1

1+⇢1

replacing Eqs. (16) and (17), and an analogous interface condition

n f ·r p f = �⇢ f n f ·


@2

@t2 ds + ru f

�
u f � um

��
�µ f n f ·

⇥
r ⇥

�
r ⇥ u f

�⇤
+ 2n f ·

�
r

Su f rµ f

�
on ⌃ t ,

(23)

merely replacing @
@t

u f

��
At

by the solid’s material acceleration. Note that the pressure Dirichlet condition (21)
involves discontinuous data, while the pressure itself is continuous. For this reason, we introduce an intermediate
variable ⇣ and perform an L

2-projection of the boundary data onto a continuous space defined on � t

N , f
. An in-depth

discussion on consistent PPE-based solvers can be found in our recent work [52]; here, we restrict ourselves to the
Robin interface condition for the solid subproblem (6). The fluid subproblem, however, treats the interface as a
Dirichlet boundary, enforcing u f =

@
@t

ds , which then leads to Eq. (23) in the split-step scheme.
The mass conservation and temporal stability of this split-step scheme are further improved via Leray projection:

�� = � r · u f in ⌦ t

f
,

n f · r = 0 on � t

D, f
[ ⌃ t ,

 = 0 on � t

N , f
,

to recover a weakly divergence-free velocity ǔ f := u f � r . Following [59,60], we employ so-called diver-
gence damping, which acts on past velocities only, thus preserving velocity boundary conditions and sparing a
vector-valued velocity projection step.

Discretising in time, we decompose the interval (0, T ] into Nt steps of possibly variable size �t
n = t

n+1 � t
n ,

n = 0, . . . , Nt and apply generalised-↵ time integration for the structural problem

⇢s

⇣
↵0

m d̈n+1
s

+ ↵m d̈n

s

⌘
� ↵0

fr · P
�
dn+1

s

�
� ↵fr · P

�
dn

s

�
= 0 in ⌦̂s, (24)

where the structure’s accelerations d̈s and velocities ḋs are [61]

d̈n+1
s

=
1

��t2

�
dn+1

s
� dn

s

�
�

1
��t

ḋn

s
+

✓
1 �

1
2�

◆
d̈n

s
(25)

ḋn+1
s

=
�

��t

�
dn+1

s
� dn

s

�
�

✓
1 �

�

�

◆
ḋn

s
+ �t

✓
1 �

�

2�

◆
d̈n

s
, (26)

↵0
m = 1 � ↵m and ↵0

f = 1 � ↵f with time integration parameters � =
1
2 � ↵m + ↵f and � =

1
4 (1 � ↵m + ↵f)

2

and ↵f and ↵m depending on the spectral radius in the high frequency limit ⇢1 according to Table 1. For the fluid
subproblem, we employ backward differentiation formulae (BDF) of order m,

@

@t
u f

����
At

⇡

mX

j=0

↵m

j
un+1� j

f
,

or, when including contributions from divergence damping,

@

@t
u f

����
At

⇡ ↵m

0 un+1
f

+

m�1X

j=0

↵m

j+1

⇣
un� j

f
� r n� j

⌘
. (27)
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Table 2
Coefficients for BDF schemes, ↵m

j
, and extrapolation, �m

j
[65].

Order m = 1 Order m = 2

j 0 1 0 1 2

↵m

j

1
�tn �

1
�tn

2�t
n+�t

n�1

�tn (�tn+�tn�1) �
�t

n+�t
n�1

�tn�tn�1
�t

n

�tn�1(�tn+�tn�1)

�m

j
⇥ 1 ⇥ 1 +

�t
n

�tn�1
�t

n

�tn�1

Also, we employ extrapolations from previous time steps of the same order m, as shown for the pressure p f :

p
n+1
f

⇡ p
?
f

=

mX

j=1

�m

j
p f , (28)

with coefficients ↵m

j
and �m

j
listed in Table 2. Then, the semi-implicit coupling algorithm iterates solely on the fluid

pressure and solid displacements until absolute and relative convergence criteria,
���p

k+1
f

|⌃ t � p
k

f
|⌃ t

��� < ✏
p

abs,
���p

k+1
f

|⌃ t � p
k

f
|⌃ t

��� < ✏
p

rel

���p
k+1
f

|⌃ t

���, (29)

are reached for the fluid pressure p f and for the solid displacement ds ,
��dk+1

s
|⌃̂ � dk

s
|⌃̂

�� < ✏d

abs,
��dk+1

s
|⌃̂ � dk

s
|⌃̂

�� < ✏d

rel

��dk+1
s

|⌃̂

��, (30)

with problem-dependent tolerances ✏ p

abs, ✏
p

rel, ✏
d

abs and ✏d

rel. Then, the semi-implicit Dirichlet–Robin (SIDR) variant
of the coupling algorithm [52] reads as follows: Given the past time step’s solution dn

f
, dn

s
, un

f
, p

n

f
, µn

f
, ḋn

s
, d̈n

s

and additionally dn�1
f

, dn�1
s

, un�1
f

, p
n�1
f

, µn�1
f

for second-order extrapolation and BDF schemes, perform the steps
listed in Eqs. (31)–(39) at each time step n.

1. Extrapolation and initial guess: Compute extrapolations d?
s
, µ?

f
, u?

f
and p

?
f

(28) and set as initial guess

dk

s
= d?

s
, and p

k

f
= p

?
f
. (31)

2. Mesh motion: Update the fluid domain ⌦ t

f
based on the extrapolated structural displacement d?

s
, i.e., find

dn+1
f

2 [H
1(⌦̂ f )]d such that d f |⌃̂ = d?

s
and d f |@⌦̂ f \⌃̂ = 0 and

D
r', rdk+1

f

E

⌦̂ f

= 0 8' 2 [H
1(⌦̂ f )]d , with '|@⌦̂ f

= 0, (32)

and compute the mesh velocity um =
@
@t

d f

��
At

via the BDF scheme (27).
3. Viscosity projection: Find the viscosity µn+1

f
2 H

1(⌦ t

f
) based on the extrapolated velocity u?

f
, such that

D
', µn+1

f

E

⌦ t

f

=
⌦
', ⌘

�
�̇ (ru?

f
)
�↵
⌦ t

f

8' 2 L
2(⌦ t

f
). (33)

4. Pressure boundary condition: Project the pressure Dirichlet data using an intermediate variable ⇣ ,

⇣ = �µn+1
f

r · u?
f
+ n f ·

⇣
2µn+1

f
r

Su?
f
n f � tn+1

f

⌘
on � t

N , f
. (34)

5. Pressure/structure coupling:

WHILE not converged according to Eqs. (29)–(30) DO

(a) PPE: Find p
k+1
f

2 H
1(⌦ t

f
), such that p

k+1
f

|� t

N , f

= ⇣ and

D
r', r p

k+1
f

E

⌦ t

f

=

D
r', 2

�
ru?

f

�T

rµn+1
f

� ⇢ f ru?
f

�
u?

f
� um

�E

⌦ t

f

�

*

'n f , ⇢ f

mX

j=0

↵m

j
gn+1� j

f

+

� t

D, f

�

D
'n f , ⇢ f d̈n+1

s

E

⌃ t

+

D
n f ⇥ r', µn+1

f
r ⇥ u?

f

E

⌃ t [� t

D, f

(35)

holds for all ' 2 H
1(⌦ t

f
), where '|� t

N , f

= 0 and d̈n+1
s

is evaluated using the last iterate dk

s
in Eq. (25).
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(b) Solid momentum: Find dk+1
s

2 [H
1(⌦̂s)]d with dk+1

s
|�̂D,s

= gn+1
s

, such that for all ' 2 [H
1(⌦̂s)]d with

'|�̂D,s
= 0 there holds:

⇢s

D
',↵0

m d̈n+1
s

+ ↵m d̈n

s

E

⌦̂s

+
⌦
r',↵0

f P(dk+1
s

) + ↵f P(dn

s
)
↵
⌦̂s

= ↵f
⌦
', P(dn

s
)n̂s

↵
�̂R,s[⌃̂

� ↵0

f

D
', kedk+1

s
+ ce ḋn+1

s

E

�̂R,s

+ ↵0

f

D
', ⌘R

s

⇣
u?

f
� ḋn+1

s

⌘
+ J f � f

⇣
u?

f
, p

k+1
f

, µn+1
f

⌘
F�T

f
n̂s

E

⌃̂
, (36)

where d̈n+1
s

and ḋn+1
s

are evaluated with dk+1
s

, which is a nonlinear problem to be solved with,
e.g., Newton’s method.

(c) Apply an acceleration scheme like Aitken’s method or IQN-ILS on the structure’s displacement on the
interface d⌃̂ (see Section 3.3), i.e., set

dk+1
s

|⌃̂ = dk+1
⌃̂

�
dk+1

s
, dk

s
, . . .

�
, (37)

and update iterates dk

s
= dk+1

s
and p

k

f
= p

k+1
f

.
END DO

6. Update converged iterates: Set dn+1
s

= dk+1
s

and p
n+1
f

= p
k+1
f

.
7. Fluid momentum: Find un+1

f
2 [H

1(⌦ t

f
)]d with un+1

f
= gn+1

f
on � t

D, f
, un+1

f
= ḋn+1

s
on ⌃ t , such that

⇢ f

D
',↵m

o
un+1

f
+ run+1

f

�
u?

f
� um

�E

⌦ t

f

+

D
r', 2µn+1

f
r

Sun+1
f

E

⌦ t

f

=

D
r', p

n+1
f

I
E

⌦ t

f

� ⇢ f

*

',

m�1X

j=0

↵m

j+1

⇣
un� j

f
� r n� j

⌘+

⌦ t

f

+

D
', tn+1

f

E

� t

N , f

(38)

for all ' 2 [H
1(⌦ t

f
)]d , with ' = 0 on � t

D, f
[ ⌃ t , where the auxiliary projection variable  is considered

only for the past time steps’ velocities.
8. Divergence damping: Update the projection variable  n+1 2 H

1(⌦ t

f
) via un+1

f
, s. t.  n+1|� t

N , f

= 0 and

⌦
r', r n+1↵

⌦ t

f

= �

D
', r · un+1

f

E

⌦ t

f

8' 2 H
1(⌦ t

f
), '|� t

N , f

= 0, (39)

to be used as  n in the next time step.

