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Abstract

We propose an energy management algorithm for isolated industrial power systems that integrate uncertain renewable

generation and energy storage. The proposed strategy is designed to ensure sustainable and cost-effective operations by

managing the energy flows in the grid, and is structured so to cope with: 1) high levels of renewable power penetration,

and 2) load profiles characterized by non-smooth patterns and irregular events (i.e., events such as those occurring from

connections/disconnections of large scale equipment, or from large wind speed ramps). The proposed algorithm leverages

a stochastic economic model predictive control (MPC) scheme capable of dealing simultaneously with the dispatch and

scheduling of the local generation units. More precisely, the scheme embeds a mixed-integer linear programming (MILP)

optimal control policy formulation together with a stochastic programming approach. Moreover, the optimization problem

accounts for multiple techno-economical objectives, such as minimization of operational costs, battery degradation, and

non-utilized energy. We test the algorithm on a case study of an isolated offshore Oil & Gas platform producing energy

onsite with conventional gas turbines and a local wind farm, while integrating a battery energy storage system. The

results show that the proposed approach can issue ensemble predictions that successfully capture the potential irregular

variations just by using recent past information of the associated random variable, even when no particular sudden events

are anticipated in the near-future (i.e., step changes/trend reversals). In this way, the approach provides useful future

information for the optimal management of the grid. This effect is numerically quantified via simulations that compare the

performance of the proposed stochastic optimization approach against its deterministic MPC version in several realistic

operating conditions. The empirical results suggest that the stochastic version leads to better scheduling of the conventional

generators, with up to 12.86% reductions of the operating cost, 2.56% reduction in fuel consumption and emissions, and

35.29% reduction in status transitions (on/off) of the gas turbines, while keeping dumped energy and battery degradation

as low as possible.
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1. Introduction

Operating resiliently and efficiently islanded microgrids and isolated power systems is believed to require not only

integrating energy storage technologies, but also efficiently controlling these [1]. This is especially true for isolated

industrial power systems such as remote offshore facilities [2], where specialized energy management systems (EMS) are

required. Following the recent trends in the offshore Oil and Gas (O&G) industry [3], battery energy storage systems

(BESSs) are expected to significantly contribute toward the decarbonization of the O&G sector. However, to achieve this

goal in a cost-efficient and safe way, the particular characteristics of these grids, such as the intermittent load patterns

and abrupt load steps [4, 5], need to be taken into account. On top of that, integrating renewable energy sources (RES)

in these grids adds one more level of complexity due to uncertainty in the power supply. Therefore, appropriate EMS

strategies that consider these effects are required. In addition, another important aspect that needs to be captured by the

EMS algorithm is the accurate representation of potential time-dependent characteristics of the system’s resources, such as

BESS degradation [6]. In this way, multiple objectives come together, complicating the calculation of an optimal control

policy. Adding then the presence of flexible conventional units with binary operation modes (ON/OFF) makes the energy

management optimization problem combinatorial, complicating the numerical search for the optimal solution. As shown

in the literature review below, these issues have already been the subject of investigation by the scientific community.

1.1. Literature Review

Most of the time, EMS algorithms are formulated either as rule-based strategies or mathematical optimization prob-

lems [7, 8, 9, 10]. However, such methods do not account for uncertainty in the operating conditions. Recent trends

have suggested the consideration of stochastic optimization techniques [1] together with advanced probabilistic forecast-

ing [11, 12]. These two components have indeed shown a good potential in dealing with the energy management specifi-

cations/requirements under partially known information. A popular approach in integrating uncertainty in the EMS has

indeed been the feedback mechanism provided by the Model Predictive Control (MPC) framework [13, 14, 15], which can

be further enhanced by using mixed-integer linear programming (MILP) [16, 17, 18]. Yet, such formulations still do not

explicitly consider the uncertainty of future events. Nevertheless, MPC strategies are especially useful for handling energy

management problems when combined with stochastic optimization as in [19, 20]. However, for better performance and

more realistic modelling, such formulations should also consider battery degradation, as we instead do in this paper.

We shall also note that a common way to express uncertainty in stochastic optimization models is through the use of

sample paths, called scenarios. To be representative of the true random processes, the marginal distribution of each random

variable should describe historical data accurately, and at the same time, the joint distribution should also be modelled

accurately enough to capture temporal and multivariate correlations [21, 22]. The latter requirement is commonly ensured

using Cholesky decompositions [23, 24, 25]. However, the distribution of each individual random variable is commonly

assumed to follow some kind of typical parametric structure [23, 24, 26], an assumption that should be avoided when

arbitrary load characteristics are considered (such as loads including irregular events). An alternative is to learn these

distributions from available data. In [27, 28], stochastic load and RES are modelled using discrete values and probability

mass functions. However, such formulations are prone to the curse of dimensionality, especially when the number of loads

or the RES resources in the system increase.

In other studies, quantile forecasting is used as a data-driven method to generate auto-correlated scenarios [29, 30, 25].

However, in most studies where probabilistic forecasts are issued for RES uncertainty quantification, e.g., [31, 30, 22, 32],
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future information about weather conditions is used as input from specialized Numerical Weather Prediction (NWP)

models. In this way, such forecasts heavily depend on the availability of these models, which are limited in time resolution,

making the forecasting of sudden irregular events (i.e., step changes/trend reversals) extremely challenging.

Then, by combining probabilistic forecasting with scenarios, stochastic optimization, and MPC, an enhanced class of

EMS algorithms emerges (SMPC-EMS). In [33, 14, 34, 35] such strategies were proposed to optimally manage HVAC

equipment in the built environment. In [36] a similar method was proposed for the market-based optimal power dispatch,

demonstrating the potential application of SMPC-EMS in the power sector. Then, in [25] an SMPC-EMS was proposed

for the economic optimization of a grid-connected microgrid integrating PV power.

As evident from the above analysis, state-of-the-art energy management is achieved by combining advanced forecasting

and optimization methods. However, to the best of our knowledge, no integrated SMPC-EMS has been proposed for the

management of isolated power systems that are subject to irregular load patterns and rapidly varying renewable generation.

1.2. Statement of contributions

It is now clear that the cost-efficient and environmentally sustainable operation of isolated industrial power systems

integrating high amounts of renewable resources combined with dispatchable conventional power generation units, is a

challenging problem. This is due to: 1) the combined effects of short-term uncertainties coming from both power generation

and consumption sides, and 2) the combinatorial nature of the unit commitment decisions. Limitations related to the

existing methods are found mainly in an accurate and adaptive probabilistic description of future disturbances to be

used along with predictive control, in capturing irregular events without any prior future knowledge, and in dealing with

multiple objectives when both continuous and binary decisions need to be taken for the optimal energy management

problem. We thus propose to overcome such limitations by formulating and testing an algorithm that:

1. is capable of better quantifying load uncertainty and sudden operation changes just by using lagged values of the

load time-serie,s and has an increased performance in predicting trend reversals in wind power generation compared

to point forecasts, again by using just lagged values and no future information (i.e., NWP);

2. is formulated as an optimal feedback control problem through employing a MILP that is numerically solvable, in

contrast with other schemes that bypass numerical intractability by means of sub-optimal heuristics;

3. includes multiple objectives in its formulation, considering not only the cost-efficient operation of the system, but

also its environmental performance by minimizing the wasted (dumped) energy and the optimal usage of the BESS;

and

4. uses a detailed degradation model for the BESS, leading thus to operations that do not over-strain this subsystem.

The remainder of this paper is therefore organized as follows: section 2 presents how to embed the SMPC-energy

management system with forecasting capabilities, section 3 formulates the optimal control problem, and section 4 presents

the numerical results from the simulations. Finally, section 5 presents an overall summary of the main findings and some

concluding remarks.

2. Disturbance Uncertainty Quantification through Probabilistic Forecasting

The objective of this section is to build an auto-regressive model that can effectively predict the occurrence of irregular

events such as sudden steps and ramps. This capability is especially important in control strategies with fine time

discretizations, especially when model-based predictions are either not available or available at higher time resolutions

3



to the point that interpolating such model-based predictions would lead to missing the steps and ramps of our interest.

As an example, this applies to load profiles that are characterized by frequent ON/OFF switching of the equipment:

in this case, the exact schedule of on or off states might be unknown in advance, since depending on rapidly changing

operating conditions, and interpolating coarse model-based predictions of their operations may lead to missing some of

these switches.

