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a b s t r a c t

We design a leak detection, size estimation and localization algorithm for a branched pipe system,
requiring flow and pressure measurements to be taken at the inlet and outlet boundaries, only. By
showing that the pipe system model can be mapped into a system of coupled, linear hyperbolic PDEs
(partial differential equations), with the parametric uncertainties caused by the leak appearing in a
particular way, established methods can be applied to obtain state and parameter estimates. Analyzing
the structure of the parametric uncertainties that appear in the obtained adaptive observer canonical
form, we prove that total leak size can be estimated regardless of how leaks are distributed in the
pipe network. Moreover, any number of point leaks can be located, provided they occur sufficiently
separated in time.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Being able to accurately detect and find leaks in pipelines is
mportant, not only to avoid the economical impact of losses, but
lso to protect the environment. Leaking oil and gas pipelines,
or instance, may cause severe damage to the environment (Shiv-
nanju et al., 2013). Therefore, many methods for leak detection
nd localization exist today, for instance the use of distributed
ptical fiber sensing technology (Ren et al., 2018), the use of
iezoceramic transducers (Zhu et al., 2017), ultrasound (Zhang,
uang, Zhao, Wang, & Wang, 2017), discretization and the use of
uenberger observer (Xie, Xu, & Dubljevic, 2019) and magnetic
lux leakage detection (Feng, Li, Lu, Liu, & Ma, 2017). A recent,
omprehensive overview of leak detection methods can be found
n Adegboye, Fung, and Karnik (2019).

Leak detection methods are often divided into two main cate-
ories (Lang, Li, Cao, Li, & Ren, 2018): internal monitoring methods,
nd external monitoring methods. Internal methods encompass

for instance ultrasound (Qidwai, 2009) and magnetic flux leakage
detection (Feng et al., 2017). These are considered accurate, but
may be easy to obstruct, require more expensive equipment, and
may require distributed measurements along the pipe. External
methods use field instrumentation, like for instance pressure,
flow and temperature measurements (Timashev & Bushinskaya,
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2016), which are often taken at pipe inlets and outlets, only.
In Aamo (2016), a leak detection algorithm for a single pipe
is proposed, that only requires measurements of pressure and
volumetric flow at the inlet and outlet of the pipe. The algorithm
simultaneously estimates the leak size and leak position in the
pipe. The method is based on a distributed parameters model of
the pipe obtained from mass and momentum conservations for
a single phase fluid flow, which leads to a set of (linearized) hy-
perbolic partial differential equations (PDE). Infinite-dimensional
backstepping is then used to design an observer estimating the
uncertain parameters of the system.

The backstepping technique for estimation and control of dis-
tributed parameter systems has received a lot of attention in the
last two decades. It appeared for the first time in Liu (2003), for
the stabilization of an unstable parabolic PDE, and later in Krstić
and Smyshlyaev (2008) for the stabilization of a scalar hyper-
bolic PDE. Extensions to gradually more involved hyperbolic PDEs
followed in the milestone papers (Di Meglio, Vazquez, & Krstić,
2013; Hu, Di Meglio, Vazquez, & Krstić, 2016; Vazquez, Krstić, &
Coron, 2011). Infinite-dimensional backstepping has the advan-
tage of avoiding spatial discretization of the PDEs before an even-
tual implementation (late lumping), and also greatly facilitates
adaptive schemes that can handle parametric uncertainties (An-
finsen & Aamo, 2019; Smyshlyaev & Krstić, 2010).

We will in this paper extend the result from Aamo (2016),
expanding the leak detection method for a single pipe into a
pipe system where a single pipe is branched into an arbitrary
number of n pipes. The key approach now is to introduce a
series of transformations that maps the considered system into a
familiar form usually referred to as n+m systems. A non-adaptive
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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bserver for this type of systems was designed in Hu et al. (2016),
ased on which an adaptive version was developed in Anfinsen
nd Aamo (2017).
The notation 1n×m indicates an n × m matrix with all com-

onents set to 1. The notation In indicates an n × n identity
atrix. The notation ei indicates a vector of appropriate length
ith the value 1 at the i’th position, and zeros elsewhere. The
artial derivative is usually denoted ∂x to indicate differentiation
ith respect to the variable x.

2. Modeling and problem statement

The pipe flow is modeled as a standard hydraulic transmission
line (see Egeland and Gravdahl (2002, Section 11.2.7)). Leaks are
straightforwardly accommodated in the mass balance, while for
the momentum balance, the derivations from Bajura (1971) are
employed. The resulting model is

∂tpi(z, t) +
β̄

Ai
∂zqi(z, t) = −

β̄

Ai
di(z)χi (1a)

tqi(z, t) +
Ai

ρ
∂zpi(z, t) = −

Fi
ρ
qi(z, t) − Aig sin(φi(z))

−
ηi

Ai
di(z)χi (1b)

for i = 0, 1, . . . , n, defined for t ≥ 0, z ∈ [0, li], where pi is the
pressure, qi is the volumetric flow for pipe i, β̄ is the fluid’s bulk
modulus, ρ is the fluid’s density, Ai is the cross sectional area of
pipe segment i, Fi is the friction factor for pipe segment i, g is
the gravity constant, and φi(z) is the inclination angle of pipe i.
The factors χi and di are the leak size and distribution in pipe
segment i. We assume the χi’s are non-negative constants, and
that the distributions di are nonnegative and normalized, that is

di(z) ≥ 0, ∀z ∈ [0, li], i = 0, 1, . . . , n, (2a)∫ li

0
di(z)dz = 1, i = 0, 1, . . . , n. (2b)

The factors ηi are parameters which depend on the shape, size
and direction of the leaks, and follow from the derivations in Ba-
jura (1971). It is argued in Bajura (1971) that a good approxima-
tion of ηi can be taken as

