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equivariant complex K-theory.
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1. Introduction

Modeling rational spectra via algebraic data has a long and fruitful history in homotopy theory. Serre’s 
original calculations of stable homotopy groups of spheres [23] imply that the rational homotopy category 
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Ho(SpQ) is equivalent to the category of graded rational vector spaces. An analogous equivalence was later 
obtained at the level of derived categories by Robinson [20] and at the level of model categories by Shipley 
[25] as a zig-zag of symmetric monoidal Quillen equivalences

SpQ �Q Ch(Q-mod).

Work of Richter and Shipley [19] further shows that there is a zig-zag of Quillen equivalences between 
rational commutative ring spectra and commutative differential graded algebras over Q. Hence rational 
CDGAs are an algebraic model for the rational commutative ring spectra.

It is something of a truism in algebraic topology that “algebra is easy,” in the sense that once one 
can reduce a topological question to a matter of algebra, the remaining algebraic computations should 
be straightforward. Like most truisms, this one is mostly false: algebraic computations come equipped 
with a plethora of subtleties. Moreover, the abstract knowledge that one can reduce a problem to algebra 
is often quite separate from the explicit reduction in a given case. In particular, for a concrete rational 
commutative ring spectrum X, it may be nontrivial to find the explicit rational CDGA corresponding to 
X under the Richter–Shipley zig-zag of Quillen equivalences. Nevertheless, algebraic models of homotopy 
theory—and more general algebraicizations of topological questions—are of great utility in both structural 
and computational understanding of homotopy theory.

In this paper, we focus on specific, concrete computations in algebraic models for rational G-equivariant 
spectra over a finite group G. That is, our main goal is to find explicit models for rational G-spectra in the 
algebraic categories modeling these spectra. The main spectra of interest are commutative ring spectra.

For any finite group G, there is a model for the homotopy category of rational G-spectra given by work 
of Greenlees and May [14]. What we call an algebraic model in this paper is not the model for the homotopy 
category of rational G-spectra, but an algebraic model category that is Quillen equivalent to the category of 
spectra in question. In the case of G-spectra, [17] uses Greenlees and May’s result to produce an algebraic 
model category A(G)Q that is Quillen equivalent to the stable model category of rational orthogonal G-
spectra.

In the nonequivariant case, Richter and Shipley’s result says that commutative algebra objects in the 
algebraic model for rational spectra are a model for rational commutative algebra spectra. In the equivariant 
case, the story is more intricate. There is a hierarchy of types of “equivariant commutativity” [7], and 
commutative algebra objects in A(G)Q only model the lowest level of this commutativity, which is sometimes 
referred to as “naive commutative” [4]. We denote this algebraic model for rational naive-commutative 
ring G-spectra by CommA(G)Q. We provide a detailed description of the algebraic models A(G)Q and 
CommA(G)Q in Section 2.

Our main theorem is as follows. It appears later as Theorem 5.8.

Theorem. Let G be a finite abelian group. The image of KUG
Q in the algebraic model CommA(G)Q is given 

by (VH)(H)≤G where

• VH = 0 if H is not cyclic and
• when H is cyclic of order n, VH

∼= Q(ζn)[β±1] where Q(ζn) is the field extension of Q by a primitive 
n-th root of unity ζn and β is in degree 2.

Finding this image of KUG
Q in the algebraic model is not simply a matter of tracing through the var-

ious functors in zig-zag of Quillen equivalences between rational naive-commutative ring G-spectra and 
CommA(G)Q. This zig-zag includes functors for which we do not have explicit computational control. 
What the zig-zag retains is control over the homology of the image in the algebraic model of a given spec-
trum X; in general this does not suffice to determine the algebraic object itself. Hence the strategy of 
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proof is to compute the homotopy groups of the geometric fixed points of KUG
Q. These homotopy groups 

encode the homology of the algebraic model of KUG
Q as a naive commutative ring G-spectrum. We then 

show any commutative differential graded algebra with this homology is formal. The formality result finally 
determines the image of KUG

Q in the algebraic model.
Our main result has several consequences. Firstly, it shows that all modules over KUG

Q are free over the 
idempotent pieces of KUG

Q. This result is stated as Corollary 4.6. In fact, our calculations show this holds 
for both abelian and nonabelian groups.

Theorem. Let G be a finite group and X be a module spectrum over KUG
Q. Then

X �
⊕
(H)

(e(H)KUG
Q)⊕iH ⊕ (Σe(H)KUG

Q)⊕jH ,

where H ≤ G, and iH and jH are nonnegative integers.

Our formality result also shows that KUG
Q admits a unique naive-commutative E∞ structure. This result 

is stated as Corollary 5.10.

Theorem. Let G be a finite abelian group. Then KUG
Q and kuG

Q admit unique structures as naive commutative 
G-ring spectra, i.e., as naive E∞-algebras in G-spectra. That is, if X is a rational naive-commutative G-ring 
spectrum whose graded Green functor of homotopy groups is isomorphic to that of KUG

Q or kuG
Q, then there 

is a zig-zag of weak equivalences of rational naive-commutative G-ring spectra between X and KUG
Q or kuG

Q, 
respectively.

The computations in this paper also set the stage for an analysis for KUG
Q as a genuine commutative 

ring spectrum. This analysis, which uses recent work of Wimmer [30], is the subject of forthcoming work 
by the authors [8].

1.1. Notation

Throughout the paper we assume that G is a finite group. We use the notation A(G)Q for the algebraic 
model of rational G-spectra and CommA(G)Q for the algebraic model of rational naive-commutative ring 
G-spectra; see Definition 2.4 and Definition 2.6, respectively. We use the notation �Q to denote a zig-zag of 
Quillen equivalences between model categories. If X is a rational naive-commutative ring G-spectrum then 
we denote by θ(X) its derived image in CommA(G)Q.
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2. Review of rational models

In this section, we recall the construction of algebraic models in the world of rational equivariant stable 
homotopy theory. We begin by reviewing the story at the level of homotopy groups and homotopy categories, 
followed by a discussion of the more structured story at the level of algebraic models via Quillen equivalences.

