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Abstract—Simulations of a fixed-wing unmanned aerial vehicle
with varying degrees of icing, both symmetric and asymmetric,
and both ice accretion and ice shedding, show the applicability
of robust H∞ inner-loop control for both the lateral and the
longitudinal axes to extend the flight envelope. A gain-scheduled
extension of the controller compares favourably in performance,
at the cost of complexity and needing to know current the icing
level. The results also show that higher airspeeds reduces the
disturbance related to instantaneous removal of ice. A simple
analysis of the open-loop dynamics of the aerodynamic model
show that only the spiral-mode eigenvalue moves into the right
hand plane with increased icing levels.
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1. INTRODUCTION
The application areas for fixed-wing unmanned aerial vehi-
cles (UAVs) have increased extensively throughout the past
decades, and they have already proven useful in military,
scientific and civil applications. With the increased use comes
increased requirements, such as all-weather capabilities. This
includes environmental conditions such as strong wind and
atmospheric icing. Atmospheric icing occurs when super-
cooled water droplets in clouds freeze on impact with the
aircraft surface, and is a topic of that still sees a lot of research
since it severely reduce the performance of the UAVs, thus
limiting operations, and since it leads to loss of UAVs each
year, [1]. Small UAVs are not only more exposed to icing
than larger aircraft, as they more often operate in regions with
icing conditions, but their limited size and limited resources
availability makes some de-icing and anti-icing techniques
less convenient.

Both the build-up of ice and the shedding induced by the
de-icing system change the UAV dynamics substantially.
With more ice build-up the drag is increased while thrust is
reduced, and lift is decreased while the weight increases [2].
This reduces the flight envelope, and lowers stability margins.
With the shedding of ice, the effects are reversed, but the
change in dynamics is both more abrupt and may temporarily
lead to a UAV with severe lateral asymmetry, which can be
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challenging to the controller. As using anti-icing and de-icing
systems are potentially resource-demanding (e.g. electric
power consumption using electro-thermal icing protection,
[3]), it is also interesting to increase the UAVs tolerance to
ice build-up, by introducing a more robust controller, such
that the use of the ice protection system can be reduced.

While most previous research results within UAV icing has
focused on mitigation and detection, this work assumes that
the icing level is given, and instead focus on the control
problem and the UAV dynamics in icing by investigating if
the use of robust and gain-scheduled low-level controllers
can stabilize the UAV airframe, despite being subject to both
symmetric and asymmetric build-up and shedding of ice.
Both the robust controller and the gain-scheduled controller
are based onH∞ control approach, rely on a systematic loop-
shaping design procedure for tuning, and are tested through
numerical simulations in different wind, airspeed and icing
conditions. To investigate the robustness against the possible
asymmetries that could be introduced by the de-icing system,
a simple asymmetric adaptation of the model from [4] is
made. We note that the effects of icing on control surfaces
and propeller are not considered in this study.

Organization— This paper starts by presenting modelling
of UAVs in icing, and an eigenvalue anaysis of the pre-
sented model, in section 2. The main contribution comes
in section 3, where the single- and the gain-scheduled H∞
controllers are presented and adapted to the UAV icing prob-
lem. Section 4 presents the simulation results, where the
controllers are compared to each other and tested in various
icing conditions, before conclusions are drawn in section 5.

2. MODELLING OF UAV IN ICE
This work models UAVs similarly to what is found in the
litterature [5], [6], with the addition of icing effects as intro-
duced in [4]. By denoting the icing level variable as ζ ∈ [0, 1],
describing the level of icing, where ζ = 0 indicates no ice
(referred to as clean) and ζ = 1 indicates the worst-case
level of ice (referred to as iced). The model is extended to
include icing effects by using linear interpolation between
the clean and iced case for the aerodynamic coefficients.
This includes all the partial derivatives and the non-linear
coefficients depending on the angle of sideslip or angle of
attack. The general coefficient Ck given as a function of the
icing level ζ:

Ck(ζ) = Ck,0 + ζ(Ck,1 − Ck,0) (1)

Here, Ck,0 is the coefficient value for the clean case and
Ck,1 is the value for the fully iced case. Since the ice
aggregation largely occurs on the leading edge of the wings,
the control effectiveness coefficients, Ckδ∗ corresponding to
trailing edge deflections, are assumed unaffected by the icing.
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Asymmetric icing model