ηi = γi,dqi,0 (3)

where qi,0 is the steady-state volumetric flow through pipe i, and
γi,d < 1 is a factor that depends on the shape, size and direction
of the leaks. For point leaks,

γi,d = 0.8 (4)

is found experimentally (Bajura, 1971).
We assume that the n + 1 pipe segments are branched in the

sense that pipe i = 0 is connected to a source reservoir, and then
branched into n individual pipes that supply n communities of
consumers (see Fig. 1 for a sketch of the case n = 3). The coor-
dinate systems for the pipes are defined such that the branching
point is at z = 0 for every pipe. This means that the pressure must
be the same in every pipe at z = 0, and the sum of flows at z = 0
must be zero. The conditions at the other end of the pipes (z = li)
are governed by the reservoir pressure and consumer flows. This
can be expressed by the following boundary conditions

p0(l0, t) = p0,l0 (t), qi(li, t) = qi,li (t), (5a)

q0(0, t) = −

n∑
j=1

qj(0, t), pi(0, t) = p0(0, t), (5b)

for i = 1, 2, . . . , n, for a given reservoir pressure p0,l0 (t) and
flows to consumers, q (t) that may vary with time. In the case
i,li

2

Fig. 1. Water supply system for n = 3.

f an infinite reservoir, the pressure p0,l0 (t) may be taken as
onstant i.e. p0,l0 (t) = p0. The initial conditions are given as
i(z, t) = pi,0(z), qi(z, t) = qi,0(z), z ∈ [0, li]. Pressure and flow

are measured at z = li for all pipes, that is

ql(t) =
[
q0(l0, t) q1(l1, t) . . . qn(ln, t)

]T (6a)

pl(t) =
[
p0(l0, t) p1(l1, t) . . . pn(ln, t)

]T (6b)

are measured. No measurements are taken at the branching point
z = 0, which is the main source of difficulty in this paper as
compared to Aamo (2016).

3. Mapping to adaptive observer canonical form

The goal of this section is to rewrite the system consisting of
(1) and (5) into the familiar form

ut (x, t) + Λux(x, t) = C1(x)v(x, t) (7a)

vt (x, t) − Λvx(x, t) = C2(x)u(x, t) (7b)

u(0, t) = Q0v(0, t) + κ (7c)

v(1, t) = R1u(1, t) + B1ql(t) (7d)

y(t) = u(1, t) (7e)

or some functions C1, C2 ∈ C([0, 1])(n+1)×(n+1), diagonal matrix
Λ ∈ R(n+1)×(n+1), Λ > 0, matrices Q0, R1, B1 ∈ R(n+1)×(n+1) and
vector κ ∈ Rn+1. The initial conditions are given as u(x, 0) =

u0(x), v(x, 0) = v0(x) for u0, v0 ∈ C([0, 1])n+1. The signal ql(t)
is measured and defined in (6a). The signal y in (7e) can be
considered measured, since it can be constructed from available
measured signals. The desirable features of the form (7) are the
diagonal Λ and the fact that the uncertain leak parameters appear
at the boundary rather than in the interior domain, which is the
case in (1). Several results from the literature (Anfinsen & Aamo,
2017; Hu et al., 2016; Hu, Vazquez, Meglio, & Krstić, 2019) apply
to (7), and are employed for observer design in Section 4. The
remainder of Section 3 provides the transformations bringing (1)
into the form (7).

3.1. Characterizing the leak location

Firstly, we rewrite system (1) in a similar manner as was done
in Aamo (2016). This is to better facilitate the transformation used
for mapping system (1), (5) into system (7). Defining

δi(z) = z −

∫ z ∫ li
di(γ )dγ dη, (8)
0 η
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i (z) = 1 −
∫ li
z di(γ )dγ , δ′′

i (z) = di(z) and the dynamics
(1) can then be written

∂tpi(z, t) +
β̄

Ai
∂zqi(z, t) = −

β̄

Ai
δ′′

i (z)χi (9a)

∂tqi(z, t) +
Ai

ρ
∂zpi(z, t) = −

Fi
ρ
qi(z, t) − Aig sin(φi(z))

−
ηi

Ai
δ′′

i (z)χi. (9b)

Furthermore, we note that (8) satisfies

δi(0) = δ′

i (0) = 0, δ′

i (li) = 1 (10a)

δi(li) = li − νi, νi =

∫ li

0

∫ li

η

di(γ )dγ dη (10b)

for all i = 0, 1, 2, . . . , n. The quantity νi relates in general to the
spatial distribution of the leak, but gets a particular meaning in
the case of a point leak.

Lemma 1. Suppose pipe i has a single point leak located at z =

z∗
∈ [0, li]. Then, νi = z∗.

Lemma 1 is a minor modification of Aamo (2016, Corollary 12),
so the proof is omitted.

In a straightforward manner, Lemma 1 can be extended into
the following corollary, which is an extension of Aamo (2016,
Corollary 13) (therefore omitting the proof). It relates νi to the
locations of multiple point leaks.

Corollary 2. Suppose pipe i has mi point leaks of sizes χi,1, χi,2, . . . ,

χi,mi , at locations z = z∗

i,j ∈ [0, li], j = 1, 2, . . . ,mi. Then

νi =
1∑mi

j=1 χi,j

mi∑
j=1

χi,jz∗

i,j. (11)

.2. Decoupling the convective terms

Consider the intermediate system

ūt (x, t) + Λūx(x, t) = C1(x)v̄(x, t) (12a)

v̄t (x, t) − Λv̄x(x, t) = C2(x)ū(x, t) (12b)

ū(0, t) = Q0v̄(0, t) (12c)

v̄(1, t) = R1ū(1, t) + B1ql(t) + B1χ (12d)

y(t) = ū(1, t) − θ (12e)

for the system states

ū(x, t) =
[
ū0(x, t) ū1(x, t) . . . ūn(x, t)

]T (13a)

v̄(x, t) =
[
v̄0(x, t) v̄1(x, t) . . . v̄n(x, t)

]T (13b)

and where C1, C2,Q0, R1, B1 are the same coefficients as in (7),
θ ∈ Rn+1 is a vector of unknown coefficients, and

χ =
[
χ0 χ1 . . . χn

]T
, χi =

mi∑
j=1

χi,j, (14)

is a vector of the individual pipes’ total leak sizes. The initial
conditions are given as ū(x, 0) = ū0(x), v̄(x, 0) = v̄0(x) for ū0, v̄0 ∈

C([0, 1])n+1.