In the following two subsections, we thus first propose the forecasting method, and then discuss a sensible way to tune

its hyper-parameters.

2.1. Quantile Regression Forests as Auto-regressive Models

We propose to use Quantile Regression Forests (QRF), that were introduced in [37] and that, to the best of our

knowledge, comprise one of the best-performing supervised learning algorithms for quantile regression [38]. This approach

has proven useful in providing probabilistic forecast for both RES [11, 22] and load [39] time-series, making it suitable for

the application considered here. This method makes use of a random forest (RF) structure - i.e., an ensemble of | T |

trees - and this makes it particularly useful for probabilistic forecasting. This is because, besides the prediction of a point

value of the response y as in common regression, the whole distribution of the response can be estimated as a function of

the predictor input x.

The method is thus formulated so that, in general, at time t one may use the last L + 1 measured values1 as input

features x = [Pt, Pt−1, . . . , Pt−L] to then estimate the conditional empirical distribution F̂ of a particular response value

y ∈ R as

F̂ (y | X = x) =

N∑
j

∑
t∈T

1

| T |
wtj(x)1{Yj ≤ y}. (1)

To enhance the reproducibility of our results, we note that here X represents the random input feature taking the

specific value x, and Yj are the values of the random response variable for the N observations. Each observation Yj ,

j = 1, . . . , N is instead associated with an input sample Xj that belongs to the dedicated bootstrapped training set of the

tree t ∈ T . Then, for each available observation j = 1, . . . , N , a weight wtj(x) is assigned, given the specific (new) input

x, indicating the fraction of training samples Xj that belong to the same leaf St(x) (set of values in a terminal node) as

the one that the new input x falls in. In other words, it expresses how much each observation Yj from the set of values in

the terminal node where x ∈ St(x), from each tree t ∈ T , should be accounted (used) for the final prediction of y. In

our proposed approach, the weights are then calculated as

wtj(x) =
1{Xj ∈ St(x)}

N∑
n

1{Xn ∈ St(x)}

.
(2)

Note that each tree t ∈ T uses different bootstrapped samples from N training observations. Gathering these weights

together, it is possible to construct the empirical conditional relative frequency distributions of the response variable,

which can then be used for the prediction of different quantiles. The prediction of a single tree can then be computed as

ŷt,j(x) =

N∑
j

wtj(x)Yj . (3)

1In our specific field case L = 5 is the hyperparameter that empirically led to the best results.
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To use the whole RF, consisting of trees trained on different bootstrapped samples Xj , one can then estimate the expected

value of the response as

ŷj(x) = E(Y | X = x) =

N∑
j

wj(x)Yj (4)

where

wj(x) =
1

| T |
∑
t∈T

wtj(x), ∀ j = 1, 2, . . . , N (5)

Then the conditional quantile functions can be estimated for quantile probability levels τ as

Qτ (x) = inf{y : F̂ (y | X = x) ≥ τ}. (6)

We note that to assess the quality of the developed forecasting models and avoid over-fitting to the training observations,

performance metrics shall be calculated based on the out-of-bag (oob) samples [37]. During the training procedure with

RF, in our coding of the technique, the available data are sampled with replacement, creating bootstrap samples specific

to each individual learner of the ensemble. Then, the prediction errors are estimated using the samples that do not belong

to the specific bootstrapped samples used for training tree t ∈ T (oob samples). In this way the oob ensemble error

estimator is unbiased for the true ensemble error. Therefore, the tuning of the RF parameters can be done based on this,

instead of implementing cross-validation.

Finally, we note that our case considers two random response variables, y: the load (power consumption P ℓ) of the

platform, and the wind power produced by the wind farm Pw. In the following, we thus consider two separate QRF

models, one for each of these random variables.

2.2. Model Selection and Performance

RFs have a low number of hyper-parameters, the main one being the number of trees | T | that compose the forest.

A common data-driven strategy for selecting | T | is to analyse statistical performance indexes that are commonly used

for regression metrics, such as mean squared error (MSE) and normalized root mean squared error (NRMSE) for the oob

samples, i.e.,

MSE(k) =
1

N∑
j=1

wj,k

N∑
j=1

wj,k (Yj(k)− ŷj(k))
2

(7)

and

NRMSE(k) =
1

Pn

√√√√ 1

N

N∑
j=1

wj,k (Yj(k)− ŷj(k))
2
. (8)

For example, following this approach leads to results for the random variable P ℓ such as in figs. 1a and 1b. In particular,

in fig. 1a we observe that increasing the number of trees inside the forest generally results in decreasing the resulting MSE

for all the lead times k ∈ K. This decrease is bigger and significant for low trees number, and it becomes less significant

as the ensemble of trees grows, until it levels off around | T |= 20. A similar trend is noticed in fig. 1b, plotting the

relation between the number of trees and lead times. This figure shows that, in general, smaller lead times are associated

with smaller NRMSE, meaning that (as intuition would say) short-term predictions are better compared to longer-term

ones. However, as the number of trees approaches 20, the NRMSE improvement becomes negligible, as we observe from

the increased density of the curves at the lower part of the diagram.
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(a) Mean Squared Error (MSE) metric for all lead times

and increasing the number of trees in the random forest.
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(b) Normalized Root Mean Squared Error (NRMSE) for different

numbers of trees in the random forest and increasing lead time.

Figure 1: Regression model selection based on out-of-bag performance metrics for different lead times and number of trees in the random forest

Let us note that the scope of this paper is not to improve the QRF method, but rather to demonstrate its applicability

and suitability as a good non-linear probabilistic estimator for regression problems with intricate non-linear patterns and

how this can be integrated into the optimal energy management, leading to potential benefits (as presented in detail in

section 4).

To demonstrate the performance of the developed forecasting models for each random variable, a reference period was

selected and the output of the forecasting results for different lead times was monitored, as illustrated in fig. 2. As we

observe from fig. 2a, the one step ahead forecasting model (k = 1) can accurately predict the expected value of the true

response, despite the step variations (i.e., within 15 minutes) of the load profile. However, as the lead time increases

(k = 6), the predictions become less accurate (especially when close to the steps). This demonstrates the challenge of

performing precise and detailed prediction of steps for further look ahead times.

We can also note the following interesting behavior of the forecaster: when load profiles tend to be constant, the

predictions become more noisy for larger look ahead times, reflecting the deterioration of the forecasts as we look further

steps ahead. Similar patterns can also be noticed from figs. 2c and 2d, where for k = 1 the predictions follow accurately

the data, while k = 6 leads to a remarkably worse quality of the predictions, especially close to the local minima and

maxima resulting from wind power ramps-up and ramps-down.
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(a) forecasted vs actual load signals
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(b) forecasted vs actual load signals

for k = 6
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(c) forecasted vs actual wind power

signals for k = 1
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(d) forecasted vs actual wind power

signals for k = 6

Figure 2: Forecasted (red) vs actual (black) load and wind power signals using the corresponding developed auto-regressive Random Forest

models for different prediction horizons (k = 1, k = 6)

3. Isolated Power System Modelling and Stochastic Model Predictive Controller

This section introduces the model of the system to be controlled, i.e., the isolated power system integrating a wind

farm and energy storage. A schematic of the consider system is presented in fig. 3.

