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Abstract: The constant reuse of waters in recirculating aquaculture systems (RAS) together with the
continuous addition of organic matter from fish degradation components, faeces and non-consumed
feed promote the accumulation of dissolved organic matter (DOM), particularly of fulvic acids (FA),
leading to the yellow discoloration of their waters. The accumulation of these acids in RAS can
have potential effects on its water quality, and consequently fish health and welfare. Thus, the
characterization of FA is paramount for improving water quality, and subsequently fish productivity
in RAS. In this study, a non-targeted analysis by quadrupole time-of-flight mass spectrometry (QTOF-
MS) was used to characterize the recirculating aquaculture systems fulvic acids (RASFA) and then
compare their molecular fingerprints with actual reference standards of fulvic acids (FA) (Suwannee
River; SRFA, Elliott soil; ESFA and Pahokee Peat; PPFA) purchased from the International Humic
Substance Society (IHSS). The results of this study demonstrated the applicability of QTOF-MS as a
rapid and comprehensive screening technique to characterize the FA fraction of DOM from RAS and
to monitor differences in their molecular fingerprints when compared with other FA samples (SRFA,
ESFA and PPFA). The QTOF-MS data from SRFA and ESFA standards matched the list of formulas
obtained by 17 high-resolution mass spectrometry (HRMS) instruments with 90 and 76% accuracy,
respectively, which guaranteed the power of QTOF-MS without the need for further coupling to
liquid chromatography (LC). RASFA was found to be rich in low- and high-oxygen unsaturated
classes of compounds (lowOC: 61.73% and highOC: 19.28%) and was similar in composition to
SRFA. On the contrary, the ESFA and PPFA soil standards consisted mainly of aliphatic compounds
(36.77 and 55.74%, respectively) and differed significantly in composition from the RASFA and SRFA
water samples. RASFA matched with 66% of the elemental compositions obtained from the DOM of
makeup waters analyzed in a previous experiment, indicating freshwater and seawater origins with
a high fraction of terrestrial-derived organic matter (Tanimoto score: 0.53 between RASFA and SRFA).
The unique information obtained from the molecular-level analysis of FA samples by QTOF-MS
highlights the importance of this technique to characterize and compare FA from different origins
rendering it possible to track the FA compositional changes along the water treatment processes of
RAS. To our knowledge, this is the first study that characterizes the molecular fingerprints of the
RASFA by QTOF-MS and compares them with the available FA reference standards from IHSS.

Keywords: non-targeted analysis; dissolved organic matter; quadrupole time-of-flight mass
spectrometry; fulvic acids; recirculating aquaculture systems; high-resolution mass spectrometry

1. Introduction

Recirculating aquaculture systems (RAS) are developed to support human population
growth, achieving profitable production of fish [1,2]. These systems recycle water through
different mechanisms, ensuring optimum water quality with minimal natural water de-
mand and waste production [3]. However, the constant utilization of RAS waters leads
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to an accumulation of dissolved organic matter (DOM), and consequently to the yellow
discoloration of its waters [4–8]. DOM from RAS is a heterogeneous complex mixture
containing many identifiable classes of compounds such as proteins, carbohydrates, lipids,
unsaturated compounds, aliphatics, lignins, condensed aromatic and humic substances
(HS), among others [4,5,9,10]. From those, HS are considered one of the causes of the
yellow discoloration in natural waters, and hence are a possible contributor to the yellow
discoloration of RAS waters [11–15].

HS in the aqueous form can be divided into two fractions: (1) humic acids (HA):
dark-brownish fraction of HS not soluble in water at pH < 2; and (2) fulvic acids (FA):
yellowish to yellow-brownish fraction of HS soluble in water pH [16–18]. These substances
are ubiquitous in natural and human-made environments, including natural waters [19],
wastewaters [20], sewage sludge [21], landfill leachates [22], compost [23], soil [24] and
the atmosphere [25], and are defined as organic residues formed from the organic matter
and detritus decay [18,26]. In a recent study performed by Yamin et al. (2017) [9], humic-
substance-like (HS-like) components were found in the fish feed, fish blood and waters of
freshwater and marine RAS for hybrid tilapia (Oreochromis aureus × Oreochromis niloticus)
and gilthead seabream (Sparus aurata), respectively. Moreover, humic-like species were
found in high abundance in the brackish waters of RAS during the acclimation of Atlantic
salmon (Salmo salar) post-smolts [4].