To investigate effects of asymmetric ice aggregation and
shedding, these effects must be incorporated in the simulation
model. The need for extensive CFD analysis in creating
such an extension is mitigated by combining the existing,
symmetric data from [4] with first-principle assumptions to
arrive at an asymmetric model that considers the aerodynamic
forces and moments on each wing. While this approach is not
expected to be perfect, it will incorporate the asymmetry and
highlight some challenges associated with it. The asymmetric
aircraft model is obtained by dividing the aerodynamic forces
acting on the aircraft into two parts, a left side and a right
side. Figure 1 illustrates this division and shows the resulting
aerodynamic forces. The forces acting on the right-wing are
denoted F k,r, where k can be D, S or L for drag-, side-
and lift force, respectively. Similarly, F k,l corresponds to left
wing forces. The distance vector from the centre of mass to
the point of attack on the right-wing is denoted rk. By using
the right-wing drag force, FD,r as an example, the distance
vector from the centre of mass to the point of attack is denoted
rD. Similarly, the distance vector from the centre of mass to a
force acting on the left wing is denoted lk. The aerodynamic
forces acting through the aircraft centre of mass is found by
summarizing over the left and right wing:

F k = F k,r + F k,l (2)

The aerodynamic moment is now given by

Ma,asym = Ma,0 (3)

+
∑
k

(rk × F k,r + lk × F k,l)∀F k,r,F k,l 6∈Ma,0,

(4)

where Ma,0 is the nominal moment vector from the sym-
metric icing model[4]. The second term is caused by asym-
metry in corresponding aerodynamic forces on the left and
right wing. Note that in order to avoid counting the force
contribution twice, the last term is only added if they are not
already taken into account as a part of the symmetric case.
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Figure 1. Asymmetric forces aircraft model

The point of attack for the aerodynamic forces acting on the
aircraft were not possible to specify based on the symmetric
data available. Hence, the points used in later simulations
are based on qualified guessing. For simplicity, all points of
attacks are assumed to lie on the ±y - axis. This assumption

is reasonable, because the largest asymmetric moment contri-
butions, which is from drag force to yaw moment and from
lift force to roll moment, are retained. Another assumption
made is that icing level does not effect the points of attacks
y-coordinate. By combining these assumptions, the relation
between distance vector from the centre of mass to the left
wing center of pressure, li, and right-wing center of pressure,
ri, for i ∈ {D,S,L} is given as

li = −ri =⇒

[
0
yi,l
0

]
= −

[
0
yi,r
0

]
(5)

where yi,l and yi,r is the y coordinate of the centre of pressure
for left -and right-wing in body frame.

For many UAVs, the fuselage will give a larger contribution
to the drag force than the wings. Hence the point of attack for
the aircraft drag force will have to lie somewhere between the
centre of mass and the middle of the wing. The lift force may
be largest at the part of the wing closest to the fuselage and
decreases along the wing when the cord length decreases. For
the side force, the main contributions are from the fuselage,
tail and the winglets. The side force is typically smaller in
magnitude than the lift and drag forces. In addition, having
the point of attack on the ±y - axis will make the asymmetric
moment contribution from the side force small.

Dynamic modes analysis

Figure 2 shows the various aerodynamic coefficients depen-
dencies on angle of attack (AOA) and angle of sideslip (AOS)
for the UAV considered in the following, the Skywalker X8
flying wing. The green curves are showing icing level ζ = 1,
the blue curves are showing icing level ζ = 0 and the red
curves are showing the asymmetric case with icing levels
ζ = 0 and ζ = 1 on the left- and right-wing respectively.

Figure 2 also illustrates the general effects of icing. It is clear
that the drag force is increased, and the lift force is decreased
with icing. These effects increase with the angle of attack.
It is also worth noticing that the roll-off in the lift coefficient
starts at a lower angle of attack when ice is present. As a
consequence, the angle where the lift coefficient exceeds the
value which creates maximum lift, also known as stall angle,
is lower for the iced case. Figure 2 illustrates that the effect
of icing on the lift coefficient at low angles of attack is small.
Since the largest effects of icing conditions are on the drag
and lift force in the symmetric case, it is clear that the effects
of symmetric icing are primarily in the longitudinal direction.
The asymmetric effects for the lateral aerodynamic functions
are more significant. As illustrated in fig. 2a, these functions
are very dependant on the drag and lift forces. This lead to
increased cross-coupling between the lateral and longitudinal
dynamics.

When comparing icing-induced changes of the dynamic sys-
tem to the basic clean case uav, it is suitable to analyze
the characteristics of the dynamic modes. By linearizing
the non-linear aircraft dynamics at a given operating point,
the eigenvalues can be found and used to determine the
aircraft stability properties at this operating condition. This
analysis is performed at trim points for low (α ≈ 2.14 deg)
and high (α ≈ 7.5 deg) angles of attack. The airspeed is
approximately 21 m/s for the low angle of attack and 13 m/s
for the high angle of attack. Figure 3a and fig. 3b shows
how the lateral and longitudinal eigenvalues are affected at
the trim point for a low angle of attack. Here, the filled
circle denotes the eigenvalue in the clean case, and the cross
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Figure 2. aerodynamic functions
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Figure 3. Dynamic modes in icing conditions at α ≈ 2.14°
for a): lateral and b): longitudinal. The circle denotes the

eigenvalue in the clean case, and the cross denotes the
eigenvalue in the iced case.