Lemma 3. The transformation

ūi(x, t) =
1
(
qi(xli, t) + δ′

i (xli)χi +
Ai√ (

pi(xli, t)
2 β̄ρ

3

+ ρg
∫ xli

0
sin(φi(γ ))dγ +

ρ

A2
i
ηiδ

′

i (xli)χi

−
Fi
Ai

δi(xli)χi

))
eγix (15a)

v̄i(x, t) =
1
2

(
qi(xli, t) + δ′

i (xli)χi −
Ai√
β̄ρ

(
pi(xli, t)

+ ρg
∫ xli

0
sin(φi(γ ))dγ +

ρ

A2
i
ηiδ

′

i (xli)χi

−
Fi
Ai

δi(xli)χi

))
e−γix (15b)

for i = 0, 1, . . . , n, maps the system consisting of (1) and (5) into
(12), with coefficients

Λ = diag[λ], Cj(x) = diag[cj(x)] (16a)

Q0 = In+1 −
2
AT

a11×(n+1) (16b)

R1 = −e−2Γ , B1 = e−Γ , (16c)

where

λ =
[
λ0 λ1 . . . λn

]T (17a)

cj(x) =
[
c0,j(x) c1,j(x) . . . cn,j(x)

]T (17b)

θ =
[
θ0 θ1 . . . θn

]T
, (17c)

Γ = diag[γ0, γ1, . . . , γn] (17d)

for j = 1, 2, with elements

λi =
1
li

√
β̄

ρ
, γi =

liFi
2
√

β̄ρ
(18a)

i,1(x) = −λiγie2γix, ci,2(x) = −λiγie−2γix (18b)

θi = eγiχi

(
1
2

+
γi

li
(νi − li) +

ηi

2Ai

√
ρ

β

)
(18c)

a =
[
A0 A1 . . . An

]T
, AT =

n∑
i=0

Ai, (18d)

for i = 0, 1, . . . , n.

We see that θ contains components that are functions of
the leak sizes χi and leak positions νi, as well as the leak hole
parameters ηi. It is thus an uncertain factor.

Proof. The proof of the mapping of (1) into (12a)–(12b) re-
quired very minor modifications compared to Aamo (2016), and is
therefore omitted. The boundary conditions, however, need extra
consideration.

The mapping of the dynamics into the dynamics is very similar
to the corresponding mapping in Aamo (2016), and therefore
omitted.

Evaluating (15) at x = 0 and using (10a), we find

ūi(0, t) =
1
2

(
qi(0, t) +

Ai√
β̄ρ

pi(0, t)
)

(19a)

v̄i(0, t) =
1
2

(
qi(0, t) −

Ai√
β̄ρ

pi(0, t)
)

(19b)

and hence

qi(0, t) = ūi(0, t) + v̄i(0, t) (20a)

pi(0, t) =

√
β̄ρ

Ai
(ūi(0, t) − v̄i(0, t)) (20b)
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or i = 0, 1, . . . , n. Inserting (20) into (5b) gives
n∑

i=0

ūi(0, t) = −

n∑
i=0

v̄i(0, t) (21a)

Ajū0(0, t) − A0ūj(0, t) = Ajv̄0(0, t)

− A0v̄j(0, t) (21b)

for j = 1, 2, . . . , n. These equations can be written

(Q 0
0 + Q 1

0 )ū(0, t) = (−Q 0
0 + Q 1

0 )v̄(0, t) (22)

where

Q 0
0 =

[
11×(n+1)
0n×(n+1)

]
, Q 1

0 =

⎡⎢⎢⎣
0 0 . . . 0
A1 −A0 . . . 0
...

...
. . .

...

An 0 . . . −A0

⎤⎥⎥⎦ . (23)

It is straightforward to show that det(Q 0
0 + Q 1

0 ) = An−1
0 AT , and

hence Q 0
0 + Q 1

0 is invertible since A0, AT > 0, which then gives

ū(0, t) = Q0v̄(0, t) (24)

for

Q0 = (Q 0
0 + Q 1

0 )
−1(−Q 0

0 + Q 1
0 ) (25)

which, when written out, has the form (16b). Similarly as for
det(Q 0

0 +Q 1
0 ), it is straightforward to prove that det(−Q 0

0 +Q 1
0 ) =

−An−1
0 AT , and hence det(Q0) = −1, independent of n. The matrix

Q0 is thus invertible. In fact, it turns out that Q0 is an involutory
matrix, meaning that Q−1

0 = Q0.
Evaluating the transformation (15) at x = 1, yields

ūi(1, t) =
1
2

(
qi(li, t) + χi +

Ai√
β̄ρ

(
pi(li, t)

+ hi +
ρ

A2
i
ηiχi −

Fi
Ai

δi(li)χi

))
eγi (26a)

v̄i(1, t) =
1
2

(
qi(li, t) + χi −

Ai√
β̄ρ

(
pi(li, t)