The increase of water reuse in RAS and the steady generation of organic matter from
the faeces, fish degradation components and non-consumed feed can contribute to the
accumulation of HA and FA [27]. This was supported in our previous study, where accu-
mulation of fulvic-like compounds was observed in the RAS waters of Atlantic salmon
(Salmo salar) post-smolts even under the application of a powerful oxidizing agent such as
ozone [4]. These acids can affect many biogeochemical processes in the aquaculture environ-
ment, including microbial growth, interaction with metallic ions and organic chemicals, pH
buffering, photochemical reactions, light attenuation, and transport of contaminants, which
can affect the water quality of RAS, and consequently fish health and welfare [17,28–31].
Moreover, their accumulation can cause colour, odour and taste problems in the waters
of RAS, decreasing the water clarity and progressively deteriorating the fish farming
environment [29]. HS are considered the most refractory fraction of DOM that resists
biodegradation [17,32] and the possible cause of the accumulation of yellowish organic
compounds in RAS; hence, determining the composition of HS is essential for ensuring
optimal water quality management, and subsequently fish productivity in RAS.

Non-targeted screening approaches by electrospray ionization quadrupole time-of-
flight mass spectrometry (ESI-QTOF-MS) can detect numerous single fulvic acid molecules
out of the complex isolates when no previous information on the underlying molecules
is available [33–37]. ESI-QTOF-MS analyses are often qualitative and can reveal informa-
tion about the complexation properties, origins, formation, structure, and transformation
of fulvic acids in RAS. These analyses were previously performed with and without
coupling to liquid chromatography [33,34]. Liquid chromatography (LC) constitutes a
powerful tool for FA analyses since it fractionates FA into classes of compounds based
on their polarity (hydrophobicity or hydrophilicity), charge, molecular weight and de-
gree of unsaturation. Moreover, LC can enhance the discrimination of a number of
isobaric compounds and isomers from the complex mixture of FA and can reduce the
contamination of the sample prior to the mass spectrometer [38–44]. Still, the instru-
mental simplicity and reduced analysis time of HRMS techniques without coupling to
LC dominates FA analyses [32,45–47]. The standardized isolation and purification pro-
cedures of FA based on the International Humic Substance Society [48] available online:
https://humic-substances.org/isolation-of-ihss-samples (accessed on 17 June 2022) re-
port the disadvantage of being laborious and time-consuming, raising the need for a fast
monitoring method for the FA fraction of DOM from RAS.

To date, the elemental compositions of hundreds to thousands of FA molecules from
unique environments have been reported [36,49,50] and compared with reference FA
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standards from the IHSS [32,33,45,51–53]. The three currently available IHSS FA standards
are Suwannee River (SRFA, river water in Okefenokee Swamp, Georgia), Pahokee Peat (PFA,
agricultural peat soil, Florida Everglades) and Elliott soil (EFA, fertile prairie soils, Illinois)
available online: https://ihss.humicsubstances.org/orders.html (accessed on 17 June 2022).
Although the FA standards from IHSS are widely characterized and used as reference
samples of DOM, no detailed information about the molecular composition of recirculating
aquaculture system fulvic acids (RASFA) and their comparison with IHSS standards are
obtained. In this study, a non-targeted analysis by QTOF-MS without fractionation was
applied to investigate the molecular composition of RASFA isolated from the tank waters
with Atlantic salmon (Salmo salar) grow-outs to subsequently compare their composition
with the IHSS FA reference standards. To our knowledge, this is the first time that the
performance of QTOF-MS has been assessed as a molecular fingerprinting tool of RASFA
by its direct comparison with IHSS FA reference standards.

2. Materials and Methods
2.1. RAS Water Sample Collection

The 600 mL water samples were collected with high-density polyethylene (HDPE)
bottles (VWR Chemicals, Trondheim, Norway) from the tanks of RAS stocked with Atlantic
salmon (Salmo salar L.) in the “grow-out hall 1” at the Nofima Centre for Recirculation in
Aquaculture (NCRA) in Sunndalsøra, Norway [54]. The experimental fish rearing system
used in this experiment consisted of three octagonal tanks (100 m3) with a total biomass
of 9400 kg (1250 fish per tank with an average weight of 2.5 kg/fish), a mechanical belt
filter, a moving bed bioreactor (MBBR), a CO2 degasser, a pump-sump and an oxygenation
system. Details on the system design are provided in previous publications [4,5,54]. The
system worked under a total feed load of 150 kg/day with a makeup water exchange of
45% of the system volume/day, a water recirculation flow of 7500 L/min and an ozone
dosage maintained with an oxidation-reduction potential (ORP) ranging between 180 to
240 mV. The mixture of makeup water that consisted of ground well water and seawater
was maintained at a stable salinity of 4 ng/L. The temperature and pH on the day of
sampling were 13.5 ◦C and 7.3, respectively.

