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Abstract
We revisit the Pseudo-Bayesian approach to the problem of estimating density 
matrix in quantum state tomography in this paper. Pseudo-Bayesian inference has 
been shown to offer a powerful paradigm for quantum tomography with attractive 
theoretical and empirical results. However, the computation of (Pseudo-)Bayes-
ian estimators, due to sampling from complex and high-dimensional distribution, 
pose significant challenges that hamper their usages in practical settings. To over-
come this problem, we present an efficient adaptive MCMC sampling method for 
the Pseudo-Bayesian estimator by exploring an adaptive proposal scheme together 
with subsampling method. We show in simulations that our approach is substantially 
computationally faster than the previous implementation by at least two orders of 
magnitude which is significant for practical quantum tomography.

Keywords Quantum tomography · Bayesian inference · Adaptive MCMC · 
Subsampling · Low-rank matrix

1 Introduction

Quantum state tomography is a fundamental important step in quantum information 
processing (Nielsen and Chuang 2000; Paris and Řeháček 2004). In general, it aims 
at finding the underlying density matrix which describes the given state of a physi-
cal quantum system. This task is done by utilizing the results of measurements per-
formed on repeated state preparations (Nielsen and Chuang 2000).

Bayesian methods have been recognized as a powerful paradigm for quantum 
state tomography (Blume-Kohout 2010), that deal with uncertainty in meaning-
ful and informative ways and are the most accurate approach with respect to the 
expected error (operational divergence) even with finite samples. Several studies 
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have been conducted: for example, the papers Bužek et al. (1998) and Baier et al. 
(2007) performed numerical comparisons between Bayesian estimations with other 
methods on simulated data; algorithms for computing Bayesian estimators have 
been discussed in Kravtsov et al. (2013), Ferrie (2014), Kueng and Ferrie (2015), 
Schmied (2016) and  Lukens et al. (2020).

Pseudo-Bayesian method for quantum tomography, introduced in Mai and 
Alquier (2017), proposes novel approaches for this problem with several attrac-
tive features. Importantly, a novel prior distribution for quantum density matrix is 
introduced based on spectral decomposition parameterization (inspired by the pri-
ors used for low-rank matrix estimation, e.g., Mai and Alquier (2015) and Cottet 
and Alquier (2018)). This prior can be easily used in any dimension and is found 
to be significantly more efficient to sample from and evaluate than the Cholesky 
approach in Struchalin et al. (2016), Zyczkowski et al. (2011) and Seah et al. (2015), 
see Lukens et  al. (2020) for more details. By replacing the likelihood with a loss 
function between a proposed density matrix and experimental data, the paper Mai 
and Alquier (2017) presents two different estimators: the prob-estimator and the 
dens-estimator.

However, the reference Mai and Alquier (2017) proposed simply to compute 
approximately these two Pseudo-Bayesian estimators by naive Metropolis-Hastings 
(MH) algorithms which are computationally very slow for high-dimensional sys-
tems. Recently, a faster and more efficient sampling method has been proposed for 
the dens-estimator, see Lukens et al. (2020). However, we would like to note that the 
prob-estimator is shown in Mai and Alquier (2017) to reach the best known up-to-
date rate of convergence (Butucea et al. 2015) while the theoretical guarantee for the 
dens-estimator is far less satisfactory. Moreover, it is also shown in their simulations 
that the prob-estimator yields better results compared to the dens-estimator.

In this paper, we present a novel efficient adaptive Metropolis-Hastings imple-
mentation for the prob-estimator. This adaptive implementation is based on consid-
ering the whole density matrix as a parameter that needs to be sampled at a time. 
Moreover, an adaptive proposal is explored based on the “preconditioned Crank-
Nicolson” (Cotter et al. 2013) sampling procedure that can eliminate the “curse of 
dimensionality”, which is the case for quantum state tomography where the dimen-
sion increases exponentially. Further speeding up by using subsampling MCMC 
approach is also explored in our work.

