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Abstract—We propose a calibration method that transforms
data from wind tunnel experiments into a coordinate frame
where asymmetries with respect to the symmetry plane of
most fixed-wing aircraft are minimized in a least-squares sense.
The method applies to all types of aircraft that include a
symmetry plane but is particularly relevant for small and low-
cost unmanned aerial vehicles (UAVs). Our approach is simple
to implement using standard nonlinear program (NLP) solvers.
Results for a wind-tunnel data set of a small fixed-wing UAV
demonstrate the efficacy of the proposed calibration method.

Index Terms—System Identification, Unmanned Aircraft,
Aerodynamic Modeling

I. INTRODUCTION

A. Motivation and Background

Fixed-wing UAV designs are usually symmetric with re-
spect to the longitudinal plane, such that the left-hand side
mirrors the right-hand side of the airframe. The goal is for the
generalized aerodynamic forces to be symmetric for equiva-
lent maneuvering capabilities during turns in either direction.
To identify the forces for a given airframe design, engineers
often collect data that capture the forces in wind tunnel tests
or flight experiments. In either case, one would expect the
magnitude of the forces to be equal for symmetric use of
the actuators and mirrored relative velocities concerning the
plane of symmetry. However, this is not the case for the
collected data when the coordinate axes of the force and
moment measurement equipment are not aligned with the
coordinate axes of the body-fixed coordinate frame, which
is usually the case. This asymmetry then propagates to the
identified models and can be problematic in model-based
control, which is the use-case we are targeting.

The misalignment can be kept small by careful mounting
procedures, such that it is possible to calibrate for remaining
asymmetries through proper post-processing. However, it
appears that a systematic calibration method to do this has
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not been addressed, whereas engineering researchers focused
on the compensation of other error sources and effects.
Molinari et al. [1] consider disturbances due to the airframe
and wall of the wind tunnel blocking the airstream. They
isolate the airfoil in a pitching motion such that symmetries
to sideslip angle variations are not a factor. Damljanovic et
al. [2] also focus on wall interference. They note possible
offsets between coordinate axes of the measurement equip-
ment and airframe but state that the effects are in the order
of magnitude of measurement noise and disregard further
calibration. Ocokoljic et al. [3] extensively discuss wind tun-
nel calibration tests, including the test section, measurement
instruments, and standard models for calibration. Jindeog et
al. [4] consider possible measurement biases due to thermal
effects but only within the longitudinal plane where asym-
metries in sideslip angle variations can not be observed.
Simmons et al. [5] focus on experiment designs and system
identification techniques and do not discuss asymmetries.
Holsten et al. [6] notice asymmetries in data series that
they expect to be symmetrical but do not offer a solution to
compensate for this. The data provided by Ol et al. [7] looks
to be sufficiently symmetric, but they do not give detailed
information on possible post-processing steps. They note,
however, the need for cautious treatment of the actuators. In
particular, when testing off-the-shelf radio-controlled UAVs,
consumer-grade servos to actuate the control surfaces can
introduce significant offsets to the reference deflections due
to the hysteresis band. A possible reason for neglecting
symmetry considerations in the literature may be that this
problem is likely more pervasive for airframes of fixed-wing
UAVs that are small and have a low cost.

B. Contribution

This work presents an approach to find a static rotation
that aligns the coordinates of the measurement equipment in a
wind tunnel experiment with the coordinate axes of the body-
fixed frame of a fixed-wing UAV. The necessary assumption
that the UAV is symmetric concerning its longitudinal plane
is satisfied by most classes of small fixed-wing UAVs and



aircraft. Our approach builds on the formulation of a sym-
metry condition along the coordinate axes of the force and
moment measurement equipment to formulate a suitable error
function. We then formulate an optimization problem that
finds a transformation that minimizes the asymmetries in the
generalized forces (i.e. linear forces and angular momentums)
for symmetric relative velocities in a least-squares sense. We
base our work on a dataset from a wind tunnel. However, it
is straightforward to apply the proposed method to flight data
and find the orientation of a relative velocity sensor relative
to the body-fixed frame.

C. Organization of the paper

The rest of this paper is structured as follows: section II
gives an outline of a dataset obtained in wind tunnel experi-
ments to illustrate the problem of asymmetries. We describe
our approach to finding a static transformation that minimizes
the asymmetries in the data in section III. Results for the
example data are given in section IV before we end with
concluding remarks in section V.