The qualitative development of the eigenvalues as a function
of the icing level is similar in the case of high and low angles
of attacks. That is, the spiral mode moves from the left half-
plane to the right half-plane, the other negative non-complex
eigenvalues stays negative non-complex, and the negative
complex-eigenvalues stays negative complex for all levels of
ice at both low and high angles of attack. The longitudinal
eigenvalues for the clean and fully iced case at high and low
angles of attack are given by

evlon(α ≈ 7.52◦, iced) =

{
−5.482± 8.043i
−0.364± 0.672i

evlon(α ≈ 7.45◦, clean) =

{
−5.892± 9.645i
−0.255± 0.483i

(6a)

evlon(α ≈ 2.14◦, iced) =

{
−9.235± 4.565i
−0.544± 0.277i

evlon(α ≈ 2.14◦, clean) =

{
−10.745± 17.245i
−0.459± 0.345i

(6b)

The largest change here is that for the low angle of attacks, the
short period mode is considerably less damped in the clean
case than in the iced case. The same effect on a much lower
scale can be seen for high angles of attack. The phugoid
mode in the iced case moves away further into the left half-
plane from the clean case for both high and low angle of
attacks. The phugoid damping ratio is increased with both
an increase in angle of attack and ice. This may be explained
by fact that the phugoid mode is dependant on the drag-to-lift
ratio [7]. This ratio is generally changed in icing conditions,
primarily due to the significant drag increase. Due to different
arispeeds, it is also changed for trim conditions at different
angles of attack.

The lateral eigenvalues for the clean and fully iced case at
high and low angles of attack are given by

evlat(α ≈ 7.52◦, iced) =

−15.959 + 0.000i
−0.890± 3.562i
0.109 + 0.000i

evlat(α ≈ 7.45◦, clean) =

−15.090 + 0.000i
−0.518± 2.908i
−0.045 + 0.000i

(7a)

evlat(α ≈ 2.14◦, iced) =

−26.231 + 0.000i
−1.305± 5.530i
0.034 + 0.000i

evlat(α ≈ 2.14◦, clean) =

−26.562 + 0.000i
−0.791± 4.552i
−0.067 + 0.000i

(7b)

In the iced case, the spiral mode moves from the left to
the right half-plane. In other words, icing destabilizes the
spiral mode. Due to the spiral mode giving rise to very slow
dynamic behaviour, it is not too critical to handling. Other
than this, the effects of icing are quite small for the lateral
dynamics. The dutch roll mode becomes more damped. This
can be attributed to the increased drag during icing condi-
tions, which in turn leads to increased local drag differences
on the wings during a yawing motion. Consequently, the
yawing damping is increased. The rolling mode gets slightly
slower in icing condition and moves towards the origin, which
indicates higher aerodynamic damping of the rolling motion.

Actuator model

To ensure realistic control, the simulation model also includes
actuators, with both static and dynamic limitations. While
the static constraints are simple saturations, the dynamic
limitations are implemented using a simple first order model

ua
uc

=
1
τ

1 + 1
τ s

(8)

3



where τ is the actuator time constant, given by the inverse of
the rate limit. The static constraints are handled saturation on
the control signals.

3. CONTROLLER DESIGN
H∞ Optimal Control

The H∞ optimal controller [8]–[10] can be found by for-
mulating the control problem as a mathematical optimization
problem, and is typically formulated as in fig. 4 [10], mathe-
matically expressed as

ẋ = Ax + Bu + Ew (9)
z = C1x + D2u + D1w

y = C2x + D4u + D3w,

where x is the state vector, u is the control variables, y is the
measured variables, z is the weighted error signals which are
to be minimized, and w is the exogenous inputs, including
disturbances, sensor noise and reference signals. P is the
general plant, whose transfer function is given by

P(s) =

[
D1 D2
D3 D4

]
+

[
C1
C2

]
(sI −A)−1 [ E B ]

(10)

=

[
P11 P12

P21 P22

]
,

while C is the feedback controller. For a linear controller,
C(s), connected from y to u, as shown in fig. 4, the closed
loop transfer function from exogenous inputs to the weighted
error signal is given by [11]

z

w
(s) = F(P,C)(s) = P11 + P12C(I−P22C)−1P21

(11)

u

w z

y

C

P

Figure 4. General Control Configuration

The H∞ optimized controller seeks to minimize the
worst case effects of the exogenous inputs w on the
weighted error signal z, by minimizing ||F(P,C)(s)||∞ =
supω σ̄(F(P,C)(jω)), where σ̄(·) denotes the maximum
singular value.

