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In an institution 𝛪, a praxeology 𝓅 is generally a modification of a praxeology 𝓅* 
coming from a collective of institutions 𝛪*, where the modification is conceptualised 
by the phenomenon of institutional transposition. This paper presents a praxeological 
analysis of the concept of concavity of functions as expressed in a mathematics 
textbook for Norwegian upper secondary school. The analysis shows how the 
institutional (here, didactic) transposition has “moved” the mathematics presented in 
upper secondary school away from the mathematics taught at the university and how 
this transposition has resulted in a poor logos block of the mathematics to be taught.  
Keywords: Transition to, across and from university mathematics; concavity; didactic 
transposition; praxeology; teaching and learning of analysis and calculus. 
INTRODUCTION 
The theory of didactic transposition (Chevallard, 1991) was introduced in 1985 by 
Yves Chevallard. The didactic transposition process refers to the transformations an 
object of knowledge undergoes from the moment it is produced by scholars, to the time 
it is selected and designed by noospherians to be taught, until it is actually taught (and 
studied) in a given educational institution (Chevallard & Bosch, 2014). When doing 
didactic transposition analyses, the empirical unit is enlarged to encompass data from 
outside of the mathematics classroom. This reflects the insight that to study teaching 
and learning of mathematics in the classroom, it is not enough to study what students 
and teachers are thinking and doing: the mathematics taught becomes itself an object 
of study. The researcher studies transformations between the following instances: the 
scholarly mathematical knowledge as it is produced by mathematicians; the 
mathematical knowledge to be taught as officially formulated in curriculums and as 
presented in textbooks; the mathematical knowledge as it is actually taught by teachers 
in classrooms; and the mathematical knowledge as it is actually learned by students 
(Bosch & Gascón, 2006). The didactic transposition process taking place between the 
mentioned instances is illustrated in Figure 1.  

 
Figure 1. Didactic Transposition Processes (adapted from Chevallard & Bosch, 2014, 
p. 171) 



  
In the research presented here, we have studied the didactic transposition of concavity 
of functions from scholarly knowledge to mathematical knowledge to be taught in 
secondary school. We have analysed transformations between the mathematical 
organisation of concavity of functions (in particular, its logos block) as expressed in a 
university textbook on calculus (Lindstrøm, 2016) and the mathematical organisation 
of the same theme as expressed in a mathematics textbook for Grade 12 (Kalvø et al., 
2021). As asserted by Winsløw (2022), the calculus presented in mathematics courses 
at the university is indeed the result of a didactic transposition of the calculus of the 
18th century. So, the mathematics presented in the university textbook analysed here 
is itself a body of transposed knowledge. An analysis of the transformations that this 
knowledge has undergone from the scholarly mathematical knowledge is however 
beyond the scope of this paper. 
The transformations of concavity of functions that have taken place between the 
university textbook and the school textbook have been studied through a praxeological 
analysis. Generally, praxeological analyses, together with analyses of didactic 
transposition processes that specific knowledge objects have undergone, help us 
understand which mathematics is taught in school, and why it has become so. Our study 
centres on the following research question: What are the transformations that the 
notion of concavity of functions has undergone during the didactic transposition 
process from the knowledge taught at the university to the knowledge to be taught in 
Norwegian upper secondary school? 
THEORETICAL TOOLS  
The study reported here has been conducted in the framework of the anthropological 
theory of the didactic (ATD; Chevallard, 2019). A praxeology of a body of knowledge 
is in the ATD a model of this knowledge. This model is a unit composed of four 
components: T, τ, θ and Θ (sometimes referred to as “the four t-s”), where T is a type 
of tasks, τ is a technique (or a set of techniques) to solve the tasks, θ is a technology, 
that is, a discourse describing and explaining the techniques, and Θ is a theory, that is, 
a discourse justifying θ. T and τ belong to the praxis block of the praxeology, whereas 
θ and Θ belong to the logos block. A praxeology 𝓅 is written: 𝓅 = [T / τ / θ / Θ].  
A praxeology 𝓅 is usually the product of the activity of an institution or a collective of 
institutions 𝛪. It is often the case that this “product” is the result of an institutional 
transposition of a praxeology 𝓅* living in a collective of institutions 𝛪* to a praxeology 
𝓅 that has to live within 𝛪 and thus has to satisfy a set of conditions and constraints 
specific to 𝛪 (Chevallard, 2020). This is the case when 𝛪 is a collective of “didactic” 
institutions, that is, institutions declaring to teach some bodies of knowledge, such as 
secondary schools for example. This is referred to as didactic transposition of 𝛪* into 
𝛪. Often, in this case, it is observed that 𝓅 is a “simplification” of 𝓅* through various 
processes. For example, it may be that a certain type of tasks T in 𝛪* becomes useless 
in 𝛪. It may be that a particular technique is inefficient, or that it leads the average user 
to make many mistakes. Moreover, in the process of transposition, it is likely that 𝓅* 