7



𝑃𝑃𝑤𝑤

𝑃𝑃l

𝑃𝑃𝑑𝑑

OFF

ON

OFF

ON

OFF

ON

OFF

ON

+ -

𝑃𝑃1
𝑔𝑔𝑔𝑔

𝑃𝑃2
𝑔𝑔𝑔𝑔

𝑃𝑃3
𝑔𝑔𝑔𝑔

𝑃𝑃4
𝑔𝑔𝑔𝑔

𝑃𝑃𝑐𝑐𝑐

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 : BESS discharging power
𝑃𝑃𝑐𝑐𝑐 : BESS charging power
𝑃𝑃𝑔𝑔
𝑔𝑔𝑔𝑔 : GT power, 𝑔𝑔 ∈ 1,2,3,4

𝑃𝑃𝑤𝑤 : wind farm power
𝑃𝑃l : load (consumption) power
𝑃𝑃𝑑𝑑 : dump load (waste) power

• Drilling motors
• Draw-works drives
• Mud/Oil pumps
• Air/Gas compressors
• Dynamic positioning 

thrusters
• Residential districts
• Etc. …

Figure 3: Simplified single-line diagram of the Oil & Gas installation integrates wind power from a local wind farm, a battery energy storage

system, a controllable load for excess energy dumping, and an aggregated load representing the total load to be covered by the power generation

systems

3.1. Control system

The control system under consideration is composed of a continuous state, related to the BESS subsystem and discrete

ones (binaries) related to the operational status (on/off) of the Gas Turbines (GTs). The system state can be expressed

as

x =
[
xSoC ,xgt

1:Ng

]T
∀ g = 1, . . . , Ng (9)

where the control input is again hybrid composed of continuous variables (charging and discharging power) and discrete

(binary) signals indicating turning on/off of a GT unit. This is expressed as

u =
[
P ch, P dis, bgt,on1 , bgt,off1 , . . . , bgt,onNg

, bgt,offNg

]T
(10)

Then, given an initial condition

x0 =
[
xSoC
0 ,xgt

0,1:Ng

]T
(11)

and an optimal control action at k = 0

u0 =
[
P ch,∗
0 , P dis,∗

0 , bgt,on,∗0,1 , bgt,off,∗0,1 , . . . , bgt,on,∗0,Ng
, bgt,off,∗0,Ng

]T
(12)

we can express the updated state as

x+ = A0x0 +B0u0 (13)

where the system matrices are defined as

A0 = diag
{

1T
{1:|K|}

}
(14)

B0 =

[ηchTs

60E
b ,

η−1
disTs

60E
b

]
01×Ng

02×Ng
G0

 (15)
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where G0 is a 4×Ng matrix (i.e., the dimensions defined by the number of gas turbines and associated control actions)

defined as

G0 =


1 −1 0 · · · 0

0 0
. . . 0 0

0 0 · · · 1 −1

 (16)

The setpoints of the gas turbine (GT, continuous) and of the dumping power (continuous), which are outputs of the

economic optimal control law, are inputs to the power system but are not considered as part of control system, since they

do not affect the state as defined in eq. (9). Thus, for notational consistency, they are not included in the vector u but

they are defined as

v =
[
P gt
1 , . . . , P gt

Ng
, P d

]T
(17)

In the following, the control system variables (eqs. (9), (10) and (17)) are associated with the islanded power grid

components, through the modeling of each subsystem’s operation.

3.2. Gas turbines operation

To capture the detailed operation of the GT units, the fuel/efficiency curve needs to be accurately modeled. The

non-linear curve Ffuel is approximated though Piece-Wise Linear (PWL) functions as in [40] (details in section 7). Then

∀ k ∈ K, g = 1, . . . , Ng, ω = 1, . . . , Nω we have

P gt
k,ω,g = Dgt

P

T
wfuel

k,ω,g
(18)

xgt
k,ω,g − xgt

k−1,g ≤ bgt,onk,ω,g
(19)

xgt
k−1,g − xgt

k,ω,g ≤ bgt,offk,ω,g
(20)

xgt
k,ω,g = xgt

k−1,ω,g + bgt,onk,ω,g − bgt,offk,ω,g
(21)

bgt,onk,ω,g + bgt,offk,ω,g ≤ 1 (22)

| P gt
k,ω,g − P gt

k−1,ω,g |≤ 4
Ts

60
RR (23)

P gt
k,ω,g ≤ P

gt
xgt
k,ω,g

(24)

P gtxgt
k,ω,g ≤ P gt

k,ω,g
(25)

Following [25] we model the common control action at k = 0 as

P gt
0,ω,g = P gt

0,g ∀ g = 1, . . . , Ng, ω = 1, . . . , Nω (26)

Note that no additional variables are needed to bind the binary variables bgt,onk,ω to be the same at k = 0, ∀ ω = 1, . . . , Nω

because this is enforced by eq. (26).
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3.3. Battery Energy Storage System

3.3.1. Dynamics

The charging/discharging power is modelled through the following set of linear equations

P dis
k,ω ≤ P

b
bdisk,ω

(27)

P ch
k,ω ≤ P

b
(1− bdisk,ω) (28)

Following again [25], we model the common control action at k = 0 as

P ch
0,ω = P ch

0 ∀ ω = 1, . . . , Nω (29)

P dis
0,ω = P dis

0 ∀ ω = 1, . . . , Nω (30)

We can then express the charging and discharging variables ∀ k ∈ K, ω = 1, . . . , Nω in compact form as

Pdis =
[
P dis
0,1 , . . . , P

dis
|K|,1, . . . P

dis
0,Nω

, . . . , P dis
|K|,Nω

]T
(31)

Pch =
[
P ch
0,1, . . . , P

ch
|K|,1, . . . P

ch
0,Nω

, . . . , P ch
|K|,Nω

]T
(32)

Then the continuous state of the BESS can be expressed as

xSoC
k,ω = 1−DoDk,ω (33)

where DoDk,ω represents the depth-of-discharge ∀ k ∈ K, ω = 1, . . . , Nω and given the initial condition Eb
0 = xSoC

0 E
b
we

can express its time evolution as

1−
(
Eb

0

E
b
diag

{
1T
{1:|K|×Nω}

}
+

Ts

60E
b
B

(
ηchP

ch − η−1
disP

dis
))

= diag
{

1T
{1:|K|×Nω}

}
DoD (34)

where

DoD =
[
DoD0,1, . . . , DoD|K|,1, . . . DoD0,Nω , . . . , DoD|K|,Nω

]T (35)

subject to

Eb
0diag

{
1T
{1:|K|×Nω}

}
+

Ts

60
B

(
ηchP

ch − η−1
disP

dis
)
⪯ diag

{
1T
{1:|K|×Nω}

}
SoCmaxE

b
(36)

Eb
0diag

{
1T
{1:|K|×Nω}

}
+

Ts

60
B

(
ηchP

ch − η−1
disP

dis
)
⪰ diag

{
1T
{1:|K|×Nω}

}
SoCminE

b
(37)

where B is defined in section 7.

3.3.2. Battery degradation

Similarly, following [41] and again using piecewise affine approximations [40] for the curve Fdeg, the battery degradation

can be expressed as a combination of linear equations (details in section 7). Then, ∀ k ∈ K, ω = 1, . . . , Nω we have

DoDk,ω = Ddeg
dod

T
wdeg

k,ω
(38)

ρk,ω = Ddeg
cyc

T
wdeg

k,ω
(39)

dk,ω ≥ 1

2
| ρk,ω − ρk−1,ω | (40)

Dcyc
ω ≥

∑
k∈K

dk,ω ∀ ω = 1, . . . , Nω (41)
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3.4. Wind turbines

The wind power generation is then modeled after the basic power curve of the reference case wind turbines, i.e., as

Pw
k,ω(wk,ω) =



0, wk,ω ≤ wci

NwP
w
n

(
wk,ω

wn

)3

, wci ≤ wk,ω ≤ wn

NwP
w
n , wn ≤ wk,ω < wco

0, wco ≤ wk,ω

∀ k ∈ K, ω = 1, . . . , Nω

(42)

where wci is the cut-in wind speed; wn is the nominal wind speed; wco is the cut-off wind speed; Pn
w is the nominal power

of each wind turbine; and Nw is the number of wind turbines in the considered wind farm.

3.5. Stochastic Model Predictive Controller Design

Then, by interconnecting the control system with its sub-components, as defined in sections 3.1 to 3.3 and 3.3.2 with

the power system including the stochastic disturbance as described below, we can formulate the proposed Stochastic Model

Predictive Controller (SMPC).

3.5.1. Power system

The grid dynamics are expressed through the power balance as

Ng∑
g

P gt
k,ω,g = P ch

k,ω − P dis
k,ω + P d

k,ω + ξk,ω ∀ k ∈ K, ω = 1, . . . , Nω (43)

where ξk,ω is the random disturbance composed of load and wind power values at lead time k, formed by scenarios

ω = 1, . . . , Nω, as described in section 3.5.2. By iteratively evaluating eq. (13) we can then forecast the trajectory

X+ =
[
xt+0|t, . . . ,xt+k|t, . . . ,xt+|K||t

]T
for the BESS and GT states that are associated with a particular realization ω of

the random disturbance signal ξω =
[
ξ1,ω, . . . , ξ|K|,ω

]T
(see eq. (48)).