Controller Tuning—The tuning parameters of the H∞ con-
troller are the weighting filters used on the error signals
z. By denoting the model plant as G(s), the sensitivity
function S(s) and complementary sensitivity function T (s)
are defined as;

S(s) = (I + L(s))−1

T (s) = L(I + L(s))−1
, (12)

where L(s) = G(s)C(s) is the open loop transfer function,
and I is the identity matrix of the same order as L(s). The
error e(s) and measured output y(s) can then be expressed
as

e(s) = S(s)r(s)

y(s) = T (s)r(s)
(13)

Figure 5 shows a block diagram of the system with weighting
filtersWS , WC andWT , and the weighted sensitivity, control
activity and complementary sensitivity z1, z2 and z3. To
ensure good reference tracking, it is desirable to have a high
complementary sensitivity gain and low sensitivity gain at
low frequencies. At high frequencies, it is desirable to have
a low complementary sensitivity gain to ensure good noise
attenuation and robustness.

There are multiple methods to design weighting filters. Using
loop-shaping[8], the weighting filters are used to shape the
desired sensitivity and complementary sensitivity frequency
responses. In order to avoid unnecessary complex controllers,
the weighting filters should be chosen of the lowest order that
meets the desired requirements [8]. The transfer functions
are limited by the inverse of its corresponding filter, so e.g.
Ws(s) should be the inverse of the desired shape of S(s),
such that when the ||WS(s)S(s)||∞, is minimized, it will
shape the desired S(s).

z2

-
er

C(S)

WS

z1

WC

G(S)
u y

z3
WT

Figure 5. Closed-loop block diagram with weighted error
signals.

The general loop-shaping principles on the desired shapes
of complementary sensitivity- and sensitivity functions is the
foundation of the tuning process. These principles set the
general shapes of the filters

WS(s) =
s/M + 1

s+ ω0A
(14a)

WC(s) = Constant (14b)

WT (s) =
s+ ω0/M

As+ ω0
(14c)

were ω0 is the desired controller bandwidth, M is limiting
the maximum sensitivity peak andA limits the low-frequency
gains. Control activity is limited by the W−1C (s). By
choosing WC as a constant, all control activity is penalized
equally at all frequencies. Too low penalty on the control
signal may lead to oscillatory responses. Too high penalty
on the control signal may limit the closed-loop bandwidth,
which in turn gives worse reference tracking.
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WT is usually formed to get sufficient noise attenuation
and robustness to uncertain high-frequency dynamics. High-
frequency noise is not considered here, so WT is chosen as a
first-order high pass filter with the same crossover frequency
as WS .

There are cases where it is necessary to use higher-order
filters, although they results in higher-order controllers. For
instance, one can increase the controller integral action by
increasing the order of the tuning filters. The general equation
for a second-order sensitivity filter is given by

WS =
(s/M

1
2 + ω0)2

(s+ ω0A
1
2 )2

(15)

Higher-order filters will generally give better disturbance
rejection, at the cost of degraded performance in the form of
increasing the step-overshoot.

γ-iteration—γ-iteration is a bisection algorithm used to find
H∞ optimized controller. The γ-iteration method starts with
high, γmax, and low, γmin, estimates of γ and iterates on γ-
values to find theH∞ optimal controller. There are numerical
methods used for solving the H∞-problem. For the Riccati-
based method used in Lavertsky et al. [8], this algorithm
computes the smallest γ-value, γopt, within the γ-range for
which the stabilizing non-negative definite Riccati-solutions
exists. Now, γopt is the controller performance level, and the
following relation is met;

||F(P,C)(s)||∞ < γopt (16)

Robust Stability

The Vinnicombe, ν-gap, metric, is a distance measure be-
tween two linear time-invariant (LTI) systems[9], [12], [13].
Aircraft in icing condition can be handled as a nominal plant
with plant uncertainty. Hence the ν-gap metric can be used
as an uncertainty measure between the nominal plant and the
plant at a given icing level.

