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Abstract. This paper deals with the condition monitoring of a floating wind turbine drivetrain
using multi-point acceleration measurements. Single sensor data obtained from drivetrain
system may provide insufficient information about the health condition due to the complicated
structure and applied loading on this system. As a result, multi-point measurements are
required to be employed for reliable fault diagnosis. The shared information between the
multi-point measurements can be used for identifying the system’s condition. In this study,
the fault diagnosis of the floating wind turbine drivetrain system is performed using a data-
driven approach. Fault cases are considered in bearings most likely to damage. A combined
principal component analysis (PCA) and deep convolutional neural network (CNN) is proposed
to extract common and fault-related information between the measurements on the one hand
and to classify different health conditions of the drivetrain on the other. It will be demonstrated
that PCA-based information provides more satisfactory fault diagnosis results than individual
sensor data. The method is numerically validated using the acceleration responses obtained
from a 5-MW reference drivetrain model installed on a spar-type floating wind turbine.

1. Introduction
Operation & Maintenance (O&M) costs of offshore wind turbines (WT) are significantly higher
than those of onshore WTs [1]. Hence, higher reliable solutions for offshore development is
needed than onshore designs. Experiences with the WT’s components show that defects in the
drivetrain components contribute significantly to the downtime and non-availability of the WT.
As a result, employing optimal maintenance strategies on floating WTs, particularly drivetrain
components, is crucial. Since the changes caused by system defects appear quickly in vibration
signals, vibration-based condition monitoring (often measured as root mean square (RMS) of
velocity or acceleration) is a standard method for drivetrain fault diagnosis [2]. Regarding
the vibration-based fault diagnosis of drivetrains, Peeters et al. [3] employed cepstrum editing
procedure for separating rolling element bearing fault signal from other signals coming from
drivetrain elements like gears or shaft. Koukoura et al. [4] proposed a parallel multi-step vibration
processing pipelines for planetary stage fault detection in wind turbine drivetrain. Sawalhi et
al. [5] analyzed wind turbine drivetrain vibration data provided by the National Renewable
Energy Laboratory under a round robin scheme to diagnose bearing and gear faults. However,
due to the multi-component structure and multi-source vibration of the drivetrain system, the
information obtained from a single sensor is usually limited, and several sensors are needed to be
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mounted in various parts of the drivetrain system. A multiple-sensor configuration can provide
more comprehensive information on the system’s operational state. Nonetheless, using all multi-
sensor collected data for condition monitoring, irrelevant information is collected during data
acquisition. Therefore, a pre-processing approach should be embedded in the fault diagnosis
process in order to get dimension-reduced and fault-related data from raw measurements.

In general, as a fault occurs in the system, the correlations between the multi-point
measurements change [6, 7]. By using correlated information between the measurements and
fusing them, one can decide about the system’s condition. Useful fault-related features can be
obtained by capturing the correlated information between the multi-point measurements. Bai
et al. [7] studied fault diagnosis of rotor equipment based on multi-sensor correlation analysis
and deep learing. A fault diagnosis method has been proposed by Xiong et al. [8] for rotating
machinery based on fusing the dimensionless indices and Pearson correlation coefficient. Xin et
al. [9] used feature-fusion covariance matrix using multi-sensor data for gearbox fault diagnosis.
However, studies on multiple sensor-based fault diagnosis for floating WTs drivetrain systems
are limited.

Fault diagnosis of the drivetrain system is performed in this study using shared information
from multi-point measurements. The principal component analysis (PCA) method is applied to
multi-point raw vibration data to reduce the dimension of the original data and the computational
burden while retaining the most possible information. After dimension reduction, the data is fed
into a deep convolutional neural network (CNN) for classification and fault-pattern recognition.
It will be shown that existing faults in the drivetrain are better diagnosed using information of
multiple measurements rather than information obtained from the individual ones.

The 5-MW reference gearbox [10] model is used for numerical validation in this research.
simulations are carried out at rated wind speed. This reference gearbox model is installed
on a spar-type floating wind turbine. Fault cases are considered in the main bearing, high and
intermediate-speed shaft bearings, and planet bearing. These fault cases are most likely locations
of the failure based on the previous studies. Changes in the bearing stiffness matrix values in
either the radial or axial directions are used to model faults [10, 11, 12]. To include the most
failure-related information, acceleration responses are chosen from the parts closest to these
faulty bearings. These responses are obtained from the main, low, intermediate, and high-speed
shafts.