3. Numerical techniques

The SIDR scheme (31)–(39) as proposed by the authors [52] serves well as a starting point for tackling biomedical
applications. As is well known in such scenarios, problems arise as the Reynolds number increases, fluid is entering
over Neumann boundaries or the added-mass effect becomes dominant. Standard remedies can be incorporated in
the present semi-implicit framework, but care must be taken to preserve consistency and stability. The following
extensions of and improvements to the original SIDR scheme [52] are novel contributions of the present work.
Here, we adapt well-trusted concepts as remedies to specific numerical problems within the SIDR framework and
maintain the advantages regarding flexibility, generality and robustness.

3.1. Backflow stabilisation

In many flow simulations, outflow boundaries are defined where the fluid is assumed to exit the computational
domain. On these boundaries, Neumann conditions are enforced to set a reference pressure. Already for moderate
Reynolds numbers of say, Re = O(500) – as often encountered in haemodynamics or the respiratory context – this
approach can lead to severe instabilities if the flow is reversed, entering from the exterior of the considered domain.
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An effective remedy for such effects is backflow stabilisation [53], where one modifies the Cauchy traction to

t f = � f n f + ↵b

⇢

2
u f (u f · n f )�, with (u f · n f )� =

(
�u f · n f for u f · n f < 0,

0 otherwise,
(40)

and a parameter ↵b � 1, within this work simply chosen as ↵b = 1. Note also that the stabilisation term is only
contributing when fluid is entering over the outflow boundary and zero for outward flow.

This modified traction naturally enters the fluid momentum balance equation (38), but is also considered in the
projection of the pressure Dirichlet data on � t

N , f
(34). As this critical term is non-zero depending on the local flow

field, it is “switched on” abruptly, which is bound to cause trouble, as will be demonstrated in Section 5. Nonetheless,
it prevents divergence of the solver, but heavily influences the actually enforced traction on the boundary. Of
particular importance is consistency between the fluid’s momentum balance equation and the PPE — these two
steps consider backflow stabilisation based on the extrapolated velocity u?

f
, activating the stabilisation at the same

time. Then, the added boundary term can be considered semi-implicitly in the fluid momentum balance equation,
adding

D
', ⇢ f un+1

f
(u?

f
· n f )�

E

� t

N , f

to the left-hand side.

3.2. Stabilising convective effects

The Galerkin finite element formulation of the fluid’s momentum balance equation is known to suffer from
spurious oscillations for high Reynolds numbers and coarse meshes. Although our split-step scheme does not
necessarily assume a finite element discretisation of the fluid momentum step, we herein do use finite elements
to discretise all unknowns. Thus, we will demonstrate how standard techniques to suppress the arising instabilities
can be incorporated. A well-established residual-based method often resorted to in this context is the Galerkin least-
squares stabilisation [54]. Velocity and pressure are split on the (spatially) continuous level, such that it suffices to
modify the weak form of the fluid momentum equation (38), adding

D
⌧eL('), R(un+1

f
)
E

⌦ t

f,e

(41)

to the left-hand side in an element-wise manner as indicated by ⌦ t

f,e. Here, R(un+1
f

) is the residual of the
time-discrete strong form

R(un+1
f

) := ⇢ f ↵
m

0 un+1
f

+ ⇢ f

m�1X

j=0

↵m

j+1

⇣
un� j

f
� r n� j

⌘
+ r p

n+1
f

+ ⇢ f run+1
f

�
u?

f
� um

�
� µn+1

f
r(r · u f ) � µn+1

f
�un+1

f
� 2r

Sun+1
f

rµn+1
f

,

L(') is the corresponding operator, given as

L(') := ⇢ f ↵
m

0 ' + ⇢ f r'
�
u?

f
� um

�
� µn+1

f
r(r · ') � µn+1

f
�' � 2r

S'rµn+1
f

,

and ⌧e is the stabilisation parameter, defined as [66]

⌧e := ⇠ (◆)
1
⇢ f

2

4
✓

2
�tn

◆2

+

✓
2
he

��u?
f
� um

��
◆2

+

 
4µn+1

f

⇢ f h2
e

!2
3

5
�

1
2

,

with the element size he :=
��⌦ f,e

�� 1
d and an additional scaling parameter ⇠ (◆),

⇠ (◆) :=

(
◆
3 for ◆ < 3,

1 otherwise,
and ◆ :=

⇢ f

���ru?
f

⇣
u?

f
� um

⌘���h
2
e

4µn+1
f

���u?
f

���
.

Note that we linearise ⌧e by evaluating it with u?
f

and the stabilisation vanishes as he ! 0, �t ! 0, ensuring
consistency. Dominant convection renders the viscous contribution less important in this scenario, such that we
accept an inviscid residual — in the context of inf-sup stabilisation, however, this can lead to numerical artifacts
(cf. [67,68]). Using lower-order shape functions, the residual is incomplete, but reaction and convection terms
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dominate over vanishing diffusion terms, which causes instabilities in convective regions initially. In areas where the
local Reynolds number is much lower and viscous stresses are important, the additional scaling via ⇠ (◆) mitigates
the errors otherwise introduced by the incomplete residual in GLS stabilisation.

3.3. Accelerating partitioned FSI schemes

To decrease the number of iterations needed in the SIDR scheme, techniques using the individual field solvers
as black boxes are conveniently applied in addition to Robin interface conditions. To this end, reinterpret the
pressure/structure coupling loop as a fixed-point iteration in the interface displacement dk

⌃̂
:= dk

s
|⌃̂ , dk

⌃̂
2 RN

⌃̂
⇥1,

with N⌃̂ being the number of displacement degrees of freedom on the interface. A single iteration of the
pressure/structure coupling loop consists of the PPE step (35) and a structure displacement solve (36), such that we
can write the update as

d̃
k

⌃̂ := S � P
⇣

dk

⌃̂

⌘
, (42)

where S and P denote the corresponding pressure and structure displacement interface operators. The residual rk

of this interface equation is thus

rk
:= S � P

⇣
dk

⌃̂

⌘
� dk

⌃̂
= d̃

k

⌃̂ � dk

⌃̂
. (43)

A straightforward approach to accelerate convergence is to introduce a fixed relaxation factor !, usually chosen
in the range 0 < ! < 1, and modify the interface displacement according to

dk+1
⌃̂

= ! d̃
k

⌃̂ + (1 � !) dk

⌃̂
.

An equally elementary, yet powerful – hence very popular – option is Aitken’s method, which defines a dynamic
relaxation parameter !k in a recursive manner [28]:

!k = �!k�1
���rk

���2rk�1
· �rk, with �rk

= rk
� rk�1. (44)

Alternatively, the IQN-ILS scheme [33,69] approximates a step of Newton’s method applied to Eq. (43), using
residuals and solution vectors obtained in previous time steps and iterations via

dk+1
⌃̂

= d̃
k

⌃̂ �

0

@ @ r
@d⌃̂

����
dk

⌃̂

1

A
�1

rk
⇡ d̃

k

⌃̂ + Wc, (45)

where the columns of W 2 RN
⌃̂

⇥k hold differences of the unmodified interface displacement vectors given as

W =

⇣
�d̃

k

⌃̂ ,�d̃
k�1
⌃̂ , . . . ,�d̃

1
⌃̂

⌘
, with �d̃

k

⌃̂ = d̃
k

⌃̂ � d̃
k�1
⌃̂ (46)

and the coefficient vector c 2 Rk⇥1 is the solution to the least-squares problem

min
c

��Vc + rk
��, with V =

�
�rk,�rk�1, . . . ,�r1�

2 RN
⌃̂

⇥k . (47)

This minimisation problem is solved via QR decomposition, V = QR, appending and deleting columns from V
and updating the decomposition accordingly. Only the small upper triangular matrix R 2 Rk⇥k is stored, while the
action of the orthogonal matrix Q 2 RN

⌃̂
⇥k onto rk is reformulated as

QT rk
= R�T VT rk .

Then, two ingredients are combined to further improve performance and numerical stability [69]: (i) data pairs from
q previous time steps are re-used, but individual difference vectors �d̃

k

⌃̂ and �rk must not span different time levels,
and (ii) while updating the QR decomposition, linearly dependent columns in V are detected by Rkk < ✏QR, rejected,
and removed from the data matrices V and W. The IQN-ILS-accelerated pressure/structure coupling loop as a part
of the SIDR scheme is summarised in Algorithm 1.

This simple filtering approach, rejecting columns which otherwise lead to small diagonal values in R, is found
rather robust. Moreover, implicitly computing QT rk by an additional back-insertion pass on RT is uncritical in the
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Algorithm 1 IQN-ILS-accelerated pressure/structure coupling
1: k = 0
2: while Not converged acc. to Eqs. (29)–(30) do
3: Perform single coupling step: d̃

k

⌃̂ = S � P
⇣

dk

⌃̂

⌘

4: Remove columns from V and W corresponding to time step n � q � 1
5: Update residual: rk = d̃

k

⌃̂ � dk

⌃̂

6: Update difference vectors: �d̃
k

⌃̂ = d̃
k

⌃̂ � d̃
k�1
⌃̂ and �rk = rk � rk�1

7: Insert new data pairs into V and W as defined in (46) and (47)
8: if k = 0 and (q = 0 or n = 0) then
9: Initial relaxation step: dk+1

⌃̂
= ! d̃

k

⌃̂ + (1 � !) dk

⌃̂
10: else
11: Update QR decomposition, add column k if Rkk � ✏QR
12: Remove columns from V and W that were rejected
13: Compute �QT rk by solving RT b = �a with a = VT rk

14: Solve Rc = b
15: IQN step: dk+1

⌃̂
= d̃

k

⌃̂ + Wc
16: end if
17: k = k + 1
18: end while

applications considered. This is due to a very small dimension k ⇥ k of the triangular matrix R compared to the
overall problem size and number of interface displacement degrees of freedom. The computational time spent for
IQN-ILS acceleration is negligible compared to the other steps in the FSI scheme, in particular if the significant
acceleration is factored in. However, both ✏QR and the number q of time steps from which data pairs are considered
are problem-dependent in general, yet were found uncritical in all our numerical tests. If the relative computing
time spent in the acceleration scheme were too high, an attractive alternative to the IQN-ILS scheme would be
the modified interface quasi-Newton inverse multi-vector Jacobian method [34], which approximates the inverse
Jacobian without any tuning parameters and whose cost scales linearly with the problem size.