The Vinnicombe distance is defined by

δv(P1, P2) =

{
supω

|P1−P2|√
(1+P1P∗

1 )(1+P2P∗
2 )

, if(P1, P2) ∈ S
1, otherwise

(17)
where S is the set of all LTI system pairs, (P1, P2), that
fullfills the winding number condition

(1 + P ∗2 P1) 6= 0∀ω (18a)
wno(1 + P ∗2 P1) + η(P1)− η(P2)− η0(P2) = 0 (18b)

Here, the winding number, wno, is evaluated along the stan-
dard Nyquist contour, η(·) denotes the number of unstable
poles, η0(·) is the number of poles on the imaginary axis and
P ∗i is the conjugated plant Pi.

The robustness of a controller to plant uncertainty can be
described by the gap metric stability margin2

bP,C =

∣∣∣∣∣∣∣∣ [PI ] (1− CP )−1 [−C I]

∣∣∣∣∣∣∣∣−1
∞
, (19)

2Also known as normalized coprime stability margin

Here, bP,C ∈ [0, 1], where higher stability margin indicates
increased robustness to plant perturbations.

Then, given a nominal plant, P , the controller C stabilizes all
plants, P ∗ ∈ B on different icing levels, where

B = {P ∗ | bP,C > δν(P, P ∗) } (20)

By having a nominal plantP0 at a icing level ζ ∈ [0, 1], worst-
case iced plant Pice at icing level ζ = 1 and plant with no ice
Pclean, the stability requirement can be stated as

bP0,C > max(δν(P0, Pice), δν(P0, Pclean)), (21)

where bP0,C is the gap metric stability margin. Assuming that
the ν-gap distance between two plants is increasing when the
difference in icing level is increasing, the stability criterion
implies that the controller stabilizes plants for all icing levels.
This assumption is reasonable since the icing model is found
by linear interpolation between the iced and clean case.

The lower threshold robustness requirements used in this
work are [14]

• Minimum phase margin φm = 30°
• Minimum gain margin gm = 2
• Minimum stability margin sm between 0.5− 0.8

Controller Tuning Process

The loop-shaping tuning process can be summarized in the
following steps.

• Finding the icing level for the nominal plant that minimizes
the maximum ν-gap distance to the extreme cases. The plant
at this icing level is used for the controller synthesis. In other
words, the nominal plant is chosen to be at the midpoint
of the worst-case plants. This choice will give the most
relaxed stability requirement, as the right term in eq. (21)
will be minimized. This choice is also performance-related.
Typically, increasing and decreasing the icing level will give
opposite closed-loop performance effects. Either give a more
rapid response with a higher overshoot, or a slower response
and a lower overshoot. Hence, choosing a midpoint nominal
plant will minimize the qualitative differences in closed-loop
responses from nominal to worst-case plants.
• Select the desired range of sufficient bandwidth frequen-
cies. Here, the elements of noise attenuation and fundamental
limitations like right half plane zeros and time delays should
be taken into account when choosing the upper threshold.
The lower threshold should be chosen based on minimum
performance requirements related to reference tracking.
• Finding filter parameter values in eq. (14) based on an
iterative process. A is chosen such that the low-frequency
disturbance rejection is sufficient. For SISO systems, the
stability margin is given by the maximum peak of the sen-
sitivity transfer function. Hence M is chosen based on the
stability margin requirement. ω0 is chosen to be the minimum
frequency in the frequency range chosen in step 2. Then WC
is adjusted such that the system response is non-oscillatory.
The robustness-, stability- and performance requirements are
then checked for both the worst-case and nominal plants. As
long as all the requirements are met, ω0 is increased, and
this step is repeated. The idea is to get as high as possible
bandwidth within the target frequency range to achieve good
performance while robustness and stability requirements are
met.
• If the final controller does not have sufficient disturbance
rejection, increase the filter order on the sensitivity function
as shown in eq. (15), and repeat the last step.
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Note that only plants with symmetric icing are considered in
the tuning process, for simplicity. However, the results in
section 4 also considers asymmetric icing scenarios.

Gain-Scheduled Control

By switching between several controllers, each designed
for different operating points in the operational area, gain-
scheduling allows the use of simple linear control methods to
control non-linear systems where the dynamics is changing
considerably at different operating points [14]. In other
words, this approach can be used when a single linear con-
troller does not provide the desired performance and stability
for all operating points. For this method to be feasible, the
states/variables that change the operating point needs to be
measurable, as it is used to select the appropriate controller
given the system state. Here, it is vital that the operating point
changes slowly and does not introduce undesirable transients
or even instability.