2.2. Extraction of the Fulvic Acids from RAS and Sample Preparation

The isolation procedure to extract the FA fraction of DOM in RAS was performed
based on the recommended standard procedures for preparative isolation of aquatic HS
by IHSS [48] available online: https://humic-substances.org/isolation-of-ihss-samples
(accessed on 17 June 2022) using solid-phase extraction (SPE) cartridges as described by
Hojung Rho, et al. (2019) [55] (Figure 1). Briefly, 600 mL of RAS water was filtered using
pre-combusted glass microfiber filters (GF/F filters; 0.7-µm pore size; WhatmanTM, VWR
Chemicals, Trondheim, Norway). The sample was acidified to pH ≤ 2 with concentrated
hydrochloric acid (HPLC grade; VWR Chemicals, Trondheim, Norway) and pumped with
a peristaltic pump (IPC, Ismatec, Germany) through a SPE cartridge (6 mL, Sigma-Aldrich,
Trondheim, Norway) packed with 2 g of DAX-8 resin (SupeliteTM DAX-8, Sigma-Aldrich,
Trondheim, Norway). SPE DAX-8 resin cartridges were washed with 13 mL of 0.1 M
sodium hydroxide (NaOH, VWR Chemicals, Trondheim, Norway), 13 mL of Milli-Q water
and 13 mL of 0.1 M HCl (HPLC grade; VWR Chemicals, Trondheim, Norway) before
loading the RAS sample [55]. Acidification of the eluent to pH = 1 led to precipitate
formation. The soluble FA fraction of DOM was re-adsorbed in a new SPE cartridge packed
with 2 g of DAX-8, washed with 6 mL of Milli-Q water and eluted with 13 mL of 0.1 M
NaOH. The NaOH eluent from the DAX-8 SPE was immediately passed through an SPE
cartridge packed with 2 g of a strong cation exchange resin (Dowex® 50WX8 hydrogen
form, Sigma-Aldrich, Norway) in the hydrogen-saturated form. Eventually, the resulting
proton-saturated FA (H-FA) eluent was freeze-dried and subsequently preserved at −20 ◦C
until further analysis. The FA reference materials were obtained from the IHSS available
online: http://humic-substances.org/ (accessed on 17 June 2022) (SRFA; 3S101F, ESFA;
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5S102F and PPFA; 2S103F) and together with the FA sample from RAS were prepared
at concentrations of 100 ppm, dissolving the powder of each FA concentrate in Milli-Q
water [33].
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Figure 1. Overview of the fulvic acids (FA) isolation procedure based on Thurman and Malcolm,
(1981) [48]. After sampling tank waters (A), the water was filtered with pre-combusted glass mi-
crofiber GF/F 0.7 µm pore size filters and acidified with hydrochloric acid (HCl) to pH ≤ 2 (B). The
humic substance (HS) fraction of dissolved organic matter (DOM) was extracted by solid-phase
extraction (SPE) with 2 g of DAX-8 resin (C) and the soluble FA fraction was separated from the
precipitate at pH = 1 (D). The FA fraction was re-adsorbed in 2 g of DAX-8 resin for purification (E),
and the eluent with the FA in the sodium form (Na-FA) was passed through 2 g of a strong cation-
exchange resin in hydrogen form to extract the protonated FA form (H-FA) (F). The H-FA eluent was
freeze-dried (G) and prepared for negative ESI-QTOF-MS analysis (H).

2.3. QTOF-MS Analysis

A Synapt G2-S quadrupole time-of-flight (QTOF) mass spectrometer (Waters Cor-
poration, Milford, MA, USA) coupled with flow injection analysis (FIA) under negative
electrospray ionization (ESI) mode was used for the analysis of the FA samples. An aliquot
of 5 µL of each sample was injected through FIA for 2 min using a HPLC grade water (VWR
Chemicals, Trondheim, Norway) solution with 0.1% (v/v) formic acid (Sigma-Aldrich,
Steinheim, Germany) in the isocratic mode. The isocratic flow injection was: initial condi-
tions, 0.15 mL/min; 0.10–1.00 min, 0.03 mL/min; 1.00–1.50 min, 0.2 mL/min; 1.50–1.85 min,
0.8 mL/min; and 1.85 to 2.00 min, 0.15 mL/min. A leucine enkephalin (Waters Corporation,
Milford, MA, USA) solution with a concentration of 200 ng/mL was used as a Lockmass at
a flow rate of 10 µL/min to allow for correction of exact mass measurements. The capillary
and cone voltages were set at −3.5 kV and 30 V, respectively. The desolvation flow was
fixed at 900 L/h with a desolvation temperature set at 500 ◦C. The full scan spectra were
acquired using a scan range of 50 to 1200 mass to charge ratio (m/z) and a resolution of
35,000 full-width high maximum (FWHM). Spectra from FA samples were averaged out
between 20 to 300 scans to a single mass spectrum using Masslynx V4.1 (Waters, Milford,
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USA). The m/z signals with their corresponding intensities were exported to a peak list and
their elemental compositions were calculated using the PetroOrg SS 18.0.3 software (Omics
LLC, Tallahassee, FL, USA) [56,57]. The elemental compositions were generated based
on the presence of 12C4-40, 13C0-1, 1H4-80 and 16O0-35 with a mass error of ± 10 ppm, DBE
range 0–40, 6 minimum peak per class and 20 number of peaks. The generated elemental
compositions were confirmed to be single charged by assigning their 13C isotopic peak at
m/z + 1.0031 to 1.0035. The resulting data were exported as comma delimited (.csv) format
and imported to Rstudio (version 4.0.2) for further data clean-up.