Through simulations, it is shown that our implementation is computationally sig-
nificantly faster than the naive MH algorithm in Mai and Alquier (2017). More spe-
cifically, for example as in a system of 6 qubits, our algorithm is around 115 times 
faster than the naive MH algorithm in Mai and Alquier (2017). While in term of 
accuracy, we show that our algorithms returns similar results with less variation.

The rest of the paper is organized as follow. In Sect. 2, we provide the necessary 
background and the statistical model for the problem of quantum state tomography. 
In Sect. 3, we recall the Pseudo-Bayesian approach and the prior distribution. Sec-
tion  4 presents our novel adaptive MCMC implementation for the Pseudo-Bayes-
ian estimator. Simulation studies are presented in Sect. 5. Conclusions are given in 
Sect. 6.
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2  Background

2.1  The quantum state tomography problem

Hereafter, we only provide the necessary background on quantum state tomogra-
phy (QST) required for the paper. We would like to remind that a very nice intro-
duction to this problem, from a statistical perspective, can be found in Artiles 
et  al. (2005). Here, we have opted for the notations used in reference Mai and 
Alquier (2017).

Mathematically speaking, a two-level quantum system of n-qubits is character-
ized by a 2n × 2n density matrix � whose entries are complex, i.e. � ∈ ℂ

2n×2n . For 
the sake of simplicity, put d = 2n , so � is a d × d matrix. This density matrix must 
be

• Hermitian: �† = � (i.e. self-adjoint),
• positive semi-definite: 𝜌 ≽ 0,
• normalized: Trace(�) = 1.

In addition, physicists are especially interested in pure states and that a pure state 
� can be defined in addition by rank(�) = 1 . In practice, it often makes sense to 
assume that the rank of � is small (Gross et al. 2010; Gross 2011; Butucea et al. 
2015).

The goal of quantum tomography is to estimate the underlying density matrix 
� using measurement outcomes of many independent and identically systems pre-
pared in the state � by the same experimental devices.

For a qubit, it is a standard procedure to measure one of the three Pauli observ-
ables �x, �y, �z . The outcome for each will be 1 or −1 , randomly (the correspond-
ing probability is given in (1) below). As a consequence, with a n-qubits system, 
there are 3n possible experimental observables. The set of all possible performed 
observables is

where vector � identifies the experiment. The outcome for each fixed observable set-
ting will be a random vector � = (s1,… , sn) ∈ {−1, 1}n , thus there are 2n outcomes 
in total.

Denote R� a random vector that is the outcome of an experiment indexed by � . 
From the Born’s rule (Nielsen and Chuang 2000), its probability distribution is 
given by

where P�

�
∶= P

a1
s1
⊗⋯⊗ P

an
sn

 and Pai
si
 is the orthogonal projection associated to the 

eigenvalues si ∈ {±1} in the diagonalization of �ai;,ai∈{x,y,z} – that is �ai = P
ai
+1

− P
ai
−1

.
Statistically, for each experiment � ∈ E

n , the experimenter repeats m times the 
experiment corresponding to � and thus collects m independent random copies of 

{𝜎
�
= 𝜎a1 ⊗⋯⊗ 𝜎an ; � = (a1,… , an) ∈ E

n ∶= {x, y, z}n},

(1)p
�,� ∶= ℙ(R� = �) = Trace

(
� ⋅ P�

�

)
,∀� ∈ {−1, 1}n,
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R� , say R�

1
,… ,R�

m
 . As there are 3n possible experimental settings � , we define the 

quantum sample size as N ∶= m ⋅ 3n . We will refer to (R�

i
)i∈{1,…,m},�∈En as D (for 

data). Therefore, quantum state tomography is aiming at estimating the density 
matrix � based on the data D.

2.2  Popular estimation methods

Here, we briefly recall three classical major approaches that have been adopted to 
estimate � , which are: linear inversion, maximum likelihood and Bayesian inference.

2.2.1  Linear inversion

The first and simplest method considered in quantum information processing is the 
’tomographic’ method, also known as linear/direct inversion  (Vogel and Risken 
1989; Řeháček et al. 2010). It is actually the analogue of the least-square estimator 
in the quantum setting. This method relies on the fact that measurement outcome 
probabilities are linear functions of the density matrix.