Longitudinal control

The inner-loop longitudinal controller sets the desired ele-
vator deflection based on the commanded pitch angle and
desired throttle based on commanded airspeed. The longi-
tudinal state space model has state vector and inputs

xlon =

uwq
θ

 ulon =

[
δe
δt

]
, (22)

where u and w are body-frame x- and z-axis velocities, q is
pitch rate, θ is pitch angle, δe is the elevator deflection and δt
is the throttle. It can be written as

∆ẋlon =
dflon

dxlon
∆xlon +

dflon

dulon
∆ulon (23)

The longitudinal open-loop dynamics includes the short pe-
riod modes and the phugoid modes. The airspeed and pitch
angle are two coupled states that are controlled by two control
variables. Thrust, δt, is the primary airspeed control vari-
able and elevator deflection, δe, is the primary pitch control
variable. This control problem is approached by having two
SISO controllers. As the focus here is on inner-loop control,
how the desired pitch angle and airspeed are calculated is
considered out of scope.

One of the main effects of icing is increased drag, so the
throttle needed to maintain the airspeed is increased, while
the maximum obtainable airspeed is lowered. The airspeed
controller is implemented as a simple PI controller with anti-
windup;

δt = δ̃t + (Kp +
Ki

s
)(V ca − Va) (24)

where δ̃t is the calculated trim-value, and Kp and Ki are
tuning parameters. Here, it is important to not have too
aggressive gains since this may lead the throttle to cut and
surge. Therefore, the controller is tuned for an acceptable
error, and then the integral term closes the error gap.

The controller from commanded pitch angle, θc, to elevator
deflection, δe, is an H∞ - controller. For the performance
requirements, the acceptable overshoot is chosen to be 10 %,
while the frequency range is chosen to be ω0 ∈ [1, 13.8][8].
First order tuning filters are used. As seen, symmetric icing

does primarily affect the longitudinal dynamics, and icing
can be classified as a low frequency disturbance. This mean
that steady state error in pitch angle is expected when the
UAV is subject to icing conditions. The main argumentation
for still using first order filters for longitudinal direction is
that as long as this steady state error is small enough and
the disturbance response is not too slow, this error can be
corrected for by an higher-level outer loop controller. The
robust pitch controller parameters are summarized in table 2.
The icing level for nominal plant used for the pitch controller
synthesis was found to be ζ = 0.3. This lead to an ν-gap of
less than 0.31 to the worst case plants.

A similar approach is made for the gain-scheduled case.
Here, a controller is selected if the icing level is within
±0.1 of its nominal plant. The icing levels chosen are
then ζnominal = {0.1, 0.3, 0.5, 0.7, 0.9}. By using this tun-
ing approach for gain-scheduling, the stability criterion is
significantly relaxed, since the worst case icing levels are
now defined ζnominal ± 0.1. The gain scheduled controllers
are summarized in table 4. It is worth noticing that it
is the frequency range that terminates the iterative process
for all gain-scheduled pitch controllers. For simplicity, the
gain-scheduled controller is only implemented with a simple
switch, meaning when the icing level changes from the area
of one controller to another, the controller is switched instan-
taneously. This may lead to undesired transients induced by
the switching, which is why the gain-scheduled controller is
used to investigate the performance improvement within the
icing-area of one controller, rather than scenarios related to
de-icing and ice accretion.

Lateral Control

The lateral controller sets the desired aileron deflection based
on the commanded roll angle. The lateral state equation has
the same structure as the longitudinal, in eq. (23), with state
vector and inputs given as

xlat =

vpr
φ

 ulat = δa, (25)

with v being the y-axis body-frame velocity, p the roll rate, r
the yaw rate, φ the roll angle, and δa the aileron deflection.

The lateral open-loop dynamics of the UAV includes the
roll rate damping mode, a spiral mode and the dutch roll
mode, and is sensitive to asymmetric disturbances. Since
one of the main objectives of the controllers is disturbance
rejection, and coping with asymmetric conditions, the lateral
controller is using a second-order sensitivity filter to increase
the controller integral action. The steady state errors for
the lateral controller in the asymmetric case were too large
for the controller using first order tuning filter. The same
iterative tuning process is performed for the lateral controller.
Here, the performance requirements for overshoot is chosen
to be 30 %. It is important to notice that high integral action
may lead to more oscillatory responses. One way to avoid
this type of unwanted behaviour is to tighten the closed-loop
robustness requirements. Here, the stability margin sm = 0.7
is used. This is still within the area given by [14]. The
frequency range is chosen to be ω0 ∈ [1.0, 10.0]. The lateral
controller parameters are shown in table 3. The icing level
for nominal plant uses for the lateral controller synthesis
was found to be ζ = 0.3. This lead to an ν-gap of less
than 0.1 to the worst case plants. This gap is considerably
lower than in the longitudinal case, which is a consequence
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of symmetric icing conditions having its primarily effects on
the longitudinal direction.