2.4. Data Clean-Up and Visualization

The obtained elemental compositions from PetroOrg SS 18.0.3 software were filtered
out using R scripts that constrained the m/z, mass defect, hydrogen to carbon (H/C)
and oxygen to carbon (O/C) values as follows: 200 < m/z < 800, mass defect ≤ 0.4
or ≥ 0.9, 0.3 ≤ H/C ≤ 2.2 and 0 < O/C ≤ 1.2 [46,58]. Double bond equivalency minus
oxygen (DBE-O) values, which were calculated as Koch and Dittmar, (2006) [59], were
restricted between −10 to 10 and only the elemental compositions that were higher in
intensity than those identified in the reagent blanks were further considered [60]. For
the selected elemental compositions, modified aromaticity index values (AImod) were
calculated as described by Koch and Dittmar, (2006) [59]. The DBE-O and metric values
(AImod, H/C, O/C and m/z) were expressed as weight-averaged values (wa), which
were calculated as reported by Schmidt et al., (2009) [61]. Moreover, the H/C and O/C
ratios calculated from each identified elemental composition were represented in van
Krevelen diagrams [49] and were classified into five chemical compound classes according
to Hawkes, (2020) [46]. The compound classes were: condensed aromatics (AImod ≥ 0.67),
aromatics (0.5 < AImod < 0.67), high oxygen “highOC” unsaturated (H/C < 1.5, AImod < 0.5,
O/C ≥ 0.5), low oxygen “lowOC” unsaturated (H/C < 1.5, AImod < 0.5, O/C < 0.5) and
aliphatics (H/C ≥ 1.5). Principal component analysis (PCA) and Tanimoto similarity
test [62] based on the sum-normalized abundances obtained from each FA sample were
also represented.

2.5. Accuracy in the Elemental Composition Assignment

The formulas obtained from the SRFA and ESFA samples were compared with two
data sets comprised of SRFA, ESFA, Pony Lake fulvic acid (PLFA) and Suwannee River
Natural Organic Matter (SRNOM) IHSS standards analyzed by 17 HRMS instruments
under negative ESI mode, including Fourier transform mass spectrometry (FTICR-MS) and
Orbitrap mass spectrometry (Orbitrap-MS) instruments using the InterLabStudy package
version: 0.0.1.5 available online: https://go.warwick.ac.uk/InterLabStudy (accessed on
31 March 2022) [46]. Details on the instrument type, participating institutions and their
countries can be found in Hawkes, et al. (2020) [46]. With this, the QTOF-MS data were
robustly compared among research groups. The first data set comprised formulas that were
common in all assigned data (common), while the second data set comprised formulas that
were present in ≥3 assigned data sets (detected). The reported results from InterLabStudy
platform in terms of matches in elemental compositions and metric values (O/C, m/z,
H/C and AImod) were used to ensure the accuracy of elemental composition assignment by
QTOF-MS and evaluate its performance. Moreover, the list of elemental compositions from
the RASFA sample analyzed by QTOF-MS was compared with a list of 2645 DOM formulas
with carbon, hydrogen and oxygen (CHO) obtained by a 7 Tesla FTICR-MS in a recent work
of ours [4]. With this, the accuracy in the elemental composition assignment of the RASFA
sample by QTOF-MS was assessed and used to identify its possible compositional sources
in RAS.

https://go.warwick.ac.uk/InterLabStudy
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3. Results and Discussion
3.1. QTOF-MS of SRFA and ESFA

The QTOF-MS spectra of SRFA and ESFA are shown in Figure 2A,B. The mass distribu-
tions for SRFA spanned across the same range (250 to 500 m/z) as that of the SRFA analyzed
in previous experiments [32,45,46,63]. The ESFA spectrum was also in agreement with a
previous experiment [46] and its distribution was skewed below m/z 300 when compared
with the Gaussian distribution for SRFA. From the detected m/z peaks of SRFA and ESFA
standards, a total of 343 and 148 elemental compositions were identified, respectively
(Table 1).
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Figure 2. Negative ESI-QTOF-MS mass spectra of fulvic acids (FA) extracted from: (A) Suwannee
River (SRFA), (B) Elliott soil (ESFA), (C) tank waters from RAS (RASFA) and (D) Pahokee Peat
soil (PPFA).

