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Abstract— The accuracy of sensor fusion algorithms are
limited by either the intrinsic sensor noise, or by the quality
of time synchronization of the sensors. While the intrinsic
sensor noise only depends on the respective sensors, the error
induced by quality of, or lack of, synchronization depends
on the dynamics of the vehicles and robotic system and the
magnitude of time synchronization errors. To meet their sensor
fusion requirements, system designers must consider both which
sensor to use and also how to synchronize them. This paper
presents the Syncline model, a simple visual model of how
time synchronization affects the accuracy of sensor fusion for
different mobile robot platform. The model can serve as a
simple tool to determine which synchronization mechanisms
should be used.

I. INTRODUCTION

Sensor fusion algorithms are often developed with, and
evaluated on, data sets with perfectly synchronized sen-
sor measurements, e.g. the EuRoC data set [1]. In reality,
separate sensors are never completely synchronized. The
degree to which they are synchronized depends on the
which synchronization primitives are used and how they
are used. There exists few commercial products for flexi-
ble synchronizing various sensor sources. System designers
are typically left to implement their own synchronization
solutions [2]. Not only is this error-prone, but they lack a
framework for understanding the precision requirements for
such a solution. For extreme precision, one could imple-
ment a custom timestamping circuit on an FPGA yielding
deterministic timestamping and parsing of sensor data. In
the other end of the scale, there is software timestamping
of sensor samples “on arrival” running under some non-
real time operating system. The first approach can achieve
synchronization precision in the order of nanoseconds, while
the second solution can suffer synchronization precision in
the 100s of milliseconds range [3].

A passive algorithm for estimating synchronization error
is proposed in [4] and algorithms for incorporating precision-
and jitter-estimates in the sensor fusion algorithms in [5].

The accuracy of the sensor fusion algorithm is affected by
both the intrinsic sensor noise and the accuracy of the times-
tamping of the sensor measurements, i.e. the synchronization
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precision. The degree of which the synchronization precision
affects the overall accuracy of the sensor fusion algorithm is
dependent on the dynamics of the system. For a system with
slow dynamics, e.g. an unmanned surface Vehicle (USV),
reducing synchronization precision from nanoseconds to mi-
croseconds does affect the overall accuracy significantly. I.e.
the intrinsic sensor noise is the limiting factor. However, for
a system with fast dynamics, e.g. a unmanned aerial vehicles
(UAVs), using more accurate sensors does not improve the
sensor fusion accuracy significantly if the synchronization
precision is only in the order of hundreds of milliseconds.
I.e. the synchronization precision is the limiting factor.

In this work we introduce the Syncline model which
quantifies the effects of synchronization precision and in-
strinsic sensor noise and provides a clear and insightful visual
performance model for system designers integrating sensors
on mobile robots. The model is applied on two sensor fusion
applications using realistic sensor and robot platform models:

1) Direct georeferencing from either UAV, USV, au-
tonomous underwater vehicle (AUV), or surface ves-
sels, and

2) Subsea survey with a surface vessel, and an AUV.
Analytical models are derived for both examples and com-
pared to the predictions of the Syncline model.

This paper is organized as follows. In Section II we give
a brief background into sensor synchronization. Section II
introduced related work. Section IV introduces the math-
ematical notation and coordinate frames used. Section V
derives the general Syncline model mathematically before
it is applied on two concrete examples in Section VI. The
work is concluded in Section VII.

II. BACKGROUND

A. Sensor synchronization primitives

Commercial off-the-shelf sensors typically include analog-
to-digital conversion and have a digital communication inter-
face to the host. The synchronization primitives exposed by
these sensors typically fall in one of the following categories:

1. 1PPS [6] These sensors typically include an embedded
microcontroller which samples and timestamps sensor
measurements based on its own internal clock. A 1PPS
is a 1-wire input signal which expects a flank at the
beginning of each second. The embedded microcon-
troller can then timestamp measurements relative the
beginning of a whole second. Some sensors can receive
and parse certain global navigation satellite systems
(GNSS) timing packets from a GNSS receiver by the



use of a UART receiver. This allows the sensor to
timestamp measurements on the Coordinated Universal
Time (UTC) timeline.