More specifically, let us consider the empirical frequencies

It is noted that p̂
�,� is an unbiased estimator of the underlying probability p

�,� in (1). 
Therefore, the inversion method is based on solving the linear system of equations

As mentioned above, the computation of �̂� is quite clear and explicit formulas are 
classical that can be found for example in Alquier et al. (2013). While straightfor-
ward and providing unbiased estimate (Schwemmer et al. 2015), it tends to generate 
a non-physical density matrix as an output (Shang et al. 2014): positive semi-defi-
niteness cannot easily be satisfied and enforced.

2.2.2  Maximum likelihood

A popular approach in QST in recent years is the maximum likelihood estimation 
(MLE). MLE aims at finding the density matrix which is most likely to have pro-
duced the observed data D:

where L(�;D) is likelihood, the probability of observing the outcomes given state � , 
as defined by some models (Hradil et al. 2004; James et al. 2001; Gonçalves et al. 
2018). However, it has some critical problems, detailed in Blume-Kohout (2010), 
including a huge computational cost. Moreover, it is a point estimate which does not 
account the level of uncertainty in the result.

(2)p̂
�,� =

1

m

m∑

i=1

�{R�

i
=�}.

(3)
{

p̂
�,� = Trace

(
�̂� ⋅ P�

�

)
,

� ∈ E
n, � ∈ {−1, 1}n.

�MLE = argmaxL(�; D)
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Furthermore, these two methods (Linear inversion and MLE) can not take advan-
tage of a prior knowledge where a system is in a state � for which some additional 
information is available. More particularly, it is noted that physicists usually focus 
on so-called pure states, for which rank(�) = 1.

2.2.3  Bayesian inference

Starting receiving attention in recent years, Bayesian QST had been shown as a 
promising method in this problem (Blume-Kohout 2010; Bužek et al. 1998; Baier 
et al. 2007; Lukens et al. 2020). Through Bayes’ theorem, experimental uncertainty 
is explicitly accounted in Bayesian estimation. More specifically, suppose a density 
matrix � is parameterized by �(x) for some x, Bayesian inference is carried out via 
the posterior distribution

where L(�(x);D) is the likelihood (as in MLE) and �(x) is the prior distribution. 
Using the posterior distribution �(�(x)|D) , the expectation value of any function of � 
can be inferred, e.g. the Bayesian mean estimator as ∫ �(x)�(�(x)|D)dx.

Although recognized as a powerful approach, the numerical challenge of sam-
pling from a high-dimensional probability distribution prevents the widespread use 
of Bayesian methods in the physical problem.

2.2.4  Other approaches

Several other methods have also recently introduced and studied. The reference Cai 
et al. (2016) proposed a method based on the expansion of the density matrix � in 
the Pauli basic. Some rank-penalized approaches were studied in Guţă et al. (2012) 
and Alquier et  al. (2013). A thresholding method is introduced in Butucea et  al. 
(2015).

3  Pseudo‑Bayesian quantum state tomography

3.1  Pseudo‑Bayesian estimation

Let us consider the pseudo-posterior, studied in Mai and Alquier (2017), defined by

where exp [−��(�,D)] is the pseudo-likelihood that plays the role of the empirical 
evidence to give more weight to the density � when it fits the data well; �(d�) is the 
prior given in Sect. 3.2; and 𝜆 > 0 is a tuning parameter that balances between evi-
dence from the data and prior information.

Taking, with p̂
�,� given in (2),

�(�(x)|D) ∝ L(�(x);D)�(x),

�̃�𝜆(d𝜈) ∝ exp [−𝜆�(𝜈,D)]𝜋(d𝜈),
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the “prob-estimator” in Mai and Alquier (2017) is defined as the mean estimator of 
the pseudo-posterior:

This estimator also referred to, in statistical machine learning, as Gibbs estimator, 
PAC-Bayesian estimator or EWA (exponentially weighted aggregate) (Catoni 2007; 
Dalalyan and Tsybakov 2008).