Table 1. Characteristics of the fulvic acid (FA) fraction of dissolved organic matter (DOM) based on
the intensity weight-averaged (wa) values of the identified peaks by ESI-QTOF-MS under negative
mode in the Suwannee River, Elliott soil, Pahokee Peat fulvic acid standards (SRFA, ESFA and PPFA)
from IHSS together with the FA fraction of DOM from RAS (RASFA).

Samples Identified
Formulas H/Cwa O/Cwa m/zwa AIwa

SRFA 343 1.21 0.46 374.3 0.29
ESFA 148 1.18 0.53 320.7 0.32
PPFA 69 1.37 0.35 582.6 0.24

RASFA 440 1.30 0.42 387.3 0.25

When the identified elemental compositions from the SRFA and ESFA standards were
uploaded to https://go.warwick.ac.uk/InterLabStudy (accessed on 31 March 2022), a total
of 219 and 34 elemental compositions, respectively, matched the list of molecular formulas
found in all datasets (common), while 92 and 78 elemental compositions, respectively, were

https://go.warwick.ac.uk/InterLabStudy
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detected in at least three datasets of the InterLabStudy platform (Figure 3). Thus, QTOF-MS
without coupling to LC enabled the correct assignment of the m/z peaks found in the SRFA
and ESFA samples with an accuracy of 90% (311 common and detected by InterLabStudy)
and 76% (112 common and detected by InterLabStudy), respectively (Figure 3). Nonetheless,
the QTOF-MS technique with PetroOrg SS 18.0.3 software was able to provide only 22 and
6% of elemental compositions in SRFA and ESFA standards, respectively, (Figure 3B,D). This
can be attributed to the FIA method used in the analysis of complex mixtures such as the
FA fraction of DOM. The FIA method works by continuously delivering the FA sample into
the ion source of the QTOF-MS without chromatographic separation, which can populate
the ion source with many species of FA simultaneously. This can contribute to a strong ion
suppression of the FA sample leading to an extensive spectral overlap, which can hinder
the distinction between isomers and isobaric compounds [38,41] (Figure 4). In addition,
the low resolution (35,000 FWHM) of the QTOF-MS instruments limits the identification
of elemental compositions to a few high-intensity CHO peaks. Still, the van Krevelen
diagrams of the QTOF-MS SRFA and ESFA data showed compositional differences in the
fulvic acid fraction of their DOM (Figure 3A,C).
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Figure 4. Comparison of raw mass spectra of SRFA from 7 Tesla Fourier transform mass Bruker
Daltonics mass spectrometer at 530,000 FWHM (A), from LTQ-Velos-Pro Orbitrap Thermo Scientific
mass spectrometer at 100,000 FWHM (B) and from Waters QTOF-MS by FIA at 35,000 FWHM (C).
The indicated elemental compositions were assigned from the exact mass. Elemental compositions
by FIA-QTOF-MS at 426 m/z were not correctly assigned due to the broad peaks caused by ion
suppression when FIA was used in combination with the low resolution (35,000 FWHM) of the Waters
QTOF mass spectrometer.

The QTOF-MS SRFA and ESFA data metrics were subsequently compared in the
InterLabStudy platform (Figure 5). The QTOF-MS technique produced data with higher
H/Cwa values and lower O/Cwa, AIwa and m/zwa values than the formulas collected
by the InterLabStudy platform. Calculated weight-averaged values for the SRFA and
ESFA samples were shown in Table 1. Despite the deviation observed in the QTOF-MS
weight-averaged values from those obtained by the InterLabStudy platform (Figure 5), the
same findings were achieved when the SRFA values were compared to those from the ESFA
samples analyzed by QTOF-MS. The SRFA samples showed higher H/Cwa and m/zwa
values than the ESFA samples, which showed higher O/Cwa and AIwa values. These results
agreed with those obtained by the InterLabStudy (Figure 4) and the previous publication of
Hawkes, (2020) [46], indicating the potential of QTOF-MS for characterizing the molecular
fingerprints of the FA fraction of DOM.