+ hi +
ρ

A2
i
ηiχi −

Fi
Ai

δi(li)χi

))
e−γi (26b)

where we inserted (10a) and defined

hi = ρg
∫ li

0
sin(φi(γ ))dγ . (27)

olving for qi(li, t) gives

i(li, t) = e−γi ūi(1, t) + eγi v̄i(1, t) − χi, (28)

nd hence

¯ i(1, t) = −e−2γi ūi(1, t) + e−γiqi,li (t) + e−γiχi (29)

or i = 0, 1, 2, . . . , n, which on vectorized form can be written
12d), with R1 and B1 defined in (16c), and where we recall the
efinition of ql as stated in (6a), and the vector χ defined in
14). □

.3. Affine transformation

Lastly, we introduce an affine transformation mapping (12) to
7).

emma 4. The transformation

u(x, t) = ū(x, t) − G (x)θ − H (x)χ (30a)
1 1

4

v(x, t) = v̄(x, t) − G2(x)θ − H2(x)χ (30b)

where

G1(x) = e−Γ (1−x), G2(x) = −e−Γ (1+x) (31a)

H1(x) = Γ eΓ x(1 − x) (31b)

H2(x) = e−Γ x(I − Γ (1 − x)) (31c)

maps system (12) into (7), with κ given as

κ =
[
κ0 κ1 . . . κn

]T
= Σθ + Πχ (32)

here

Σ = {σij}i,j=0,1,...,n = −(Q0 + In+1)B1 (33a)

= {πij}i,j=0,1,...,n = Q0(In+1 − Γ ) − Γ . (33b)

roof. Differentiating (30a) with respect to time and space,
espectively, and inserting into (12a) gives

= ut (x, t) + Λux(x, t) − C1(x)v(x, t)

+

(
ΛG′

1(x) − C1(x)G2(x)
)

θ

+

(
ΛH ′

1(x) − C1(x)H2(x)
)

χ (34a)

sing the fact that (31) satisfy ΛG′

1(x) = C1(x)G2(x), ΛG′

2(x) =

C2(x)G′

1(x) we obtain the dynamics (7a). A similar derivation
ith (30a) and (12a), using ΛH ′

1(x) = C1(x)H2(x), ΛH ′

2(x) =

C2(x)H ′

1(x) gives (7b). Now inserting (30) into the boundary
ondition (12d) and the measurement (7e) gives

¯(1, t) = R1u(1, t) +

(
R1G1(1) − G2(1)

)
θ

+

(
R1H1(1) − H2(1) + B1

)
χ + B1ql(t) (35a)

y(t) = u(1, t) +

(
G1(1) − I

)
θ + H1(1)χ (35b)

sing that G1,G2,H1,H2 as defined in (31) satisfies

G1(1) = I, G2(1) = R1 = −e−2Γ (36a)

1(1) = 0, H2(1) = B1 = e−Γ , (36b)

e obtain (7c)–(7d) and (7e). Lastly, using (30), the boundary
ondition (7d) gives (7d), with

=

(
Q0G2(0) − G1(0)

)
θ +

(
Q0H2(0) − H1(0)

)
χ. (37)

valuating (31) at x = 0 gives G1(0) = e−Γ
= B1, G2(0) =

e−Γ
= −B1, H1(0) = Γ , H2(0) = I − Γ . and substituting this

nto (37) gives (32)–(33). □

. Observer design

The system (7) has a well-investigated form usually referred
o as an ‘‘n + m-system’’ (Hu et al., 2016), where in our case, the
and m in ‘‘n+m’’ both equal n+ 1. An observer estimating the
tates (u, v) in a system in form (7) for the case κ = 0 was first
roposed in Hu et al. (2016) for the constant coefficients-case.
stabilizing controller was also proposed. The extension of the

ontroller to spatially varying coefficients was done in Hu et al.
2019), while the extension of the observer to spatially varying
oefficients was done in Wilhelmsen, Anfinsen, and Aamo (2019).
he observer achieves finite-time convergence.
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An observer estimating an additive term κ entering at the
boundary at x = 0 was first proposed for coupled 2 × 2 sys-
tems in Aamo (2013), and later extended to n + m-systems
in Anfinsen and Aamo (2017) for the case with constant coeffi-
cients. However, the extension to spatially varying coefficients is
straightforward by combining the results in Anfinsen and Aamo
(2017) and Hu et al. (2019). As in the observer designs in Anfinsen
and Aamo (2017) and Hu et al. (2019), we require a specific
ordering of the transport speeds λi, i = 0, 1, . . . , n, as stated in
the following assumption.

Assumption 5. The transport speeds λi, i = 0, 1, . . . , n are
rranged in a non-decreasing order, that is

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn. (38)

This assumption is not restrictive, since this can always be
chieved by a permutation of the elements of u.

.1. Observer and its properties

Combining the results of Anfinsen and Aamo (2017) and Hu
t al. (2019), we propose the observer

ˆ t (x, t) + Λûx(x, t) = C1(x)v̂(x, t)

+ K1(x)(y(t) − û(1, t)) (39a)

v̂t (x, t) − Λv̂x(x, t) = C2(x)û(x, t) (39b)

+ K2(x)(y(t) − û(1, t)) (39c)

û(0, t) = Q0v̂(0, t) + κ̂(t) (39d)

v̂(1, t) = R1y(t) + B1ql(t) (39e)

with the adaptive law for κ

˙̂κ(t) = L(y(t) − û(1, t)), κ̂(0) = κ̂0 (40)

where κ̂0 ∈ Rn+1, and some initial conditions û(x, 0) = û0(x),
v̂(x, 0) = v̂0(x), where û0, v̂0 ∈ C([0, 1])n+1, . The quantities K1, K2
are injection gains and L is an adaptive gain, all to be designed.