4. Modelling aspects

This section is devoted to incorporating well-established mathematical models that handle typical challenges in
computational biomechanics. This includes (i) outlet boundary conditions based on resistance and capacitance of
cut-off regions, (ii) constructing suitable local coordinate systems to correctly incorporate anisotropic constitutive
models and (iii) accounting for stressed reference geometries reconstructed from medical imaging. The extensions
and improvements of the original SIDR scheme [52] presented in this section are novel, and our main contribution
here is their inclusion in the semi-implicit PPE-based FSI scheme. The crucial aspect is to preserve the flexibility,
generality, and robustness of the original scheme.

4.1. Windkessel outlets

When computational domains are truncated at one or multiple outlets, the influence of downstream flow on the
solution is lost. Simple remedies for that prescribe, e.g., reference pressures or velocity profiles from volumetric
flow data at the outlets, which can lead to stability issues depending on the flow regime. Yet, those quantities might
not be readily available, being instead part of the sought solution itself. Windkessel models [70] are a valuable
alternative, since they model the relation between pressure and outflow. Decomposing the Neumann boundary � t

N , f

into non-overlapping outflow sections � t

i, f
, i = 1, . . . , Nout (see, e.g., [2,51]), the mean pressure pc,i is advanced

in time using

Ci

@

@t
pp,i +

pp,i � pd,i

Rd,i

= Qi (u f ), pc,i � pp,i = Rp,i Qi (u f ), i = 1, . . . , Nout
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where Ci denotes the capacitance, pp,i and pd,i proximal and distal pressures, Rp,i and Rd,i proximal and distal
resistances and Qi =

⌦
u f , n f

↵
� t

i, f

is the outflow. Then, pc,i is weakly enforced via the traction condition

� f n f = �pc,i n f �
⇢

2
u f

�
u f · n f

�
�

, (48)

on � t

i, f
, i = 1, . . . , Nout, including backflow stabilisation (40) with ↵b = 1. A consistent time integration employing

BDF-m schemes reads

Ci

mX

j=0

↵m

j
p

n+1� j

p,i +
p

n+1
p,i � p

n+1
d,i

Rdi

= Qi (un+1
f

), p
n+1
c,i � p

n+1
p,i = Rp,i Qi (un+1

f
), i = 1, . . . , Nout.

However, un+1
f

is not available for the Neumann condition enforcing p
n+1
c,i via (48). To recover continuous pressure

Dirichlet data on � t

i, f
, the L

2-projection (34) incorporates the extrapolated u?
f
, affecting the coupling scheme’s

performance. As shall be seen in Section 5, using higher-order extrapolation and BDF schemes is indeed possible,
depending on the Robin and Windkessel parameters used. Choosing Qi (un+1

f
) ⇡ Qi (un

f
) greatly improves temporal

stability in the present scheme, as shall be seen in Section 5. Since the CFL condition introduces a time step limit,
this approximation is perfectly reasonable taking the time scale of the cardiac cycle as reference.

4.2. Constructing the material orientation

For complex solid geometries, constructing a physiologically meaningful local material orientation to employ
anisotropic material models is not straightforward. Examples in biomechanics are bifurcating, aneurysmatic or
dissected vessels, the tracheobronchial tree or the heart (see, e.g., [3,9,71,72]). The computational algorithms operate
based on a simple set of rules to achieve this task, while remaining fast, reliable and tunable by the user. Common
approaches involve solving multiple auxiliary Laplace problems with user-specified boundary data, which, applied
to a vessel network, might read

���l = 0 in ⌦̂s, (49)

�l = 0 on �̂in,s, (50)

n̂s · r�l = hl,i on �̂i,s, i = 1, . . . , Nout, (51)

n̂s · r�l = 0 on ⌃̂ [ �̂R,s, (52)

where the auxiliary scalar �l for the longitudinal orientation is prescribed at the inlet face of the solid �̂in,s , normal
fluxes hl,i are prescribed at the solid outlet faces �̂i,s , i = 1, . . . , Nout and zero fluxes are enforced at the interface
and exterior boundary. The hl,i are tuned to yield �l with a large enough gradient, such that

e2 :=
r�l

kr�lk
(53)

approximates the longitudinal direction e2 reasonably well. In a similar manner, a scalar �n to approximate the
tissue-normal direction can be constructed via

���n = 0 in ⌦̂s, (54)

�n = 0 on ⌃̂ , (55)

n̂s · r�n = 0 on �̂in,s [ �̂i,s, i = 1, . . . , Nout (56)

n̂s · r�n = hn on �̂R,s, (57)

setting appropriate values hn to achieve a reasonable tissue-normal direction e3 := r�n/kr�nk. This rule-based
assignment of boundary conditions including tuning parameters is well suited for curved, bulging or bifurcating
vessels, but not for changes that are limited to the cross section of the vessel alone. A typical example for such
a configuration is encountered in aortic dissection, where the single original lumen splits into so-called true and
false lumina (see Fig. 1 or, e.g., [73–75]). Then, this requires detection of the tissue layer separating these lumina
and assignment of proper boundary conditions or even decomposition into several subproblems to obtain a proper
material orientation in every part of the dissected vessel. As distinguishing different regions of the solid might,
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Fig. 1. Finite element discretisation of a dissected aortic arch: adventitia (red), media (peach) and flap (light blue) regions of the tissue and
lumen (grey). Complete mesh (left), cut aortic arch revealing lumen mesh (middle) and cut aortic arch showing tissue elements only (right).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

however, increase the need for further tuning parameters or manually provided markers or reference points, such
an approach is inappropriate for clinical application.

We overcome this by replacing the second step, resulting in a more flexible algorithm. The averaged normal
vector on the fluid–structure interface is extrapolated into the structural domain to approximate the tissue normal
direction, which is even applicable in parts that are in contact with fluid from both sides. In a first step, normal
vectors n̂s on the fluid–structure interface ⌃̂ are determined for all elements lying on ⌃̂ . Afterwards, the mean
orientations of all elements touching the previously marked element layer are determined, taking each element’s
neighbours into account. This second step is repeated until the interface normal, later to be used as e3, is set in all
elements. It is crucial to consider either only data from the first neighbour of each element that has an orientation,
or – which is the alternative we employ – consider all neighbours of a given element, which have a radial direction
e3, j deviating from the first encountered neighbour with orientation e3,i , satisfying

↵tol � arccos

 
e3,i · e3, j��e3,i

�� ��e3, j

��

!

. (58)

This means that the normal direction e3, j from neighbour j is only incorporated, if the angle between e3, j and
e3,i from the first encountered neighbour deviate less than ↵tol. Afterwards, a few number of conditional averaging
cycles using condition (58) again suffice to obtain a satisfactory vector field. Note also that the tissue circumferential
direction e1, constructed from the normal e3 and longitudinal directions e2, might be inverted. Consequently, this
method is only applicable when the tissue’s response does not change by inverting the circumferential direction e1,
which is fortunately the case for symmetric fibre reinforcements typically used in the cardiovascular context.

The extrapolation of n̂s into ⌦̂s is then directly used as the tissue-normal direction e3, while the step to generate
the longitudinal orientation e2 remains unchanged (see, e.g., [3,72,76]). Based on the normalised longitudinal
direction e2 and normal direction e3, the circumferential direction is defined as

e1 :=
e2 ⇥ e3

ke2 ⇥ e3k
. (59)

The mean fibre directions mi , symmetrically inclined by some angle ↵c from circumferential to longitudinal
direction, are then conveniently constructed via

m4 :=
e1 + e2 tan(↵c)

ke1 + e2 tan(↵c)k
, m6 :=

e1 + e2 tan(�↵c)
ke1 + e2 tan(�↵c)k

. (60)

These mean fibre directions mi , i = 4, 6 then compose the structural tensor Ai := mi ⌦ mi and thereby enter the
invariants Ii := C : Ai contributing to the stress tensor P given in Eq. (9), see Section 2. The overall algorithm to
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construct physiologically meaningful material orientation vectors e1 and e2 with extrapolated interface normal and
conditional averaging is summarised in Algorithm 2.

Algorithm 2 Material orientation algorithm with conditional averaging
1: Solve the auxiliary Laplace problem (49)–(52) for �l .
2: Compute the longitudinal direction e2 via (53).
3: Set e3 = n̂s in all elements on ⌃̂ .
4: while e3 not set in all elements do
5: On each element, find neighbours with e3 set and store e3,i being the first encountered neighbour’s e3.
6: Average all neighbour’s orientations e3, j for which (58) holds and assign the average e3.
7: end while
8: while Executed less than Navg smoothing cycles do
9: Average e3,i on each element, taking neighbour’s directions e3, j into account if (58) is met.

10: end while
11: Compute e1 given e2 and e3 via (59).

For vessels with a curved centreline, bifurcations or even aneurysms, material orientations based on two Laplace
problems with suitable boundary conditions can yield satisfactory results as, e.g., shown in our previous work [52]
for an idealised abdominal aortic aneurysm. As already pointed out, however, tissue layers wetted from both
sides demand at least region-based assignment of boundary conditions. To highlight improvements achieved with
Algorithm 2, a suitable orientation for a patient-specific aortic dissection geometry provided by Bäumler et al. [2]
is constructed. Fig. 1 depicts the discretised aortic arch with adventitia (red), media (peach) and dissection flap
(blue) tissue regions and the lumen (grey). We construct the longitudinal material orientation via Eqs. (49)–(53)
using hl,i = 100, resulting in the scalar field �l (Fig. 2, left) and vector field e2 (Fig. 2, right).

Solving another Laplace equation requires not only a subdivision into regions, but also detecting a specific side
of the dissection flap. As spatial discretisations of such cases can lead to rather smooth transitions in the flap’s
surface mesh (see Fig. 1, right) more involved techniques or even manual intervention are necessary here. Thus,
assigning appropriate boundary conditions is non-trivial, leading, e.g., for hn = 100 in (57) to a scalar field �n as
shown in Fig. 2 (middle). As depicted in Fig. 3, such an approach is indeed applicable for obtaining a material
orientation in the media and adventitia layers (wetted from a single side only); however, in the flap region (wetted
from both sides), the constructed e1 does not even remotely approximate the expected circumferential direction.
A suitable orientation can be constructed by using Algorithm 2 with ↵tol = 120� for conditional averaging and
Navg = 5 cycles of averaging after initial extrapolation of the interface normal. Inspecting the vector fields in
Fig. 3, substantial improvements are obvious.