The same approach is repeated for the gain-scheduled con-
troller. Here, the icing level resolution is chosen to be
the same as for the longitudinal case, 0.2. I.e. a con-
troller is selected of the icing level is within ±0.1 if its
nominal plant. The icing-levels chosen is then ζnominal =
{0.1, 0.3, 0.5, 0.7, 0.9}. The lateral gain scheduled con-
trollers are summarized in table 5. The switching mechanism
for the lateral controller is similar to the one described for the
pitch controller.

4. SIMULATION RESULTS
In the following, three scenarios illustrate the performance
of the presented controllers in various icing and wind condi-
tions; response while maneuvering in different, constant icing
levels, response to changing icing levels, and effects of wind
gusts.

Constant icing levels—First, the gain-scheduled and the sin-
gle H∞ controllers are compared over a longitudinal and
a lateral pre-determined sequences of maneuvers, for three
different, constant icing levels; ζ ∈ {0.0, 0.3, 1.0}, referred
to as "clean", "some ice", and "iced".

The longitudinal test run is chosen to illustrate how the uav
controller handles basic flight manoeuvres climb and level-
flight, and is defined by the following sequence;

• Initial value at θ = 0°
• Input ramp to θ = 20° with the slow rate (2 °/s), followed
by constant input angle for 10 s.
• Input ramp back to θ = 0° with the slow rate (−2 °/s),
followed by constant input angle for 10 s.
• Input ramp to θ = 10° with the fast rate (10 °/s), followed
by constant input angle for 10 s.
• Input ramp to θ = 0° with the fast rate (−10 °/s), followed
by constant input angle for 10 s
• Step input to θ = 10°, followed by constant input for 15 s.
• Consecutive input steps between θ = 0° and θ = 10°, with
constant input angle for 2 s in between each step.

The response in the longitudinal test runs are shown in
fig. 7 and fig. 8 for the single- and the gain-scheduled robust
controller, respectively. Both the percentage overshoot and
settling time for the step at 62 s, plotted in fig. 6a, were
improved by using gain-scheduling for all icing levels. The
largest difference in settling time between the controllers is
at icing level ζ = 1.0, and is less than 1.5 s. The largest
difference overshoot is at icing level ζ = 0.3 and is less than
2.5 percentage points.

For all cases of ice, the roll angle tends to drift slowly away
from the reference signal. This effect decreases with rising
icing level, and is present in both controllers, albeit less
for the gain-scheduled version. However, the drift is on a
very low scale, and can easily be corrected by a higher-level
guidance control loop. Other than this, the lateral directional
variables do not depend on the longitudinal control, which
is a direct result of the longitudinal/lateral decoupling in the
model. The airspeeds and throttle time-series are very similar
for both controllers.

The airspeed varies between 19.5 and 20.5 seconds. As the
airspeed and pitch angle is strongly coupled, and hence the
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Figure 6. Settling time and percentage overshoot for the
single- and the gain-scheduled robust controllers for the

longitudinal (a)) and (b)) lateral directions. Settling time is
defined from a 3 % error band.

change in pitch angle is easily viewed on the changes in
airspeed. As for the spikes in elevator deflection, a more
rapid change in pitch angle gives a greater impact on the
airspeed. When the pitch increases, the airspeed decrease and
when pitch decreases, the airspeed increases. The airspeed
controller tries to keep a constant airspeed at 20 m/s. This
explains the shape of the throttle signal. In addition, increased
icing leads to increased drag which requires a higher throttle
signal to maintain airspeed. This explains why the throttle
increases in magnitude when the icing level increases.

The longitudinal test run for the gain-scheduled controller is
shown in fig. 8. As for the single robust controller there is a
small overshoot at all tested icing levels.

The lateral test run is chosen to illustrate how the uav con-
troller handles the basic flight manoeuvres turning and level-
flight, and is defined by the following sequence;

• Initial value at φ = 0°.
• Input ramp to φ = 40° with the slow rate (4 °/s), followed
by constant input angle for 10 s.
• Input ramp to φ = −40° with the fast rate (−10 °/s),
followed by constant input angle for 10 s.
• Input step to φ = 0°, followed by constant input angle for
10 s.
• Input step to φ = 20°, followed by constant input angle for
15 s.
• Consecutive input steps between φ = −20° and φ = 20°
followed by a constant input angle for 2 s between each step.

The response in the lateral test runs are shown in figs. 9 and 10
for the single- and the gain-scheduled robust controller, re-
spectively. A second-order filter with a maximum acceptable
overshoot of 30 % was used in the roll tuning process. Hence,
a quite large overshoot is as expected. As opposed to the
longitudinal case, the overshoots at clean and some ice cases
are quite similar, and the overshoot at the iced case is larger.