Consider the quantities

Ωα(x, ξ ) = [ωα
ij (x, ξ )]i,j=0,1,...,n (41a)

Ωβ (x, ξ ) = [ω
β

ij (x, ξ )]i,j=0,1,...,n (41b)

given as the solution to the kernel equations

ΛΩα
x (x, ξ ) + Ωα

ξ (x, ξ )Λ = C1(x)Ωβ (x, ξ ) (42a)

−ΛΩβ
x (x, ξ ) + Ω

β

ξ (x, ξ )Λ = C2(x)Ωα(x, ξ ) (42b)

ΛΩα(x, x) − Ωα(x, x)Λ = 0 (42c)

ΛΩβ (x, x) + Ωβ (x, x)Λ = C2(x) (42d)

Ωα(0, ξ ) − Q0Ω
β (0, ξ ) = M(ξ ) (42e)

ωα
ij (x, 1) = 0, 0 ≤ j < i ≤ n (42f)

where M(ξ ) is a strictly lower triangular matrix with components
mij(x), that is

M(x) = {mij(x)}i,j=0,1,...,n

=

{
0 if 0 ≤ j ≤ i ≤ n
mij(x) otherwise.

(43)

Well-posedness of the PDE (42) is ensured by Hu et al. (2019,
Theorem A.1) and Assumption 5.

Theorem 6. Consider system (7), the observer (39) and update law
(40). Select the output injection gains K1 and K2 as

K1(x) = Ωα(x, 1)Λ −

∫ 1

Ωα(x, ξ )dξFαL − FαL (44a)

x
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K2(x) = Ωβ (x, 1)Λ −

∫ 1

x
Ωβ (x, ξ )dξFαL (44b)

and the adaptive gain L so that LFα is Hurwitz, where

Fα
=

(
In+1 +

∫ 1

0
M(ξ )dξ

)−1

. (45)

Then

κ̂ → κ (46a)

û(x, ·) → u(x, ·), v̂(x, ·) → v(x, ·), ∀x ∈ [0, 1] (46b)

exponentially fast, with a rate of convergence governed by the eigen-
values of LFα , which can be arbitrarily placed by selection of L.

This theorem will be proved over the next subsections.

4.2. Error dynamics

Define the estimation errors ũ = u − û, ṽ = v − v̂, κ̃ = κ − κ̂ ,
for which we immediately obtain the dynamics

ũt (x, t) + Λũx(x, t) = C1(x)ṽ(x, t)

− K1(x)ũ(1, t) (47a)
ṽt (x, t) − Λṽx(x, t) = C2(x)ũ(x, t)

− K2(x)ũ(1, t) (47b)

ũ(0, t) = Q0ṽ(0, t) + κ̃(t) (47c)

ṽ(1, t) = 0 (47d)

and
˙̃κ(t) = Lũ(1, t) (48)

where the initial conditions ũ(x, 0) = û0(x), ṽ(x, 0) = v̂0(x), are
given as ũ0 = u0 − û0, ṽ0 = v0 − v̂0.

4.3. Decoupling by backstepping

We proceed by designing the injection gains K1 and K2, and
the adaption gain L by performing a backstepping transformation
design. Consider the target system

αt (x, t) + Λαx(x, t) = C1(x)β(x, t) + FαLα(1, t)

+

∫ 1

x
Bα(x, ξ )β(ξ, t)dξ (49a)

βt (x, t) − Λβx(x, t) =

∫ 1

x
Bβ (x, ξ )β(ξ, t)dξ (49b)

α(0, t) = Q0β(0, t) −

∫ 1

0
M(ξ )α(ξ, t)dξ

+ κ̃(t) (49c)

β(1, t) = 0 (49d)

for some matrices Bα, Bβ of appropriate sizes and initial condi-
tions α(x, 0) = α0(x), β(x, 0) = β0(x). Consider also the adaptive
law
˙̃κ(t) = Lα(1, t). (50)

Lemma 7. The backstepping transformation

ũ(x, t) = α(x, t) +

∫ 1

x
Ωα(x, ξ )α(ξ, t)dξ (51a)

ṽ(x, t) = β(x, t) +

∫ 1

x
Ωβ (x, ξ )α(ξ, t)dξ (51b)
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w
i

ith (Ωα, Ωβ ) as the solution to (42), maps system (49) and (50)

nto (47) and (48) with injection gains (K1, K2) given from (44),
provided (Bα, Bβ ) satisfy the integral equations

Bα(x, ξ ) = −Ωα(x, ξ )C1(ξ )

−

∫ ξ

x
Ωα(x, s)Bα(s, ξ )ds (52a)

Bβ (x, ξ ) = −Ωβ (x, ξ )C1(ξ )

−

∫ ξ

x
Ωβ (x, s)Bα(s, ξ )ds. (52b)

The proof of Lemma 7 follows the same steps as the proof of
Lemma 10 in Anfinsen and Aamo (2017), with minor modifica-
tions to accommodate the spatially varying coefficients C1 and C2.
The proof is therefore omitted.

4.4. Affine transformation

From the structure of system (49), we have β ≡ 0 for t ≥ tmax
(see Anfinsen and Aamo (2019, p. 126)), where

tmax = max
i=0,1,...,n

λ−1
i = λ−1

0 , (53)

and the system is reduced into

αt (x, t) + Λαx(x, t) = FαLα(1, t) (54a)

α(0, t) = −

∫ 1

0
M(ξ )α(ξ, t)dξ

+ κ̃(t) (54b)

with α(x, 0) = α0(x). Consider the target system

wt (x, t) + Λwx(x, t) = 0 (55a)

w(0, t) = −

∫ 1

0
M(ξ )w(ξ, t)dξ (55b)

with w(x, 0) = w0(x), and adaptive law

˙̃κ(t) = LFα κ̃(t) + Lw(1, t). (56)

Lemma 8. The affine transformation

α(x, t) = w(x, t) + Fα κ̃(t) (57)

maps system (55), with w0(x) = α0(x) − Fα κ̃(0) and the adaptive
law (56), into (54) with the adaptive law (50).