2. Drivetrain model and methodology
This study uses a 5-MW reference gearbox [10] utilizing commercial SIMPACK software [13],
installed on the floating OC3 Hywind spar structure [14, 15]. This WT is a 3-blade upwind
turbine with a rated wind speed of 11.4 rpm. The gearbox includes three stages, two planetary
and one parallel stage gears. The gearbox was developed with a 4-point support with 2 main
bearings to limit entering the non-torque loads to the gearbox. More information about this spar
structure and gearbox model can be found in Nejad et al. [16, 10].

The de-coupled analysis approach is employed in order to obtain the vibration responses of
the drivetrain model [2] and use them for further procedures. In the de-coupled approach, global
and local analyses are separately performed. For global analysis, simulations are done with
small sampling frequencies. Because the external excitations - including wave and wind - are
in the low-frequency range, often less than 2 Hz. While, for the local analysis, simulations are
performed with high sampling frequencies to capture internal excitations - gear mesh frequencies,
for example - that are usually within the high-frequency ranges. The overall procedure of the
de-coupled analysis approach, as well as the detailed model of the 5-MW reference gearbox and
the applied external loads on this model, are shown in Figure 1. More information about global
analysis and the parameters used in this analysis can be found in Nejad et al. [2].

As mentioned, internal simulations of the drivetrain system are performed at a high sampling



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 032096

IOP Publishing
doi:10.1088/1742-6596/2265/3/032096

3

Figure 1. Drivetrain de-coupled analysis method

frequency (200 Hz in this study) to capture all possible internal excitations. For each load case
or health condition of the drivetrain, a 3800-second simulation is conducted at rated wind speed.
The first 200 seconds are removed during post-processing to prevent temporary start-up effects.
In this study, the data analyzed are acceleration measurements obtained from the main, low,
intermediate, and high-speed shafts. Fig. 2 shows the location of the measurements. The reason
for selecting these locations for investigation in this study is the proximity to the faulty bearings.
Changes in system behavior due to defects in bearings can be more clearly identified from these
vibration responses.

2.1. Fault cases and fault modeling
Gearbox degradation in wind turbines, as stated by Musial et al. [17], mostly begins with the
bearings. Hence, fault cases in a set of bearings are considered in the case study gearbox [10]
used in this paper. These bearings are chosen based on the vulnerability map proposed by Nejad
et al. [10] and their failure probability. Faults are modeled by change in the stiffness values of
the bearings. This approach of bearing fault modeling has been done in some research studies,
for example Nejad et al. [2]. Figure 2 and Table 1 show the fault cases considered in this study.
The original stiffness values and the reduced values corresponding to degraded bearings in each
load case are also given in Table 1.

Figure 2. Fault cases and acceleration measurement locations [10]
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Table 1. Considered fault cases and corresponding bearing stiffness values

Fault
case Description

Original
stiffness
value
(Healthy)
(N/m)

Reduced
stiffness
value
(N/m)

LC0 Reference case, healthy - -

LC1 Damage in axial direction of main bearing (INP-
B) 4.06×108 4.06×107

LC2 Damage in radial direction of the high-speed
shaft bearing (HS-A) 8.2× 108 8.2× 106

LC3 Damage in radial direction of the intermediate-
speed shaft bearing (IMS-B) 5× 108 5× 106

LC4 Damage in radial direction of the low-speed shaft
bearing (IMS-PL-A) 6.12×107 6.12×105

3. Fault diagnosis approach
3.1. Principal component analysis (PCA)
PCA is a linear feature extraction method that uses dimension reduction of multivariate data
[18]. Using PCA, the input data is represented in a smaller dimension space by a set of orthogonal
components known as principal components, with the first principal component containing the
highest possible variance of the input data.

For a set of normalized multivariate n×m input dataX, where n is the number of observations
and m is the number of dimensions, the PCA procedure is as follows:

(i) Compute the m×m covariance matrix C.
(ii) Compute the eigenvalues λ and eigenvectors Q of the covariance matrix C:

Cq = λq −→

{
λ1 ≥ λ2 ≥ ... ≥ λm
Qm×m = [q1, q2, ..., qm]

(1)

where each column of Q represents one eigenvector or principal component coefficients for
the corresponding eigenvalue.

(iii) Project original space of input data X onto the principal component space:

P = QTX (2)

Both P and X have the same dimension n × m. P contains the principal component
scores. Principal component scores are the representations of original dataX in the principal
component space. Most of the time, the few first principal components are chosen based on
the variance threshold.