  
has been greatly simplified and thus distorted so the technology does not really justify 
the proposed technique. Finally, the theoretical elements are often implicit, repressed, 
or taken for granted. Therefore, for those who want to analyse a praxeology living in a 
given institution, the theoretical component is hard to bring to light. This is shown in 
the analysis section below.  
METHODICAL APPROACH 
The methodical approach is essentially that of didactic transposition analysis 
(Chevallard, 1991). The didactic transposition analysis of the concerned body of 
knowledge 𝓀	presented here	involves a comparison of praxeological analyses of two 
different “copies” (i.e., “transposed” versions) of 𝓀 as they appear in two different 
institutions. The data are the mentioned textbooks (in Norwegian)1: The first is 
Kalkulus, an introductory textbook on calculus for the university, published in 2016. It 
is written by Tom Lindstrøm, professor of mathematics at the university of Oslo. The 
second is Mønster [Patterns]: Mathematics R1, a Grade 12 mathematics textbook for a 
theoretical programme at upper secondary school, preparing for university studies in 
science, technology, engineering, and mathematics. It is part of a textbook series for 
the national curriculum since 2020, written by Tove Kalvø, Jens C. L. Opdahl, Knut 
Skrindo, and Øystein J. Weider, all serving as teachers in mathematics at (different) 
upper secondary schools. The reasons for the choice of these books are: Kalkulus is an 
introductory textbook used in the first calculus course taken by students enrolled in 
teacher education programmes for Grade 8–13 at several Norwegian universities; 
Mønster is part of a brand-new textbook series for the theoretical programme; it is not 
a revised version of an old series as are two other textbook series for the same 
programme (i.e., Borgan et al., 2021; Oldervoll et al., 2021).    
ANALYSIS OF A DIDACTIC TRANSPOSITION PROCESS 
We present here an analysis of concavity of functions as treated in the textbook Mønster 
(Kalvø et al., 2021, pp. 208–224) and compare it with the treatment of the same topic 
in the university textbook Kalkulus (Lindstrøm, 2016, pp. 313–321)—which we regard 
as closer to scholarly knowledge. The aim is to bring to light the didactic changes this 
knowledge object, as presented in Mønster, has been subjected to. 
The Logos Block of Concavity of Functions in Kalkulus 
In Chapter 6.4 of Kalkulus, with heading “Discussion of Curves”, there is a section 
entitled “Convex and Concave Functions” (pp. 283–288).2 The author starts with a 
geometrical definition of the concepts of convex function and concave function: 

6.4.5 Definition The function f is called convex on the interval I if every time we select 
two points a, b ∊	I, then no point on the line segment between (a, f(a)) and (b, f(b)) will be 

 
1 Quotations from these textbooks have been translated into English by the first author.  
2 For functions, being convex and concave is synonymous with being “concave up” and “concave 
down”, respectively (as used by e.g. Adams & Essex, 2018). 



  
below the graph of y = f(x) (see Figure 2).3 We say that f is concave on I if every time we 
select two points a, b ∊	I, then no points on the line segment between (a, f(a)) and (b, f(b)) 
will be above the function graph (see Figure 3). (Lindstrøm, 2016, p. 314) 

 
Figure 2. Convexity of a Function (taken from Lindstrøm, 2016, p. 314) 

 
Figure 3. Concavity of a Function (taken from Lindstrøm, 2016, p. 314) 

The author continues to build up elements in the logos block, which allows him to 
deduce a connection between concavity and the second derivative of a function twice 
differentiable. To be able to use the mean value theorem in the proof of the theorem 
that establishes the sought relationship, the following lemma using difference quotients 
is presented (p. 315): 

6.4.6 Lemma     A function is convex on an interval I if and only if the following applies. 
For all points a, b, c ∊ I such that a < c < b, we have   
!(#)%!(&)

#%&
	≤ 	 !(')%!(#)

'%#
.   (1) 

Correspondingly, f is concave on I if and only if  
!(#)%!(&)

#%&
	≥ !(')%!(#)

'%#
.  (2) 

The author writes that the two statements can be proved the same way and presents a 
proof for the convexity part of the lemma:  

Proof: Assume first that f is convex. Then the point (c, f(c)) cannot be above the segment 
connecting (a, f(a)) and (b, f(b)), and we must have the situation shown in Figure 4a.  