2. Network synchronization. High-end sensors will typ-
ically include microcontrollers or microprocessors.
They can run the TCP/IP stack and support IEE1588
Precision Time Protocol (PTP) [7] or Network Time
Protocol (NTP) [8] which synchronizes the sensors’
clock relative a grandmaster clock on the network.

3. Time-of-validity (TOV) synchronization. Some sen-
sors do not timestamp their measurements, but rather
expose timing information to the host. A TOV signal
is a flank on a single wire outputted by the sensor at
the precise moment of sampling. The host must detect
and timestamp the TOV signal and associate it with
the proceeding measurement.

4. Triggered synchronization. Other sensor, like cam-
eras and some inertial measurement units (IMU), can
be triggered to provide a measurement sample. This
is normally done through a single wire connected to
the sensor. The user can generate a flank on this pin
and associate the time of the flank with the proceeding
measurement.

B. Timestamping methods

There are multiple ways for a computational device to use
these synchronization primitives.

1. Hardware timestamping To achieve deterministic
timestamping accuracy the only solution is to per-
form it in hardware. This applies to 1PPS, TOV and
Triggered synchronization. This means using dedicated
Timer peripherals to timestamp and generate events.
The accuracy of hardware timestamping is typically
limited by the frequency of its clock source and that
clock’s drift.

3. GPIO-based timestamping In GPIO-based times-
tamping interrupts are used to detect and timestamp
input events (TOV). To generate output events (1PPS
and Triggers) one can either configure a timer in-
terrupt or just use the sleep function if one uses a
multi-threaded platform. GPIO-based timestamping is
only deterministic under strong restriction. Unless the
timestamping interrupt routine has the highest priority
and interrupts never are disabled, like during system-
calls in Linux, GPIO-based timestamping will not give
deterministic timestamping.

3. Timestamp-on-arrival Another option is to just times-
tamp the sensor measurements as they arrive to the
compute platform. This might be the only choice if
either your sensor has no synchronization primitives,
or your platform has no GPIOs. Sometimes UART
to USB adapters are used to easily integrate sensors
using UART/RS232/RS422 with a compute platform
over USB. The ubiquitous FTDI UART-USB chips are
known to introduce up to 16ms buffering delay [9].

TABLE I
COORDINATE FRAMES

Symbol Name

e Earth Centered Earth Fixed (ECEF)
n North East Down (NED)
br Mobile robot reference frame
bo Object of interest
bl LiDAR
bg Global navigation satellite system (GNSS) receiver
bsv Surface Vessel reference frame
buv Autonomous underwater vehicle (AUV) reference frame
burx Hydro acoustic ultra short baseline(USBL) receiver
butp USBL transponder
bmbe Multibeam echosounder (MBE)

III. PRELIMINARIES

A. Mathematical Notations

The Euclidean vector norm is denoted ‖ · ‖2, and the
n × n identity matrix is denoted In. The transpose of a
vector or a matrix is denoted (·)ᵀ. Coordinate frames are
expressed as {·}, while zabc ∈ R3 denotes a vector z from
frame {b} to {c}, resolved in {a}. S(·) ∈ SS(3) denotes
a skew symmetric matrix such that S(·) = −Sᵀ(·) and
S(z1)z2 = z1 × z2 and z1 · z2 is a dot product for the
two vectors z1, z2 ∈ R3.

B. Attitude representations and relationships

Table I introduces the coordinate frames used in this paper.
The rotation matrix, Rab ∈ SO(3), represents the rotation
between {a} and {b} frames such that za?? = Rabz

b
??.