To further study the molecular fingerprints of the SRFA and ESFA samples and de-
cipher their differences using QTOF-MS, van Krevelen and bar chart diagrams of the
identified CHO compounds were represented based on the classification of five composi-
tional classes and their sum-normalized abundances (Figure 6). The SRFA showed higher
proportions of unsaturated lowOC (50.80%) and unsaturated highOC (37.95%) classes
of compounds than the ESFA, while the ESFA showed higher proportions of aliphat-
ics (36.77%), aromatics (25.73%), unsaturated lowOC (21.00%) and condensed aromatics
(10.63%) classes of compounds. The SRFA results were in agreement with those obtained
with the 17 HRMS instruments [46]. Moreover, similar trends were found in the analysis of
SRFA from IHSS using FTICR-MS by D’Andrilli et al., 2013 [32] and Qin et al., 2019 [45]
and using Orbitrap-MS by Mangal et al., 2016 [63]. D’Andrilli et al., 2013 [32] reported
that the SRFA standards were rich in biomolecules with O/C and H/C ratios of 0.53 and
1.20, respectively, whereas Qin et al., 2019 [45] and Mangal et al., 2016 [63] stated that SRFA
standards were rich in lignin-like compounds (H/C = 0.7−1.5, O/C = 0.1−0.67). The O/C
and H/C ranges of the previously mentioned studies were located in the same van Krevelen
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space described for unsaturated compounds (unsaturated H/C < 1.5, lowOC: O/C < 0.5
and highOC: O/C ≥ 0.5). Results obtained from the SRHA standards from IHSS analyzed
by different laboratories using FTICR-MS instruments were also in agreement with the
SRFA IHSS standards analyzed by QTOF-MS [47]. The spectra obtained from the different
laboratories were characterized by the prevalence of lowOC and highOC unsaturated
compounds. The high level of agreement between the FA results obtained by QTOF-MS
and higher resolution techniques such as FTICR-MS and Orbitrap-MS demonstrated the
ability of the QTOF-MS technique as a potential alternative to higher resolution techniques
to characterize and compare the molecular fingerprints of the FA standards from IHSS, and
hence of the FA fraction of DOM in RAS.
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Figure 5. Box plots showing median (black horizontal line) and range (a vertical line with black
bar) from the metric values (O/Cwa, m/zwa, H/Cwa and AIwa) for the Elliott Soil, Pony Lake and
Suwannee River IHSS fulvic acids (ESFA, PLFA and SRFA), together with the Suwannee River natural
organic matter sample (SRNOM) across 17 HRMS instruments using common ions provided by
InterLabStudy package version: 0.0.1.5 available online: https://go.warwick.ac.uk/InterLabStudy
(accessed on 31 March 2022). The calculated metric values from the SRFA (A) and ESFA (B) analyzed
by ESI-QTOF-MS are indicated with a black “X”. Instruments are indicated by their designated letters:
Orbitrap-MS (A–G) and FTICR-MS (H–Q).
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Figure 6. Assigned CHO peaks by ESI-QTOF-MS under negative mode from Suwannee River, Elliott
soil, Pahokee Peat and recirculating aquaculture systems fulvic acids (SRFA, ESFA, PPFA and RASFA)
classified into five compound classes (aliphatics, aromatics, condensed aromatics, high oxygen
“highOC” and low-oxygen “lowOC” unsaturated compounds). The compound classes ranges were
based on Hawkes, et al. (2020) [46]. (A) Van Krevelen diagrams with H/C and O/C ratios and
(B) bar chart diagram with the sum-normalized abundances of the compound classes identified in
each sample.