The proposed method improves versatility of the material orientation algorithm and drastically reduces tuning.
The parameters hl,i = 100, ↵tol = 120� and Navg yield great results for the presented aortic dissection case and all
numerical examples considered in Section 5 (where the standard algorithm delivers good results as well). Due to
the vast complexity of FSI modelling of aortic dissection, detailed, patient-specific simulations and investigations
are postponed to future work, and the focus here is on demonstrating the orientation algorithm’s applicability only.

4.3. Stressed reference geometries

In patient-specific haemodynamic simulations, or generally in scenarios where the structure is already loaded
during imaging (to construct the computational domain), the solid stress state already present at the time of
image acquisition – the prestress – is unknown, but might not be negligible. In the cardiovascular system,
computed tomography and magnetic resonance images are taken during the diastolic phase under corresponding
flow conditions. As a matter of fact, regardless of when in the cardiac cycle images are taken, the quiescent state
would never be reached and a certain pressure level is maintained at any point. Therefore, this initial loading can
have a large influence on the overall response, such that prestress effects cannot be neglected [2,56,77].

From a continuum mechanics point of view, several possibilities exist, the most popular ones being: (i) find
a new stress-free reference geometry of the solid, from which a newly defined deformation field maps to the
deformed configuration (see, e.g., [78]), or (ii) incorporate a prestress tensor S0 in the solid’s balance of momentum,
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Fig. 2. Constructing the material orientation in the aortic arch region: solutions to the auxiliary Laplace problems �l (left) and �n (middle)
with lower values in blue and higher values in red. Longitudinal directions e2 based on �l in dissection flap (right). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Comparison of the circumferential direction e1 in the dissection flap: approach solving a second Laplace equation (left) and Algorithm
2 using an extrapolated interface normal (right). In the flap region, only the latter approach gives satisfactory results.

equating fluid tractions under diastolic flow conditions [56]. We herein employ (ii), since it can be straightforwardly
incorporated into existing structural mechanics solvers. So, we replace Eq. (36) by its static counterpart including
prestress to solve for a vector field dk+1

0 . This displacement dk+1
0 enters the prestress tensor S0 using the same

material law and the basic relation P = FS as [56]

P = F(dk+1
0 )

⇥
S(dk+1

0 ) + S0(dk

0)
⇤
,

which results in static equilibrium including the prestress tensor S0:

� r ·
⇥

P(dk+1
0 ) + F(dk+1

0 )S0(dk

0)
⇤

= 0 in ⌦̂s . (61)

Starting from the quiescent state and ramping up the inlet conditions, flow quantities are kept fixed at a user-specified
reference time t0, which corresponds to the imaging data, and Eq. (61) is solved until the convergence criteria

��dk+1
0 � dk

0

��
max < ✏

d0
abs and

��dk+1
0 � dk

0

�� <
��dk+1

0

��✏d0
rel (62)

are fulfilled. Afterwards, we set d0 = dk+1
0 and keep S0(d0) fixed. Then, we can directly apply the standard SIDR

scheme, with the solid momentum equation incorporating S0:

⇢s

@2

@t2 ds � r · [P(ds) + F(ds) S0(d0)] = 0 in ⌦̂s . (63)
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To efficiently tackle Eq. (61), we combine adaptive, load-driven pseudo timestepping with Aitken relaxation and a
continuation technique. That is, we actually solve Eq. (63) with ⌘R

s
= 0, but since we only search for a stationary

state, we are free to choose large physical mass- and stiffness-proportional damping and lower tolerance settings.
Applying a continuation method, the diastolic fluid load is scaled from 0 to 1 via a parameter ⌘c, while the density ⇢s

and viscous parameter ce are successively lowered from initially increased values to ease convergence to the desired
ones over Nc steps. Simultaneously, the sought dk+1

0 is updated using Aitken’s relaxation (44) and the pseudo time
step size is increased once less than Nnl Newton steps per nonlinear solve are needed. The pseudo time integration
is stopped once a steady-state is reached, i.e.,

���d̈k+1
s

��� < ✏
d̈0
rel

��dk+1
s

��, (64)

and the convergence criteria (62) are fulfilled. For the convenience of the reader, the prestress procedure is
summarised in Algorithm 3.

Algorithm 3 Incremental prestress algorithm
1: n = 0, k = 0, l = 0
2: Initialise un

f
= 0, p

n

f
= 0

3: while t < t0 do
4: Update un+1

f
, p

n+1
f

via fluid solver using dn+1
s

= ḋn+1
s

= d̈n+1
s

= 0
5: n = n + 1
6: end while
7: Store time step data and set u0

f
= un+1

f
, p

0
f

= p
n+1
f

8: Initialise: dk

0 = dn

s
= ḋn

s
= d̈n

s
= 0

9: while l < Nc or (62) or (64) not fulfilled do
10: Solve Eq. (63) with ⌘R

s
= 0, ⌘c� f (u0

f
, p

0
f
) and S0(dk

0) for dk+1
0

11: Relaxed update: dk+1
0 = !k dn+1

s
+ (1 � !k)dk

0
12: k = k + 1
13: if Nonlinear solver converged in less than Nnl steps then
14: Increase pseudo time step size
15: if l < Nc then
16: Continuation method: decrease ⇢s , ce and increase ⌘c

17: l = l + 1
18: end if
19: end if
20: n = n + 1
21: end while
22: Start SIDR scheme with d0 = dk+1

0 , dn

s
= ḋn

s
= d̈n

s
= 0 and available time step data for u f and p f .

Note that driving the flow with a ramped inlet condition from the quiescent state is often needed, especially
when using Windkessel models. This is another purpose for the fluid stepping included in Algorithm 3. Also, the
combination of pseudo timestepping, relaxation and continuation methods is merely a placeholder for more advanced
techniques common in nonlinear solid mechanics.

5. Numerical experiments

The computational tests in this section demonstrate the applicability of our framework in settings relevant to
haemodynamics and human phonation. Starting with fluid flow in a straight pipe, we focus first on the coupling
algorithm’s performance, comparing fully implicit and semi-implicit Dirichlet and Robin variants, and IQN-ILS
and Aitken acceleration schemes. Then, we investigate blood flow through an iliac bifurcation, including realistic
material parameters and flow data, with all of the modelling aspects discussed herein. Lastly, we present initial
findings in a two-dimensional setup of human phonation with realistic problem parameters, resulting in the typical
oscillatory response of the vocal folds. The implementation is based on the finite element toolkit deal.II [79],
preconditioning each iterative linear solve with algebraic multigrid methods provided by Trilinos’ ML package [80].
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Fig. 4. Straight vessel geometry: fluid mesh with boundary layers and cut media ⌦s,1 and adventitia ⌦s,2 layers (left) and orientation vectors
obtained via Algorithm 2, i.e., longitudinal (blue, ê2) and circumferential (yellow, ê1) orientation vectors (right). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

5.1. Fluid flow in a straight pipe

Consider a straight cylindrical vessel of length l = 5 cm with a lumen radius ri = 0.5 cm and two tissue layers
with thickness hs = 0.05 cm each, resolving media and adventitia tissue layers as depicted in Fig. 4. The material
parameters are set in the physiologically relevant range, with ⇢ f = 1060 kg/m3 and ⇢s = 1200 kg/m3 for fluid and
solid densities, respectively. As this setup serves as a testing bed for several aspects introduced in Sections 3 and
4, we group our numerical experiments into subsections.

5.1.1. Pressure pulse

In a first series of computations, we investigate the coupling algorithm’s performance and choose simpler
constitutive models, which is admissible to some extent due to limited strains. The traction interface condition
on the structure side, however, does consider large displacements. So, a linear-elastic solid with a Young’s modulus
of Es = 300 kPa and Poisson’s ratio of ⌫s = 0.3 is coupled to a Newtonian fluid with a dynamic viscosity of
µ f = 3.45 mPa s. The vessel is fixed at both the inlet (x̂1 = 0) and the outlet (x̂1 = l), while zero tractions are
weakly enforced at the fluid outlet boundary and the vessel’s exterior surface (ce = 0 and ke = 0). The flow is
driven by a prescribed traction t f = (�pin, 0, 0)T at the inlet, defined via

pin(t) =

8
>>><

>>>:

p̄in
⇥ 1

2 � cos(500⇡ t)
⇤

for t  0.002,

p̄in for 0.002 < t < 0.007,

p̄in
⇥ 1

2 + cos(200⇡ t)
⇤

for 0.007  t  0.009,

0 otherwise,

(65)

smoothly ramping a pressure drop of p̄in = 10 mmHg ⇡ 1333.22 Pa between inlet and outlet.
We employ a second-order temporal discretisation, i.e., linear extrapolation with BDF-2 and CH-↵ (⇢1=0) time

integration using 30 uniform steps of size �t = 0.5 ms. Neither GLS nor backflow stabilisation are employed, and
convergence is solely based on the fluid pressure and structural displacement, setting ✏ p

abs = 10�7 and ✏ p

rel = 10�4 in
Eq. (29) and ✏d

abs = 10�7 and ✏d

rel = 10�4 in Eq. (30). Irrespective of the coupling scheme, these criteria determine
convergence, while we compare fully implicit and semi-implicit, Robin and pure Neumann interface conditions for
the solid phase, or Aitken and IQN-ILS acceleration. For simplicity, we choose ⌘R

s
= 10 ⇢ f

�t
inspired by [29] and

!0 = 10�2 as an initial relaxation in the first coupling step of Aitken’s scheme and when there is no data available
in the IQN-ILS acceleration. The IQN-ILS data matrices are built from vectors corresponding to the last q = 5
time steps, dropping columns based on ✏Q R = 10�16.

Fig. 5 shows the accumulated coupling iterations over all 30 time steps, where one clearly observes faster
convergence when using the IQN-ILS acceleration compared to standard Aitken relaxation. Semi-implicit variants
of the FSI algorithm are not only faster in execution per coupling step, but also need fewer iterations to reach
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Fig. 5. Pressure pulse in a straight vessel: accumulated FSI coupling steps (left) and displacement in reference point (right). Semi-implicit
Dirichlet–Neumann (SIDN) and Robin–Neumann (SIRN) variants and IQN-ILS acceleration outperform the classical implicit Dirichlet–
Neumann (IDN) scheme and Aitken relaxation in terms of coupling iterations. Robin interface conditions accelerate convergence further, but
the solution might change drastically with large ⌘R

s
.