Additionally, the Euler angles roll, pitch and yaw are
defined as φ, θ, ψ and relate to rotation matrix from body
to NED using:

Rnb(Θ) =

cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ
cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ
−sθ sφcθ cφcθ


(1)

where c? denotes cos(?) and s? denotes sin(?) and

Θnb =
[
φ θ ψ

]>
. (2)

For an estimated or measured rotation matrix R̂nb, the true
rotation matrix Rnb relates to the attitude error εa

Rnb ≈ R̂nb (I3 + S(εa)) (3)

if εa is small. Hence,

Rnb (I3 + S(εa))
−1 ≈ R̂nb

⇒ R̂nb ≈ Rnb (I3 − S(εa)) (4)

due to (I3 + S(εa))
−1 ≈ (I3 − S(εa)) for small εa.

IV. RELATED WORK

State estimation subject to non-deterministic delays and
clock synchronization errors have been extensively studied,
see [10].

In [11] the authors introduce the Roofline model, a simple
visual performance model for computational platforms. Their
key insight is that the performance of a certain application



running on a computational platform is either limited by
its memory bandwidth or its raw compute capabilities. The
Syncline model builds on this idea. Instead of being limited
by either memory bandwidth or computing power, mobile
robots are limited by either sensor accuracy or synchroniza-
tion quality.

The F1 Roofline model [12] is an adaptation of the
Roofline model for multi rotor UAVs. They model the max
flights speed of a multi rotor as either limited by sensor
accuracy, processing speed or robot weight. They show that
for some applications and robots using a slower and lighter
compute platform could increase the max flight speed.

The Syncline model is inspired by this line of work.

V. SYNCLINE MODEL

The Syncline model considers three kinds of sensor modal-
ities:

1) Sensors measuring the 3D localization of the robot,
e.g. GNSS,

2) Sensors measuring the attitude or orientation of the
robot, e.g. INS, and

3) Sensors measuring range and bearing to other objects,
e.g. LiDAR, camera, Radar, Sonar etc.

Some of the modalities will actually have internal sensor
fusion which we will not consider.

A. State-space formulation

Consider a dynamic system represented by the following
nonlinear state-space equation,

ẋ(t) = f(x(t),u(t)), (5)

where x is the state vector and u is a vector with input
signals. This could represent any type of system which needs
accurately timestamped measurements in order to perform
sensor fusion.

The focus of this paper is on mobile robots, in that case
x = (peeb,Θnb, . . . )

ᵀ. Here peeb is the position of the robots
body with respect to Earth’s center relative defined by the
ECEF coordinate frame. Θnb is the attitude of the robot
which can be given via Euler angles. The rest of the state
variables depend on the robotic system and its environment.

B. Sensor measurement model

The sensor measurements are modelled as the system
output as follows

y(tk) = h(x(tk + µsync)) + εsensor, (6)

here y(tk) is a sensor measurement timestamped with the
time tag tk. The measurement is assumed to be a function
of the state vector h(x(tk)) with additional sensor noise
denoted εsensor. The independent random variable µsync rep-
resents the synchronization error. The synchronization error
leads to inaccurate timestamping as a sensor measurement
valid at time tk+µsync is associated with timestamp tk. The
variables εsensor and µsync are assumed to be uncorrelated
variables.

C. System dynamics

The potential consequences of synchronization errors be-
tween sensor sources is related to the system dynamics of
the robot. The actual error introduced depends on how much
the measured states have changed in the time between the
measured and actual timestamp.

D. Estimation error in sensor fusion

The goal of the sensor fusion algorithm is to estimate some
states, internal or external, based on the sensor samples y(tk)
and control inputs u(tk):

x̂(tk) = g(x̂(tk−1);y(tk),u(tk)), (7)

This is also known as non-linear state estimation. The scope
of this paper is limited to sensor fusion algorithms that
estimate the position of objects, e.g. direct georeferencing,
depth estimation, inertial navigation systems, etc.

In general, the error of the estimation of a system state
variable z is defined as follows:

ε := z − ẑ. (8)

By assuming that the sensor fusion g is a linear combina-
tion of the measurements y can this estimation error can be
represented by three components:

ε = δsync(µsync) + δsensor + δsystematic, (9)

where δsync is the estimation error caused by the synchro-
nization error, here defined as the sync-induced error. The
variable δsensor is the estimation error caused by sensor
noise, not to be confused with the sensor noise itself εsensor.
The estimation error is the sensor noise passed through the
sensor fusion algorithm, defined as the sensor-induced error.
The last source of error is δsystematic, which represent the
systematic errors due to calibration, mounting, misalignment
and so on. For the rest of this paper, such systematic errors
are disregarded.