Given any G-spectrum X and any integer n, the collection of homotopy groups {πH
n (X) | H ≤ G}

forms what is called a Mackey functor. The description of Mackey functors we follow is due to Dress [9]. 
For an introduction to the theory of Mackey functors we refer the reader to [29], [26], or [15, §3.1]. When 
X is a rational G-spectrum, its Mackey functor of homotopy groups πn(X) is a rational Mackey functor, 
meaning for every subgroup H of G, πH

n (X) is a rational vector space. For example, if X is the rational 
equivariant sphere spectrum SQ, then the homotopy groups Mackey functor π0(SQ) is the rational Burnside 
ring Mackey functor AQ, which is defined by

AQ(G/H) := A(H) ⊗Q,

where A(H) is the Burnside ring of H, i.e. the Grothendieck ring of finite H-sets. All higher homotopy 
groups of SQ vanish, as do the negative homotopy groups.

Remark 2.1. The Burnside ring Mackey functor AQ has more structure than simply that of a Mackey 
functor. It is a commutative Green functor, which reflects the fact that SQ is a (naive) commutative G-
spectrum. In fact, AQ has the even richer structure of a Tambara functor, although we will not make use 
of it in this paper.

In this rational setting, Greenlees and May [14] show that the algebraic structure of Mackey functor 
homotopy groups determines the homotopy category of spectra in the following sense: they produce an 
equivalence of categories

Ho(G-SpQ) → gr(Mack(G)Q)

from the homotopy category of rational G spectra to the category of graded rational Mackey functors that is 
given by taking homotopy groups. We note here that this functor is not induced by a Quillen equivalence of 
model categories. Once in the algebraic setting of Mackey functors, idempotents in the Burnside ring allow 
a further splitting of rational Mackey functors into families of modules over group rings Q[WGH], where 
WGH is the Weyl group of a subgroup H of G. That is, Greenlees and May prove the following theorem.

Theorem 2.2 (Greenlees–May [14]). Idempotent splitting produces an equivalence of categories

gr(MackQG) →
∏

(H)≤G

gr(Q[WGH]-mod),

where WGH = NGH/H is the Weyl group of H as a subgroup of G. There is thus an equivalence of categories

Ho(G-SpQ) →
∏

(H)≤G

gr(Q[WGH]-mod).

At each level of the grading, the functor from M ackQ(G) to 
∏

Q[WGH]-mod is given by sending a 
Mackey functor M to the WGH-module eHM(G/H) where eH is an idempotent in the rational Burnside 
ring for G associated to the subgroup H. We discuss these idempotents in more detail below in Section 3.

We are interested in incorporating additional structure that is not present in the homotopy category of 
rational G-spectra. First, we wish to work at the model categorical level. Theorem 2.2’s splitting of the 
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homotopy category of rational G-spectra for finite G is mimicked to give a zig-zag of symmetric monoidal 
Quillen equivalences of monoidal model categories in [17]

G-SpQ �Q

∏
(H)≤G

Ch(Q[WGH]-mod), (2.3)

where the product is over conjugacy classes of subgroups of G. The model category 
∏

(H)≤GCh(Q[WGH]-mod)
has the objectwise projective model structure.

Definition 2.4. The model category

∏
(H)≤G

Ch(Q[WGH]-mod)

is called the algebraic model for rational G-spectra and is denoted A(G)Q.

Note that the monoidal structure on A(G)Q is given by tensor product over Q in every product factor. 
One of the consequences of this result is that the derived image of the unit is the unit. That is, the sphere 
spectrum is sent to the constant sequence Q concentrated in degree 0 with trivial Weyl group actions.

Next we consider commutative ring structures on spectra. This consideration is more subtle than in 
the non-equivariant case. G-spectra have a hierarchy of levels of “equivariant commutativity” [7]. Ring 
G-spectra with the lowest level of commutativity are called naive-commutative. Naive-commutative ring 
G-spectra are algebras for a G-operad equipped with a trivial G-action that is underlying E∞ when one 
forgets the G-action. An example of such a G-operad is the linear isometries operad on a trivial G-universe.

Barnes, Greenlees and Kędziorek [4] showed that commutative algebras in the algebraic model A(G)Q
for rational G-spectra model these naive-commutative ring G-spectra. That is, there is a zig-zag of Quillen 
equivalences

CommNaive(G-SpQ) �Q Comm

⎛
⎝ ∏

(H)≤G

Ch(Q[WGH]-mod)

⎞
⎠ . (2.5)

Definition 2.6. The model category Comm
(∏

(H)≤G Ch(Q[WGH]-mod)
)

is denoted by CommA(G)Q. It has 
weak equivalences and fibrations created in A(G)Q. It is the algebraic model for rational naive-commutative 
ring G-spectra.

Remark 2.7. Note that the product of these commutative differential graded algebras is equivalent to a 
diagram category

CommA(G)Q =
∏

(H)≤G

Q[WGH]-CDGA ∼= Orb×
G-CDGAQ.

Here the category Orb×
G is the full subcategory of isomorphisms in the category OrbG, where OrbG is the 

orbit category of G. That is, OrbG is spanned by transitive G-sets G/H for H ≤ G, and the morphisms are 
given by the set of G-equivariant maps.

The image of a (naive-commutative ring) G-spectrum in the algebraic model is not very explicit, as the 
Quillen equivalences of (2.3) and (2.5) used in establishing the algebraic model use Shipley’s result [25] (and 
Richter–Shipley’s result [19], respectively), which is not computationally trackable.
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Let θ(X) denote the image of a naive-commutative rational G-spectrum X in the algebraic model 
CommA(G)Q. The algebraic splitting of the category of graded Mackey functors (or commutative Green 
functors) using idempotents of the rational Burnside ring A(G) ⊗Q is compatible with splitting rational 
G-spectra using the idempotents by [14, Appendix A]. Hence by [4], we know that the homotopy groups of 
the geometric fixed points of a naive-commutative ring G-spectrum X are isomorphic to the homology of 
θ(X). That is, for each conjugacy class of subgroups (H), the homology of the chain complex θ(X)(H) is 
given by the homotopy groups of the H-geometric fixed points ΦH(X):

H∗(θ(X)(H)) = π∗(ΦH(X)). (2.8)

In fact, using this observation we can calculate the homology of the image of X in the algebraic model using 
the splitting of rational Mackey functors, since

π∗(ΦH(X)) ∼= eHπ∗(X)(H),

where eH is an idempotent element in the Burnside ring A(G) ⊗Q. This compatibility is shown in [14].
A key to identifying the image of a spectrum X in the rational model is therefore to calculate the 

idempotent pieces of the Mackey functors π∗(X). In the next section we concentrate on understanding the 
action of the Burnside ring Green functor on a given Mackey functor and the behavior of the algebraic 
idempotent splitting.