Table 3
Total FSI iterations and computing time for pressure pulse in a straight vessel: the semi-
implicit Dirichlet–Neumann (SIDN) and Dirichlet–Robin (SIDR) schemes and IQN-ILS acceleration
outperform the implicit Dirichlet–Neumann (IDN) scheme and Aitken relaxation.

abs. FSI steps rel. FSI steps abs. time rel. time

IDN, Aitken 971 10.67 1.03·103 s 20.44
IDN, IQN-ILS 296 3.25 3.06·102 s 6.07
SIDN, Aitken 730 8.02 3.19·102 s 6.33
SIDN, IQN-ILS 262 2.89 1.27·102 s 2.52
SIDR, Aitken 158 1.74 7.46·101 s 1.48
SIDR, IQN-ILS 91 1.00 5.04·101 s 1.00

convergence. For this specific example, this led to a substantial speed-up of over 20, as listed in Table 3. However,
when comparing the semi-implicit Dirichlet–Neumann (SIDN) and semi-implicit Dirichlet–Robin (SIDR) variants,
one needs to factor in changes in the obtained solution as well. Owing to a different weighting of the dynamic and
kinematic coupling conditions dependent on the Robin parameter ⌘R

s
, results may vary quite drastically. Taking the

displacement norm of a reference point x̂ = (l/2, 0, ri ) as a reference, Fig. 5 clearly shows that (i) the acceleration
scheme (Aitken or IQN-ILS) does not alter the solution itself when identical stopping criteria are used, (ii) the
effect of semi-implicit coupling is almost insignificant in terms of the obtained solution, but (iii) the Robin interface
condition may have a large impact on the solution itself. Thus, choosing a suitable ⌘R

s
is a central aspect.

In the solid’s momentum balance, the relevant integral stemming from the Robin interface condition is

↵0

f

D
', ⌘R

s

⇣
u?

f
� ḋn+1

s

⌘
+ J f � f

⇣
u?

f
, p

k+1
f

, µn+1
f

⌘
F�T

f
n̂s

E

⌃̂
,

which transitions to a penalty-like term enforcing an explicit kinematic condition as ⌘R

s
! 1. At the same time,

a decreasing time step size �t lowers the error in this very condition, since the extrapolation u?
f

becomes more
accurate. Introducing the Robin coefficient as ⌘R

s
= ↵R

⇢ f

�t
, one can transition from Robin to Neumann conditions

by choosing ↵R . As shown in Fig. 6, this has a rather predictable effect on the number of coupling steps, while the
interface displacement may or may not follow an equally uniform relation. In this specific example, one observes
rather surprising displacement responses right in the middle of the parameter sweep. Reducing the extrapolation
order mu of the fluid velocity mitigates this problem as numerical evidence indicates: In Fig. 7, the corresponding
graph shows a much more expected transition to the solution obtained via the SIDN (SIDR with ↵R = 0) scheme.
These tests suggest that the linearly extrapolated velocity of second-order improves accuracy but potentially impairs
temporal stability, as indicated by increased FSI iteration counts in Fig. 7. Note here also that the mean pressure at
the outlet is simply 0 and does not depend on the extrapolated velocity as would be the case when applying lumped
parameter models.
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Fig. 6. Pressure pulse in a straight vessel: accumulated FSI coupling steps (left) and displacement in reference point (right) obtained via
the SIDR scheme with scaled Robin parameter ⌘R

s
= ↵R

⇢ f

�t
and second-order extrapolation (mu = 2).

Fig. 7. Pressure pulse in a straight vessel: accumulated FSI coupling steps with fluid velocity extrapolation mu = 1 or 2 (left) and displacement
in reference point with mu = 1 (right), obtained via the SIDR scheme with scaled Robin parameter ⌘R

s
= ↵R

⇢ f

�t
.

So, keeping the time step size fixed and decreasing the Robin parameter transitions to the SIDN scheme, where
lower order velocity extrapolation improves stability. Similarly, lowering �t and keeping ⌘R

s
fixed cuts down the

difference between SIDN and SIDR schemes. To showcase these relations, Table 4 lists the mean errors over all
time steps taking the corresponding SIDN solution with identical time discretisation as reference. Second-order
extrapolation of u?

f
, i.e., mu = 2, is more likely to diverge with higher Robin parameters (since this shifts to

explicit kinematic coupling), but minimises the discrepancy to the SIDN reference. For mu = 1 the solution never
diverges, and the difference to the reference diminishes as �t decreases.

That being said, let us briefly comment on the Robin condition and the parameter choice. The choice ⌘R

s
= ↵R

⇢ f

�t

(taken from [29]) is based on simplified model problems, where ↵R is a suitably scaled maximum eigenvalue of
the added-mass operator. In that sense, the ↵R we choose in the tests might be rather high. On the other hand, our
scheme shares the penalty-like term on the explicit kinematic coupling in the structure step in [41]. There, however,
the coupling conditions are enforced via Nitsche’s method with a parameter 10µ f

he
. Adopting the second interpretation

and using the present parameters (in SI instead of CGS units), ⌘R

s
= 10000, or ↵R = 0.005 in ⌘R

s
= ↵R

⇢ f

�t
, lie

perfectly in the expected range.
Also, the solution obtained with the SIDN scheme is not fully converged in time for any �t considered, but still

serves as reference. A high Robin parameter with an extrapolation u?
f

of order mu is thus still of the same temporal
order of accuracy, but the specific temporal error might be different. As the time step and element sizes go to zero,
both the kinematic and dynamic interface conditions are fulfilled.

5.1.2. Pulsatile flow

In a second experiment, we restrict ourselves to the SIDR scheme with IQN-ILS acceleration but consider a
more realistic setup. The main purpose is to qualitatively assess how the Robin scaling parameter influences both
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Table 4
Average difference in displacements in x̂ = (l/2, 0, ri ) over all time steps between the SIDN reference and SIDR
schemes with Robin parameter ⌘R

s
. The second-order scheme (m = mu = 2) is less robust than a variant using

first-order extrapolation of u?
f

(mu = 1). With decreasing time step size, the difference between SIDN and SIDR
diminishes.

mu ⌘R

s
�t = 0.125 ms �t = 0.25 ms �t = 0.5 ms �t = 1 ms

2 2000 ⇥ ⇥ 5.77 · 10�2 6.04 · 10�2

2 200 ⇥ ⇥ 1.05 · 10�1 ⇥

2 20 5.42 · 10�2 ⇥ 9.80 · 10�2 ⇥

2 2 7.36 · 10�4 2.40 · 10�3 7.58 · 10�3 1.76 · 10�2

2 0.2 7.08 · 10�5 2.13 · 10�4 4.98 · 10�4 1.76 · 10�2

1 2000 6.09 · 10�2 6.25 · 10�2 6.24 · 10�2 6.15 · 10�2

1 200 6.40 · 10�2 5.75 · 10�2 5.25 · 10�2 5.19 · 10�2

1 20 3.24 · 10�2 3.98 · 10�2 4.64 · 10�2 4.89 · 10�2

1 2 4.18 · 10�3 7.28 · 10�3 1.37 · 10�2 1.91 · 10�2

1 0.2 4.78 · 10�4 7.64 · 10�4 1.22 · 10�3 2.11 · 10�3

performance and quantities of interest. So, we start by prescribing an inflow profile u f = (u1, 0, 0)T , with

u1(r, t) = ūin(t)

✓
1 �

r
2

r
2
i

◆
, ūin(t) = ⌘t (t)

⇥
4 + 6 sin2 (2⇡ t + 0.1⇡)

⇤

smoothly ramped in time from t = 0 to Tr = 0.2 s via

⌘t (t) =

(
sin2

⇣
⇡ t

2Tr

⌘
for t  Tr ,

1 otherwise,
(66)

to obtain a peak velocity of umax ⇡ 0.5 m/s (see Fig. 8). On the outflow boundary, the pressure level is determined
according to a Windkessel model as described in Section 4.1, where Rp = 1.5 · 108 Pa s/m3, Rd = 8 · 108 Pa s/m3,
C = 1.5 · 10�10 m3/Pa and pp|t=0 = pd = 0 Pa are fixed, yielding a pressure fluctuation between ⇡ 13 and 9 kPa,
i.e., ⇡ 97, 5 and 67.5 mmHg.

Now, we first aim to compare various constitutive models employed for both the solid and fluid phases. For
the structure, we consider either linear elasticity (E), a St. Venant–Kirchhoff (SVK) model, neo-Hookean (NH)
or Holzapfel–Gasser–Ogden (HGO) material, see Eqs. (9)–(12). In the first two cases, we use a Young’s modulus
Es = 400 kPa and Poisson ratio ⌫s = 0.3, while in the latter two, a Poisson’s ratio of ⌫s = 0.499 is selected to
capture incompressible material behaviour. The tissue layers are assigned individual parameters, i.e., shear rates of
µs,1 = 62.1 kPa and µs,2 = 21.6 kPa and fibre parameters k1 = 1.4 kPa, k2 = 22.1 and c,1 = 0.12, ↵c,1 = 27.47� or
c,2 = 0.25, ↵c,2 = 52.88� following [72,81,82]. Viscoelastic tissue support with ke = 107 N/m3 and ce = 105 Ns/m3

is taken into account, which results in a displacement of ⇡ 1mm, depending on the material model employed. In
relative measures, this seemingly small displacement is already 20% of the vessel’s radius and equals the tissue’s
thickness. For the fluid, we either employ a Newtonian model with µ f = 3.45 mPa s or alternatively a Carreau fluid
( f = 1, a = 2) with parameters ⌘0 = 56 mPa s, ⌘1 = 3.45 mPa s, � f = 3.313 s and ⇠ = 0.3568 in (19) [83].

We keep the numerical settings as previously defined, i.e., choose the second-order time integration scheme
with first-order accurate mu = 1 to increase temporal stability. Additionally, GLS and backflow stabilisations
are employed and a relative tolerance of 10�4 in the nonlinear structural solver is used. Three cardiac cycles of
0.5 s length are computed either with uniform timestepping or adaptive time step control enabled. Starting from
�t

0 = 5 · 10�4, the time step size may be chosen according to error estimates or predictor–corrector schemes
available for BDF or Generalised-↵ time integration schemes, but herein we use

�t
n+1

= max
⇢
�tmax, 0.98�t

n min
⇢

1.02,
CFLmax

maxe {CFLe}

��
, (67)
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Fig. 8. Maximum prescribed inlet velocity ūin during three cycles from t = 0 to t = 1.5 s.