The Syncline model simplifies the sync-induced error to
be a linear combination of the speed and the angular velocity
of the robot scaled by the distance to the measured objects

δsync(µsync) ≈ ‖veeb‖2µsync + d · ‖ωbnb‖2µsync, (10)

where ‖veeb‖2 is linear velocity of the robot, d is the distance
from the robot to the object of interest and ‖ωbnb‖2 is the
angular velocity of the robot. The left term of (10) is an
error caused by the linear distance between the robots actual
position when a measurement was taken and its position
at the time of the timestamp. The right term is related to
the difference in orientation of the robot between the time
of the measurement sample and the time of the timestamp.
This difference in orientation, i.e. angle, is multiplied by the
distance to the object of interest. For small angles this is
an approximation of the georeferencing error induced by the
orientation error.

It is clear that the sync-induced error varies during the
operation of the mobile robot, e.g. if there is no relative
movement between the robot and the object of interest, then



there is also no sync-induced error. An important charac-
teristics of the sync-induced error is its expected worst-case
magnitude during a robot operation. We define the expected
worst-case sync-induced error as the error observed with the
mean of the synchronization error µsync and the expected
maximum linear and angular velocity. We also refer to this
as the upper bound and indicate it with an asterisk as follows:

δ∗sync(τ) := vmaxτ + d · ωmaxτ, (11)

Where τ is the worst-case synchronization error and, vmax

and ωmax are norms of the expected maximum linear and
angular velocities for the robot platform, respectively.

We define δ∗sensor as the expected worst-case of the sensor-
induced error as follows

δ∗sensor := σp + σr + (σΘ + σu) · d, (12)

where σx is the standard deviation of the estimated variable
x p, r, Θ and u represent localization, ranging, attitude
and bearing sensors, respectively. In this context ”expected”
refers to that we use the standard deviation as the magnitude
of the sensor error. ”Worst-case” refers to the fact that we are
summing the magnitudes. This implies that the error vectors
are positive scalar multiples of each other. Clearly the worst-
case scenario is when all the error vectors are in the same
direction.

Finally, we define the Syncline as

δsyncline(τ) := δ∗sync(τ) + δ∗sensor. (13)

The Syncline is an approximation of the worst case esti-
mation accuracy as a function of the synchronization error.
Fig. 1 shows a plot of (13), i.e. a Syncline. Here, δ∗sync

is calculated with the vmax, ωmax and r estimated for a
car, see Tab. II. Also, δ∗sensor is set to the arbitrary value
of 0.1 m. This signifies that the sensors employed by the
robot is capable of estimating positions with worst case error
of 0.1 m. The vertical axis shows the Estimation accuracy
which is the inverse of the error. This is why the accuracy
asymptotically reaches 101 m−1 which is the inverse of
0.1 m. The horizontal axis shows the Synchronization Ac-
curacy which is the inverse the synchronization error 1/τ , i.e.
if the synchronization error is 1µs, then the synchronization
accuracy 1/τ is 106s−1. We also define τcrit as the critical
synchronization error which satisfies

δ∗sync(τcrit) = δ∗sensor. (14)

Fig. 1 indicates two regions along the horizontal axis. The
Sync-bound region is the region of high synchronization
error where δ∗sync > δ∗sensor which corresponds to τ > τcrit.
It is called sync-bound because the performance is mainly
limited by the synchronization accuracy. The Sensor-bound
region is characterized by δ∗sync < δ∗sensor and τ < τcrit. In
this region, there is little use in improving the synchroniza-
tion mechanism as intrinsic sensor noise is the limiting factor.
The border between the two regions indicates the critical
synchronization error τcrit. This is where δ∗sync = δ∗sensor and
τ = τcrit. In general, the system designer should achieve
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TABLE II
ROBOT PLATFORM PARAMETERS

Robot dynamics

vmax [m
s

] ωmax [deg
s

] d [m] b [m]

UAV Fixed Wing 21 30 100 1
UAV Multi Rotor 5 180 5 0.5

USV 5 10 30 5
AUV 30 50 5 5
Car 30 10 50 3

Large SV 2.5 3 1000 50
Small SV 4 10 1000 10

synchronization accuracy greater than the critical synchro-
nization accuracy. This ensures that one gets maximum value
from the sensors.