3. Splitting Mackey functors via idempotents in the Burnside ring

In this section, we give an overview of the idempotent splitting of rational Mackey functors for a finite 
group with the goal of providing the context necessary for the calculations in Section 4. As mentioned, these 
results originate in [14, Appendix A]. For more details on the action of the Burnside ring Green functor on 
a Mackey functor X and modern account of the idempotent splitting see [5]. We review the construction 
of the idempotent splitting in enough detail to suggest the essential calculational result, Lemma 3.4. This 
result is proved in [21].

Let G be a finite group. For the remainder of the paper, we suppress the notation for rationalization and 
let A(G) denote the rational Burnside ring for G. Recall that if X is a finite G-set, then X decomposes into 
orbits G · x1, . . . , G · xn and for each xi the orbit G · xi is isomorphic to G/Stab(xi). For subgroups H and 
K in G, the orbits G/H and G/K are isomorphic as G-sets if and only if H is conjugate to K. Thus a basis 
for A(G) is given by

{[G/H] | (H) ≤ G},

where (H) ≤ G is used to denote a conjugacy class of subgroups in G. We will abuse notation by writing 
(H) for both the set of subgroups conjugate to H and for a single representative of this conjugacy class. 
Note if K is another subgroup of G, the notation (H) ≤ K indicates H is subconjugate to K by an element 
of G.

By tom Dieck’s result [28, 5.6.4, 5.9.13], the ring map

Φ: A(G) →
∏

(H)≤G

Q defined by [X] �→ (|XH |)(H)

is an isomorphism. Thus it can be used to find idempotents in the ring A(G). Define eJ to be the pre-image 
of the projection onto the (J)-th factor in the product. That is,
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eJ = Φ−1((δJ(H))(H)),

where

δJ(H) =
{

1, if (J) = (H)
0, otherwise.

Let M be a rational Mackey functor for a finite group G. We can define an action of the Burnside ring 
A(G) on M as follows. Let X and Y be finite G-sets, and let

π : Y ×X → Y

denote the projection. The action of [X] ∈ A(G) on M(Y ) is given by the composite

M(Y ) π∗
−→ M(Y ×X) π∗−→ M(Y ), (3.1)

as is shown, for example, in [13] or [26]. One can check this action is through ring maps, and so using the 
description of the idempotents in terms of the additive basis, we can decompose the Mackey functor M as

M ∼=
⊕

(H)≤G

eHM. (3.2)

This is a decomposition as Mackey functors. To deduce Theorem 2.2, Greenlees and May make a further 
essential reduction by showing that for any H, the Mackey functor eHM is freely generated by the WGH-
module eHM(G/H). Indeed, the ungraded case of Theorem 2.2 is an equivalence

Mack(G)Q →
∏

(H)≤G

Q[WGH]-mod

given by sending a Mackey functor M to the sequence of modules (VH) defined by

VH = eHM(G/H).

The Weyl group action on VH is the inherent WGH-action on the value of the Mackey functor eHM at 
G/H.

In order to understand the idempotent pieces of a Mackey functor more concretely, we would like an 
explicit description of the elements eH ∈ A(G). The formula for the idempotents in terms of the additive 
basis was first introduced by Gluck in [11].

Lemma 3.3 ([11]). Let H be a subgroup of G, then eH ∈ A(G) is given by the formula

eH =
∑
K�H

|K|
|NGH|μ(K,H)G/K,

where μ(K, H) = Σi(−1)ici for ci the number of strictly increasing chains of subgroups from K to H of 
length i. The length of a chain is one less than the number of subgroups involved and μ(H, H) = 1 for all 
H � G.

Thus the action of the idempotent element eH on a Mackey functor M can be calculated from the action 
of orbits G/K on the groups M(G/J) for subgroups K ≤ H. From the description of the action of the 
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Burnside ring (3.1), we know that G/K acts on M(G/J) by a sum of composites trJ? ◦ resJ? between J and 
various groups that are subconjugate to both J and K, but the coefficients of this sum are not transparent. 
Thus, in general, it is not that easy to calculate eHM(G/J), where (H) ≤ J . However, in this paper we only 
need to compute VH = eHM(G/H) as a Q[WGH]-module. In [21], Schwede gives an inductive argument 
on the lattice of subgroups to obtain the following elegant description. This description is also implicit in 
Sections 6 and 9 of [27].

Lemma 3.4. [21, Theorem 3.4.22] For H ≤ G,

VH
∼= M(G/H)/tHM,

where tHM is the subgroup of M(G/H) generated by transfers from proper subgroups of H. Note that the 
Weyl group action on the Mackey functor descends to a WGH-action on the quotient VH because of the 
compatibility axiom

cg,K trKH = trgKgHcg,H ,

where H ≤ K, g ∈ G and cg,H is the conjugation map

cg,H : M(G/H) → M(G/gHg−1).

Remark 3.5. Observe that Maschke’s theorem [10, Proposition 1.5] applies to show that since tHM is a 
Q[WGH]-submodule of M(G/H), it has a complement and thus the quotient M(G/H)/tHM is in fact a 
direct summand of M(G/H). This is of course necessary if M(G/H)/tHM is to be the direct summand 
eHM(G/H).

Lemma 3.4 provides a tool at the heart of our strategy for computing the image θ(X) of a rational 
G-spectrum in the algebraic model. For reference, we describe this strategy explicitly. This is the procedure 
we employ in the next two sections to calculate the image of KUG

Q.

Strategy 3.6. Let X be a naive-commutative rational G-spectrum. A general strategy for attempting to 
calculate θ(X) is to do the following for a representative H of each conjugacy class of subgroups of G:

(1) Use Lemma 3.4 to calculate VH = eHπ∗(X)(G/H), together with its graded algebra structure.
(2) Show that VH is formal as a commutative differential graded Q[WGH]-algebra.
(3) Use (2.8) to conclude that the (H)-coordinate of θ(X) is weakly equivalent to VH .