3.5.2. Scenario generation

We now describe a statistically motivated data-driven strategy for generating the scenarios that shall then be used

within the stochastic control strategy proposed by this paper.

To arrive at the formulation of the scenarios generation mechanism, we start then by assuming that the predictive

QRF models for the random variables P p, with p = {ℓ, w}, have been estimated as proposed in section 2. We then note

that by using Probability Inverse Transforms, Cholseky decompositions [42, 25], and Gaussian copulas [43], it is possible

to generate scenarios and populate the random disturbance signals ξω as follows: for each random variable (i.e., both

wind and load power), we can get the quantile function (inverse CDF) by interpolating among the set of pre-calculated

quantile values as

F̂ p
−1

t+k|t
(
P p
t+k |

[
P p
t , P

p
t−1, . . . , P

p
t−L

])
=

{
Qp

τ,k

([
P p
t , P

p
t−1, . . . , P

p
t−L

])}
τ∈[0,1]

∀ k ∈ K.

(44)

Then, by applying the empirical CDF to the quantile function, we get a new random variable Up
t+k uniformly distributed

and then by using the inverse Gaussian CDF, we can generate random variables that are normally distributed as

X p
t+k = Φ−1(Up

t+k) ∀ k ∈ K. (45)
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Defining X p
t =

{
X p

t+k

}
k∈K as a vectorized random variable, we can calculate its empirical covariance for each time step t

in an adaptive and recursive way as in [42] by means of

Σp
t = µΣp

t−1 + (1− µ)X p
t X

p
t
T
, (46)

where µ is the forgetting factor of the exponential forgetting scheme, as in [42]. Then, the empirical co-variance can

be scaled to get the corresponding correlation matrix Rp
t from which, using a standard normal z ∼ MVN (0,Σp

t ) and

the Cholesky decomposition Rp
t = P p

t P
p
t
T
, it is possible to generate normal random variables, correlated as in Rp

t , by

zc = zP p
t . Finally, by using the Gaussian copula technique, we can generate correlated samples of the random variables

P p as

Yp = F̂ p
−1

t+k|t (Φ(zc)) , ∀ k ∈ K. (47)

where Yp =
{
ypt+k|t

}
k∈K

and ypt+k|t ∼ F̂ p
t+k|t. In this way we can generate auto-correlated realizations (scenarios)

ξk,ω = y
ℓ,(ω)
t+k|tsr − y

w,(ω)
t+k|t ∀ k ∈ K, ω = 1, . . . , Nω (48)

where sr is the spinning reserve (percentage). Such scenarios will then be used in the stochastic optimization problem

defined below.

3.5.3. Objective function

To formulate an optimization problem, one must also define the objective function, that in our case will correspond to an

optimal control law whose decision variables areU∗
t =

[
ut+0|t, . . . ,ut+k|t, . . . ,ut+|K||t

]T
andV∗

t =
[
vt+0|t, . . . ,vt+k|t, . . . ,vt+|K||t

]T
for any given time step t, where Vt is the vector of additional optimization variables not considered as inputs to the control

system as defined in eq. (17) (i.e., GT setpoints and dumping power). More precisely, we consider an optimization problem

corresponding to the economic SMPC

SP: min
Ut,Vt

{Eω [f(X+;Ut;Vt; ξω)]}

where, f (X+;Ut;Vt; ξω) = Cfuel
ω + Cgt,str

ω + Cgt,on
ω + Cdeg

ω + Cd
ω

s.t. KX+ +LUt +MVt +Nξω ⪯ 0,

KeqX+ +LeqUt +MeqVt +Neqξω = 0, ∀ ω = 1, . . . , Nω.

(49)

where K,L,M ,N ,Keq,Leq,Meq,Neq are matrices of appropriate size expressing the linear constraints eqs. (13) to (32)

and (33) to (43), and the terms of the cost functions are defined as

Cfuel
ω =

Ts

60
cf

∑
k∈K

∑
g∈Ng

Dgt
f

T
wfuel

k,ω,g (50)

Cgt,str
ω = cstrgt

∑
k∈K

∑
g∈Ng

bgt,onk,ω,g (51)

Cgt,on
ω =

Ts

60
congt

∑
k∈K

∑
g∈Ng

xgt
k,ω,g (52)

Cdeg
ω = (cb,rpl − cb,res)D

cyc
ω

(53)

Cd
ω =

Ts

60
cd

∑
k∈K

P d
k,ω. (54)
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We note that the cost function defined in eq. (49) can be numerically approximated using Sample Average Approximations

(SAA) and equiprobable scenarios issued by the developed probabilistic forecasting model described in section 2. Con-

sidering the real time applicability of the proposed method and the solution time of the stochastic optimization problem

at each time step, the number of scenarios was set equal to 10. Under the lack of generalized theoretical instructions for

the exact number of scenarios to be used in the non-convex MILP optimization problems, this number was selected as a

trade-off among practical implementation, computational complexity, and solution quality (tight termination criteria for

branch-and-cut methods).

Under the proposed framework, the optimal control action u0 to be applied at time step t is found as u0 = U∗
t,1.

Correspondingly, the state of the system is updated through eq. (13), and the optimal setpoints of the GT and dumped

power are given by v0 = V∗
t,1. The control schematic diagram is illustrated in fig. 4.

𝒖𝒖𝟎𝟎
MILP

𝒙𝒙
𝝃𝝃 |𝒕𝒕+𝑲𝑲 𝒕𝒕 𝒙𝒙+ = 𝑨𝑨𝟎𝟎𝒙𝒙𝟎𝟎 + 𝑩𝑩𝟎𝟎𝒖𝒖𝟎𝟎𝒙𝒙𝟎𝟎

𝑿𝑿+ 𝑼𝑼𝒕𝒕 𝑽𝑽𝒕𝒕

𝑃𝑃0𝑐𝑐𝑐 𝑃𝑃0𝑑𝑑𝑑𝑑𝑑𝑑

𝒗𝒗𝟎𝟎

𝑃𝑃0𝑑𝑑

𝝃𝝃𝟎𝟎

+
𝑃𝑃0,1
𝑔𝑔𝑔𝑔

𝑃𝑃0,𝑁𝑁𝑔𝑔
𝑔𝑔𝑔𝑔

.

.

. +−

+

−

−+

Figure 4: Control schematic

4. Simulation Results and Analysis

This section assesses the potential benefits of applying the proposed methodology to the case of an isolated wind-

powered O&G platform with energy storage, against a deterministic MPC strategy counterpart. The approach is thus

first investigating the performance of the integrated forecasting algorithm proposed in section 2, and then comparing the

control performance of the proposed SMPC EMS against its deterministic counterpart.

To make such comparisons realistic and valuable, actual load measurements were used from the available datasets

(with 15 minutes time resolution), while the wind power generation data were derived from hourly wind speed timeseries

data, publicly available at [44, 45] for the specific offshore location of the platform. These measurements were linearly

interpolated to match the load timeseries resolution (15 minutes), allowing for the use of a Ts = 15 minutes simulation

timestep for the rest of the considered components as well (i.e., battery storage and gas turbines).

4.1. Assessing the capability of the scenario generation mechanism in capturing irregular events

The proposed stochastic control scheme cannot be effective if its integrated forecasting capability is not effective. To

assess this last effectiveness, the performance of the forecaster is here assessed based on commonly used metrics first, and

then also by examining specific cases of particularly interesting irregular events.

4.1.1. Continuously Ranked Probability Score

Since the QRF model developed in section 2.1 is used to perform probabilistic forecasting, we assess its performance

based on the commonly used metric of Continuously Ranked Probability Score (CRPS) [46, 47, 25] and by comparing it
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against a benchmark method. Respectively, this score is defined as a function of k, for an observation yt+k of the random

response variable Yt+k with empirical CDF F̂t+k|t(y) = P [Yt+k ≤ y] as

CRPS(F̂t+k|t, yt+k) =

∫
supp(Yt+k)

(
F̂t+k|t(y)− 1{yt+k ≤ y}

)2

dy (55)

and is numerically calculated for a test time period t ∈ Ttest as

CRPS(t, k) =

yt+k∑
y
t+k

F̂ 2
t+k|t(y)dy +

yt+k∑
yt+k

(
F̂t+k|t(y)− 1

)2

dy (56)

where supp(Yt+k) = [y
t+k

, yt+k] is the support of random variable Yt+k and dy a fine discretization of the values that the

random variable can take, given its support.