3.2. RASFA by QTOF-MS

The QTOF-MS spectrum of RASFA (Figure 1C) showed high intensity peaks in the
m/z region between 250 to 500 m/z, which was in accordance with previous DOM samples
collected from the waters of RAS [4]. From the thousands of m/z peaks in the RASFA
spectra, a total of 440 CHO elemental compositions were assigned to the RASFA sample
(Table 1, Figure 7A). To assess the accuracy of the QTOF-MS in the elemental composition
assignment of RASFA samples, the 440 identified CHO formulas were represented against
the 2645 CHO formulas assigned by a higher resolution technique (FTICR-MS) used in
previous work [4] (Figure 7A). The Venn diagram showed that 67% of formulas identified
in the FA fraction of DOM from RAS matched the list of CHO formulas obtained from
the analysis of makeup, pump-sump, tank and feed DOM samples. However, 33% of the
formulas assigned by QTOF-MS did not match the formulas obtained by previous exper-
iments [4]. This deviation could be originated mainly from the extraction method used
in this experiment, which was performed according to the recommendation of IHSS that
included the DAX-8 resin. This resin is composed of poly(methyl methacrylate) that consti-
tutes a strong hydrophobic matter to adsorb mainly FA and enriches higher proportions of
aromatic compounds [64–66]. The functionalized styrene divinylbenzene polymer (PPL)
sorbent used in previous experiments [4,5] adsorbs hydrophobic compounds and polar
compounds such as functionalized aliphatics and nitrogen-containing compounds, which
increases the range of extracted compounds [64–66]. It is well known that the properties of
the sorbent used to extract DOM can induce changes in its composition, and, consequently,
differences could arise in the RASFA extracts when compared to the DOM extracts from
RAS [66–68]. The isolation of the specific FA fraction of DOM from RAS can also facilitate
the ionization of some ions that can be suppressed when a more complex mixture such
as DOM is introduced into the ion source of HRMS techniques. Moreover, differences in
the RAS water treatment processes and HRMS methodologies [69,70] of the current and
previous experiments (see Section 2.1, Aguilar-Alarcón et al., 2022) [4] could also be a major
contributing factor in the deviation of the number of common elemental compositions. Still,
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the DAX-8 resin tailored to QTOF-MS was able to accurately characterize the hydrophobic
FA fraction of DOM from RAS. In fact, this technique was able to suggest compositional
sources of the FA fraction of DOM (Figure 7B), since the makeup and pump-sump RAS
waters demonstrated the highest similarity in compositions to the hydrophobic RASFA
sharing 66 and 67%, respectively, of elemental compositions. The mixture of makeup
water comprised of freshwater water and seawater entered into the system at a 45% water
exchange rate prior to the pump-sump and was mixed with the water after the water
treatment process (pump-sump) before returning it to the tanks. The high similarities in
the composition of RASFA with the makeup and pump-sump waters from RAS indicated
that the isolated RASFA had freshwater and seawater origins.
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under negative mode [4]. The DOM samples of the previous experiment were isolated from the
makeup, pump-sump, tank, and feed samples during the production of Atlantic salmon (Salmo salar)
post-smolts at the Nofima Centre for Recirculation in Aquaculture (NCRA) in Sunndalsøra, Norway.
The set-up of the RAS used in the previous experiment can be found in Aguilar-Alarcón et al., 2022 [4].
The Venn diagrams were represented with: (A) The total number of CHO peaks in the recirculating
aquaculture fulvic acids (RASFA) sample and those found common with DOM from RAS. (B) The
total number of CHO peaks identified in the RASFA sample and those found common with the
makeup, pump-sump, tank and feed samples of DOM from RAS analyzed by 7T FTICR-MS [4].

3.3. RASFA and FA Standards from IHSS by QTOF-MS

The QTOF-MS spectra of RASFA, SRFA and PPFA (Figure 2A,C,D) shared high inten-
sity peaks in the m/z region ranging between 250 to 500 m/z. Although similar spectral
patterns were observed between RASFA, SRFA and PPFA, the weight-averaged values
of PPFA significantly differed from the other three FA samples (Table 1). PPFA showed
the highest H/Cwa and m/zwa values and the lowest O/Cwa values. Moreover, only
69 elemental compositions were assigned to PPFA, which can be attributed to the high
complexity of its FA mixture. On the contrary, the RASFA sample agreed with previous
H/Cwa, O/Cwa and AIwa values obtained in the DOM from the makeup, tank and pump-
sump waters of RAS by higher resolution techniques [4], which in turn were in line with
the weight-averaged values obtained from a water sample matrix such as SRFA (Table 1).
Compositional differences in the fulvic acid fraction of DOM from SRFA, PPFA, ESFA and
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RASFA samples were further studied using PCA and Tanimoto similarity tests (Figure 8).
The cumulative score of the first two principal components was 86.3%. Separation in
dimension 1 (Dim1) explained 50% of the total variance, where SRFA and RASFA were
grouped indicating similarities in their FA composition. On the contrary, the ESFA and
PPFA were grouped together, which was consistent with them being a mixture extracted
from a soil matrix. Despite the distinct grouping between the samples extracted from water
and soil matrices, their assigned elemental compositions alongside their abundances were
considered in the Tanimoto similarity tests for correct comparison of different FA samples.
By T-scores, the FA fraction of RAS shared a common pool of elemental compositions (index
of 0.53) with the FA fraction of Suwannee River indicating that RASFA contained a set of
terrestrial-derived organic compounds. The Suwannee River contains a high concentration
of dissolved organic carbon (DOC) (25 to 75 mg/L) with a minimal input of anthropogenic
contaminants and a low concentration of inorganic salts. SRFA standards are regarded
as terrestrial analogues since they have a higher fraction of terrestrial-derived organic
matter than other aquatic systems with a greater fraction of microbial-derived organic
matter [32,71]. The high similarity (index 0.53) between the SRFA and RASFA samples
constitutes a novel finding for aquaculture, particularly in RAS. Obtaining a reference
standard that mimics a portion of the RASFA can be advantageous for monitoring the
changes in the FA fraction of DOM in RAS when exposed to different water treatment
processes before their application in large-scale RAS projects. On the contrary, the RASFA
sample differed significantly from the ESFA and PPFA soil samples (index 0.06 and 0.02,
respectively), which can be attributed to the poor extraction of the FA compounds from
the soil samples and their low ionization efficiency by ESI under negative mode [72,73]. It
is noteworthy that the FA fraction of DOM from RAS and the IHSS reference standards
can be assigned accurately at low resolution (35,000 FWHM), even though no separation
techniques are tailored to the QTOF-MS.
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Figure 8. Principal component analysis (PCA) showing score plots (A) and Tanimoto similarity scores
based on the normalized abundances of peaks extracted from ESI-QTOF mass spectra under negative
mode (B) for the Suwannee River, Elliott soil, Pahokee Peat and recirculating aquaculture systems
fulvic acids (SRFA, ESFA, PPFA and RASFA).