These steps imply that each component of θ(X) is weakly equivalent to VH . Since the model category 
CommA(G)Q is a product, we obtain a weak equivalence

θ(X) � (VH)(H)≤G.

We begin by illustrating this strategy on two simple examples, the Eilenberg–MacLane spectrum for the 
constant commutative Green functor Q and the Eilenberg–MacLane spectrum for the rational Burnside 
Green functor AQ. In both cases, the formality of Step 2 is immediate and the focus is on calculating the 
idempotent pieces of the Green functors using Lemma 3.4.

Example 3.7. Let G be a finite group. Suppose Q is the constant Green functor with value Q, i.e. the value 
at any orbit G/H is given by
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Q(G/H) = Q,

where the action of the Weyl group WGH is trivial. For K ≤ H ≤ G, all restriction and conjugation maps 
are the identities and the transfer maps are given by

trHK : Q → Q

x �→
∑

γ∈WHK

γ · x =
∑

γ∈WHK

x = |WHK|x.

Hence, for any subgroup H, the image of the transfer from the trivial subgroup e is

Im(trHe ) = Q.

Thus the homology of the image of the equivariant rational Eilenberg–MacLane spectrum HQ in the alge-
braic model is

VH = Q/tHQ = 0,

for all subgroups H ≤ G except for the trivial subgroup, where

Ve = Q(G/e) = Q.

Notice that Ve = Q is concentrated in degree 0 and is formal as a CDGA. Thus the image of HQ in the 
algebraic model is weakly equivalent to the sequence of CDGAs with value Q at the trivial group and zero 
at other groups.

Example 3.8. Let G be a finite group. The rational Burnside Mackey functor AQ is the representable functor 
Bop
G (−, G/G) ⊗Q where BG is the Burnside category. One can check that this is isomorphic to the Mackey 

functor whose value on the orbit G/H is given by A(H), the rational Burnside ring of H. For H ≤ K ≤ G, 
the restriction maps are given by

resKH ([Y ]) = [i∗H(Y )],

where Y is a K-set, and

i∗H : SetK → SetH

is the forgetful functor from the category SetK of finite K-sets to the category of finite H-sets. The transfer 
maps are given by induction, i.e.

trKH([X]) = [K ×H X],

where K ×H X is the quotient of K ×X given by (kh, x) ∼ (k, hx) for all h ∈ H. Note that K acts on the 
left coordinate of the set K ×H X.

Recall that the rational equivariant sphere spectrum SQ is the Eilenberg–MacLane spectrum HAQ for 
the Burnside ring Mackey functor. Using Lemma 3.4 we can calculate the image of SQ in the algebraic 
model CommA(G)Q by calculating the image of the transfers.

For each subgroup H, AQ(G/H) = A(H) has an orbit basis given by

{[H/J ] | (J)H ≤ H}.
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Here it is important that we consider conjugation by H instead of conjugation by G, and in general the 
conjugacy class (J)H may contain strictly fewer subgroups than (J)G. Let J be a proper subgroup of H. 
Observe that the image of the element [J/J ] ∈ A(J) under the transfer map trHJ : A(J) → A(H) is

[H ×J J/J ] = [H/J ].

Hence all basis elements of the form [H/J ] for proper J ≤ H are in the image of the transfer. Moreover, 
explicit calculation shows that no fixed H-set is in the image of a transfer map trHJ : A(J) → A(H). 
Therefore, for each conjugacy class (H), we have an isomorphism

VH = A(H)/tHAQ
∼= Q{[H/H]},

concentrated in degree zero. The WGH-action on A(H) is via conjugation, and is hence trivial on the basis 
element [H/H]; thus VH has a trivial WGH-action.

This determines the homology of θ(SQ) in CommA(G)Q. Since for each (H), Q concentrated in degree 
zero is formal as an object of Q[WGH]-CDGA, we find that θ(SQ) is weakly equivalent to the constant 
sequence of Q’s with trivial Weyl group actions.

Remark 3.9. In fact, the image θ(SQ) can be deduced from the construction of the zig-zag of Quillen 
equivalences in [17]. This is a zig-zag of (symmetric) monoidal Quillen equivalences and thus, as mentioned 
in Section 2, it sends the unit SQ in rational G-ring spectra to the unit in A(G)Q. Since the zig-zag of 
Quillen equivalences for naive-commutative rational ring G-spectra from [4] is a lift of the zig-zag of [17], 
the statement follows. The calculation in Example 3.8 is presented as an illustration of the computational 
techniques on a familiar example.

4. Rational representation rings and Bott periodicity: homology level calculations

Our main goal is to calculate the image of the ring spectrum KUG
Q in the algebraic model CommA(G)Q

by implementing Strategy 3.6. Thus the first step towards understanding the image θ(KUG
Q) is to calculate 

the homotopy Mackey functors π∗(KUG
Q) and their idempotent splittings via the techniques of Section 3. As 

in Display (2.8), the result of these calculations is the homology of θ(KUG
Q), which is recorded as Lemma 4.5.

Recall that π0KUG
Q

∼= RUG
Q where RUG

Q is the rationalized representation ring Mackey functor. That 
is, the value of RUG

Q at an orbit G/H is the rationalization of the Grothendieck ring of complex H-
representations RU (H), the restriction maps are given by the restriction of representations, and the transfer 
maps are given by the induction of representations. The action of WGH on RU (H) is given by g · [V ] = [Vg]
where Vg is the H-representation such that h · v = (ghg−1)v for g ∈ NGH. Note that if k ∈ H, the map 
v �→ kv is an H-equivariant isomorphism V → Vk, so [Vk] = [V ] in the representation ring RU (H). Hence 
this is an action of the quotient WGH as required by the axioms of a Mackey functor. We begin by studying 
the Eilenberg–MacLane spectrum for this Mackey functor. In order to describe the action of the Weyl group 
on the homology, we first define the following function.