As for the benchmark algorithm, we perform comparisons against the method from [48], named CH-PeEn, which to

our knowledge is often used as a universal benchmarking method for a fair comparison. This method basically uses the

whole historical dataset to construct distributions of the random variables first, and then uses this information to produce

probabilistic forecasts. Note that we constructed a separate model for each lead time k ∈ K; its CRPS was then calculated

as in eq. (56), and then compared against the one produced by the QRF method for the selected test period (t ∈ Tcrps,

which was set equal to a whole month, i.e., September).

From fig. 5 we can observe the results of the comparison in a dimensionless form, i.e., after the power values of each

variable were rescaled to [0, 1]. As it is evident from fig. 5a, the proposed QRF models, as applied to their corresponding

random variable (load/wind power), not only improve significantly the probabilistic forecasts compared to CH-PeEn, but

also achieve very low CRPS values for all the lead times, with the values becoming slightly worse as the lead time increases.

From fig. 5b we observe again the superiority of the QRF method over CH-PeEn (which, actually, is characterized by

particularly high values). This means that the distributions produced by the proposed model are much closer to the

observations and less spread around it. Finally, the overall relative improvement for the average CRPS across the lead

times and for the models concerning the two random variables (load and wind power), is presented in terms of the skill

score [46, 25], defined as

Sksc = 1−

∑
t∈Ttest

∑
k∈K

CRPSQRF (t, k)∑
t∈Ttest

∑
k∈K

CRPSCH−PeEn(t, k)
. (57)

The numerical results are then presented in table 1.

Table 1: Skill score improvement

CRPS [%]

P ℓ Pw

CH-PeEn 11.56 22.80

QRF 0.98 2.17

Sksc [%] 91.51 90.50
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(a) Load (b) Wind power

Figure 5: CRPS for September

4.1.2. Assessing the capability of capturing irregular events

Typical demanding situations for the efficient operation of isolated grids that are dominated by intermittent power

supply and rapidly varying loads, are those that are characterized by non-smooth and/or sudden net load trend variations

(irregular events). This means that we need to assess the performance of the proposed forecasting model in capturing

irregular events, since capturing them means enabling the proposed SMPC counteracting them, ensuring efficient grid

operation. Such events can then be generated using the proposed copula method. For the load profiles, step variations

were considered as a test case, while for the wind power, specific points of curvature reversal or saturation were selected.

Curvature variations can happen in cases where the trend is reversed, so a wind ramp-down is followed by a wind-ramp-up

and vice versa. The saturation occurs when the wind farm reaches its nominal power production capacity.

In fig. 6 we see the results of the forecasting capabilities of the proposed approach for different characteristic load

patterns. In these diagrams we observe both the true data (black line), the expected forecast (mean prediction - dashed

red line), prediction intervals at various percentiles (green areas), and also the generated scenarios from the proposed

method (dashed purple lines). As we observe, the proposed approach is capable to quantify the uncertainty around a

forecast by increasing or decreasing the width of the prediction intervals. In particular, from fig. 6a we see that when there

is low uncertainty and the forecasted profile pattern is quite simple (almost constant), this is followed by a set of generated

scenarios where all these scenarios follow the same trend. However, when we are heading towards a load step instant,

the uncertainty becomes larger and the prediction intervals more spread (figs. 6b and 6c). As a result, the anticipated

step variation is included in the prediction intervals and as a result, there are scenarios that actually resemble the true

variation. This is an important feature, since these scenarios will provide the SMPC information about the existence of

possible alternatives for the possible future load patterns. In this way, we get around the inertia problem that characterizes

the deterministic forecast, i.e., the tendency for forecasters in the literature to produce patterns that are too similar to

the previous values, and do not anticipate deviations. The same is illustrated in fig. 6d for a step decrease in load where

we can see that scenarios very close to the actual step can be generated.
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10:30 11:00 11:30 12:00 12:30 13:00 13:30
Mar 21, 2019   

(a) t = 11 : 15

11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00
Mar 21, 2019   

(b) t = 12 : 30

12:00 12:30 13:00 13:30 14:00 14:30 15:00
Mar 21, 2019   

(c) t = 12 : 45

06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30
Mar 22, 2019   

(d) t = 07 : 00

Figure 6: Various types of an O&G platform’s load patterns, reflecting both normal operation and irregular events, such as step variations in

both directions. (a) Normal operation (constant loading conditions) (b) Sudden load increase in the near future. Scenarios that accurately

capture the variation gradient are generated through the updated (increased) uncertainty interval (c) Moving closer towards the sudden upwards

load variation, the updated scenarios closely resemble the shape of the forthcoming load step (d) An example of similar sudden variation, where

the load is step-like decreased and the generated scenarios capture this event

Similar results can be noted from figs. 7 and 8. In particular, from fig. 7 we see how the uncertainty interval automat-

ically adapts to the time instant of the issued forecasts. This means that it can understand when a change in the signal

shape (wind power profile) is happening. Starting with fig. 7a, we already observe how the mean forecast (red dashed

line) is much affected by the previous values and is not close to the actual curvature. Nevertheless, scenarios very close

to the actual shape can be generated. Then, as time moves forward, as we observe from figs. 7b to 7d, the uncertainty
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interval constantly becomes larger to include the abrupt curvature change and as a result, even when this change is big

enough (fig. 7d), scenarios close to reality can be generated. The same characteristics are illustrated in fig. 8 for a case

where the wind power reaches the saturation level.

14:30 15:00 15:30 16:00 16:30 17:00 17:30
Mar 21, 2018   

(a) t = 15 : 15

14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00
Mar 21, 2018   

(b) t = 15 : 30

15:00 15:30 16:00 16:30 17:00 17:30 18:00
Mar 21, 2018   

(c) t = 15 : 45

15:00 15:30 16:00 16:30 17:00 17:30 18:00 18:30
Mar 21, 2018   

(d) t = 16 : 00

Figure 7: Example of a trend reversal situation for wind power on 21 March, 15:00 - 18:00 and successive probabilistic forecasts. Following the

sub-figures from top to bottom, we see the updated uncertainty intervals associated with each forecast issue time and the generated scenarios

that are able to capture the sudden change from a wind power ramp-down to a ramp-up.
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19:00 19:30 20:00 20:30 21:00 21:30 22:00
Mar 22, 2018   

(a) forecasts issued at t = 19 : 45

19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30
Mar 22, 2018   

(b) forecasts issued at t = 20 : 00

19:30 20:00 20:30 21:00 21:30 22:00 22:30
Mar 22, 2018   

(c) forecasts issued at t = 20 : 15

19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00
Mar 22, 2018   

(d) forecasts issued at t = 20 : 30

Figure 8: Example of a wind power saturation situation on 22 March, 19:00 - 22:00 and successive probabilistic forecasts. Following the

sub-figures from top to bottom, we see how the updated uncertainty intervals associated with each forecast issue time, keep on narrowing down,

identifying a saturation event.

4.2. Stochastic MPC (SMPC) for Energy Management Under Irregular Events

We then move to assessing the ensemble of the proposed strategies, i.e., the performance of the integration of the

forecasting models developed in section 2.1 with the proposed MPC formulation described in section 3.5. The assessment

of the proposed method (SMPC) was realized by comparing it against the performance of its deterministic MPC version

(DMPC), through numerical simulations. In addition, a benchmark rule-based method was included in the results to

better demonstrate/illustrate the effectiveness of the MPC framework for the EMS.

It is noteworthy that the datasets related to our specialized power system application (offshore O&G platform with
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wind power integration) are characterized by a significant variety of patterns, resulting in different net load profiles.

Therefore, to (correctly) assess the proposed method and compare it against other alternatives while capturing the main

characteristics of our datasets, different combinations of platform load and wind power generation were considered as

case studies. Nevertheless, testing the whole available dataset is computationally intractable, given the restriction of

the computational resources and the solution time of the MILP problem on a rolling horizon basis. In this study, the

optimization problems were modeled in Matlab R2020 and solved with Gurobi 9.1.0 in a 28 physical core multi-node

cluster with Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 Hz, 25 GB RAM.