Fig. 1 also indicates the slope and the roof of the curve.
The slope shows how accuracy is increasing as we increase
the synchronization accuracy. The roof is the maximum
obtainable accuracy for the complete sensor fusion system.

VI. EXAMPLES

In this section, the Syncline model is evaluated on two
examples of sensor fusion in mobile robots. First, a state-
space model of the sensor fusion algorithm is derived, it
will serve as the ”ground truth” and be the basis for the
simulations of the system. Then the Syncline model is
derived and evaluated against the simulator. Evaluating the
model on real, experimental data, is left as future work.

To develop the Syncline model, we consider a set of robot
platforms and their dynamics. Table II shows the mobile
robots and parameters used in these examples. The variable
d is the range and signifies the typical distance between
the robot and the objects to be localized. The parameter
b stands for baseline which indicates the size of the robot
and the maximum lever arms between the different sensors.
The Syncline model is also dependent on the intrinsic
sensor noise. We consider a set of commonly used sensors
introduced in Table III where σ(x) is the standard deviation
of the measured state x. I.e. the intrinsic sensor noise.



A. Example 1: Georeferencing with GNSS, INS and LiDAR

In the first example we will consider is a georeferencing
application where a mobile robot uses three sensors to
estimate the global position of an external object. A GNSS
receiver is used to measure its own global position, INS for
attitude measurements and a LiDAR to measure range and
bearing to the external object of interest.

1) Analytical model: In this example, we use a state space
with 9 states comprising of the robots position and attitude
as well as the position of the external object that we wish to
georeference:

x = [peeb,Θnb,p
e
eo]

T . (15)

There are three sensors, each timestamps the measure-
ments on its own clock i.e. tGNSS, tINS and tLiDAR. The
synchronization error µsync is defined as relative the LiDAR
timestamp. Thus, the GNSS synchronization error is defined
as µgnss

sync = tGNSS − tLiDAR.
The GNSS measurement is modeled as

yGNSS(t) = p̂eebg (16)

p̂eebg = peebg + veebgµ
gnss
sync + εgnss

p . (17)

The first term is the true position of the GNSS sensor. The
second term is the sync-induced error which is how much
the GNSS sensor moves in the timestamping error period.
The final term is the intrinsic sensor noise. The sync-induced
error is a combination of the velocity of the GNSS receiver
relative the ECEF frame and the synchronization error. The
velocity can be expressed as a combination of the linear and
angular velocity of the robot as follows:

veebg =
d

dt
peebg =

d

dt

(
peebr + pebrbg

)
= veebr + Ṙebrp

br
brbg

.
(18)

The rotation from the ECEF frame to the robot frame
is composed of the two rotations Rebr = RenRnbr . We
assume that Ren is constant during the time synchronization
error µgnsssync. We can then express the time derivative of that
rotation as: Ṙebr = RebrS(ωbrnbr ). Inserted into (18) yields

veebg = Rebr

(
vbrebr + S(ωbrebr )pbrbrbg

)
. (19)

further inserting into (17) gives us

p̂eebg = peebg +Rebr

(
vbrebr + S(ωbrnbr )pbrbrbg

)
µins

sync + εgnss
p

(20)

The INS measures the attitude of the robot as follows

yINS(t) = R̂nbr (21)

R̂nbr = Rnbr +RnbrS(ωbrnbr )µins
sync + εins

Θ . (22)

The first term is the true attitude. The second term is the
sync-induced error, it is the time derivative of the attitude
multiplied with the timestamp offset. This assumes that the

angular velocity is constant during this time period. The last
term is the intrinsic sensor noise.