Definition 4.1. Let H be a cyclic subgroup of G of order n with a chosen generator g. Let mH denote the 
function mH : WGH → Z/n where mH(a) ∈ {1, . . . , n} is such that a−1ga = gmH(a).

In fact, mH : WGH → Z/n is a homomorphism into the (multiplicative) group of units (Z/n)× ⊂ Z/n.

Lemma 4.2. The map mH : WGH → Z/n is a group homomorphism WGH → (Z/n)×.

Proof. It is straightforward to check that mH(ab) = mH(a)mH(b) and if e ∈ WGH is the identity, mH(e) =
1; moreover mH(a−1) is clearly the inverse to mH(a) so that the image of mH is contained in the units. �
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We can now state the homology of the image of HRUG
Q in the algebraic model.

Lemma 4.3. The homology of θ(HRUG
Q), the image of HRUG

Q in the algebraic model, is given by (VH)(H)≤G

where VH = 0 when H is not cyclic and when H is cyclic of order n, VH
∼= Q(ζn), where Q(ζn) is the 

field extension of Q by a primitive n-th root of unity ζn. The action of a ∈ WGH on Q(ζn) is given by 
a · ζn = ζ

mH(a)
n . That is, the action of WGH is given via the homomorphism mH : WGH → (Z/n)× ∼=

Gal(Q(ζn)/Q).

Proof. Let H be a subgroup of G and consider the map
⊕
C≤H

indH
C :

⊕
C≤H

RU (C) ⊗Q → RU (H) ⊗Q,

where C runs over all cyclic subgroups of H. By a theorem of Artin, this map is surjective (see [24, 9.2.17], 
for example). By Lemma 3.4, the module VH is found by quotienting the image of all transfers of proper 
subgroups, so we immediately see VH = 0 if H is not cyclic.

Now suppose H is a cyclic subgroup of order n. We first show VH
∼= Q(ζn) as a Q-algebra. Fix a generator 

g for H. For each divisor d of n, there is one subgroup of H of order d, and the fixed generator for this 
subgroup will be gn/d. Denote this subgroup by Hd. Note that each subgroup Hd gives rise to a distinct 
conjugacy class of subgroups in G because they each have different cardinalities.

In what follows, fix a primitive n-th root of unity ζn and let ζd be the primitive d-th root of unity ζn/dn . 
The complex representation ring for the cyclic group of order d is isomorphic to Q[xd]/(xd

d − 1) where 
xd corresponds to the one-dimensional irreducible representation such that the generator gn/d acts via 
multiplication by ζd. Here we use the subscript d to keep track of which subgroup we are considering. The 
choices made in the previous paragraph show the restriction maps are given by resHd2

Hd1
(xd2) = xd1 for two 

divisors of n such that d1 | d2.
The polynomial xd

d − 1 factors as a product of cyclotomic polynomials Φj where j | d. By the Chinese 
remainder theorem, the map

Q[xd]/(xd
d − 1) →

∏
j|d

Q[xd]/(Φj(xd))

f(xd) �→ (f(xd), . . . , f(xd))

is an isomorphism. We will use this interpretation throughout our computation.
We need to compute the image of the various transfer maps in

RU (H) ⊗Q ∼=
∏
j|n

Q[xn]/(Φj(xn)) ∼=
∏
j|n

Q(ζj).

For a divisor d, let’s start by finding trHHd
(1). The unit is given by the one-dimensional trivial representation, 

and inducing the trivial Hd-representation gives the H-representation C[H/Hd]. Using character theory, one 
can check

[C[H/Hd]] = 1 + xd
n + x2d

n + · · · + x(n/d−1)d
n .

We can factor this as a product of cyclotomic polynomials by observing

xn
n − 1 = (xd

n − 1)(1 + xd
n + x2d

n + · · · + x(n/d−1)d
n ), and so

trHHd
(1) = 1 + xd

n + x2d
n + · · · + x(n/d−1)d

n =
∏

Φj(xn).

j�d
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Thus the transfer of 1 is zero in all factors indexed by divisors of n that do not divide d. For the divisors of 
d, the above shows the j-th factor is given by

(trHHd
(1))j = (n/d − 1)d + 1 = n− d + 1

because xd
n = (xj

n)d/j = 1 in this factor. To summarize, let δj,d be defined by δj,d = 1 if j | d and δj,d = 0 if 
j � d. We have shown

(trHHd
(1))j = δj,d · (n− d + 1).

By Frobenius reciprocity, trHHd
(x�

d) = trHHd
(resHHd

(x�
n) · 1) = trHHd

(1) · x�
n, and so

(trHHd
(x�

d))j = δj,d(n− d + 1) · ζ�j .

We conclude the image of the transfer is given by

Im(trHHd
) = Span{(δj,dζ�j )j|n | � = 0, . . . , d− 1}.

To find VH , we need to quotient by Im(trHHd
) for all divisors d of n such that d �= n. We can do this 

inductively beginning with d = 1, and the above shows that everything will be killed except for the factor

Q[xn]/(Φn(xn)) = Q(ζn).

Thus VH
∼= Q(ζn).

Next we determine the action of the Weyl group. Observe the action of a ∈ WGH on H is given by 
a · g = a−1ga = gmH(a). The action on xn ∈ RU (H) is determined as follows. The class xn is represented 
by the representation V that is a one-dimensional complex vector space such that g acts via multiplication 
by ζn. The twisted representation a · V = Va has the same underlying vector space as V , but the action of 
g is given by first conjugating by a. Thus g acts in Va as a−1ga acts in V . Hence the action of g on Va is 
given by multiplication by ζmH(a)

n and a · xn = x
mH(a)
n . From the proof above, we see this corresponds in 

the quotient VH to a · ζn = ζ
mH(a)
n . �

Remark 4.4. If G is abelian, then the conjugation action of the Weyl group using the function mH of 
Definition 4.1 is trivial. Thus the above analysis implies that the action of WGH on Q(ζn) is trivial.

Using equivariant Bott periodicity (see for example [22] or [18, XIV.3]), we extend Lemma 4.3 to a result 
about KUG

Q.

Lemma 4.5. The homology of θ(KUG
Q), the image of KUG

Q in the algebraic model, is given by VH = 0 when 
H is not cyclic and VH = Q(ζn)[β±1] with |β| = 2 when H is a cyclic group of order n. The action of 
a ∈ WGH on Q(ζn)[β±1] is given by a · ζn = ζ

mH(a)
n and a · β = β.