In this paper, the dimension m equals the number of measurements that is four. The length
of measurement vectors is also equal to the number of observations n. PCA’s first principal
component scores will be used only to retain the direction from the original space with the
highest variance.
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3.2. Convolutional neural networks (CNN)
In this study, because of using directly simulation data of different healthy and faulty conditions,
it is suitable to apply a machine learning-based approach for fault detection and diagnosis. In
this regard, CNN as a deep neural network is employed to classify healthy and faulty conditions
without the need for hand-crafted features extracted from raw data. CNN networks consist of
two parts, as illustrated in Figure 3: feature extractor and classifier. First, high-level features
called feature maps are extracted from the input data using multiple convolution and pooling
layer pairs in the feature extractor part. The classifier part, which consists of multiple fully
connected layers, then assigns the extracted features to the corresponding correct output [19].
The operation in classifier part is similar to that of a multilayer perceptron (MLP) network. The
output layer typically uses the Softmax activation function for multi-class classification. This
activation function returns the conditional probability for each class as output. Assuming that
there are N classes to classify the data, the probability of output y corresponding to the kth
node or class (Ok ∈ [0, 1]) in the output layer with the Softmax function is calculated as follows
[20]:

Ok = P (y = k|x;Wk, bk) = Softmax(Wkx+ bk) =
exp(Wkx+ bk)∑N
i=1 exp(Wix+ bi)

(3)

where P (.) is the conditional probability function, x is the input of output layer and
∑N

i=1Oi = 1.
Wk and bk are also weight and bias values corresponding to kth node. The output node
corresponding to the maximum value of the conditional probability obtained is considered as
the input data class.

Figure 3. CNN architecture

3.3. Overall proposed procedure - Combining PCA and CNN
In this study, the drivetrain fault diagnosis method is performed in a pattern recognition
framework. First, the multi-point acceleration measurements are segmented into shorter-length
responses to generate enough data for training and testing the CNN model. PCA is applied
to multi-point segmented measurements in the feature extraction step. This applying is done
for two reasons: (1) to reduce the computational burden and (2) to obtain shared information
between the measurements by retaining the most dominant direction in the original data. The
first principal component is used for this purpose. The classification step also includes feeding
the PCA-projected responses into the CNN to determine the health condition of the drivetrain
system. Figure 4 depicts the steps taken to fault diagnosis in this paper.

4. Results and discussion
For fault diagnosis through the CNN model, we need to have sufficient data for training step.
In this regard, we should segment the original responses obtained in each load case. 1-hour
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Figure 4. Schematic description of the proposed method for the fault diagnosis of the drivetrain

measurements collected for each load case are segmented into shorter-length signals with 10
seconds length. For each load case, 270 segmented signals are considered (1350 signals in total),
each with a length of 2000 sample points. This segmentation should be short enough to contain
the required information from the system. On the other hand, segmented signals should be
statistically different and have statistical variation.

Multi-point acceleration measurements are collected from the main, low-speed, intermediate-
speed and high-speed shafts. The PCA method is employed to extract the possible correlated
information between these measurements by reducing the dimensions of the original data. The
dimension reduction is performed by reducing four dimensions (number of measurements) to just
one dimension by retaining the first principal component. In the classification stage, 1D CNN is
implemented to be fed by PCA-projected data. The input length of the CNN model is considered
the same as the length of the segmented signals or 2000. The output number of this model is
also the same as the number of load cases (fault conditions) which is 5. 75% of the segmented
signals or samples are used as training data, and the rest as test data. The results for test
data are presented as the classification accuracy for each class, as well as the overall accuracy in
Table 2. In addition, the CNN model is trained separately with four individual measurements for
comparison. The obtained results can also be found in Table 2. The purpose of this comparison
is to see if correlated information obtained through PCA can outperform information obtained
from single sensors in fault diagnosis.