yL(t) = p̂brblbo (23)

p̂brblbo = Rbrbl(p
br
blbo

+ εlidar
p ) (24)

I.e the LiDAR outputs a position vector from itself bl to
the object of interest bo. In reality the LiDAR outputs a 3D
point cloud with azimuth, elevation and range for each point.
This signal must pass through a signal processing algorithm
which performs object detection. We assume the output of
this object detection is a range r and a bearing vector nblblbo
defined as

nblblbo :=
[
cos(Ψ) cos(α) sin(Ψ) cos(α) − sin(α)

]ᵀ
(25)

where Ψ is azimuth and α is elevation such that the total
vector from {bl} to {bo} can be stated

pblblbo = r · nblblbo = Rblbo(α,Ψ) · dblbo (26)

and where

Rblbo(α,Ψ) =

[
cos(Ψ) cos(α) − sin(Ψ) sin(α) cos(Ψ)
sin(Ψ) cos(α) cos(Ψ) sin(α) sin(Ψ)
− sin(α) 0 cos(α)

]
(27)

and
dblbo =

[
r 0 0

]ᵀ
. (28)

Notice that the LiDAR measurement has no sync-induced
error. This is because we have defined synchronization error
as relative to the LiDAR timestamp.

The sensor fusion is defined by the function g introduced
in (7). It combines INS, GNSS and LiDAR measurements to
estimate the global ECEF position of the object, which we
write as

g(x(tk−1);y(tk)) = p̂eeo(tk). (29)

This is a series of rotations and translations:

p̂eeo(tk) = p̂eebg +RenR̂nbr (pbrbgbl + p̂brblbo). (30)

This can again be expressed in terms of the true quantities,
sync-induced errors and sensor noise by substituting in (20),
(22) and (24).

2) Syncline model: For the sync-induced error, we use the
vmax and ωmax from Table II. For the sensor error, we use
the σ-values from Table III.

Fig. 2 compares the Synclines for different mobile robot
platforms when using uBlox F9P RTK, MRU5 and VUX1-
UAV. There are several interesting things to note. Firstly,
the Synclines have different roofs. The roof is the accuracy
achieved when you are only limited by the intrinsic sensor
accuracy. The reason why the robots have different roofs
is that they are assumed to be georeferencing objects at
different distances. Secondly, the length of the slope of
the Synclines varies. This is related to the sensitivity to
synchronization errors. The shorter the roof (i.e. a lower
τcrit), the more sensitive a system is to synchronization
errors. This depends on the robot dynamics and the intrinsic
sensor noise.



TABLE III
SENSOR NOISE

GNSS

uBlox uBlox Trimble Trimble
F9P PVT F9P RTK R12 DGNSS R12 RTK

σ(p) 1.5 m 1 cm 0.25 m 8 mm

INS

SBG SBG Kongsberg
Ellipse Apogee MRU5

σ(φ) 0.1° 0.008° 0.002°
σ(θ) 0.1° 0.008° 0.002°
σ(ψ) 0.2° 0.03° 0.002°

LiDAR

Velodyne Velodyne RIEGL Faro
Alpha Prime HDL32E VUX1-UAV Focus Plus

σ(r) 4 cm 2 cm 1 cm 1 mm
σ(Ψ) 0.1° 0.08° 0.006° 0.005°
σ(α) 0.2° 0.08° 0.006° 0.005°

USBL and MBE

Kongsberg Sensodyne Kongsberg Sonic
HIPAP502 USBL7000 M3Sonar 2026 MBE

σ(r) 2 cm 1.5 cm 1 cm 1 mm
σ(Ψ) 0.06° 0.04° 0.9° 0.45°
σ(α) 0.06° 0.04° 0.5° 0.45°
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Fig. 2. Syncline for direct georeferencing with uBlox F9P RTK, MRU5
and VUX1-UAV for various robot platforms

Table IV reports the τcrit for the different sensors in-
dividually. The synchronization error requirements for the
sensor fusion is dictated by the sensor with the lowest τcrit.
In Fig. 4, a plot with a few different combinations of the
sensor payload for a UAV platform is presented. Intuitively,
changing the sensor payload raises or lowers the roofs of the
Synclines, which depends on the intrinsic sensor noise only.
It also changes the length of the roofs which is related to
τcrit. The shorter the roof, the more sensitive the system is
to synchronization error.