II. PROBLEM

Suppose a dataset has been recorded for the purpose of
modeling the generalized aerodynamic forces of a fixed-wing
UAV. The dataset includes variations of the airspeed, angle
of attack, sideslip angle, and control surface deflections. An
instructive procedure for obtaining such a dataset is being
discussed by Gryte et al. [8], and we will use the resulting
data to illustrate the problem of asymmetries. The UAV in the
experiments was the Skywalker X8 as depicted in Figure 1
together with its body-fixed coordinate axes xb, zb ∈ R3

which span the plane of symmetry.
We start with a description of the data that we use which

is from a wind tunnel experiment. However, note that our
approach readily generalizes to other test protocols for wind
tunnel experiments or flight tests. The only condition is that
measurements of the relative velocities are available and
that external generalized forces can be observed. This is not
a strong limitation for flight tests, considering that inertial
measurement units (IMUs) are included in the standard
sensor suite.

The collected data is based on the assumption of decoupled
dynamics in the lateral and longitudinal plane at small
aerodynamic angles. This means that it includes rotations
of the lateral plane at zero angles of attack and rotations of
the longitudinal plane at zero sideslip angle. The angle of
attack was varied between −10 deg and 15 deg with some
measurements at higher values and low airspeeds to identify
forces in the stall regime. Gryte et al. tested five uniformly
spaced elevator deflections between −20 deg and 20 deg at
airspeeds set to either 18m/s or 21m/s. With zero aileron
deflection and sideslip angle, the data points available for the
identification of the longitudinal coefficients are given by

(Va, δe, α) ∈ {18, 21} × {−20,−10, 0, 10, 20} × [−10, 15].
(1)

xb

yb

zb
xw
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β

Fig. 1. Drawing of the Skywalker X8 UAV used in the wind-tunnel
experiments. The orientation of the wind-frame coordinate axes (xw, yw)
relative to the body-fixed coordinate axes (xb, yb, zb) defines the angle of
attack α and sideslip angle β. The airframe is by design symmetric with
respect to the plane spanned by xb and zb.

The dataset for identifying the lateral coefficients includes
sideslip angle variations within −15 deg and 15 deg at the
same airspeed values as for the longitudinal tests. Based
on the assumption of the aileron to be symmetric around
zero, the dataset only includes negative deflections. At zero
elevator deflection and angle of attack, the lateral data points
are given by

(Va, δa, β) ∈ {18, 21} × {−20,−10, 0} × [−15, 15]. (2)

Forces and moments due to the vehicle’s weight were
compensated during each run. The airframe was carefully
mounted onto the force sensor to align the measurement
axes with the axes of the body-fixed coordinate frame. The
measurement axes are assumed to be in alignment with
the axes of the wind tunnel at zero angles of attack and
sideslip angles. One would then expect the measurements to
be symmetric with respect to zero sideslip angle.

However, the measured dataset does not appear to be
symmetric about the longitudinal plane of the airframe, which
is shown in Figure 2 for a sweep of sideslip angles. Consider
for instance the yaw moment n that is in theory well-
approximated by a third-order polynomial of the sideslip
angle with zero static component [9]. However, the measure-
ment data depicted in the bottom subplot shows a clear offset
at a zero sideslip angle.

We therefore assume a misalignment between the body-
fixed coordinate frame that includes the symmetry plane
and the measurement frame in which the data is recorded.
To formulate the problem, we use elements of the Special
Orthogonal Group of order three, denoted by SO(3). Let the
orientation of the body-fixed coordinate frame relative to the
measurement coordinate frame be denoted by the symmetric
3 × 3 rotation matrix Rmb ∈ SO(3). The problem is to
find the rotation matrix Rmb merely based on the available
measurement data that is to be used for model identification
and without a prior symmetry calibration routine in the
experiments.
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Fig. 2. A sweep of the sideslip angle (ssa) with α = δa = δe = 0 and
Va = 21m/s. The measured data does not appear to be symmetric to the
longitudinal plane (zero sideslip angle) of the airframe.

III. METHOD

We begin with a discussion of the symmetry condition and
some assumptions on the measurement data. After a brief
presentation of the polynomial interpolation of the dataset to
generate symmetric measurement pairs and smooth functions
that can be used in the NLP, we show how to formulate
an optimization problem to find the static transformation to
reduce asymmetries in a least-squares sense.