Proof. Differentiating (57) with respect to time and space, re-
spectively, and inserting the update law (50), gives

wt (x, t) = αt (x, t) − Fα ˙̃κ(t)

= αt (x, t) − FαLα(1, t) (58a)

wx(x, t) = αx(x, t). (58b)

Inserting (58) into (55a), gives

0 = wt (x, t) + Λwx(x, t)

= αt (x, t) − FαLα(1, t) + Λαx(x, t) (59)

hence, (54a) holds. Evaluating (57) at x = 0 and inserting the
result and (57) into (55b) gives

α(0, t) = −

∫ 1

0
M(ξ )w(ξ, t)dξ

+

(
In+1 +

∫ 1

0
M(ξ )dξ

)
Fα κ̃(t). (60)
6

Hence Fα chosen as (45) gives the boundary condition (54b). The
initial condition w0 is given trivially as (57) at t = 0. Finally,
plugging the affine transformation (57) into the adaptive law (50),
we obtain (56).

4.5. Proof of Theorem 6

Proof. Since solutions of systems in the form (7) are bounded by
an exponential growth rate, and hence cannot diverge to infinity
in finite time (Anfinsen & Aamo, 2019, Theorem 1.1), it suffices to
consider solutions for t ≥ t0 for some t0 to establish convergence
properties. From the dynamics (55), valid for t ≥ λ−1

0 , and the
lower triangular form of M (recall (43)), it follows that w ≡ 0 for
t ≥ t0, where

t0 = ttot + λ−1
0 , ttot =

n∑
i=0

λ−1
i , (61)

and (56) is hence reduced to

˙̃κ(t) = LFα κ̃(t) (62)

for t ≥ t0. Since L is chosen by design so that LFα is Hurwitz, we
will have κ̃ → 0 exponentially fast, and hence (46a) holds.

Since β ≡ 0 and w ≡ 0 for t ≥ t0, it follows from Lemmas 7
and 8 that

ũ(x, t) =

(
In+1 +

∫ 1

x
Ωα(x, ξ )dξ

)
Fα κ̃(t) (63a)

ṽ(x, t) =

∫ 1

x
Ωβ (x, ξ )dξFα κ̃(t). (63b)

for t ≥ t0. Since all coefficients Ωα, Ωβ , Fα , are bounded, and
κ̃ → 0 at an exponential rate, it follows that ũ(x, ·), ṽ(x, ·) → 0
at an exponential rate, and hence (46b) holds.

5. Estimation of leak size and position

We will here use the exponentially converging estimate κ̂

from Theorem 6 to estimate the total leak size in the system,
which is obtained regardless of how the leak is distributed in the
network, and regardless of the values of the leak hole parameters
ηi, i = 0, 1, . . . , n. Then, under the additional assumption that the
leak is a point leak, we prove that κ̂ also reveals which branch
contains the leak along with its location.

5.1. Total leak size estimation

From Theorem 6 and the following lemma, it follows that
1T κ̂ → −

∑n
i=0 χi exponentially fast.

Lemma 9. For κ defined in (32), we have

1
Tκ = −

n∑
i=0

χi. (64)

Proof. From the definitions of Σ and Π in (33), we have

1
TΣ = −1

T (Q0 + In+1)B1 = −1
T (2In+1 −

2
AT

a1T )B1

= −(21T −
2
AT
1
Ta1T )B1

= −(21T −
2
AT1

T )B1 = 0 (65)

AT
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κ

nd
TΠei = 1

T (Q0(In+1 − Γ ) − Γ )ei

= 1
T ((In+1 −

2
AT

a1T )(In+1 − Γ ) − Γ )ei

= ((1T −
2
AT
1
Ta1T )(In+1 − Γ ) − 1

TΓ )ei

= ((1T − 21T )(In+1 − Γ ) − 1
TΓ )ei

= −1
T ((In+1 − Γ ) + 1

TΓ )ei = −1. (66)

Combining (65) and (66), we have

1
Tκ = 1

TΣθ + 1
TΠχ = 1

TΠ

n∑
i=0

eiχi = −

n∑
i=0

χi. □ (67)

5.2. Leak localization

The vector κ defined in (32) contains n + 1 components that
are linear combinations of the total of 2n + 2 components of
χ and θ , meaning that all components of θ and χ cannot be
uniquely extracted from κ . This comes from the fact that it is
impossible, in the chosen approach, to identify an arbitrary leak
distribution in the network from boundary measurements only,
as shown in Aamo (2016). However, the most likely leak event,
namely that a single point leak occurs in one of the branches, can
be handled. Moreover, we can handle multiple leak events pro-
vided they occur sufficiently separated in time to allow parameter
convergence in between events. Subject to this requirement, it
turns out that the branch that contains the leak can be identified
in finite time, and the location within the branch can be estimated
with exponential convergence.

Theorem 10. Consider system (7) and the observer of Theorem 6.
Suppose the leak sizes and distributions

χ̄ =
[
χ̄0 χ̄1 . . . χ̄n

]T
, ν̄ =

[
ν̄0 ν̄1 . . . ν̄n

]T (68)

are known, and let θ̄i and κ̄i denote the respective values obtained
by (18c) and (32). Suppose an additional point leak of size χ̌ > 0
occurs in pipe k ∈ {0, 1, . . . , n} at location z∗

∈ (0, lk), and let θ
and κ denote the (unknown) values obtained from (32) and (18c),
respectively, after the occurrence of the new point leak. Let
ˆ̌χ (t) = −1

T ˆ̌κ(t) (69a)

ˆ̌
θj(t) =

[
ˆ̌
θ0
j (t)

ˆ̌
θ1
j (t) . . .