To verify the accuracy of the Syncline model, we have
made a simulator based on the analytical formulation in (30)
is also implemented. We simulate a fixed wing UAV which

TABLE IV
MINIMUM SYNCHRONIZATION ERROR τcrit

Robot platform

Sensor USV Car Multi Rotor Fixed Wing

F9P PVT 520ms 86ms 520ms 123ms
F9P RTK 3ms 577us 3ms 824us

Ellipse 9ms 4ms 663us 2ms
MRU5 130us 67us 9us 38us

AlphaPrime 11ms 5ms 2ms 3ms
Vux1 1ms 385us 333us 157us
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Fig. 3. Syncline model for UAV Fixed Wing compared with simulations

maneuvers according to Table II trying to georeference a
fixed object using senors with parameters in Table III. For
each synchronization error, the worst case georeferencing
error is found and compared with the Syncline in Fig. 3.
Clearly, the Syncline model is adept for modeling direct
georeferencing.

B. Example 2: Underwater survey with USBL, MBE, INS
and GNSS

In the second example, we consider a subsea survey sys-
tem consisting of a surface vessel (SV) and an autonomous
underwater Vehicle (AUV). The surface vessel has a GNSS,
INSsv, and Ultra-short baseline acoustic positioning system
(USBL) receiver. The AUV has a USBL transponder, a
INSauv and a Multibeam Echosounder (MBE). This system
is inspired by the authors in [13] The goal is to estimate
global position of the AUVs MBE footprint peeo. This is
achieved by performing direct georeferencing twice. First,
the global position of the AUV peebauv is estimated based
on the GNSS measurements p̂eebsv , the INSsv measurements
R̂nbsv and the USBL measurements p̂bsvbauv , all taken at
the surface vessel. This position estimate is fused with
the INSauv measurement R̂nbauv and the range-and-bearing
measurements from the MBE to the ocean floor p̂bauvbauvo

.
As before, both an analytical model and the Syncline

model are derived.
1) Analytical model: The state space consists of the

position and attitude of the SV, the position and attitude of
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Fig. 4. Syncline model for UAV Fixed Wing with different sensor payloads

the AUV and the position of the MBE footprint.

X = [peebsv ,Θnbsv ,p
e
ebauv

Θnbauv ,p
e
eo]

ᵀ. (31)

The system has five sensors which are all timestamped
with their respective clock. The synchronization error is
defined as relative the MBE measurements. The GNSS,
INSsv and USBL measurements of the SV are combined
into a single virtual position sensor for the AUV based
on direct georeferencing. Internal to the virtual sensor, the
synchronization error is modeled as relative to the USBL
measurement.

The GNSS and INS measurements are derived in (20) and
(22), respectively. The USBL measurements is a vector from
the receiver on the SV to the transponder on the AUV, as
follows:

yUSBL = p̂bsvburxbutp
(32)

p̂bsvburxbutp
= pbsvburxbutp

+ εusbl
p . (33)

The virtual AUV position measurement is defined as
follows:

yAUVPOS = p̂eebutp
(34)

p̂eebutp
= p̂eebg +RenR̂nbsv(pbsvbgburx

+ p̂bsvburxbutp
)

+Rebauv

(
vbauv

ebauv
+ S(ωbauv

nbauv
)pbauv

butpbauv

)
µauvpos

sync .

(35)

The first term is the measured position of the GNSS
receiver at the SV. The second term is the measured ori-
entation of the SV combined with the mounting lever arms
for the sensors on the SV. The last term is the sync-
induced error caused by the movement of the AUV during
the timestamping offset between the virtual AUV position
measurement and the AUV MBE measurement.