Fig. 9. Flow through a straight vessel: pressure (left) and displacement (right) in the reference point using the SIDR scheme with ⌘R

s
= ↵R

⇢ f

�tn

and adaptive timestepping (CFLmax = 0.6). Comparison of linear elasticity (E), St. Venant–Kirchhoff (SVK), neo-Hookean (NH) and
Holzapfel–Gasser–Ogden (HGO) solid models, combining them with Newtonian (N) or a Carreau (C) fluids.

to satisfy the Courant–Friedrichs–Lewy (CFL) condition by simply targeting a predefined maximum Courant number
CFLmax, based on the local one, CFLe, defined on each element as

CFLe = max
i

(��ui � um,i

���t
n

hi

)

, i = 1, . . . , d , (68)

with the directional element length hi . Eq. (67) also includes additional “safety” measures, being a maximum growth
factor of 1.02, a relaxation of 0.98 and a maximum time step size �tmax. Time steps leading to a maximum CFL
number bigger than the specified target value are not repeated.

To compare the constitutive models in a simplified manner, only the solution in the reference point x̂ = (l/2, 0, ri )
on the fluid–structure interface is analysed by means of the structural displacement ds and the fluid pressure p f

obtained applying the various models. In this more realistic setup leading to larger displacements and strains,
differences are seen between displacement responses depending on the structural constitutive equation employed, as
can be seen from Fig. 9. The observed quantities are not influenced by the fluid model, but the material parameters
used for the different solids lead to significant changes. The fibre contributions in the HGO model render it stiffer,
especially under large fibre strains and the linear elastic solid with its linear strain measure overestimates the
displacement. The differences in expansion lead to an altered volumetric flow over the outlet boundary, such that
the pressure wave is distinct as well.

Focusing on the overall number of executed coupling steps depicted in Fig. 10, we observe a negligible difference
in the time steps and coupling iterations needed. As highlighted in Table 5, the mean number of FSI iterations
per time step for all considered combinations is ⇡ 2.2, which is on average enough to reduce the pressure and
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Fig. 10. Flow through a straight vessel: accumulated FSI iterations using the SIDR scheme with ⌘R

s
= ↵R

⇢ f

�tn and adaptive timestepping
(CFLmax = 0.6). Comparison of linear elasticity (E), St. Venant–Kirchhoff (SVK), neo-Hookean (NH) and Holzapfel–Gasser–Ogden (HGO)
models, combining them with Newtonian (N) or Carreau (C) fluids.

Table 5
Flow through a straight vessel: comparison of SIDN and SIDR coupling schemes with uniform or adaptive timestepping
(CFLmax = 0.6) in terms of time step number Nt , FSI coupling iterations NFSI and mean FSI coupling steps per time step.

E,N E,C SVK,N SVK,C NH,N NH,C HGO,N HGO,C

Nt 1125 1122 1128 1124 1084 1085 1084 1085
NFSI 2551 2517 2587 2510 2408 2372 2367 2482
NFSI/Nt 2.27 2.24 2.29 2.23 2.22 2.19 2.18 2.29

displacement interface residuals by 104 owing to the combination of the SIDR scheme, IQN-ILS acceleration and
a second-order accurate extrapolation of ds and p f used as initial guess.

Having seen the negligible impact of changing the constitutive models on the coupling scheme, let us now turn our
attention to a detailed comparison of SIDN and SIDR schemes with ⌘R

s
= ↵R

⇢ f

�tn using only St. Venant–Kirchhoff
and Newtonian models to decrease the numerical effort. To diminish the influence of exterior viscoelastic support,
we set ce = ke = 0 and consider the first-order scheme (BDF1 and trivial “extrapolation”) to increase temporal
stability.

As expected, the SIDR solution converges to the SIDN reference, as shown in Fig. 11 using a fixed ⌘R

s
= 20000

and decreasing �t . Zooming in on the third cycle’s maximum displacement and pressure at t = 1.26 s, one also
observes a decreasing phase shift as �t ! 0 for the Robin variants, and that the pressure obtained via the SIDN
scheme fluctuates around the assumed exact solution. These fluctuations are triggered by the added-mass effect
being stronger as �t ! 0, while the kinks in the pressure in the SIDR variants stem from backflow stabilisation
being activated abruptly. Finally, comparing these results to those obtained with the SIDR scheme with adaptive
stepping (see Fig. 12), we see that phase and amplitude match well even for ↵R = 10, which led to a severe phase
lag and change in amplitude in the previous setup. Also, on the scale of one cycle, the oscillations in the SIDN
pressure are no longer visible.

Naturally, the overall number of time steps and FSI coupling steps are vastly different, as Table 6 highlights: any
of the presented parameter combinations needs approximately 3 FSI coupling iterations to reach convergence, and
given equal effort spent per time step, the number of executed time steps dictates the overall time spent. Through
this rationale, it is not surprising that the SIDR variant with adaptive stepping, which leads with CFLmax = 0.6 to
1880 time steps, is the fastest option. It is up to 26 times faster than the SIDN reference or 5 times faster than the
SIDR run with a fixed time step size of �t = 2.5 · 10�4, which lead to a comparable solution. That being said, let
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Fig. 11. Pulsatile flow through a straight pipe: zoom-in on pressure and displacement in a reference point to compare SIDR variants with
⌘R

s
= 20000 to the SIDN scheme. The solutions converge as �t ! 0 and the Robin variants feature no fluctuations caused by increased

added-mass instabilities, only the abruptly activated backflow stabilisation leads to a visible kink in the pressure.

Fig. 12. Pulsatile flow through a straight pipe: last cycle from t = 1 to 1.5 s comparing pressure and displacement in the reference point
obtained via SIDN and SIDR schemes. Adaptive timestepping with ⌘R

s
= ↵R

⇢ f

�tn and CFLmax = 0.6 matches phase and amplitude well.

Table 6
Pulsatile flow through a straight pipe: absolute (relative) time step number, FSI coupling iterations and computing
time using SIDN and SIDR variants with fixed time step size or CFLmax = 0.6. With adaptive time step control,
sufficient accuracy is achieved in overall fewer steps, leading to a substantial speed-up.

Time steps FSI coupling steps Time in 103 s

SIDN, �t = 1 · 10�4 s 15000 (12.7) 45101 (12.8) 89.5 (12.8)
SIDN, �t = 5 · 10�5 s 30000 (25.4) 91431 (26.0) 180.3 (25.8)
SIDR (⌘R

s
= 20000), �t = 1 · 10�3 s 1500 (1.3) 4474 (1.3) 8.9 (1.3)

SIDR (⌘R

s
= 20000), �t = 5 · 10�4 s 3000 (2.5) 8950 (2.5) 17.8 (2.5)

SIDR (⌘R

s
= 20000), �t = 2.5 · 10�4 s 6000 (5.1) 17943 (5.0) 35.7 (5.1)

SIDR (⌘R

s
= 20000), �t = 1.25 · 10�4 s 12000 (10.2) 35956 (10.2) 71.5 (10.2)

SIDR (⌘R

s
= 20000), �t = 6.25 · 10�5 s 24000 (20.3) 72150 (20.5) 143.2 (20.5)

SIDR (↵R = 1), CFLmax = 0.6 1180 (1.0) 3516 (1.0) 7.0 (1.0)
SIDR (↵R = 10), CFLmax = 0.6 1184 (1.0) 3517 (1.0) 7.0 (1.0)

us remark that such concrete numbers, comparisons and gains in computational performance are of course heavily
problem-dependent, but can be expected up to some degree, when a periodic inflow such as the present one are
considered.

Before moving on to a more complex example, let us summarise the results of these first numerical experiments:
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• Semi-implicit variants iteratively coupling only the fluid’s pressure and structural displacement yield good
results when compared to the fully implicit reference solutions when the time step size is chosen small enough,
fulfilling a standard CFL-condition.

• Using Robin interface conditions on the structure side can greatly reduce the iteration counts, but may alter the
solution when the Robin parameter is too large. However, even when a large scaling parameter ↵R is selected,
decreasing the time step size (or maximum allowed CFL number, maximum error measure in an estimator or
equivalent) and keeping the overall Robin parameter ⌘R

s
= ↵R

⇢ f

�tn unchanged, the solution converges to the
reference Dirichlet–Neumann solution.

• An outlet pressure obtained from combining a Windkessel model with adaptive timestepping in a pulsatile
flow setting was only found stable when using a first-order velocity extrapolation, hinting at the expected
difference in stability properties for first- and second-order time integration and extrapolation schemes. For
practical applications, the SIDR variant proved to be a viable alternative, converging faster than the SIDN
counterpart and yielding virtually identical results given a reasonable time step size.

5.2. Iliac bifurcation

In a second example in haemodynamics, we consider blood flow through an iliac bifurcation driven by
physiological flow data. Here, all techniques and modelling aspects described in Sections 3 and 4 are taken into
account, i.e., we use GLS, backflow stabilisation and an IQN-ILS-accelerated SIDR scheme, account for Windkessel
outlets, an inflow profile remap, a stressed reference geometry, and construct a meaningful material orientation based
on the interface normal.

An interface representation reconstructed from computed tomography images [84–86] is uniformly extended in
outward normal direction by 1 mm, sweeping the volume representing the solid layer enclosing the lumen. The
considered computational domain has a length of ⇡ 11 cm and the mean inlet radius is rM ⇡ 7.1 mm, while the
outlets have mean radii of ⇡ 7.8 and 8.6 mm. The discrete mesh is composed of ⇡ 585 · 103 tetrahedra with
⇡ 108 · 103 nodes, resulting in ⇡ 1.19 · 106 overall degrees of freedom (using linear shape functions for ds , u f ,
d f , p f and the projection variable  ), as shown in Fig. 13. Also, we highlight the reference point on the fluid–
structure interface, for which we will report results. Circumferential (e1) and longitudinal (e2) material orientations
are approximated as laid out in Section 4.2, which results for this geometry in the vectors shown in Fig. 13 when
using ↵tol = 120�, Navg = 5 and hl,i = 100, i = 1, 2 in Algorithm 2.