However, for the purpose of assessing our method and investigating the potential benefits, some representative daily

net load patterns were identified and selected as case studies. They describe typical behaviors present throughout the

whole datasets (both load and wind power), capturing in detail the irregular events that are the main target for our

method. Such irregular events include sudden transitions from lower to higher loading conditions resembling step-like

perturbations that demand the startup or shutdown of an extra GT unit, wind power trend reversals from lower average

values ramping up to higher ones and vice versa, or even net load conditions where the operating GT units are marginal,

and several switching actions would be required for relatively small net load variation. Capturing case studies with these

characteristics allows us to make a more accurate assessment of the proposed method and its applicability to the target

applications. The following basic patterns were then considered as case studies.

1. LL-SU-WD : low loading conditions including load step up under wind ramping down

2. ML-SD-WU : medium loading conditions including load step down under wind ramping up

3. HL-SUD-WU : high loading conditions including load steps up and down and wind ramping up

4. LL-SDU-WU : low loading conditions including load steps down and up and wind ramping up

5. HL-SDU-WD : high loading conditions including load steps down and up and wind ramping down

6. HL-WD : high loading conditions (almost steady) and wind ramping down

Those cases span different operational regimes such as low (L), medium (M), or high (H) loading (L) conditions relative

to the total aggregated platform load, capture different types of irregular events such as load steps up (SU), load steps

down (SD), or both in any order (SUD, SDU), and also include the effects of wind power ramping up (WU) and down

(WD). To assess the performance and compare the proposed controller (“SMPC”) with the deterministic (“DMPC”)

version, numerical simulations were performed for the above test periods with duration Tt per case. The methods were

evaluated and compared in terms of the key performance indices (KPIs) defined in eqs. (58) to (62). Those reflect the

cumulative costs (eq. (59)) and emissions production (eq. (58)) from the platform operation, the amount of curtailed

energy (eq. (61)), and the lifetime degradation of the controllable components. The latter can be expressed by the cycling

behavior for the BESS (eq. (62)) and the number of switching signals (on/off) for the GTs (eq. (60)).

If (x+(t),v0(t)) =
Ts

60

∑
t∈Tt

∑
g∈Ng

Ffuel(P
gt
0,g(t))P

gt
0,g(t) + cidlef xgt

0,g(t) (58)

Ic(x+(t),u0(t),v0(t)) = If (x+(t),v0(t))cf + cstrgt

∑
t∈Tt

∑
g∈Ng

bgt,on0,g (t) (59)

Isw(u0(t)) =
∑
t∈Tt

∑
g∈Ng

bgt,on0,g (t) +
∑
t∈Tt

∑
g∈Ng

bgt,off0,g (t) (60)

Ide(u0(t),v0(t)) =
Ts

60

∑
t∈Tt

∑
g∈Ng

P gt
0,g(t)−

(
P ch
0 (t)− P dis

0 (t)
)
− ξ0(t) (61)
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Idg(x+(t),u0(t)) =
∑
t∈Tt

Dcyc(t) (62)

where If is the total fuel consumption (which can be directly associated with CO2 emissions because of the linear

dependency on the combustion reaction), Ic represents the operational expenditure resulting from the indicated operation

of the GTs, Isw accounts for the switching signals turning on or shutting down the GTs expressing the binary control

actions, Ide is the amount of the actual dumped energy (including the shifted load because of the spinning reserve and

safety requirement), and Idg represents the degradation of the BESS as a consequence of the cycling induced by the control

action. Those indices encapsulate the effects of the EMS on the operation of the power system under consideration and

reflect both economic and environmental aspects.

4.2.1. Case studies assessment

For the analysis of the case studies, we employ the following procedure. First, the actual load, wind power, and resulting

net load profiles are plotted together. Net load represents the sequence of values of the disturbance ξ0(t), ∀ t = 0, . . . , Tt

that acts on the platform power system and needs to be estimated by the proposed forecasting method (section 3.5.2).

Then, different colored areas are used on the same plots to indicate different ranges of the values ξ0(t). These areas

highlight the different numbers of operating (turned ON) GTs that would be required to cover the corresponding net load

value ξ0(t) under the following simple benchmark rule-based strategy

if ξ0(t) ≤ 0 then

xgt
1:Ng

(t) = 0

else if ξ0(t) ≤ P gt
n then

xgt
1 (t) = 1 ∧ xgt

2:Ng
(t) = 0

else if ξ0(t) ≤ 2P gt
n then

xgt
1:2(t) = 1 ∧ xgt

3:Ng
(t) = 0

else if ξ0(t) ≤ 3P gt
n then

xgt
1:3(t) = 1 ∧ xgt

4:Ng
(t) = 0

else

xgt
1:Ng

(t) = 1

end if

In addition, in the same plot on the right axis we can identify the number of on GTs with each proposed method

(DMPC/SMPC) and, in this way, we can compare the number of GTs that would be required by each method. This is

expressed as

Igton(x+(t)) =
∑
g∈Ng

xgt
g (t) (63)

Then, the resulting state of charge trajectories with the DMPC and SMPC methods are plotted together with the common

disturbance signal on separate figures and finally, the KPIs defined in eqs. (58) to (62) are calculated.
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4.2.2. Case: LL-SU-WD
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(a) Load, wind power, and net load patterns vs number of on
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(b) Net load pattern vs state of charge evolution

Figure 9: Disturbance and optimal states trajectories (discrete and continuous) with DMPC and SMPC controllers, for the case LL-SU-WD

First, a case of low loading conditions with a load step up and wind ramp down is demonstrated (fig. 9). As can be

noticed from fig. 9a, the load step and the low wind power generation cause the net load to change regime and based

on the rule-based strategy, 2 GTs would be required to operate. However, we see from the same figure that under both

control algorithms, DMPC and SMPC, after the step, there are some instants where the platform could operate with just

a single GT, obtaining the rest energy from the BESS. This is also illustrated in fig. 9b from the SoC trajectories. Initially

and up to the load step, both DMPC and SMPC would result in a similar behavior, with the BESS reaching its maximum

SoC while charging to provide higher efficiency operating point for the GT. After the step though, the available capacity

of the BESS is being used (again by both methods), discharging the battery and providing some extra time for the 1 GT

operational regime. From the same figure we also see that at the moment of the step, the proposed SMPC makes better

use of the BESS, providing a deeper discharge and thus some extra time to the 1GT regime. Then, some oscillations

are induced by both methods while trying to minimize the number of on GTs but also operating them as efficiently as

possible not to significantly increase the emissions level. Of course, this behavior increases the BESS degradation, but it

highly depends on the weighting of the corresponding cost term (eq. (53)), in the objective function (eq. (49)) which in

our case was set based on the investment and residual costs of the battery (see table 9) as in [41]. Different values for the

weight would induce different behaviors with possibly fewer oscillations. As the effect of the net load transient vanishes,

the SoC trajectories become more similar and converge approaching the end of the day. The improved performance of

the SMPC during the (unavoidable) oscillatory behavior is reflected in the fewer GT switching signals (table 2), avoiding

startup costs and eventually resulting in reduced cost at the expense of a slightly higher BESS degradation. In addition,

despite these benefits, the proposed SMPC does not significantly deteriorate the energy dumping and the fuel consumption

(table 2).
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Table 2: LL-SU-WD KPIs.

KPI
MPC Method

Net
Mean Scn

Ic [e ] 54,277 51,922 2,354

If [tn] 143.53 145.69 -0.266

Isw [−] 17 13 4

Ide [MWh] 24.05 24.09 -0.049

Idg [%] 0.311 0.387 -0.076

4.2.3. Case: ML-SD-WU
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(b) Net load pattern vs state of charge evolution

Figure 10: Disturbance and optimal states trajectories (discrete and continuous) with DMPC and SMPC controllers, for the case ML-SD-WU

Next, a case with medium loading conditions, a load step down, and a wind power ramp up is presented (fig. 10). In

this case, although a clear step down is observed on the load (early times), after that it is still highly variable alternating

between the regimes of 1 and 2 on GTs (fig. 10a). Again, we notice that under the optimal policies of both MPC controllers,

we decrease the number of operating GT compared to the rule-based strategy. Even though DMPC and SMPC result in

similar SoC trajectories initially, at the first load upwards rise right after the step down, the SMPC realizes that it can

operate with a single GT for a bit longer and thus discharges the BESS to provide the additional energy (fig. 10b). After

this event, the trajectories deviate but both follow similar trends. In this case, the superiority of the proposed control

scheme resulted in significant cost savings coming from both fuel consumption reduction and much fewer GT startups

again at the small cost of marginally higher BESS degradation (table 3).
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Table 3: ML-SD-WU KPIs.