The INSauv is modeled as follows

yINSauv
(t) = R̂nbauv

(36)

R̂nbauv
= Rnbauv

+Rnbauv
S(ωbrnbr )µinssv

sync + εinssv
Θ (37)
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Fig. 5. Synclines for underwater survey with SV and AUV using Trimble
R12 RTK GNSS, MRU5 INS, Sensodyne Gyro USBL7000 and Sonic 2026
MBE

This is similar to (22). The error in the attitude measurement
is a combination of the sync-induced error and the intrinsic
sensor noise.

The MBE measurement is analogous to the LiDAR mea-
surement in (24) in Example 1, and outputs the position
vector p̂bauvbmbebo

as a range and a bearing as described in (26).
The global position of the footprint can now be expresses in
terms of the virtual AUV position measurement, the INSauv

measurement and the MBE measurement

p̂eeo(tk) = p̂eebg +RenR̂nbsv(pbsvbgburx
+ p̂bsvburxbutp

)

+RenR̂nbauv(pbauvbutpbl
+ p̂bauvbmbebo

).
(38)

2) Syncline model: The Syncline model is easily extended
to account for the dynamics of both the SV and the AUV as
follows

δ∗sync(τ) = (vsv
max + vauv

max + dsvωsv
max + dauvωauv

max) · τ. (39)

This is the sum of the two Synclines, one for the direct
georeferencing of the AUV from the SV, and one for the
direct georeferencing of the seabed from the AUV.

The sensor-induced errors are expressed as follows:

δ∗sensor = σpsv + σrsv + (σΘsv
+ σusv) · dsv

+ σpauv + σrauv + (σΘauv
+ σuauv

) · dauv.
(40)

The Syncline model is plotted in Fig. 5 for both a large SV
and a small SV performing subsea survey together with an
AUV. The AUV is assumed to be at a 1000m depth and
30m above the sea floor. Both systems has roofs at around
1.67m. This is expected since they are equipped the same
sensor payload and are at the same distance from the object
of interest. The system with large SV has a longer roof which
is due to the fact that it has slower dynamics and thus less
sensitivity to synchronization errors. For the large SV τcrit =
16 ms while for the small SV τcrit = 4 ms.

In Fig. 6, the Synclines for a system with a large SV
and a AUV are compared for four different sensor payloads.
Clearly, replacing the GNSS receiver with a better one
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TABLE V
CRITICAL SYNCHRONIZATION ERROR

Robot platform

τcrit Large SV Small SV AUV

uBlox F9P PVT 1039.230ms 649.519ms -
uBlox F9P RTK 6.928ms 4.330ms -

SBG Ellipse 52.754ms 14.217ms 19.335ms
MRU5 0.746ms 0.201ms 0.273ms

HIPAP502 18.521ms 4.991ms 9.713ms
USBL7000 12.368ms 3.333ms 6.727ms
Sonic2026 137.071ms 36.940ms 50.385ms
M3 Sonar 221.857ms 59.790ms 82.776ms

does comparatively little with the performance compared
to replacing the INS or USBL. Table V reports the critical
synchronization per sensor. This illustrates sensitivity of each
sensor to synchronization error. For instance, the uBlox F9P
PVT which only has around 1.5 m accuracy is not sensitive to
synchronization error on such slow moving robot platforms
as SVs and AUVs. The MRU5 which can estimate the robot
attitude with an accuracy of 0.002° is much more sensitive,
even on these slow platforms.

In Fig. 7 the Syncline model is evaluated against a
simulator based on the analytical model derived in (38).
Again, there is no significant deviation between the Syncline
model and the analytical simulation.

VII. CONCLUSIONS

The Syncline model is a simple visual model which allows
system designers to explore the interaction between errors
introduced by lacking sensor synchronization and errors
introduced by intrinsic sensor noise. Synclines are derived for
a number of different robot platforms and sensor payloads.
The model is then evaluated against a mobile robot simulator
for two different sensor fusion algorithms. The results are
promising showing that the Syncline model is accurate for
direct georeferencing and mapping applications.
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Fig. 7. Evaluation of Syncline model for Small SV and AUV against a
simulator. THe sensors used are uBlox F9P RTK, MRU5, HIPAP520 and
Sonic 2026
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