Proof. We begin by reviewing the Mackey functor structure of π∗KUG
Q. Recall π0(KUG

Q) ∼= RUG
Q. In fact, 

π0(KUG) ∼= RUG before rationalizing. For any complex representation V and any finite pointed G-CW

complex X, Bott periodicity provides a natural isomorphism

[X,KUG]G ∼= [SV ∧X,KUG]G,

which is given by multiplication by the Bott class βV [18, Theorem XIV.3.2]. Let β denote βC where C is 
the one-dimensional trivial representation.
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If X = G/H, then the Bott periodicity isomorphism shows

KU j
G(G/H) = [G/H+,ΣjKUG]G ∼= [S2n ∧G/H+,ΣjKUG]G = KU−2n+j

G (G/H),

where the isomorphism is given by multiplying by βn. For any G-spectrum E, the coefficient Mackey functor 
E−∗(pt) is isomorphic to the homotopy group Mackey functor π∗(E). Thus on the homotopy group level,

πj(KUG)(G/H) ∼= πj+2n(KUG)(G/H).

When j is odd, note π1(KUG)(G/H) = 0 from the comments in [18, Section XIV.3], and thus by pe-
riodicity, all homotopy groups in odd degrees are zero. We have determined that as a graded ring, 
π∗(KUG)(G/H) ∼= RU (H)[β±1] where |β| = 2. For clarity of the proof, we will decorate the polyno-
mial generator β ∈ π∗(KUG)(G/H) with a subscript H to keep track of which level of the Mackey functor 
it lives in.

We next determine the restriction, transfer, and Weyl group action on the elements βH. For H ≤ K, 
the restriction map is induced by the quotient map G/H → G/K, and so the naturality of the Bott class 
implies the following diagram commutes

KU 0
G(G/K)

·βK

resKH

KU 2
G(G/K)

resKH

KU 0
G(G/H)

·βH KU 2
G(G/H).

Consider the image of 1 ∈ KU 0
G(G/K). Going around the diagram the two different ways will show 

resKH (βK) = βH in π∗(KUG). The transfer map is also induced by a stable map of orbits and trKH(1) =
|WKH|, so we have trKH(βH) = |WKH|βK .

To find the action of the Weyl group, note the action by a ∈ WGH is induced by the map a : G/H → G/H, 
eH �→ aH. By taking H = K in the diagram above and replacing restriction by the map induced by a, we 
can consider the image of the unit and use that a · 1 = 1 to see a · βH = βH .

We now return to the algebraic model. The value of VH as a Q-algebra follows readily from Lemma 4.3
and the periodicity shown above. The action of WGH on Q(ζn) is the same as that of Lemma 4.3, and the 
action on β is trivial since it was trivial in the original Mackey functor. �

Since the homotopy groups of idempotent pieces of KUG
Q are a graded field, we obtain the following 

result.

Corollary 4.6. Let G be a finite group and X be a module spectrum over KUG
Q. Then

X �
⊕
(H)

(e(H)KUG
Q)⊕iH ⊕ (Σe(H)KUG

Q)⊕jH ,

where H ≤ G, and iH and jH are nonnegative integers.

Proof. Let X be a module spectrum over KUG
Q. Then X is determined by its image in A(G)Q, which is 

determined by the idempotent pieces e(H)(X). Since X is a module over KUG
Q, Barnes’s splitting result [3]

implies that for each conjugacy class of subgroups (H), e(H)X is a module over e(H)KUG
Q. The homotopy 

groups of e(H)KUG
Q are a graded field, in the sense that every nonzero homogeneous element is a unit (see [6, 

Definition 9.1.13], for example). This implies that all modules over π∗(e(H)KUG) are free [12, Lemma 1.1.1]. 
Q
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Hence any module spectrum over e(H)KUG
Q is free, and is thus a wedge of suspensions of e(H)KUG

Q, as is 
discussed in [16, Lemmas 1.4 and 1.8]. Since e(H)KUG

Q is 2-periodic, it’s enough to consider the suspensions 
e(H)KUG

Q and Σe(H)KUG
Q. �

Let kuG
Q denote the connective cover of KUG

Q. Bott periodicity also provides the homology of the image 
of kuG

Q in the algebraic model.

Lemma 4.7. The homology of θ(kuG
Q), the image of kuG

Q in the algebraic model, is given by VH = 0 if H is 
not cyclic and VH = Q(ζn)[β] with |β| = 2 if H is a cyclic group of order n. The action of a ∈ WGH on 
Q(ζn)[β] is given by a · ζn = ζ

mH(a)
n and a · β = β.

5. Formality: the image of KUG
Q in the algebraic model

Our main goal is to find the image of KUG
Q in the algebraic model CommA(G)Q when G is a finite 

abelian group. Lemma 4.5 calculates the homology of the image θ(KUG
Q), but in general, the homology 

of a rational CDGA is not enough to determine its isomorphism class in the homotopy category. In the 
abelian case, following Strategy 3.6, we will show that θ(KUG

Q) is formal. That is, if (A•)(H) is an object 
of CommA(G)Q such that (H(A•))(H) is isomorphic to π∗(ΦHKUG

Q) in the category 
∏

gr(Q[WGH]-alg), 
then there exists a zig-zag of quasi-isomorphisms of CDGAs from (A•)(H) to (H(A•))(H) where (H(A•))(H)
is the tuple of chain complexes with zero differentials given by the homologies of the complexes (A•)(H). 
This will imply (A•)(H) ∼= (H(A•))(H) in the homotopy category Ho(CommA(G)Q).

In an effort to simplify the exposition, we prove the main formality result we want in several lemmas, 
which show formality of increasingly complicated Q[WGH]-CDGAs. In the case of interest, while we know 
that the action of WGH is trivial on homology, we cannot assume that the action on the underlying chain 
complex itself is trivial.