When we compare the slopes k, k1, and k2 of the three segments in the figure, we see that 
k1 ≤ k ≤ k2, which means that  

 
3 Figures taken from Kalkulus used in this paper are given titles by the authors (figures are untitled in 
the source). Moreover, we have renumbered them to have continuous numbering of figures.  



  
!(#)%!(&)

#%&
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'%&
	≤ 	 !(')%!(#)

'%#
. 

If we omit the middle part, we get (1). (Lindstrøm, 2016, p. 315) 

       
Figure 4. Convexity (left image) and Non-convexity (right image) (taken from 

Lindstrøm, 2016, pp. 315–316) 

The next step of the author is assuming that f is not convex and showing, consequently, 
that (1) does not hold:  

Since f is not convex, we can find points a, b, c ∊ I so that a < c < b and (c, f(c) is above 
the segment connecting (a, f(a)) and (b, f(b)); this means that we have the situation shown 
in Figure 4b.   

We now see that the ratio between the slopes is k1 > k > k2 – in other words 
!(#)%!(&)

#%&
>	 !(')%!(&)

'%&
>	 !(')%!(#)

'%#
. 

If we omit the middle part, we get the inverse inequality of (1). ∎ (Lindstrøm, 2016, 
pp. 315–316)   

Then everything is ready to state the theorem that is the central theoretical element in 
the author’s mathematical organisation of the logos part of concavity of functions:  

6.4.7 Theorem     Assume that f   is continuous on an interval I and that f  ″(x) ≥ 0 for all 
inner points x ∊ I. Then f is convex on I. If instead f  ″(x) ≤ 0 for all inner points of I, then f 
is concave on I. (Lindstrøm, 2016, p. 316) 

The proof addresses the convexity part of the theorem, using the above lemma: 
Proof: Choose three points a, b, c ∊ I so that a < c < b. According to Lemma 6.4.6, it 
suffices to prove that !(#)%!(&)

#%&
≤	 !(')%!(#)

'%#
. By the mean value theorem, there exist two 

numbers c1 ∊ (a, c) and c2 ∊ (c, b) so that !(#)%!(&)
#%&

= 𝑓′(𝑐()  and !(')%!(#)
'%#

= 𝑓′(𝑐)). Since 
f  ″(x) ≥ 0, f  ′ is increasing and, consequently, f  ′(c2) ≥ f  ′(c1) [because c1 < c < c2]. Hence 
!(#)%!(&)

#%&
= 𝑓*(𝑐() ≤ 𝑓*(𝑐)) =

!(')%!(#)
'%#

. ∎ (p. 316) 

After this, two examples are given that discuss convexity / concavity. The second 
example introduces the notion of inflection point with this formulation: “a is an 
inflection point for f if f is continuous at a and there exists an ε > 0 so that f is convex 
on one of the intervals (a – ε, a), (a, a + ε) and concave on the other” (p. 318). An 



  
inflection point is a point where a function changes from being concave to being 
convex or vice versa. This is succeeded by 18 tasks that address appearances of curves 
more broadly. 
The above is a brief account of the “scientific” treatment of the concept of concavity 
in Kalkulus, which describes the constituent parts of the logos block of concavity: 1) a 
definition of convex / concave function; 2) the mean value theorem (proved in a 
previous section) used in the proof of a lemma to be used in the proof of a central 
theorem with respect to the concept at stake; 3) the mentioned lemma (with proof); 4) 
the central theorem (with proof) declaring a connection between the sign of the second 
derivative and the concavity / convexity of a function; 5) a definition of inflection point. 
The Mathematical Organisation of Concavity of Functions in Mønster 
Here, we analyse the treatment of concavity of functions in Mønster (Kalvø et al., 2021) 
One remarkable point is that the section devoted to concavity issues is entitled “The 
Second Derivative”. The question of the concavity of functions is thus presented as an 
application of the notion of second derivative. The words concave and concavity do 
not appear in the textbook: they are replaced by the expressions “hollow side” (hul 
side)4—the side that faces either down or up—and “curvature” (krumning), 
respectively. We will see that this is a “symptom” of the treatment of concavity by the 
given textbook. These notions appear in the following passage: 