A. Symmetry and Transformations

Let the relative linear velocity vr ∈ R3 and the relative
angular velocity ωr ∈ R3 be concatenated into one vector
νr = [vr

⊤ ωr
⊤]

⊤. Let the vector of generalized forces be

denoted by τ = [f b
⊤
mb⊤]

⊤
, with force f b ∈ R3 and

momentum mb ∈ R3 given in the body-fixed frame.
Suppose f : R6 7→ R6 is a mapping from the relative

velocities to the generalized forces. The general symmetry
condition that we impose is then given by

Mf(Mνbr) = f(νbr). (3)

The case of xz-symmetry is defined by the symmetry matrix

M ≜ diag(1,−1, 1,−1, 1,−1), (4)

which satisfies M = M
−1

= M⊤.
Now suppose that the body-fixed coordinate frame {b}

and the sensor-fixed frame {m} are not aligned, but that the
orientation of {b} with respect to the coordinate axes of {m}
is given by a rotation Rmb ∈ SO(3). Then we can express
the velocity in {m} as

νmr = Tνbr (5)

where
T =

[
Rmb 0

S(rmmb)Rmb Rmb

]
. (6)

The variable rmmb ∈ R3 denotes the position of the origin of
{b} with respect to {m} in coordinates of {m}. We make a
few simplifying assumptions

Assumption 1: The sensor is placed at the origin of the
body-fixed coordinate frame, i.e. rmmb ≈ 0 such that T ≈
blkdiag(Rmb,Rmb) and T

−1
= T⊤.

Note that the origin of {b} does not necessarily coincide with
the center of mass.

Assumption 2: The wind tunnel produces a homogenous
air stream with a negligible angular velocity component, i.e.
ωr ≈ 0.

Let the coordinate frame of the wind tunnel be described
by {w}. Each data point includes measurements of the
relative linear velocity vector in the sensor frame, i.e. vmr ,
typically recorded in terms of airspeed Va ∈ R, angle of
attack α ∈ R and sideslip angle β ∈ R. This can be
thought of as magnitude and spherical direction of vmr . To
parametrize vmr from the data points, we define the map
µ : R3 7→ R3 as

vmr = µ(Va, α, β) ≜ Rmw(α, β)
[
Va 0 0

]⊤
(7)

and its inverse

(Va, α, β) = µ
−1
(vmr ) (8)

≜

(
∥vmr ∥2, arctan

(wr
ur

)
, arcsin

( vr
∥vmr ∥2

))
,

where vmr =
[
ur vr wr

]⊤
. The rotation matrix

Rmw(α, β) = Rms(α)Rsw(β) is a composition of

Rms(α) =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)

 (9)

and

Rsw(β) =

 cos(β) sin(β) 0
− sin(β) cos(β) 0

0 0 1

 , (10)

which are the known rotation matrices between body-fixed
frame, stability frame and wind frame [10].



B. Interpolating the dataset

Our goal is to formulate an optimization problem to
find the rotation matrix Rmb based on the available force
measurements in the dataset from which expressions for both
sides of (3) can be derived. To be able to use gradient-based
optimization methods, we need to approximate the measure-
ments by functions that are continuously differentiable with
respect to the sideslip angle. In this subsection we give an
outline how this can be done using polynomial interpolation.
For each sweep of sideslip angles, the airspeed Va, the angle
of attack α and elevator deflection δe are constant. Moreover,
we only consider sweeps during which the aileron deflection
δa is set to zero, given that a non-zero value would violate the
symmetry condition. The aileron deflections are assumed to
be offset-free. This assumption is hard to satisfy in practice
when consumer-grade servo motors to actuate the control
surfaces are used.

To interpolate between data points and to provide smooth
functions to the optimizer, we fit polynomial functions of the
sideslip angle to the recorded aerodynamic coefficients. The
functions are defined as

fCk
(β) =

n∑
i=0

aiβ
i. (11)

Given the measurements (CX , CY , CZ , Cl, Cm, Cn), the co-
efficients ai in the functions fCk

can be found by using
linear regression for each sweep of the sideslip angle. Upon
inspection of the measured aerodynamic coefficients with
varying sideslip angle, we found a good compromise between
a reasonable fit and low polynomial order n = 4 for
CD, CL, Cm, n = 3 for Cl, Cn and n = 1 for CY .

We then concatenate the functions fCk
to approximate the

function f in (3) by f̂ defined as

f̂(νmr |δa, δe) ≜


fCx

(β)
fCY

(β)
fCZ

(β)
bfCl

(β)
cfCm

(β)
bfCn

(β)

 , (12)

where b, c ∈ R≥0 denote wingspan and chord length of the
airframe, respectively. Note that angle of attack and control
surface deflections are implicit in the polynomials fCk

. In
addition to the angle of attack, the airspeed and sideslip angle
can be obtained by the map µ

−1.
To obtain the reflected relative velocity vector in {m},

the measured relative velocity vector first needs to be
transformed to {b} using (5), then reflected using (4), and
transformed back to {m} again. This leads to the reflected
relative velocity vector ν′m

r given as

ν′m
r = TMT

−1
νmr , (13)

in which the expression TMT
−1 can be interpreted as a

similarity transformation of the reflection matrix M to the
measurement frame {m}.