Our essential technique is to construct a single zig-zag of quasi-isomorphisms between a chain complex 
A• and its homology H(A•) of the form

A• D• H(A•),��

where D• is an appropriately “free” commutative differential graded algebra D• ∈ Q[WGH]-CDGA, given 
by a polynomial algebra tensored with an exterior algebra. It is free in the sense that an algebra map out 
of D• is determined by defining a chain map on the generators. In the case where H(A•) has trivial action, 
we can choose D• to have trivial action.

As a warm-up and illustration of the construction, we consider the algebraic model for KUQ nonequiv-
ariantly. This is the special case where G is the trivial group.

Lemma 5.1. Suppose there exists A• ∈ CDGAQ such that H(A•) ∼= Q[β±1]. Then A• is formal, i.e. there 
is a zig-zag of quasi-isomorphism algebra maps

A• D• Q[β±1].��

Proof. Let α ∈ A2 be an element representing β so that [α] = β. It is not necessarily the case that α is 
invertible in A•, so we may not be able to define a map directly from Q[β±1] to A•. Instead, we will replace 
Q[β±1] with a quasi-isomorphic free commutative differential graded algebra D•. Let ᾱ ∈ A−2 be a class 
that represents [β−1]. Although it is possible that αᾱ �= 1, because α is invertible in homology there exists 
σ ∈ A1 such that d(σ) = 1 − αᾱ.

Define the replacement differential graded algebra D• to be the polynomial algebra on classes γ and γ̄
tensored with the exterior algebra on a class y with |γ| = 2, |γ̄| = −2, and |y| = 1, where d(γ) = d(γ̄) = 0
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and d(y) = 1 − γγ̄. That is, D• = Q[γ, ̄γ] ⊗E(y). To define ϕ : Q[γ, ̄γ] ⊗E(y) → A• we only need to specify 
ϕ(γ), ϕ(γ̄), and ϕ(y) such that ϕ is a chain map. We can define ϕ(γ) = α, ϕ(γ̄) = ᾱ, and ϕ(y) = σ. Notice 
that ϕ is a quasi-isomorphism by construction.

Finally, we can define a map ψ : Q[γ, ̄γ] ⊗ E(y) → Q[β±1] by ψ(γ) = β, ψ(γ̄) = β−1 and ψ(y) = 0. This 
map induces an isomorphism on homology and so we have a zig-zag of quasi-isomorphism algebra maps

A• Q[γ, γ̄] ⊗ E(y) Q[β±1]� �

and hence A• is formal. �
As an immediate corollary, this shows that as an E∞ ring nonequivariant KUQ is unique. The uniqueness 

of KU as an E∞ ring was previously shown by Baker and Richter in [1] using obstruction theory and 
uniqueness for KUQ is implicit in the techniques and calculations for this integral result. They additionally 
treat the connective case in [2].

Before turning to the formality arguments in the general context of Q[WGH]-CDGAs, we make the 
following useful observation.

Lemma 5.2 (Averaging). Let A• be a Q[WGH]-CDGA, and suppose a homology class x ∈ H(A•) is fixed 
under the WGH-action. Then x has a representative a ∈ A• that is fixed under the WGH-action. Similarly 
if y ∈ A• such that d(y) is fixed under the WGH-action, then there exists a fixed element b such that 
d(b) = d(y).

Proof. Choose an arbitrary cycle a0 in A• representing x. Then the element

a = avWGH(a0) := 1
|WGH|

∑
g∈WGH

g · a0

is a cycle, it also represents x in homology and is WGH-fixed.
For the class y, define b = avWGH(y). Since d(y) is fixed and the differential is an equivariant map, 

d(b) = d(y) and b is fixed by construction. �
In Lemmas 5.3, 5.5 and 5.6 we often apply the averaging trick of Lemma 5.2 to choose fixed representatives 

for homology classes without further mention.

Lemma 5.3. Let A• be a Q[WGH]-CDGA such that its homology H(A•) is isomorphic to Q(ζn) concentrated 
in degree zero and has trivial WGH action. Then A• is formal as a Q[WGH]-CDGA.

Proof. We use a standard Koszul resolution. Let D• ∈ Q[WGH]-CDGA be the free commutative differential 
graded algebra with trivial WGH action Q[t] ⊗E(z) where |t| = 0 and |z| = 1. Let d(t) = 0 and d(z) = Φn(t). 
Notice that z has odd degree, so graded commutativity implies z2 = 0. Thus the chain complex D• is

0 → Q[t]{z} → Q[t] → 0

with D0 = Q[t], D1 = Q[t]{z}, and all other Dk = 0. By construction D• has homology Q(ζn) concentrated 
in degree zero with trivial action.

To define a map ϕ : D• → A•, choose a class a ∈ A0 that represents ζn so [a] = ζn. Now ζn is a root of 
Φn(x) but it is possible that a is not a root in A0. However Φn(a) must be a boundary, so there exists a 
class ρ such that d(ρ) = Φn(a). By Lemma 5.2, we may assume a is fixed by WGH. Since a is fixed, the 
polynomial Φn(a) is fixed, and so we can also assume ρ is fixed. Thus we may define ϕ(t) = a and ϕ(z) = ρ. 
Notice the map ϕ is now a quasi-isomorphism.
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We may easily define a quasi-isomorphism ψ : D• → Q(ζn) by ψ(a) = ζn and ψ(z) = 0. Thus we have a 
zig-zag of quasi-isomorphisms

A• D• Q(ζn),� �

which completes the proof that A• is formal. �
Lemma 5.3 applies to the homology of the representation ring Mackey functor, which shows that 

θ(HRUG
Q) is weakly equivalent to the homology specified in Lemma 4.3.

Corollary 5.4. For G abelian, the image of HRUG
Q is unique in CommA(G)Q.

Proof. By Lemma 5.3 we have formality of the algebraic model θ(HRUG
Q) at each (H). The values of the 

algebraic model at each conjugacy class of subgroups are independent, so the image of HRUG
Q is unique up 

to equivariant quasi-isomorphism in CommA(G)Q. �
More generally, if R is the quotient of a polynomial Q-algebra by a regular sequence, viewed as a Q[WGH]-

algebra with trivial action, then R[β±1] is formal. We prove this in two steps. The first generalizes Lemma 5.3.

Lemma 5.5. Let R be the quotient of a finitely generated polynomial algebra over Q by a finite regular 
sequence and let A• ∈ Q[WGH]-CDGA have homology H(A•) ∼= R concentrated in degree zero with trivial 
WGH action. Then A• is formal.