Regarding material parameters, we consider physiological values obtained from literature, that is, densities
of ⇢ f = 1060 kg/m3 and ⇢s = 1200 kg/m3, employ a Carreau fluid ( f = 1, a = 2) with parameters
⌘0 = 56 mPa s, ⌘1 = 3.45 mPa s, � f = 3.313 s and ⇠ = 0.3568 in (19), taken from [83]. For the tissue, we
employ the quasi-incompressible HGO model [57], i.e., Eq. (9), with parameters taken from [81,82] for medial
tissue, neglecting other layers of the abdominal aorta. Further, we set ⌫s = 0.499 for the Poisson’s ratio and
µs = 62.1 kPa for the shear rate, leading to a bulk modulus (for homogeneous isotropic linear elastic materials) of
b = 2µs(1 + ⌫s)/(3 � 6⌫s) ⇡ 3.1 MPa. Fibre parameters are selected with k1 = 1.4 kPa, k2 = 22.1 and c = 0.12,
symmetrically inclining the mean fibre direction by ↵c = 27.47� in Eq. (60) relative to the circumferential direction.

Concerning boundary conditions, the solid layer is completely fixed at the in- and outlet boundaries and
surrounding tissue is accounted for using ke = 107 N/m3 and ce = 105 Ns/m3 in Eq. (7). A parabolic inflow profile
is remapped onto the (slightly) non-circular profile using the technique introduced in [55], matching measured
volumetric flow rates taken from [87]. Over the first Tr = 0.5 s, the inflow is ramped according to Eq. (66), starting
from the quiescent state. Additionally, Windkessel parameters of Ci = 1.5 · 10�8 m4s2/kg, Rp,i = 2 · 108 kg/m4s,
Rd,i = 109 kg/m4s, pd,i = 7 kPa and pp,i |t=0 = 0 for i = 1, 2 are selected to obtain pressures in the physiological
range [87]. Doing so, the fluid pressure in the reference point and the reference pressure p̄ f match well after the
prestress phase is completed, as can be seen in Fig. 14, where the maximum inlet velocity ūin is depicted as well.
The remaining discrepancy is accepted, since further tuning the Windkessel parameters lies beyond the scope of
this work.

To account for prestress, we perform a flow simulation until t0 = 2.5 s, where a periodic solution of the isolated
flow problem is already reached, but the pressure is on purpose not considered at its diastolic minimum. At this point,
the traction exerted by the fluid onto the tissue is kept fixed, as detailed in Algorithm 3 . The pseudo timestepping
is started with �t

0 = 1 ms and the continuation method equally scales ⇢s , ce and ⌘c over 50 increments. An
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Fig. 13. Iliac bifurcation: structural finite element mesh (grey), revealing fluid mesh (red) and reference point on the fluid–structure interface
(top) and circumferential (e1, blue) and longitudinal (e2, yellow) orientation vectors in the tissue layer (bottom). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Physiological maximum inlet velocity ūin, reference pressure p̄ f taken from literature [87] and computed pressure p f in the
reference point (see Fig. 13).

increase of 5% in the pseudo time step size up to �tmax = 5 ms and a load step increment is performed if less than
Nc = 3 Newton steps are needed in the solid solve to reach convergence, while the initial relaxation parameter in
Aitken’s relaxation is !0 = 0.1. Then, a quasi-static solution is obtained 83 pseudo time steps after applying the
full load, using tight tolerances of ✏d0

rel = 10�10 (and ✏d0
abs = 10�20) in (62) and ✏ d̈0

rel = 10�3 in (64). As expected,
the displacement field d0 resembles “inflating” the geometry by applying a pressure, as seen in Fig. 15. We want
to stress again, however, that d0 is not to be understood as an initial displacement field when starting the FSI
simulation, but captures the prestress S0 present in ⌦̂s counteracting the fluid loads acting on the interface. In this
sense, Fig. 15 does not show the initial condition for ds , but rather indicates which field d0 results in S0 to solve
Eq. (61). The vector field d0 enters in the structure’s momentum balance equation as given in Eq. (63), while
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Fig. 15. Displacement field d0 obtained via Algorithm 3 with fluid forces generated at t0 = 2.5 s.

Fig. 16. Blood flow in an iliac bifurcation: fluid velocity vectors in the cut vessel geometry. Maximal inlet velocity at t = 5.31 s (top) and
largest displacement and pressure at 5.49 s (bottom). The rapid decrease in the inflow velocity causes a flow redirection.

the initial conditions of the structure’s material displacement and velocity are zero, d0
s

= ḋ0
s

= 0 (see line 22 in
Algorithm 3).

The pressure in the reference point shown in Fig. 14 exhibits large fluctuations as soon as we allow for
displacement of the tissue. This indicates good stability properties of the prestress algorithm even if t0 is not set
at the end of the diastolic phase, i.e., if the preceding phase does not feature nearly steady inflow. Exemplarily,
we present snapshots of the solution at t = 5.31 and 5.49 s in Fig. 16, where the inlet velocity is maximal at the
former instant and displacement and pressure are maximal at the latter. Strong recirculations causing a deviation
of the flow from the vessel centre axis result from decreasing the inflow rapidly and lead to large variations in
viscosity. Further studying the specifics of the present solution might be of interest, but lies outside of this paper’s
scope and is hence postponed to future investigations. Instead, let us focus on the numerical performance of the
scheme.
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Fig. 17. Blood flow through an iliac bifurcation: structural displacement norm kdsk (top) and fluid pressure p f (bottom) in the reference
point at the fluid–structure interface, overall view (left) and zoom-in on t = 5.35 to 5.55 s (right).

Similar to the first numerical tests, the fully second-order scheme was found to be too unstable, but can be
improved substantially by using a first-order extrapolation of the fluid velocity (and using second-order accurate
time integration and extrapolation schemes for all other quantities). Again, this effect is much less relevant for
constant �t or when replacing the Windkessel outlets by static traction boundaries. Starting from �t

0 = 1 ms
initially, we adapt the time step size based on CFLe as defined in Eq. (68), additionally ensure �t  5 ms and allow
for a maximum growth of 5% per time step. Setting different scaling parameters ↵R in ⌘R

s
= ↵R

⇢ f

�tn , the solutions
in the reference point converge, as depicted in Fig. 17. Initially, set CFLmax = 0.6 and compute two solutions
with ↵R = 10 and ↵R = 1. A good match concerning amplitude and phase of pressure and displacement curves is
already obtained, but further reducing the Robin parameter once again by a factor of 10 by setting ↵R = 0.1 leads to
oscillations in the pressure. However, we can obtain a stable solution with CFLmax = 0.15 and ↵R = 0.025, which
has an identical ↵R to CFLmax ratio, i.e., similar ⌘R

s
= ⌘R

s
(↵R, CFLmax), but a smaller mean time step size. That

being said, it is also worth noting that the SIDN scheme (↵R = 0) is found unstable for this specific combination
of adaptive timestepping and Windkessel parameters.

For comparison, Fig. 17 also contains results from a fully first-order scheme, which compares well to the BDF-2
variant. Strictly speaking, the latter is also first-order accurate in time due to the velocity extrapolation u?

f
= un

f

(mu = 1), which is needed for stability.
Turning our attention to the coupling algorithm’s performance, one observes an increase in Pressure Poisson

solves per time step at t0 = 2.5 s due to FSI being “switched on” as can be seen in Fig. 18. Afterwards, the mean
number of coupling steps per cardiac cycle stays almost constant, whereas before t0 = 2.5 s, it simply indicates the
number of accumulated time steps.

Depending on the targeted CFL number and resulting �t , the number of accumulated PPE solves grows. With
decreasing time step size, the actually selected �t

n+1 via Eq. (67) fluctuates, which suggests that further tuning
of the safety parameters in Eq. (67) might be beneficial. However, decreasing the time step size simultaneously
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Fig. 18. Blood flow through an iliac bifurcation: accumulated pressure Poisson solves (left) and time step size (right). At t0 = 2.5 s the
prestress is calculated based on a pure flow simulation, after which the fluid–structure coupling is accounted for.

Table 7
Blood flow through an iliac bifurcation: Absolute (relative) time step number and coupling iterations in the FSI
phase with various target CFL numbers and Robin scaling parameters ↵R .

Time steps FSI steps FSI-/time step

BDF-2, ↵R = 10, CFLmax = 0.6 5445 (1.02) 15442 (1.05) 2.84 (1.03)
BDF-2, ↵R = 1, CFLmax = 0.6 5356 (1.00) 14679 (1.00) 2.74 (1.00)
BDF-2, ↵R = 0.1, CFLmax = 0.6 6985 (1.30) 28290 (1.93) 4.05 (1.48)
BDF-2, ↵R = 0.025, CFLmax = 0.15 22143 (4.13) 68469 (4.66) 3.09 (1.13)
BDF-1, ↵R = 0.5, CFLmax = 0.5 10703 (2.00) 32206 (2.19) 3.00 (1.10)

increases the added-mass effect, which together with a worsened initial guess due to fluctuations comprises two
more reasons for an increased iteration count per time step as �t ! 0.

As seen from Table 7, these effects show an increase in the mean coupling iteration count per time step, rendering
the setup with CFLmax = 0.6 the fastest. The solution with smaller Robin parameter turns out to be both the fastest
and is almost identical to the reference solution with smallest ↵R and CFL number. Changing the tolerances in the
involved linear solvers, Newton method or coupling scheme, desired CFL or physical problem parameters might
influence the numbers obtained here, but a large potential for possible gains in efficiency is evident.

5.3. Human phonation

We finally target human phonation, that is, the creation of voice by the vocal folds (VFs) interacting with air from
the lungs (see, e.g., [4–7,88]). The main motivation for considering this demanding problem here are the considerable
differences in physical parameters and flow regime. It also showcases the applicability of the semi-implicit scheme
and IQN-ILS acceleration in a challenging context with high Reynolds number and low, but non-negligible added-
mass effect. The geometry is slightly adapted from [88], and physiological parameters are taken from [5,88]. The
symmetry plane of the glottis is considered as a channel from x1 = 0 to x1 = L ⇡ 65.4 mm and a height of
H = 18 mm. The VFs and the 7.5 mm downstream positioned false VFs of 8.9 mm and 6.5 mm height are elastic.
The resulting initial gap between the two VFs is 0.2 mm, as shown in Fig. 19. In doing so, we model glottal
insufficiency where the two VFs do not come into contact during the oscillation cycle [89].