For the sake of simplicity, we use the shortened notation p� ∶= [Tr(�P�

�
)]
�,� and 

p̂ ∶= [p̂
�,�]�,� then

(‖ ⋅ ‖F is the Frobenius norm). Clearly, we can see that this distance measures the 
difference between the probabilities given by a density � and the empirical frequen-
cies in the sample. Here, the readers could see that the tuning parameter � is used to 
control the difference between the empirical frequencies and the hypothetical one 
from the prior distribution. We remind the reader that the matrix [p̂

�,�]�,� is of dimen-
sion 3n × 2n.

Remark 1 This kind of pseudo-posterior is an increasingly popular approach in 
Bayesian statistics and machine learning, see for example Bissiri et al. (2016), Mai 
(2021b), Grünwald and Van Ommen (2017), Catoni (2007), Mai (2022), Alquier 
et al. (2016b), Mai (2021a) and Bégin et al. (2016), for models with intractable like-
lihood or for misspecification models.

3.2  Prior distribution for quantum density matrix

The prior distribution employed in Mai and Alquier (2017) can be expressed as fol-
low: the d × d density matrix � can be parameterized by d non-negative real num-
bers yi and d complex column vectors of length d, zi . Put x =

{
y1,… , yd, z1,… , zd

}
 , 

then the density matrix is

with the prior distribution for x as

�(𝜈,D) ∶= �
prob(𝜈,D) =

∑

�∈En

∑

�∈{−1,1}n

[
Tr(𝜈P�

�
) − p̂

�,�

]2
,

(4)�̃�
prob

𝜆
= ∫ 𝜈 exp

[
−𝜆�prob(𝜈,D)

]
𝜋(d𝜈).

�
prob(𝜈,D) = ‖p𝜈 − p̂‖2

F

(5)�(x) =

d�

i=1

yi∑
�
y
�

ziz
†

i

‖zi‖2
,

(6)�(x) ∝

d∏

i=1

y�−1
i

e−yi e
−

1

2
z
†

i
zi
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where the weights are being treated as Gamma-distributed random variables 
Yi

i.i.d.
∼ Γ(�, 1) , and the vectors zi are standard-normal complex Gaussian distributed 

Zi
i.i.d.
∼ CN(0, Id).
The tuning parameter � in (6) allows the user to favor low-rank or high-rank den-

sity matrices which are corresponding to pure or mixed states, respectively. More 
particularly, the normalized random variables Yi∕(

∑
Yj) with Yi

i.i.d.
∼ Γ(�, 1) follows 

a Dirichlet distribution Dir(�) which ensures both normalization and non-negativity. 
An 𝛼 < 1 promotes sparse draws and thus purer states, while � = 1 returns a fully 
uniform prior on all physically realizable states.

Remark 2 It is noted that this parameterization satisfies all physical conditions for 
the density matrix, details can be found in Mai and Alquier (2017). Moreover, this 
parameterization have been shown to be significantly more efficient to sample from 
and to evaluate than the Cholesky approach in references Struchalin et al. (2016), 
Zyczkowski et al. (2011) and Seah et al. (2015), see Lukens et al. (2020) for details.

Remark 3 The theoretical guarantees for the “prob-estimator" in (4) are validated 
only for 0 < 𝛼 ≤ 1 . More specifically, the prob-estimator satisfies (up to a multi-
plicative logarithmic factor) that ‖�̃�prob

𝜆∗
− 𝜌0‖2

F
≤ c3nrank(𝜌0)∕N which is the best 

known up-to-date rate in the problem of quantum state estimation (Butucea et  al. 
2015), where c is a numerical constant and �∗ = m∕2.