KPI
MPC Method

Net
Mean Scn

Ic [e ] 71,154 66,105 5,049

If [tn] 185.74 181.04 4.693

Isw [−] 25 19 6

Ideg [MWh] 34.55 34.50 0.051

Idg [%] 0.347 0.452 -0.105

4.2.4. Case: HL-SUD-WU
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(b) Net load pattern vs state of charge evolution

Figure 11: Disturbance and optimal states trajectories (discrete and continuous) with DMPC and SMPC controllers, for the case HL-SUD-WU

Then, an interesting case of high loading conditions with both up and down steps and low to medium wind conditions

is examined (fig. 11). This represents a case where all GTs would be required to provide the necessary power (fig. 11a).

As the capacity of the systems is close to its limits (more GTs required), the potential benefits decrease since the flexibility

provided by the BESS depends on its (limited) size and how this compares with the power capability of a single GT unit.

However, again in this case, the SMPC demonstrated its capability to reduce costs by properly controlling the timing and

number of on/off commands to the GTs. As we can see in fig. 11b, interestingly the SoC trajectories deviate from the first

moment while the SMPC chooses to discharge the BESS. As such, and in contrast with the DMPC which chose to have

maximum SoC during the early stage, the BESS can later be used to react on the load step up (SU), providing higher

efficiency operating points for the additional GT that starts almost simultaneously with this event. However, this action

is unavoidably associated with somewhat higher energy dumping compared to the DMPC method, as noticed in table 4.
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From fig. 11b, we also see that although both methods discharge the BESS equally close to the SD event, the SMPC can

better forecast the rapid load increase right afterwards and in contrast with the DMPC, avoids recharging the BESS. In

this way, it can get more time with 1 less GT on, resulting in fewer GT startups and degrading the BESS less. The effects

are quantified in table 4.

Table 4: HL-SUD-WU KPIs.

KPI
MPC Method

Net
Mean Scn

Ic [e ] 153,815 152,438 1,377

If [tn] 487.72 487.18 0.539

Isw [−] 11 9 2

Ide [MWh] 82.16 89.12 -6.961

Idg [%] 0.095 0.070 0.025

4.2.5. Case: LL-SDU-WU
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(b) Net load pattern vs state of charge evolution

Figure 12: Disturbance and optimal states trajectories (discrete and continuous) with DMPC and SMPC controllers, for the case LL-SDU-WU

Benefits with the proposed SMPC are also noticed from a case with low loading conditions, step transitions from the

2 GTs to 1 GT on regime and vice versa, and wind power ramping up (fig. 12). From fig. 12a we observe that with both

MPC algorithms, we can achieve longer period of times (i.e., in the morning) with 1 GT on while the net load is on

the 2 GT regime. Also, from fig. 12b we observe that initially both SoC trajectories follow similar trends, with the one

from SMPC presenting deeper discharging. Then, the trajectories deviate again after the second load step variation (step

up) where the SMPC trajectory remains at high SoC levels, allowing the single on GT to operate closer to its maximum
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efficiency point (net load around closer to P gt
n ), anticipating for the wind ramping up. In this way, not only lower cost is

achieved and fewer GT startups, but also less BESS degradation (table 5).

Table 5: LL-SDU-WU KPIs.

KPI
MPC Method

Net
Mean Scn

Ic [e ] 60,633 57,937 2,696

If [tn] 170.85 169.97 0.881

Isw [−] 14 11 3

Ide [MWh] 28.26 28.24 0.02

Idg [%] 0.317 0.212 0.105

4.2.6. Case: HL-SDU-WD
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(b) Net load pattern vs state of charge evolution

Figure 13: Disturbance and optimal states trajectories (discrete and continuous) with DMPC and SMPC controllers, for the case HL-SDU-WD

Another interesting case happens when the loading conditions are high but still enough wind power is being generated,

resulting in fewer GTs required and almost zero net load (fig. 13). From fig. 13a we observe once more the capability

of the MPC to operate with fewer GTs on, compared to the rule-based benchmark method. In particular, the BESS is

used similarly in both methods to discharge power over the period of time right after the load step down, providing the

necessary reliability and capacity to the platform and keeping the GTs down for the very low net load values (fig. 13b).

However, after the load steps up again, even though both methods result in an oscillatory SoC behavior similarly as in the

case LL-SU-WD, eventually the trajectories deviate. As a result, the SMPC achieves significant cost and fuel reduction

(table 6).
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Table 6: HL-SDU-WD KPIs.

KPI
MPC Method

Net
Mean Scn

Ic [e ] 31,797 27,708 4,089

If [tn] 69.97 68.49 1.472

Isw [−] 17 11 6

Ide [MWh] 52.45 52.28 0.169

Idg [%] 0.416 0.440 -0.024

4.2.7. Case: HL-WD
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(b) Net load pattern vs state of charge evolution

Figure 14: Disturbance and optimal states trajectories (discrete and continuous) with DMPC and SMPC controllers, for the case HL-WD

Finally, similar benefits can be noticed from a case where loading conditions are relatively more stable compared to the

rest cases, without large and abrupt steps (fig. 14). Again, from fig. 14a we can see the superiority of the MPC methods

compared to the rule-based one, where the platform can be operated with fewer GTs. Interestingly, the SoC trajectories

defined by DMPC and SMPC deviate from the beginning of the day and eventually, when the net load transits from the

1 GT to the 2 GTs regime, the SMPC method manages to hold only 1 GT in operation longer than the DMPC. As a

result, significant cost and fuel reductions were achieved again (table 7).
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Table 7: HL-WD KPIs.

KPI
MPC Method

Net
Mean Scn

Ic [e ] 69,799 66,510 3,289

If [tn] 201.61 198.75 2.870

Isw [−] 14 10 4

Ide [MWh] 63.31 63.83 -0.518

Idg [%] 0.375 0.359 0.016

4.2.8. Cases comparison

The cumulative results for the performance comparison of the DMPC and SMPC methods, for all the cases considered,

are given in table 8. From this table, we can identify the capability of the proposed method to achieve lower fuel

consumption, significant cost reduction, and much smoother GT operation, depending on the loading level of the platform

and the combination of load and wind power patterns. In particular, we see that the maximum cost reduction (case HL-

SDU-WD) is associated with the maximum improvement in GT turn ups/downs, while the minimum cost reduction (case

HL-SUD-WU ) is associated with the smallest improvement in GT turn ups/downs. It is also important to clarify that fuel

reduction percentages are also equal to the CO2 emissions reduction percentages, coming from the normal operation of the

GTs. However, there are additional environmental benefits resulting from the fewer GT start ups, which are associated

with high emissions that would add up to the improvement of the emissions coming from the normal GT operation.

Table 8: Comparison of the DMPC and SMPC methods with relative KPIs.

Case ∆Ic [%] ∆If [%] ∆Ion/off [%]

LL-SU-WD 4.338 -0.180 23.53

ML-SD-WU 7.096 2.526 24.00

HL-SUD-WU 0.896 0.111 18.18

LL-SDU-WU 4.447 0.515 21.43

HL-SDU-WD 12.861 2.104 35.29

HL-WD 4.712 1.423 28.57

5. Conclusions and future works

It is challenging to operate isolated power systems that integrate renewable sources together with flexible conventional

generating units and energy storage, while solving the task efficiently and cost-optimally. This gets even harder for

industrial systems or small scale isolated grids where the load intermittency is increased compared to large power systems

where load aggregation has a smoothing effect. Short-term abrupt step variations combined with the stochastic nature

of renewable sources make it hard to accurately forecast the near future power imbalance. Thus, the power scheduling

solution from the energy management system may be sub-optimal. In addition, the existence of binary operational status

27



of conventional thermal units and the multiple conflicting objectives pose an additional challenge to preforming optimal

energy management.

This paper proposed a Stochastic Model Predictive Control scheme aimed at solving the EMS problem under uncer-

tainty for isolated power systems that are characterized by abrupt load variations and lack of future events information.