Proof. By assumption, R ∼= Q[x1, . . . , xn]/I where I is an ideal generated by a regular sequence of finitely 
many polynomials I = (f1, . . . , fm). Let a1, . . . , an ∈ A0 be WGH-fixed elements representing the homology 
classes x1, . . . , xn and choose b1, . . . , bm ∈ A1 also WGH-fixed such that d(bi) = fi(a1, . . . , an). Define 
D• ∈ Q[WGH]-CDGA to be the free CDGA with trivial action given by

D• = Q[t1, . . . , tn] ⊗ E(z1, . . . , zm),

where |ti| = 0, |zi| = 1, and d(zi) = fi(t1, . . . , tn). That is, D• is the Koszul complex for the regular 
sequence (f1, . . . , fm). By the regularity of the sequence (f1, . . . , fm), the homology H(D•) is isomorphic to 
R concentrated in degree zero.

Now define ϕ : D• → A• by ϕ(ti) = ai and ϕ(zi) = bi; again, this map is equivariant by our choices of 
WGH-fixed representatives ai and bi. The map ϕ is a quasi-isomorphism. Define ψ : D• → R by ψ(ti) = xi

and ψ(zi) = 0. This is also a quasi-isomorphism. Thus we have constructed a zig-zag of quasi-isomorphisms

A• D• R� �

and hence A• is formal. �
Now we generalize the technique of Lemma 5.1 to incorporate the invertible class β.

Lemma 5.6. Let A• ∈ Q[WGH]-CDGA with H(A•) ∼= R[β±1] where R is the quotient of a finitely generated 
polynomial algebra over Q by a regular sequence, |β| = 2 and where R and β have trivial WGH-action. 
Then A• is formal.

Proof. As in the proof of Lemma 5.5, let D• ∼= Q[t1, . . . , tn] ⊗ E(z1, . . . , zm) be the Koszul complex so 
that H(D•) ∼= R. To adjoin a representative of the invertible class β, we tensor D• with the chain complex 
Q[γ, ̄γ] ⊗E(y) constructed in Lemma 5.1. Since we are working over a field, the Künneth theorem for chain 
complexes implies that there are isomorphisms on homology
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H(D• ⊗Q[γ, γ̄] ⊗ E(y)) ∼= H(D•) ⊗H(Q[γ, γ̄] ⊗E(y)) ∼= R⊗Q[β±1].

Let α ∈ A2 be a WGH-fixed representative of β and ᾱ ∈ A−2 be a WGH-fixed representative of β−1. It is 
possible that αᾱ �= 1 in A• but since [α][ᾱ] = 1 in homology, there exists a WGH-fixed element c ∈ A1 such 
that d(c) = 1 − αᾱ. We extend ϕ from the previous lemma to ϕ̄ : D• ⊗Q[γ, ̄γ] ⊗ E(y) → A• via ϕ̄(γ) = α, 
ϕ̄(γ̄) = ᾱ, and ϕ̄(y) = c. We also extend the map ψ from Lemma 5.5 to ψ̄ : D• ⊗Q[γ, ̄γ] ⊗ E(y) → R[β±1]
via ψ̄(γ) = β, ψ̄(γ̄) = β−1 and ψ̄(y) = 0. Now ϕ̄ and ψ̄ define a zig-zag of quasi-isomorphisms

A• D• ⊗Q[γ, γ̄] ⊗ E(y) R[β±1]� �

and hence A• is formal. �
Notice this last lemma would also hold with |β| = 2n, adjusting the degrees of γ and γ̄ appropriately.
As discussed in Remark 4.4, when G is an abelian group, the actions by the Weyl groups on the homology 

of θ(KUG
Q) are trivial. Hence Lemma 5.6 applies to show that θ(KUG

Q) is formal for an abelian group G.

Lemma 5.7. Let G be a finite abelian group. Then θ(KUG
Q) is formal in CommA(G)Q.

Proof. In Lemma 5.6 we have shown formality of the algebraic model θ(KUG
Q) at each conjugacy class 

of subgroups (H). As above, the values of the algebraic model at each conjugacy class of subgroup are 
independent, so θ(KUG

Q) is formal. �
Theorem 5.8. Let G be a finite abelian group. The image of periodic K-theory KUG

Q in the algebraic model 
is given by Q(ζn)[β±1] with |β| = 2 with trivial action of the Weyl group for each cyclic subgroup Cn ≤ G

and is zero for non-cyclic subgroups.

Proof. This follows from Lemma 4.5 and Lemma 5.7. �
A similar formality argument as above, together with calculations from Section 4, shows the following 

result.

Theorem 5.9. When G is a finite abelian group, the image of connective K-theory kuG
Q in the algebraic 

model is given by Q(ζn)[β] with |β| = 2 for each Cn ≤ G and zero otherwise. The action of the Weyl group 
WG(Cn) on Q(ζn)[β] is trivial.

Corollary 5.10. KUG
Q and kuG

Q admit unique structures as naive commutative G-ring spectra, i.e., as naive 
E∞-algebras in G-spectra. That is, if X is a rational naive-commutative G-ring spectrum whose graded 
Green functor of homotopy groups is isomorphic to that of KUG

Q or kuG
Q, then there is a zig-zag of weak 

equivalences of rational naive-commutative G-ring spectra between X and KUG
Q or kuG

Q (respectively).

Proof. For concreteness, suppose X is a naive-commutative rational G-ring spectrum and the graded com-
mutative homotopy group Green functor of X is isomorphic to that of KUG

Q. Let θ(X) be the image of X
in CommA(G)Q. Then the homology of θ(X) is isomorphic to the homology of θ(KUG

Q); since we know the 
latter to be formal, there is a zig-zag of quasi-isomorphisms θ(X) ∼ θ(KUG

Q) in CommA(G)Q. The zig-zag 
of Quillen equivalences

CommNaiveG-SpQ �Q CommA(G)Q

implies that X and KUG
Q are thus weakly equivalent in CommNaiveG-SpQ. The proof for kuG

Q—or indeed, 
for any spectrum whose image we know to be formal in CommA(G)Q —is the same. �
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