We compare this with the graph of f and see the following: 
• When f″ is negative, f ′ is decreasing and the graph of f turns its hollow side down. 
• When f″ is positive, f ′ is increasing and the graph of f turns its hollow side up.  
A function with a graph turning its hollow side up or down is not linear. We say that the 
graph curves, and we mark the curvature of the graph with an arc below the sign line (see 
Figure 5). (Kalvø et al., 2021, pp. 211–212) 

 
Figure 5. Sign Line for the Second Derivative (adapted from Kalvø et al., 2021, p. 211) 

In this way, words that are traditional in mathematics (concave/convex, 
concavity/convexity) but which, a priori, mean nothing to the students, are replaced by 
expressions (hollow side facing down/up, curvature) that make sense in everyday 

 
4 Throughout the paper, italicized words in parentheses refer to Norwegian words used in Mønster.  



  
language, which in this case have a metaphorical value, and which are used here as 
definitions. The same is true for inflection point, where the authors use the notion 
“turning point” (vendepunkt). 

The point where the graph goes from facing the hollow side up to [facing] the hollow side 
down (or vice versa), is called the turning point. At the turning point, the sign of the 
derivative changes. (p. 211) 

The technology of this technique (using a sign line for the second derivative) is in fact 
reduced to a minimum. The authors of the textbook have adopted a “naturalistic” 
approach to functions. They do so by considering a specimen function regarded as 

generic, in this case the function defined by 𝑓(𝑥) =
	!
"
𝑥# + !

$
𝑥$	 for all x ∈ ℝ. The graphs of f and f′(x) 

=	!
$
	𝑥$ + 𝑥 are shown in Figure 6 (adapted from 

Kalvø et al., 2021, p. 211). Looking at the graph of 
f, we “see” that f first increases, reaches a maximum 
at a point that appears to be – 2, then decreases and 
reaches a minimum at x = 0, before increasing again. 
Let us then try to determine “visually” the intervals 
in which f is either concave or convex.  
The function f is first concave, up to a value x0 
somewhere between – 2 and 0; then it becomes 
convex after x0. How can we determine x0?  

Figure 6. The Graphs of f, f′, and f′′ 

To do this, we need to look not at the values of the derivative, but at how the derivative 
varies—that is, how the slope of the tangent to the graph of f′ changes.  
Instead of examining the graphs of f  and f ′, it is technically more concise to simply 
examine the graph of f ″ (see Figure 6). Here, f ″(x) = x + 1. The second derivative f ″ is 
therefore represented by a straight line with slope 1. It is strictly negative when x < –
 1, zero for x = x0 = – 1 and strictly positive when x > – 1. The reader can examine two 
animated GIFs, where the first GIF (first link) highlights the values (positive, negative) 
of f ′ while the second GIF (second link) highlights the fact that f ′ is increasing or 
decreasing. 

https://commons.wikimedia.org/w/index.php?title=File:Tangent_function_animation.gif
&oldid=507127692 

https://upload.wikimedia.org/wikipedia/commons/7/78/Animated_illustration_of_i
nflection_point.gif.  

If we look at the treatment of concavity in Mønster as a certain praxeology, we can 
analyse it as explained in the following paragraphs.  
The type of tasks T studied is formulated more allusively than explicitly. A task t of 
type T consists in determining the curvature of the graph of a given function f and 



  
finding its possible turning point(s). This involves determining intervals of ℝ on which 
f is either “concave down” or “concave up” by examining a “sign line” as shown in 
Figure 5. 
The notion of concavity is hinted at, rather than properly defined. This is made 
possible, among other things, by a linguistic “manipulation” which is one of the keys 
to the didactic transposition carried out by the authors: the words concavity and 
inflection point do not appear. “Concavity” is replaced by the expression “hollow side 
down / up” associated with the expression “curvature”; “inflection point” is replaced by 
“turning point”. While the words “concavity” and “inflection point” are relatively 
opaque words in ordinary language, and therefore require comments, if not a precise 
definition, the expressions by which they are replaced belong to everyday language and 
are known to all, which authorizes the authors not to say more about them. 
The technique τ to perform a task t ∈ T consists in calculating the second derivative f ″ 
(differentiating a function: type of tasks T1) and studying its sign (determining the sign 
of a function: type of tasks T2). In essence, both T1 and T2 are assumed to have been 
studied beforehand and to be now largely routinised. The only new feature is that, given 
the function f, the derivatives f ′ and f ″ must be calculated successively. 
The technology θ of the technique τ is reduced to next to nothing. One would expect 
that when f is concave down, the authors would point out to their readers that the slope 
of the tangent decreases. Instead, they invite them to observe, on the graph of f ′, that 
f ′ is decreasing. Even more so, they do not care to mention the equivalence of various 
properties such as 