The developed controller is designed to solve an optimal control problem on a rolling horizon basis, using stochastic mixed-

integer linear programming and considering the minimization of operational costs, battery degradation, and dumped en-

ergy simultaneously. The proposed EMS framework integrates a data-driven mechanism to represent future uncertainty

by means of quantile regression and scenario generation, providing useful information for the expected uncertainty bounds

over the load and renewable generation. With the proposed probabilistic forecasting framework, significant skill score

improvement was achieved for both load forecasts (91.50%) and wind power forecasts (90.50%). This made it possible to

better anticipate near-future irregular events just by using past information.

We thus considered the specific case study of an offshore O&G platform that integrates wind power. The performance

of the proposed algorithm was then evaluated and benchmarked against a deterministic version to assess the benefits of

making the optimization problem stochastic. For this reason, several case studies capturing the high variation of loading

conditions (characterizing O&G platforms) and the intermittency of wind power were considered. The results showed that,

under the proposed SMPC-EMS, in all the patterns examined, better planning of the resources could be achieved leading

to daily operational cost savings up to 12.86%, fuel consumption and emissions reduction from normal GT operation up

to 2.56%, and less switching of the GTs up to 35.29%.

Even though the proposed SMPC-EMS deals with the optimal techno-economic operation of the isolated grid, it does

not explicitly consider operational constraints related to the smaller time-scale stability of the system when rapid net load

variations occur. Such a limitation could be overcome by integrating adaptive state of charge limits, ensuring the additional

provision of ancillary services by the energy storage system, supporting the local grid. The proposed method could be

easily adapted to other cases of isolated power systems (i.e., any kind of industrial plants or small-scale physical islands)

that integrate various and multiple kinds of renewable sources (i.e., solar energy) by re-purposing the QRF models on the

corresponding datasets and including more stochastic scenarios representing disturbances from each random variable, to

cover a possibly more diverse situation.

6. Appendix 1

Table 9: Nomenclature.

Description Symbol

Random Forest

tree in set of trees bag t ∈ T

lead time in prediction horizon k ∈ K

observations in dataset Yj , j = 1, · · · , N

predictor (input feature) x = [Pt, Pt−1, . . . , Pt−L]

power value at time t Pt

leaf set of values of a tree t containing predictor x x ∈ St(x)

Continued on next page
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Table 9 – continued from previous page

Description Symbol

induced weight of tree t for observation j wtj(x)

induced weight of observation j wj(x)

mean response value of the random forest ŷj(x)

percentile τ

quantile of predictor x Qτ (x)

estimated prediction interval given x α̂(x)

observation value (input predictor) x ∈ X

future values (data) yt+k|t

scenario generated i ∈ Ns

response value (prediction) ŷt+k|t

response value (prediction) for scenario i ŷ
(i)
t+k|t

power consumption random variable P ℓ

wind power random variable Pw

SMPC

piecewise linear approximations p = 1, . . . , Npwl

set of available synchronous generators g = 1, . . . , Ng

set of scenarios ω = 1, . . . , Nω

set of lead times for the forecasting models k = 1, . . . , | K |

fuel curve X data values (P gt [MW]) Dgt
P

fuel curve Y data values (fgt [kg/MWh]) Dgt
f

fuel curve Ffuel

battery degradation curve X values Ddeg
dod

battery degradation curve Y values Ddeg
cyc

battery degradation curve Fdeg

state of charge xSoC

GT status xgt
1:Ng

control input u

charging power P ch

discharging power P dis

GT turn ON command bgt,ong

GT turn OFF command bgt,offg

GT power P gt

random disturbance ξ

random variable at time t P p
t+k, p = {ℓ, w}

estimated inverse conditional CDF F̂ p
−1

t+k|t
(
P p
t+k | x

)
inverse normal CDF Φ−1
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Table 10: Parameters.

Parameter Symbol Value Units

Sets

Gas Turbines Ng 4 [-]

Scenarios Nω 10 [-]

PWL points Npwl 11 [-]

prediction horizon (SMPC) | K | 6 [-]

Non-linear curves

fuel curve coefficient αf 0.5109 [-]

fuel curve coefficient βf -20.933 [-]

fuel curve coefficient γf 433.83 [-]

degradation curve coefficient k0 1591.1 [-]

degradation curve coefficient k1 2.089 [-]

BESS

max battery power P
b

5 [MW]

battery capacity E
b

10 [MWh]

max state of charge SoCmax 0.8 [p.u.]

min state of charge SoCmin 0.2 [p.u.]

charging efficiency ηch 0.95 [p.u.]

discharging efficiency ηdis 0.95 [p.u.]

GT

nominal GT power P gt
n 20.200 [MW]

max GT power P
gt

22.018 [MW]

min GT power P gt 4.040 [MW]

GT ramping rate RR 22.018 [MW/15 min]

spinning reserve sr 5 [%]

idling (no-load) fuel consumption cidlef 1,679 [kg/h]

cost coefficients

fuel cost cf 0.2979 [e/kg]

startup cost cstrgt 1,217 [e/startup]

fixed on cost congt 5,000 [e/on time]

battery replacement cost cb,rpl 445,000 [e]

battery residual cost cb,res 44,500 [e]

energy dumping cost cb,res 1,000 [e/MW]

Wind Turbine Power Curve

Continued on next page
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Table 10 – continued from previous page

Parameter Symbol Value Units

cut in speed wci 3
[
m
s

]
cut off speed wco 25

[
m
s

]
rated wind speed wn 12

[
m
s

]
rated power Pw

n 8 [MW]

wind turbines Nw 5 [-]

simulation time step Ts 15 [min]

case studies duration Tt 24 [h]

7. Appendix 2

List of sets used in the proposed models:

1. p = 1, . . . , Npwl : points used in the piecewise linear approximations of non-linear functions

2. g = 1, . . . , Ng : set of available gas turbines (conventional generators)

3. ω = 1, . . . , Nω : set of scenarios

4. k = 1, . . . , | K | : set of lead times for the forecasting models

List of sets of data points:

1. Dgt
P =

[
Dgt

P,1, . . . , D
gt
P,Npwl

]T
: fuel curve X data values (P gt [MW])

2. Dgt
f =

[
Dgt

f,1, . . . , D
gt
f,Npwl

]T
: fuel curve Y data values (fgt [kg/MWh])

3. Dgt
f = Ffuel(D

gt
P ) transformation (fuel curve)

4. Ffuel(x) = αfx+ βfx+ γf fuel curve definition

5. Ddeg
dod =

[
Ddeg

dod,1, . . . , D
deg
dod,Npwl

]T
: battery degradation curve X values

6. Ddeg
cyc =

[
Ddeg

cyc,1, . . . , D
deg
cyc,Npwl

]T
: battery degradation curve Y values

7. Ddeg
cyc = Fdeg(D

deg
dod) transformation (degradation curve)

8. Fdeg(x) =
100

k0x−k1
degradation curve definition

Fuel curve PWL approximation

1T
{1:Npwl} ·w

fuel
k,ω,g = xgt

k,ω,g
(64)

wfuel
k,ω,g,1 ≤ λfuel

k,ω,g,1
(65)

wfuel
k,ω,g,p ≤ λfuel

k,ω,g,p−1 + λfuel
k,ω,g,p

(66)

wfuel
k,ω,g,Npwl

≤ λfuel
k,ω,g,Npwl−1

(67)

1T
{1:Npwl−1} · λ

fuel
k,ω,g = xgt

k,ω,g
(68)
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We define Bω as a square matrix of dimension | K | as

Bω =


1 0 · · · 0

1 1 · · · 0
...

1 1 · · · 1

 ∀ ω = 1, . . . , Nω (69)

and

B =


B1 0 0

0
. . . 0

0 0 BNω

 (70)

Degradation curve PWL approximation

1T
{1:Npwl} ·w

deg
k,ω = 1 (71)

wdeg
k,ω,1 ≤ λdeg

k,ω,1
(72)

wdeg
k,ω,p ≤ λdeg

k,ω,p−1 + λdeg
k,ω,p

(73)

wdeg
k,ω,Npwl

≤ λdeg
k,ω,Npwl−1

(74)

1T
{1:Npwl−1} · λ

deg
k,ω = 1 (75)
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