4  A novel efficient adaptive MCMC implementation

Appropriately, the prob-estimator requires an evaluation of the integral (4) which is 
numerically challenging due to its sophisticated features and high dimensionality. A 
first attempt has been done in Mai and Alquier (2017) is to use a naive Metropolis-
Hastings (MH) algorithm where the authors iterate between a random walk MH for 
log(yi) and an independent MH for zi . Typically, the approach is designed to obtain T 
samples x(1),… , x(T) as a consequence the integral (4) can be approximated as

However, as also noted in the reference Mai and Alquier (2017), their proposed 
algorithm can run into slow convergence and can be arbitrarily slow as the system 
dimensionality increases. In this paper, we propose a novel efficient MCMC algo-
rithm for the prob-estimator through exploring the adaptive proposal and subsam-
pling scheme.

4.1  A preconditioned Crank‑Nicolson adaptive proposal

Borrowing motivation from the recent work in Lukens et al. (2020) that proposes an 
efficient sampling procedure for Bayesian quantum state estimation (which improve the 

�̂�MH ≈
1

T

T∑

t=1

𝜌(x(t)).
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computation of the “dens-estimator” in Mai and Alquier (2017) only), we introduce 
an efficient adaptive Metropolis-Hastings implementation for the prob-estimator in Mai 
and Alquier (2017). We remind that the prob-estimator shows better performance than 
the dens-estimator both in theory and simulations.

Specifically, we propose to use a modification of random-walk MH by scaling the 
previous step before adding a random move and generating the proposal z′ . Follow-
ing Cotter et al. (2013) who introduced an efficient MCMC approach eliminating the 
“curse of dimensionality”, termed as “preconditioned Crank-Nicolson”, we use the pro-
posal for zj as

where �z ∈ (0, 1) is a tuning parameter. This proposal is a scaled, by the factor √
1 − �2

z
 , random walk that results in a slightly simpler acceptance probability. 

Unlike the independent proposal in Mai and Alquier (2017) (with �z = 1 ) where the 
acceptance probability can vary substantially, this kind of adaptive proposal allows 
one to control the acceptance rate efficiently. For �y ∈ (0, 1) , we slightly modify the 
proposal for y from Mai and Alquier (2017) (with �y = 1 ) as

The acceptance ratio min{1,A(x�|x(k))} are followed from the standard form for MH 
(Robert and Casella 2013). Let p(x�|x(k)) denote the proposal density, we have

where

4.2  Speeding up by subsampling

We remind that the log (pseudo-)likelihood, logLD(x) = −𝜆‖p𝜈 − p̂‖2
F
 , is the Frobe-

nius norm of a matrix of dimension 3n × 2n and thus for large n it will be very costly 
to evaluate at each iteration. For example, with n = 7 , this matrix is of dimension 
2187 × 128 . Therefore, we propose to evaluate a random subset of this matrix at each 
iteration. More precisely, at each iteration, we draw uniformly at random a subset Ω of 
indices of the 3n × 2n matrix. Then, the log pseudo-likelihood, logLD(x) , is approxi-
mated by

z�
j
=
√

1 − �2
z
z
(k)

j
+ �z�j, �j

i.i.d.
∼ CN(0, Id)

y�
j
= y

(j)

j
e�y�j , �j

i.i.d.
∼ Uniform(−0.5, 0.5).

A(x�|x(k)) = �̃�(𝜌(x�))

�̃�(𝜌(x(k)))

p(x(k)|x�)
p(x�|x(k))

,

logA(x�|x(k)) = log LD(x
�) − logLD(x

(k)) +

d∑

j=1

[
� log y�

j
− y�

j
− � log y

(k)

j
+ y

(k)

j

]
.

logLΩ(x) ∶=
∑

(�,�)∈Ω⊂En×{−1,1}n

[
Tr(𝜈P�

�
) − p̂

�,�

]2
,
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As a consequence, the acceptance rate corresponding with this subsampling is 
denoted by AΩ(x

�|x(k)) . It is noted that this kind of using subsampling to speeding up 
MCMC algorithms is becoming popular in the computational statistics community, 
see for example Quiroz et al. (2018b), Maire et al. (2019), Quiroz et al. (2018a) and 
Alquier et al. (2016a).

The details of our novel adaptive MH is given in Algorithm 1.