C. Optimization problem

The symmetry condition (3) can be used to formulate
an error e ∈ R6 in the body-fixed frame based on the
interpolation polynomials as

e = MT
−1
f̂(TMT

−1
νmr |0, δe)−T

−1
f̂(νmr |0, δe). (14)

We use e to formulate a cost function as the sum over all
sideslip angle sweeps with zero aileron deflection. Let the
set of all suitable sweeps be denoted by D and the samples
in each sweep be denoted by ND, then the cost function is
defined as

J =
∑
D

ND∑
i

ei
⊤ei. (15)

Suppose the matrix Rmb is parametrized by at set of
Euler angles. Then it can be shown that the similarity
transformation TMT

−1 is invariant to rotations around a
vector that is normal to the xz-plane, i.e. pitch rotations. This
means that it is enough to use roll angle ϕ ∈ [ϕ, ϕ] and yaw
angle ψ ∈ [ψ,ψ], where ·, · denote a respective lower and
upper bound. The parametrization of Rmb is

Rmb(ϕ, ψ) =

 cos(ψ) sin(ψ) 0
− cos(ϕ) sin(ψ) cos(ϕ) cos(ψ) sin(ϕ)
sin(ϕ) sin(ψ) − sin(ϕ) cos(ψ) cos(ϕ)

 .
(16)

We then find the optimal values ϕ∗, ψ∗ by solving the NLP

ϕ∗, ψ∗ ≜ argmin
ϕ,ψ

J(ϕ, ψ) (17)

s. t. ϕ ≤ ϕ ≤ ϕ (18)

ψ ≤ ψ ≤ ψ (19)

and denote the resulting rotation matrix as R∗
mb and the

transformation as T∗.
Remark 1: The outlined problem of finding a static rotation

matrix to minimize the cost function (15) is similar to
Wahba’s problem [11] if Assumption 1 is satisfied. If one
can show equivalence of the cost function given here to the
loss function used in [11], it is possible to use Davenport’s
q-method [12] to arrive at an explicit solution to the opti-
mization problem.

IV. RESULTS

We use algorithmic differentiation provided by
CasAdi [13] and the interior-point optimization implemented
in interior point optimizer (Ipopt) [14] to solve the
optimization problem defined by (17) - (19).

For the given wind-tunnel data set, the optimal solution
to the calibration problem is given by ϕ∗ = −0.90 deg and
ψ∗ = 1.58 deg, which is in the range that can not be corrected
for via visual inspection by the operator conducting the wind
tunnel experiment. The result for a sweep of the sideslip
angle during which α = δa = δe = 0 and Va = 21m/s
is depicted in Figure 3. Clearly, the measured forces and
moments do not look symmetric with respect to the lon-
gitudinal plane, i.e. when β = 0. However, when plotted
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Fig. 3. A sweep of the sideslip angle (ssa) with α = δa = δe = 0 and
Va = 21m/s. The data over the measured sideslip angle (blue) and the
data over the calibrated sideslip angle (orange) are plotted. The calibration
angles are ϕ∗ = −0.90 deg and ψ∗ = 1.58 deg.

over the calibrated sideslip angle, most of the forces and
moments look symmetric. The exception is the roll moment
l. A possible cause for this can be that the airframe that was
used in the experiments has asymmetries with respect to the
xz-plane. Another explanation is that the wind tunnel may be
producing a vortex around its longitudinal axis that would
produce a non-zero relative angular velocity and therefore
violate Assumption 2. In the latter case, the calibration could
be extended to estimating the relative angular velocity

ωwr =
[
pr 0 0

]⊤
, (20)

with pr ∈ R as an additional decision variable in the
optimization.

Yet another possibility is that the control surface deflec-
tions were not symmetric and therefore inducing an addi-
tional roll moment. The identification of the aerodynamic
model is out of scope of this work, but we discuss it in a
separate paper [15]. The resulting aerodynamic model of the
roll moment shows that an aileron deflection of less than
2.5 deg is enough to explain the offset of approximately

2Nm in Figure 3. Mapped to the elevon deflection, this
amounts to 1.25 deg on each side, which is within the
hysteresis band for the consumer-grade servos that were used
during the tests. It is advised to use more advanced servos
that send position feedback to compensate for this effect and
have more information in the dataset in general.

V. CONCLUSION

We presented a method to reduce planar asymmetries in a
dataset obtained in wind tunnel tests with a fixed-wing UAV
that is by design symmetrical. The optimization procedure
that finds the rotation of the body-fixed coordinate frame
to the measurement equipment is simple to implement with
standard NLP solvers. Calibration of a dataset of a small
fixed-wing UAV demonstrated the efficacy of this approach,
and we concluded with a discussion on other possible sources
of asymmetries. Future work should consider servo motors
that actuate the control surfaces with higher accuracy and
position feedback to eliminate other sources of asymmetries.
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