– the slope of the tangent decreases; 
– the curve is below its tangents; 
– for any point a on an interval I on which f is defined, the function ra: x ↦ ra(x) = !(+)%!(&)

+%&
 

decreases. (In Figure 7, we have for example: ra(x1) > f ′(a) > ra(x2).) 

 
Figure 7. Chords and Tangent for a Function f 

The third of these properties corresponds to Lemma 6.4.6 in Kalkulus (explained in the 
previous section).  
Finally, about the praxeology of concavity in Mønster, we have uncovered that there is 
no theory ϴ justifying the technology θ. This can be explained by two factors: first, θ 
is almost non-existent; second, the authors make no real attempt to justify what little 
exists of θ. We would like to state here what the theory (according to the ATD) would 
be: a system of statements (definitions, axioms, lemmas, theorems, corollaries…) from 
which we can derive a justification of θ. Let us suppose, for example, that we want to 



  
justify the fact that, when the derivative f ′ decreases, “the curve is below its tangents”. 
We have (see Figure 8): f(a) + ε f ′(a) – f(a  +  ε) = ε f ′(a) – [f(a  +  ε) – f(a)]. According 

to the mean value theorem, there exists γ ∈ 
(0, 1) such that f(a  +  ε) – f(a) = ε f ′(a + γ ε). 
We thus have: f(a) + ε f ′(a) – f(a  +  ε) = ε f ′(a) 
– ε f ′(a + γ ε) = ε [f ′(a) –  f ′(a + γ ε)]. Since f ′ 
decreases, f ′(a) >  f ′(a + γ ε) and therefore f(a) 
+ ε f ′(a) – f(a  +  ε) = ε [f ′(a) –  f ′(a + γ ε)] > 0. 
∎ 
In that case, we could look for the 
mathematical “principles” that justify the 
mean value theorem and the tools used to 
establish it (e.g., Rolle’s theorem). 

Figure 8. Decreasing Derivative  

DISCUSSION 
The presentation of concavity of functions in the secondary school textbook is but a 
“technical notice” expressed in a casual way, with as little mathematical “logos” as 
possible, most likely to make it accessible to a wider range of students. This contrasts 
with the presentation of the same theme in the university textbook, where we found a 
logos block consisting of definitions and proved results (theorems, lemma). In the 
school textbook, the notion of concavity has been substituted by an application of the 
notion of second derivative and, consequently, there is an exclusion of questions where 
concavity could have come into play. There are two other mathematics textbook series 
for the theoretical programme in upper secondary school in Norway: one is written by 
Borgan et al. (2021), the other by Oldervoll et al. (2021). They have a very similar 
treatment of concavity of functions, using exactly the same notions as the textbook 
analysed here.  
How can we summarise the effect of didactic transposition on the notion of concavity 
of a function as it manifests itself here? The main fact is that, while in the university 
presentation, the graphical notion of concavity is mathematised, in secondary school 
textbooks it remains non-mathematised: concavity is to be seen on the graph of the 
function. At best, authors simply translate this visual property by saying that the slope 
of the tangent to the curve decreases or increases. This visually established property is 
then translated mathematically by the sign of the second derivative. The crucial gain is 
obvious: the subtle work required to mathematise the graphical notion of concavity is 
avoided, so that its presentation is accessible to a wider audience.  
Another gain stems from an “iron law” of curriculum crafting: a new item benefits 
from appearing as an “application” of an established item—here the notion of second 
derivative. Is there a loss? Yes, there is. Whereas, at university, under appropriate 
regularity conditions, one can prove that, if a function is concave down, its second 



  
derivative is negative, and conversely, at the secondary level, for lack of a 
mathematical definition of concavity, students will miss this particular opportunity for 
a simple, founding experience in their mathematics education: tackling a theorem, and 
then its reciprocal. Didactic transposition thus surreptitiously makes its mark, and 
sometimes takes its toll, on students’ and teachers’ praxis and logos by distorting and, 
often, damaging the mathematical equipment which is available to them. 
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