As seen from the results of Table 2, when the CNN model is trained with data from the
individual sensors, the highest classification accuracy is obtained for the fault condition near
that sensor. For example, in the case of trained CNN with only data from accin (measurements
close to the main bearing), test samples for the LC1 (fault in the main bearing) are correctly
classified. While the other conditions have poor classification accuracy. This is also true for the
trained CNN with only data from acc1st. In this case, all test samples related to the failure in
the IMS-PL-A bearing (LC4) are correctly recognized. However, for acc2nd, it is also expected
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that the fault in the IMS-B bearing located at the end of the intermediate-speed shaft (LC3)
can be correctly classified. But, we see that it is incapable of accurately detecting this condition.
There is another bearing next to this faulty bearing (IMS-A). These are taper-type bearings
that are usually installed in pairs. The IMS-A bearing impedes additional loads caused by IMS-
B failure. As a result, slight vibration occurs from the IMS-B bearing failure, and it cannot
be distinguished from the healthy condition. Furthermore, the classification results are more
accurate when acceleration data from the high-speed side of the drivetrain is used. Trained CNNs
with acc2nd and accout provide higher classification accuracy than accin and acc2nd. These results
were predictable, as the acceleration measurements are more sensitive to high impact rates. Low-
speed side measurements contain less impact energy, due to the damaged bearings, than high-
speed side acceleration measurements. The low impact energy results in a high ratio of noise to
an abnormal bearing signal [21]. Therefore, measurements of the high-speed side of the drivetrain
can provide more fault-related information. These results are also seen in the confusion matrix
obtained for each trained CNN model in Figures 5 (a)-(d). As can be seen, all trained models
with individual measurements, especially accin and acc1st, have poor classification accuracy in
fault cases located far from the location of the used measurement. This misclassification in fault
cases also results in poor detection accuracy for healthy condition. Because non-detectable test
samples from each fault case, especially LC3, are incorrectly classified in the healthy class.

Table 2. Fault diagnosis accuracy for test dataset in each class and overall accuracy (CNN
model is trained with different inputs)

Input to CNN LC0
(%)

LC1
(%)

LC2
(%)

LC3
(%)

LC4
(%)

Overall
(%)

accin 21.11 100.00 53.33 24.44 48.89 49.56

acc1st 28.89 24.44 21.11 26.67 100.00 40.22

acc2nd 65.56 62.22 100.00 50.00 100.00 75.56

accout 73.33 95.56 100.00 61.11 74.44 80.89

Proposed method 77.78 97.78 98.89 86.67 91.11 90.45

The results for the trained CNN with PCA-based data (proposed method) are also given
in Table 2 and Figure 5 (e). As discussed earlier, the first principal component is chosen as
the input to the CNN model. This component corresponds to the direction with the maximum
variance in the original data space. As a result, this component is just retained to represent all
measurements. As can be seen, compared to the results of individual measurements, all fault
classes can be classified more accurately (over 90 percent in overall accuracy), and the results
are more reliable. However, as illustrated by the confusion matrix in Figure 5, most incorrectly
classified samples belong to the LC0 and LC3 classes. As previously stated regarding LC3,
fault signatures are masked by the paired bearing. Hence, a few LC3 class test samples (15.6%)
and some healthy test samples (11.1%) are misclassified. Also, there are some other incorrectly
classified samples in other classes. This misclassification could be related to the performance
of CNN model. Changing the CNN training parameters and layer configuration might enhance
detection accuracy. However, the purpose of this study was to compare PCA-based results with
the fault diagnosis results acquired from individual measurement data. The findings in the
current study show that information obtained using PCA from the multi-point acceleration data
is more effective in fault diagnosis compared to the individual measurements.
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Figure 5. Fault diagnosis results for test dataset in the form of confusion matrix with different
inputs for CNN model: (a) accin (b) acc1st (c) acc2nd (d) accout (e) First principal component
obtained from all measurements

5. Conclusion
In this study, fault diagnosis of the drivetrain system was performed using the multi-point
acceleration measurements and a data-driven approach. The case study is a 5-MW drivetrain
simulated model installed on a spar-type floating wind turbine. Numerical measured data are
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acceleration responses obtained from the main, low-speed, intermediate-speed, and generator
shafts. Fault cases were studied on the main bearing (LC1), the generator shaft bearing (LC2),
the bearing at the end of the intermediate-speed shaft (LC3), and the low-speed shaft planet
bearing (LC4). PCA was employed to reduce the dimension of the multi-point measurements.
PCA-projected data were then fed into a deep CNN model to classify the drivetrain’s different
healthy and faulty conditions. It was shown that the multi-point information obtained through
PCA performs better in fault diagnosis than individual measurements. Furthermore, acceleration
measurements from the high-speed side of the drivetrain were found to be more accurate in fault
diagnosis than measurements from the low-speed side.

For future studies, it will be demonstrated which combinations of acceleration measurements
result in higher accuracy for fault diagnosis. This analysis will aid in the sensor optimization
problem by getting better condition monitoring measurements. It can be investigated by studying
the correlation between the measurements and how their relationship changes when a fault occurs
in one of the components. In addition, in this study, the first principal component was only
used as condition monitoring data. Although this component has the maximum original data
variance, the following components are also likely to contain fault-related information based on
their correlation to original data and which direction they include in the original data space. As
a result, a study will be done on the required number of principal components representing all the
original measurements. A comparative analysis of radial and axial acceleration measurements
for fault diagnosis is also of interest for future work.
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