ˆ̌
θn
j (t)

]T
(69b)

ˆ̌
θ i
j (t) =

ˆ̌κi(t) − πijχ̂ (t)
σij

, i, j = 0, 1, . . . , n, (69c)

k̂(t) = arg min
j∈{0,1,...,n}

⏐⏐⏐ ˆ̌θj(t) − 1|
ˆ̌
θj(t)|

⏐⏐⏐ (69d)

θ̂k(t) = θ̄k +
1

n + 1
1
T ˆ̌
θk(t) (69e)

χ̂k(t) = χ̄k + ˆ̌χ (t) (69f)

ν̂k(t) = lk −
ρ

FkAk
ηk −

lk
γk

(
1
2

− e−γk
θ̂k(t)
χ̂k(t)

)
(69g)

ẑ∗(t) =
1

ˆ̌χ (t)

(
χ̂k(t)ν̂k(t) − χ̄kν̄k

)
(69h)

where ˆ̌κ is generated from κ̂ produced by Theorem 6 as
ˆ̌κ(t) = κ̂(t) − κ̄ . (70)

hen, ˆ̌χ → χ̌ with exponential convergence. Moreover, there exists
T > 0 after which k̂ = k, and ẑ∗

→ z∗ with exponential
convergence.
7

Remark 11. Notice that (69g) implicitly expresses in mathemat-
ical terms some properties that can be argued from intuition. (1)
Division by χ̂ (t): clearly, localization requires that there actually
is a leak in the network. (2) Division by Fk: localization requires
viscous friction.

Remark 12. Note that in the case of multiple leaks present in
pipe k prior to the new leak occurring, the positions of these leaks
need not to be known for the new leak’s position to be identified.
Only the weighted sum ν̄k need to be known, which does not
necessarily include the leaks’ exact positions.

Proof. By Lemma 9, we have 1T κ̄ = −
∑n

i=0 χ̄i and 1Tκ =

−
∑n

i=0 χ̄i−χk = 1T κ̄−χ̌ , meaning that χ̌ = −1T (κ−κ̄) = −1T κ̌

here we have defined

ˇ = κ − κ̄ . (71)

ow, since by Theorem 6, κ̂ → κ , and κ̄ is assumed known, (69a)
ollows with ˆ̌κ generated using (70).

By the definition of κ in (32), we have before the occurrence
f the new leak the following relationship

¯i =

n∑
j=0

σijθ̄j +

n∑
j=0

πijχ̄j. (72)

ith the occurrence of the new leak, the expression for κi is

i =

n∑
j=0

σijθj +

n∑
j=0

πijχj. (73)

ince χj = χ̄j, and θj = θ̄j for all j ̸= k, with χk = χ̄k + χ̌ , we have

i =

n∑
j=0

σijθ̄j +

n∑
j=0

πijχ̄j + σik(θk − θ̄k) + πikχ̌

= κ̄i + σikθ̌k + πikχ̌ (74)

here we have defined

ˇk = θk − θ̄k. (75)

ikewise, we form κ̌i as the difference between the values of κi
nd κ̄i, which is found from (74) as

ˇi = κi − κ̄i = σikθ̌k + πikχ̌ . (76)

Written out, the components σij and πij are

σij = 2
Ai

AT
e−γj − 2δije−γj (77a)

πij = δij(1 − 2γj) − 2
Ai

AT
(1 − γj) (77b)

where

δij =

{
1 for i = j
0 otherwise.

(78)

Assuming the leak is in pipe j, and based on (76), we let

κ̌i = σijθ̌
i
j + πijχ̌ , (79)

from which we obtain n + 1 values of θ̌j as

θ̌ i
j =

κ̌i − πijχ̌

σ
. (80)
ij
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onsider the difference

ˇ i
j − θ̌m

j =
κ̌i − πijχ̌

σij
−

κ̌m − πmjχ̌

σmj

=
σikθ̌k + πikχ̌ − πijχ̌

σij
−

σmkθ̌k − πmkχ̌ + πmjχ̌

σmj

=

(
σik

σij
−

σmk

σmj

)
θ̌k +

(
πik − πij

σij
−

πmk − πmj

σmj

)
χ̌ (81)

here we have inserted (76) for κ̌i. Clearly, when j = k, we have
θ̌ i
j = θ̌m

j for all i,m, meaning that all θ̌ i
k, i = 0, 1, 2, . . . n, are

qual. Consider now the case j ̸= k, and m = k, i ̸= j, i ̸= k.
nserting the definitions (77), we get

ˇ i
j − θ̌m

j

=

(
σik

σij
−

σkk

σkj

)
θ̌k +

(
πik − πij

σij
−

πkk − πkj

σkj

)
χ̌

=

(
2 Ai

AT
e−γk

2 Ai
AT

e−γj
−

2 Ak
AT

e−γk − 2e−γk

2 Ak
AT

e−γj

)
θ̌k

+

(
−2 Ai

AT
(1 − γk) + 2 Ai

AT
(1 − γj)

2 Ai
AT

e−γj

−

(1 − 2γk) − 2 Ak
AT

(1 − γk) + 2 Ak
AT

(1 − γj)

2 Ak
AT

e−γj

)
χ̌

=

(
eγj−γk −

Ak − AT

Ak
eγj−γk

)
θ̌k

+

(
(γk − γj)eγj −

AT (1 − 2γk)
2Ake−γj

− (γk − γj)eγj

)
χ̌

=
AT

Ak
eγj−γk θ̌k −

1
2
AT

Ak
(1 − 2γk)eγj χ̌ . (82)

or θ̌k, we have from the definitions (75) and (18c)

ˇk = θk − θ̄keγkχk

(
1
2

+
γk

lk
(νk − lk) +

ηk

2Ak

√
ρ

β̄

)
− eγk χ̄k

(
1
2

+
γk

lk
(ν̄k − lk) +

ηk

2Ak

√
ρ

β̄

)
. (83)

Utilizing that χk = χ̄k + χ̌ , this can be written

θ̌k = eγk
γk

lk
(χkνk − χ̄kν̄k)

+ eγk χ̌

(
1
2

− γk +
ηk

2Ak

√
ρ

β̄

)
. (84)