The Newtonian fluid representing air has a viscosity of µ f = 0.019 mPa s and a density of ⇢ f = 1.145 kg/m3

and is coupled with a linear elastic solid with a density of ⇢s = 1200 kg/m3, a Young’s modulus of Es = 20 kPa
and a Poisson’s ratio of ⌫s = 0.45. Starting from the quiescent state, i.e., u f = 0, a quadratic inlet velocity profile
at the left boundary at x1 = 0 is smoothly ramped over the first Tr = 0.01 s via ⌘t , leading to

u f = (⌘t 0.6, 0)T , with ⌘t =

(
sin2

⇣
⇡ t

2Tr

⌘
for t  Tr ,

1 otherwise,
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Fig. 19. Human phonation example: computational domain considered (left) and close-up of the mesh on the top VFs’ trailing edge (right)
with points A (⇥) and B (�) highlighted.

such that a constant maximum inlet velocity of 0.6 m/s is reached at t = Tr . This is different from many works found
in literature that consider only fluid dynamics. The absence of self-excited motion requires imposing a fluctuating
inlet velocity or pressure, but when FSI is accounted for, prescribing a fixed flow rate allows recovering the natural
frequency of the VFs’ oscillatory response [5–7]. A zero traction condition at the outlet at x1 = L enforces a zero
reference pressure, while no-slip boundary conditions at the channel’s walls are considered. The fluid domain and
the linear elastic solid are both fixed at the channel’s walls, such that the structure deforms due to the air flow,
causing it to vibrate given the current set of parameters.

These boundary conditions lead to a maximum interglottal velocity of 35 m/s with a corresponding Reynolds
number of Re = O(1000) such that the mesh as depicted in Fig. 19 results in an element Reynolds number
Ree ⇡ 250, which is defined similarly to the element CFL number (68),

Ree = max
i

⇢
⇢ f |ui � um,i |hi

µ f

�
, i = 1, . . . , d, (69)

where hi is again the element length in direction i = 1, . . . , d. Judging from the element Reynolds number, the
spatial grid is rather coarse and merely capable of resolving the main features. On the other hand, CFLmax < 1
requires a small time step size �t < 3.4 ⇥ 10�6. In our numerical tests, CFLmax = 0.2 is set to remain shy of
the stability limit, which is just an estimate to begin with. Therefore, a time interval from t = 0 to T = 0.15 s
results in more than 4 ⇥ 105 time steps, which is why two space dimensions are considered within this work.
A wider glottal channel – as often considered in literature – would decrease the intraglottal velocity and ease
numerical treatment, weakening the high velocity gradients in the computational results. However, this numerical
test is designed to showcase applicability of the solution algorithm in a challenging application in biomechanics
outside of the haemodynamic regime.

Concerning the discretisation, we employ a first-order scheme, i.e., linearise with the last time step’s solution
combined with BDF-1 and CH-↵ (⇢1 = 0) time integration starting from �t

0 = 10�4 s with CFLmax = 0.2 in
Eq. (67). Both GLS and backflow stabilisation are employed, and convergence is solely based on the fluid pressure
and structure displacement, setting ✏ p

abs = 10�7 and ✏ p

rel = 10�3 in Eq. (29) and ✏d

abs = 10�7 and ✏d

rel = 10�3 in
Eq. (30). The SIDR scheme with Robin parameter ⌘R

s
= ↵R

⇢ f

�tn and IQN-ILS acceleration with unaltered settings,
i.e., !0 = 10�2, q = 5 and ✏Q R = 10�16 is considered.

After an initialisation phase, a periodic state is reached as indicated by the snapshots in Fig. 20: the pressure
builds up due to the constrained flow through the glottal channel, causing the VFs to deform and consequently
lowering the pressure, which in turn causes the elastic VFs to swing back into their original position and further
due to inertia. Then, the cycle repeats, as the channel is narrowed again and onset pressure increases, such that the
VFs oscillate in a periodic motion around their initial state.

This periodic motion, however, is constituted by multiple modes as analysed, e.g., in [6]. The deformation of the
VFs is also not symmetric past a certain time, since (i) vortex shedding is induced and non-symmetric vortices form
past the VFs given the high Reynolds number and (ii) glottal insufficiency (no contact between the two VFs) results
in non-symmetric oscillations due to the lack of energy exchange between the VFs. Thus, the VFs’ apex points A

and B highlighted in Fig. 19 undergo a complex motion, of which the last four periods from t ⇡ 0.12–0.15 s are
depicted in Fig. 21. A fundamental frequency of ⇡ 130–150 Hz is observed, which lies perfectly in the expected
range [4,88].
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Fig. 20. Human phonation example: selected velocity vectors u f over pressure p f in the fluid and deformed solid mesh edges coloured
by kdsk at four distinct points in the self-excited, periodic motion of the VFs. The VFs return to their initial configuration (0.2 mm gap)
from the previous oscillation (top left) and almost touch due to inertia (top right), which causes a strong jet triggering vortices past the
VFs. This narrowing of the glottal channel causes the pressure to rise, deforming the VFs and opening up the channel again (bottom left).
As the channel opens, the VFs deform maximally and the pressure gradient is lowered, after which the VFs return to their initial position
to repeat this cycle.

Fig. 21. Human phonation example: displacement norm kdsk in the apex points A (⇥) and B (�) showing the multi-modal, non-symmetric
motion of the two VFs.

The resulting velocity field is characterised by high velocity gradients, vortices of variable size and pressure
fluctuations. Especially during the closing phase, the narrow channel and high onset pressure trigger a strong jet as
shown in Fig. 22. Note that choosing a lower stiffness or higher flow rate can result in the VFs getting too close,
which inevitably leads to the breakdown of the ALE algorithm.
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Fig. 22. Human phonation example: selected velocity vectors u f over pressure p f and deformed solid mesh during the closing phase of
the VFs causing high velocities and pressure fluctuations.

Fig. 23. Human phonation example: varying the Robin parameter ⌘R

s
= ↵R

⇢ f

�tn has little influence on d f in the glottal channel centre (left)
and the accumulated FSI iterations (right).

Table 8
Human phonation example: Mean FSI iteration counts depending on Robin parameter scaling ↵R .

↵R 10�2 10�3 10�4 10�5 10�8 0

Mean FSI iter./step 5.42 5.42 5.50 5.43 5.46 5.48

Turning our attention to the FSI coupling schemes’ performance, we observe an almost constant number of FSI
iterations per time step, as indicated by the straight line in Fig. 23. Roughly 4.7 · 105 time steps are executed,
which gives an average time step size of 3.2 · 10�7 s to fulfil CFLmax < 0.2 and with a mean of 5.48 FSI iterations
per time step, this yields 2.56 · 106 iterations in the semi-implicit coupling loop. Varying the Robin parameter, we
see no significant effect on the FSI iteration count, as indicated by Table 8. Similar to the previous examples in
the haemodynamic context, though, a Robin parameter too high might impair stability via the increased weight on
the explicit contributions to the interface Robin terms. Hence, using a Robin condition is not recommended in this
context, even though only mild differences in the solution are seen, as shown in Fig. 23 for the interval t = 0
to t = 0.02 s. The large number of time steps leads to bigger differences as time progresses, owing to the loose
tolerance settings and nonlinear influence of past time step data.
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Summing up, this last numerical experiment demonstrates the versatility of the semi-implicit coupling scheme by
applying it in the context of aeroelasticity. The split-step scheme with GLS and backflow stabilisations shows great
robustness with respect to the changes in the physical parameters. The semi-implicit coupling scheme and the IQN-
ILS acceleration perform well reusing the parameters from the haemodynamic setting. However, performance gains
as impressive as presented in the previous numerical tests cannot be expected, since the added-mass effect becomes
less influential as ⇢s � ⇢ f . A semi-implicit coupling scheme is used nonetheless, since instabilities accumulate
over time and, consequently, a fully-explicit scheme turned out not to be sufficiently robust.

6. Concluding remarks

Within this work, we have extended our partitioned PPE-based ALE FSI scheme [52] by several numerical
techniques and modelling aspects of practical relevance in biomedical applications. An added-mass-stable, semi-
implicit algorithm is employed, iteratively coupling merely the fluid pressure obtained from a (consistent) Poisson
equation and the structural displacement. The mesh motion equation, fluid momentum balance, Leray projection
and pressure boundary data projection are only solved once per time step. This alone leads to significant speed-up,
but is further combined with Robin interface conditions in the solid subproblem and IQN-ILS acceleration. This
greatly increases robustness and performs substantially better than comparable acceleration methods such as Aitken’s
relaxation and each of the involved techniques on their own.

Our numerical experiments suggest that the influence of the Robin parameter on the solution vanishes with
decreasing time step size, such that one might really profit from accelerated convergence and increased robustness,
while the solution is close to the reference Dirichlet–Neumann coupling scheme. This allows tackling problems
of practical relevance with acceptable Robin parameters, which is particularly advantageous when comparing the
proposed scheme to fully explicit FSI schemes based on Nitsche-type mortaring or Robin–Robin coupling.

A smooth transition from Dirichlet–Robin to Dirichlet–Neumann schemes without ill-conditioning of the linear
systems is possible, simply choosing ⌘R

s
= 0. Thus, selecting a suitable Robin parameter is less critical and a low

number of coupling iterations results also for the IQN-ILS-accelerated semi-implicit Dirichlet–Neumann scheme.
This versatility is seen as an advantage over explicit (often only first-order accurate) FSI schemes, which rely on a
suitable Robin parameter for temporal stability.

Moreover, adaptive timestepping based on the CFL number is employed, cutting down the number of needed time
steps drastically, while only mildly affecting the coupling schemes’ performance. Other indispensable numerical
techniques in the context of cardiovascular simulations are GLS and backflow stabilisation, which need to be
considered in a suitable fashion in the semi-implicit FSI solver to preserve consistency.

Another important contribution here deals with advanced modelling aspects and parameters highly relevant for
patient-specific simulations. Windkessel models to account for the downstream vasculature in truncated haemody-
namic systems are incorporated in a fully consistent way, modifying the PPE and fluid momentum steps. Further,
we present an algorithm to suitably generate local material orientations, rendering anisotropic material models really
applicable in scenarios such as aortic dissection, where a thin tissue layer separates the cross section into two distinct
lumina. Lastly, we document details on a prestressing algorithm to account for loaded reference geometries and how
it can be included in the overall FSI algorithm. Concerning material models, generalised Newtonian fluids and a
quasi-incompressible, hyperelastic tissue model including fibre-reinforcement and viscoelastic support is considered,
both of which are easily exchanged owing to the partitioned design.

To sum up, we present an efficient (in terms of total coupling steps and their cost) and highly flexible (with
respect to material parameters and target applications) FSI algorithm, which includes all necessary model aspects
to tackle realistic, patient-specific problems. We demonstrate the versatility and success of the proposed schemes
in aortic blood flow and human phonation.
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