5  Numerical studies

5.1  Simulations setups and details

To assess the performance of our new proposed algorithm, a series of experiments 
were conducted with simulated tomographic data. More particularly, we consider the 
following setting for choosing the true density matrix, with n = 2, 3, 4, ( d = 4, 8, 16):

– Setting 1: we consider the ideal entangled state which is characterized by a 
rank-2 density matrix that 

 with �1 = u∕‖u‖ and u = (u1,… , ud∕2, 0,… , 0), u1 = … = ud∕2 = 1 ; �2 = v∕‖v‖ 
and v = (0,… , 0, vd∕2+1,… , vd), vd∕2 = … = vd = 1.

– Setting 2: a maximal mixed state (rank-d) that is 

 with �i are normalized vectors and independently simulated from CN(0, Id).

�rank−2 =
1

2
�1�

†

1
+

1

2
�2�

†

2

�mixed =

d∑

i=1

1

d
�i�

†

i
,



 T. T. Mai 

1 3

The experiments are done following Sect.  2 for m = 1000 . The prob-estimator is 
employed with � = m∕2 and a prior with � = 1 which are theoretically guaranteed 
from Theorem 1 in reference Mai and Alquier (2017). We compare our adaptive MH 
implementation, denoted by “a-MH”, against the (random-walk) in Mai and Alquier 
(2017), denoted by “MH”; where all algorithms are run with 1000 iterations and 200 
burnin steps. We run 50 independent samplers for each algorithm, and compute the 
mean of the square error (MSE),

for each method, together with their standard deviations. We also measure the mean 
absolute error of eigen values (MAEE) by

where �i(A) are the eigen values of the matrix A.

5.2  Significantly speeding up

From Fig.  1, it is clear to see that our adaptive MH implementation is greatly 
faster than the previous implementation from Mai and Alquier (2017) by at least 
two orders of magnitude as the number of qubits increase. The data are simu-
lated as in Setting 1 for n = 2, 4, 6, 7 for which the dimensions of the density 
matrix are d = 4, 16, 64, 128 and of the empirical frequencies matrices [p̂

�,�] are 
9 × 4, 81 × 16, 729 × 64, 2187 × 128 . More specifically, for n = 6 , our adaptive MH 
gives ∼115.9 times speedup comparing to the naive “MH” algorithm in Mai and 
Alquier (2017) and for n = 7 the speedup is ∼251.1 times.

In addition, subsampling approaches also save the computational times respec-
tively with the volume of the subsets, for example “a-MH-30%” will save the com-
putational time by 2/3 while “a-MH-60%” will save the computational time by 
1/3 of the full data approach “a-MH”. We note that these improvements are quite 

MSE ∶= ‖�̂� − 𝜌‖2
F
∕d2

MAEE ∶=
1

d

d∑

i=1

|𝜆i(�̂�) − 𝜆i(𝜌)|,

Fig. 1  Plot to compare the run-
ning times (s) in log-scale for 10 
steps of two algorithms in the 
setup of Setting 1, for the qubits 
n = 2, 4, 6, 7 ( d = 4, 16, 64, 128 ). 
“MH” is from reference Mai and 
Alquier (2017); “a-MH” is the 
Algorithm 1 without subsam-
pling; “a-MH-30%” is the Algo-
rithm 1 with subsampling 30%; 
“a-MH-60%” is the Algorithm 1 
with subsampling 60%

0
5

10

tim
e 

(s
) i

n 
lo

g−
sc

al
e 

n=2 n=4 n=6 n=7

MH
a−MH
a−MH−60%
a−MH−30%
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significant for practical quantum tomography where computational time is a pre-
cious resource.

5.3  Tuning parameters via acceptance rate

The tuning parameters �y, �z are chosen such that the acceptance rate of Algo-
rithm 1 is between 0.15 and 0.3. This interval is chosen to enclose 0.234, the opti-
mum acceptance probability for random-walk Metropolis-Hastings (under assump-
tions) (Gelman et al. 1997). For example, as in our experiments, for n = 2 qubits: 
�y = 0.33, �z = 0.2 ; for n = 3 qubits: �y = 0.03, �z = 0.03 and for n = 4 qubits: 
�y = 0.03, �z = 0.02 (all are run with � = 1, � = m∕2 ). We note that as the number 
of qubits n increase, these tuning parameters tend to be smaller and smaller to assure 
that the acceptance rate is between 0.15 and 0.3.