The van Krevelen and the bar chart diagrams confirmed the similarity between the wa-
ter SRFA and RASFA samples (Figure 6). The sum-normalized abundances in percentages
of the five compound classes found in SRFA and RASFA samples followed the same pattern:
unsaturated lowOC (50.80 to 61.73%) > unsaturated highOC (19.28 to 37.95%) > aliphatics
(4.77 to 14.65%) > aromatics (2.11 to 4.35%) and condensed aromatics (1.25 to 1.62%), demon-
strating the similarity in the FA fraction of their DOM. By contrast, the soil ESFA and PPFA
samples differed significantly in composition from the water SRFA and RASFA samples.
The aliphatic class of compounds (36.77 to 55.74%) accounted for the highest abundance in
ESFA and PPFA samples. However, aromatics (25.73%) and unsaturated lowOC (21.00%)
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were dominant in ESFA when compared with PPFA, which was richer in the unsaturated
lowOC (15.66%) and condensed aromatics (13.06%) classes of compounds. These results
not only indicate that the water SRFA and RASFA samples differed from the soil ESFA and
PPFA samples, but also that the type of soil can induce changes in the composition of the
FA fraction of DOM. This level of detail directly indicates the applicability of the QTOF-MS
technique to monitor changes between the hydrophobic FA fraction of DOM from different
sample matrices, sources and compositions in RAS.

4. Conclusions

The non-targeted approach using QTOF-MS was proven to be an accurate monitoring
technique for characterizing the molecular fingerprint of the fulvic acid fraction of DOM
from RAS and the currently available FA reference standards from the IHSS (Suwannee
River, Elliott soil and Pahokee Peat). The SRFA and ESFA IHSS standards were used to
assess the QTOF-MS technique by uploading their data to an InterLabStudy platform with
data sets obtained from the analysis of SRFA, ESFA, SRNOM and PLFA IHSS standards by
17 HRMS instruments including FTICR-MS and Orbitrap-MS. From the 343 and 148 ele-
mental compositions identified from SRFA and ESFA, respectively, 311 (90%) and 112 (76%)
matched the list of elemental compositions provided by the InterLabStudy proving the
power of QTOF-MS in the accurate characterization of FA from water and soil origins.
Although the weight-averaged values of SRFA and ESFA samples analyzed by QTOF-MS
varied significantly from the values obtained by the InterLabStudy platform, the QTOF-
MS data revealed the same findings when SRFA and ESFA were compared in terms of
calculated metrics of intensity-weighted average indices (H/C, O/C, m/z and AImod) and
proportion of compound classes. These results promote the use of QTOF-MS as a potential
alternative to FTICR-MS and Orbitrap-MS for the comparison of different FA samples
in terms of metric values and class of compounds. When the QTOF-MS technique was
applied to RASFA, 440 elemental compositions were identified. The RASFA was similar
in composition to the IHSS SRFA water sample and differed from the composition of soil
IHSS samples such as ESFA and PPFA. Mainly unsaturated lowOC and highOC classes of
compounds composed RASFA and SRFA, while ESFA and PPFA were rich in aliphatics.
The QTOF-MS data from RASFA matched with a 67% accuracy a data set comprised of
elemental compositions obtained by the analysis of DOM samples isolated in the same RAS
facility (pump-sump, makeup, tank and feed samples) using the 7T FTICR-MS technique.
RASFA was found to have a higher fraction of terrestrial-derived organic matter (T-score
0.53; SRFA and RASFA) with marine and freshwater origins (66% common formulas RASFA
with makeup DOM analyzed by FTICR-MS). The similar compositions found between
SRFA and RASFA constitute a new finding in aquaculture, especially in RAS so that SRFA
from IHSS can be used in small-scale aquaculture experiments to monitor changes in the
hydrophobic fraction of DOM. The level of detail provided by the QTOF-MS technique can
help RAS operators to better manage the water quality of RAS by measuring the FA quality
under different water treatment processes for optimal production of healthy fish.
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