Inserting (84) into (82) gives

θ̌ i
j − θ̌m

j =
AT

Ak

γk

lk
eγj (χkνk − χ̄kν̄k)

+
1
2
AT

A2
k
eγj χ̌ηk

√
ρ

β̄
. (85)

ecall that χk = χ̄k + χ̌ , and by Corollary 2,

k =
1
χk

(χ̄kν̄k + χ̌z∗). (86)

nserting (86) into (85) gives

ˇ i
j − θ̌m

j =
AT

Ak
eγj χ̌

(
γk

lk
z∗

+
1
2

ηk

Ak

√
ρ

β̄

)
> 0. (87)

ence, θ̌ i
j and θ̌m

j are not equal for all i ∈ {0, 1, . . . , n} when
̸= k. As t → ∞, by Theorem 6 κ̂ → κ exponentially, so

ˆ̌
θ (t) − 1|

ˆ̌
θ (t)|

⏐⏐⏐ converges exponentially to 0 if j = k, while to
j j
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some number bounded away from zero if j ̸= k. Hence, there
exists T > 0 so that for j ̸= k, | ˆ̌θk(t) − 1|

ˆ̌
θk(t)∥ < |

ˆ̌
θj(t) − 1|

ˆ̌
θj(t)∥

or all t > T , and hence (69d) will result in k̂ = k for t > T .
Solving (18c) for i = kwith respect to νk, and (86) with respect

to z∗ we have

νk = lk −
lk
γk

(
1
2

− e−γk
θk

χk

)
−

ρ

FkAk
ηk (88a)

z∗
=

1
χ̌

(χkνk − χ̄kν̄k) (88b)

where θk = θ̄k + θ̌k, χk = χ̄k + χ̌ and where we have used the
definition of γi in (18a). Substituting χ̌ with its estimate ˆ̌χ , and θ̌k
with an average of the estimates of the components in the vector
ˆ̌
θk, we obtain (69e)–(69h). □

6. Simulations

System (1) with boundary conditions (5) was implemented
in MATLAB for a water supply system supplying water for two
communities of consumers, that is n = 2. The following system
parameters were used

ρ = 1000 kg/m2, β̄ = 2.15 · 109 Pa, (89a)

0 =
π

4
(0.7)2 m2, A1 = A2 =

π

4
(0.3)2 m2 (89b)

l0 = 15 km, l1 = 12 km (89c)
l2 = 10 km, g = 9.81 m/s2, (89d)

where we note that Assumption 5 is satisfied. The coefficients
ηi, i = 0, 1, 2 are chosen according to (3) with γd,i = 0.8,
i = 0, 1, 2, as suggested in Bajura (1971) for point leaks. The
communities are assumed to have 50 and 70 thousand con-
sumers, respectively, consuming an average of 150 L of water
each per day. In addition, small fluctuations from this average are
implemented as uniformly distributed white noise. The reservoir
inlet is assumed to provide the required amount of water, with
a boundary condition (5a) given from a constant atmospheric
pressure, that is

p0(l0, t) = 105 Pa (90)

for all t ≥ 0. The inclination angles φi are set to 0 for pipes 1 and
2, and so that the total vertical drop is 120 m for pipe 0. Plugging
the parameters into the online pressure drop calculator (PipeLife,
2020), the friction factors were computed to be[
F0 F1 F2

]
=
[
4.45 23.07 31.51

]
kg/m3s. (91)

The observer of Theorem 6 and position estimator of Theo-
rem 10 were implemented in MATLAB, with all initial conditions
set to zero. The matrix L is chosen so that the poles of the matrix
LFα are located at (−1, −1 ± 1j). Initially, there were no leaks in
the system, with the following leaks occurring sequentially:

• t = 50 s: 10 L/s leak at z = 1.2 km in pipe i = 0.
• t = 100 s: 20 L/s leak at z = 2.4 km in pipe i = 1.
• t = 150 s: 10 /s leak at z = 7.2 km in pipe i = 1.

The spacing in time between the leaks is sufficient for the ob-
server to converge before the occurrence of the next leak, as the
simulation results in Figs. 2–5 show.

In Fig. 2, the flow in and out of the pipes at the in/outlets
at z = li are shown. A slight increase in the inflow of pipe
i = 0 can be observed as the total leak size increases. In Fig. 3,
the estimated leak sizes are shown. The leak sizes are correctly
estimated approximately fifteen seconds after the occurrence of
the leaks. Fig. 4 shows the estimated leak pipe index k̂ for the
three leaks, while Fig. 5 shows the estimated leak position for
the three leaks. The converge times are approximately the same
as for the estimated leak sizes: 15 s.
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Fig. 2. Flow at the in and outlets for first (solid red), second (dashed blue) and
third (dashed–dotted green) pipe.

Fig. 3. Estimated leak size for first (solid red), second (dashed blue) and third
dashed–dotted green) leak.

Fig. 4. Estimated leak pipe index for first (solid red), second (dashed blue) and
third (dashed–dotted green) leak.

Fig. 5. Estimated leak position for first (solid red), second (dashed blue) and
third (dashed–dotted green) leak.

7. Conclusions

We have extended the leak detection and localization algo-
ithm from Aamo (2016) to also cover branched pipe systems
ith an arbitrary number of pipes, and multiple leaks. Subject to
he assumption that leaks occur with sufficient spacing in time,
he proposed method manages to correctly estimate the size,
nd position of each individual leak. Simulations show that the
roposed observer manages to correctly estimate the leak sizes,
dentify the leaking pipes, and also estimate the leak positions in
he pipes. Clearly, the simulations presented benefit from ideal
onditions with perfectly known parameters. In practice, model
tructure errors, parametric uncertainty, particularly in friction
actors, and sensing quality will affect the estimation accuracy.
xperimental tests would give valuable insight into the practical
easibility of the approach.
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