As an illustration, we conduct some simulations with n = 4 qubits in Setting 2. It 
can be seen from Fig. 2 that the acceptance rate between 0.2 and 0.3 would be opti-
mal, as in Gelman et al. (1997). Where as high acceptance rate like 0.7 could make 
the algorithm be trapped at local points, and very small acceptance rate as 0.1 could 
make the algorithm converge slower.

5.4  Similar accuracy with less variation

In term of accuracy performance, Fig. 3 compares the performance of our “a-MH” 
algorithm with the “MH” algorithm in various settings and varying the number of 
qubits n = 2, 3, 4, 5 . The results show that both algorithms share similar accuracy 
in term of both considered errors (MSE and MAEE). However, it shows a clear 
improvement that our proposed adaptive algorithm yields much stable results (with 
less variation) compared to the naive MH approach as expected.

Results on subsampling are given in Fig. 4, where we further examine the per-
formance of the “a-MH” algorithm with full data against subsampling the data by 
60% and 30%. The outputs show that the subsampling approaches return compa-
rable results. More specifically, in the cae of low-rankness (Setting 1), the subsam-
pling approaches share similar accuracy (with higher variation) with the full data 
approach. In the case of mixed state (Setting 2), the subsampling approaches seem 
to return smaller error in term of mean squared errors, however their mean absolute 

Fig. 2  Boxplots to examine the 
effect of the acceptance rate to 
MSE. The simulations are run 
within Setting 2 for n = 4
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error of eigen values (MAEE) are slightly higher than the full data approach. This 
can be explained as the target distribution of the subsampling algorithm is just an 
approximation of the target distribution in the full setting, thus the mean posterior 
could be well approximated but higher variation, (Quiroz et al. 2018b; Maire et al. 
2019; Quiroz et al. 2018a; Alquier et al. 2016a).

Additional simulation regarding sensitivity analysis for different values of � and � 
are given in Fig. 5 in the Appendix.

6  Discussion and conclusion

We have introduced an efficient sampling algorithm for Pseudo-Bayesian quantum 
tomography, especially for the prob-estimator. Our approach use a preconditioned 
proposal and subsampling Metropolis-Hasting implementation which shows a clear 
improvement in convergence, computation and computational time comparing with 
a naive MH implementation. We would like to mention that such an improvement is 
significantly important for practical quantum state tomography.

As suggested by one of the anonymous reviewer, in practice, one could change 
the tuning parameters �y, �z in Algorithm  1 dynamically adaptively. For exam-
ple, one could change the values of these parameter every fixed steps (say 500 or 
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Fig. 3  Plots to compare the errors of two algorithms in different settings and with varying the number 
of qubits n = 2, 3, 4, 5 . The top 2 boxplots from left to right are in Setting 1, the bottom 2 boxplots from 
left to right are in Setting 2. “MH” is from reference Mai and Alquier (2017); “a-MH” is the Algorithm 1 
with full data
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1000 steps) so that the acceptance rate is between 0.15 and 0.3. This could be an 
important step to obtain a better mixing rate in the chain.

Last but not least, faster algorithms based on optimization, such as Variational 
inference (Alquier et al. 2016b), for Bayesian quantum tomography would be an 
interesting research problem. However, it should be noted that the analysis of the 
uncertainty quantification when using Variational inference is not known up to 
present, while this matter is an important aspect in the problem of quantum state 
estimation.
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Appendix: Additional simulations for changing � and ̨

Here we further present some additional simulations for different values of � and � . 
The simulations are carried out as in Setting 2 for 3 qubits. The results are given in 
Fig. 5. These results show that � = m∕2 would be an optimal choice while the effect 
of � is not clearly determined.
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