For both controllers, the angle of attack varies between 2.4
and 4.1 degrees during the test run, seen in fig. 9c and fig. 10.
When the aircraft goes from a level flight in trim conditions to
turning, the absolute value of the velocity component along
the body frame z-direction will increase, which can be ob-
served as an increase in the angle of attack. As expected, the
direction of turn does not matter on the changes in the angle of
attack. The variations increase with the icing level. Although
the angle of attack and elevator deflection, seen in fig. 9e and
fig. 10e, are similar across both controllers, the pitch response
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Figure 7. Single robust controller longitudinal test run,
for different ice levels.
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Figure 8. Gain-scheduled controller longitudinal test
run, for different ice levels.

is different. This is most notable in the ζ = 1 scenario,
where the pitch response of the single robust controller in
fig. 9 consistently has a lower error than in the other icing
scenarios. However, this is not the case for the gain-scheduled
controller, in fig. 10, where the pitch response is similar in all
three icing conditions. This variation needs to be looked at
in combination with the airspeed and throttle in fig. 9f and
fig. 9g. Change in roll angle leads to change in airspeed.
Note that these changes are quite small (±0.06 m/s). The
lateral controller gives more aggressive manoeuvres, leading
to a higher degree of dependency between longitudinal and
lateral directions, and thus larger spikes in pitch.

Time-varying icing conditions— In addition to testing the
performance in different icing conditions, it is of interest to
investigate the closed-loop dynamics in time-varying icing
conditions induced by both the environment and by a de-
icing system, [3]. The icing condition simulation cases are
only simulated for the single robust controller, i.e. no gain
scheduling. Two icing test runs are simulated. The first test
run is illustrating the effects of instantaneous de-icing, and
simulation results are compared for different airspeeds.

Case 1: commanded pitch, airspeed and roll are constant at
trim conditions.
Case 2: initial icing level ζ = 1.
Case 3: sudden symmetric ice removal from ζ = 1 to ζ = 0
after 3 s.
Case 4: sudden symmetric change in icing level to ζ = 1
after 10 s.
Case 5: piecewise asymmetric ice removal after 20 s. This
simulates ice shedding during an inflight de-icing cycle. Here
the icing on the left wing is ζleft = 0 and icing level on the
right-wing is ζright = 0.5 for 10 s, followed by the right-wing
icing going to ζright = 0.0.

Figure 11 shows roll and pitch angles, where the illustrations
on the top line of figure shows the icing level of the aircraft
at each case. All transitions between cases happens instanta-
neously.

As expected, the roll angle is not noticeably affected by the
symmetric change in ice after 3 s. The roll angle is, however,
very sensitive to the asymmetric icing disturbances after 20 s
and 30 s seconds. This gives a disturbance response with a
roll angle deflection at 10° and a slightly oscillatory decay
back to the reference value within 4 s. The pitch angle
is highly dependant on both symmetrical and asymmetrical
change of icing level. The disturbance response of the pitch
angle is slower. The maximum error deflection occurs when
the icing level goes from clean to worst-case mixed ice at
20 s. This peak error is at approximately 2°. The disturbance
response goes slowly back to the reference value within 10 s.
The steady-state error is less than 0.3°.

Figure 12 shows the deflection angle as a function of airspeed
for the transitions between the cases. The first icing sce-
nario is repeated with different airspeeds of 14 m/s, 16 m/s,
18 m/s, 21 m/s and 24 m/s. The purpose here is to look at
how the de-icing procedure is affected by airspeed. Hence,
the ice accretion case transition between case 2 and 3 is
excluded from this figure. The tendency is quite clear; the
disturbance deflection for both pitch angle and roll angles
tend to decay when the airspeed rises. This rate of this
decay gets smaller for higher airspeeds. For the lateral case
in asymmetric icing, the roll angle deflection seems to go
towards a constant when airspeed gets large, while for the
longitudinal case, the pitch angle deflection seems to go
towards 0.

The second test run considers a short performance test while
the aircraft is in asymmetric condition, to simulate a defect in
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Figure 9. Single robust controller lateral performance
test run, for different ice levels.
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Figure 10. Gain-scheduled controller lateral test run,
for different ice levels.

Case 1 Case 2 Case 3 Case 4 Case 5

Deflection

Figure 11. De-icing test run

Figure 12. Comparison of de-icing deflections at different
airspeed

the de-icing system on one of the wing;

• Commanded pitch, airspeed and roll are initially constant
at trim conditions; va = 21.4 m/s, θ = 2.4°, and φ = 0.0°.
• Initial icing level ζ = 1 on both wings.
• Initial step input to θ = 10°, followed by constant pitch
input for 10 s.
• Sudden asymmetric ice removal from ζleft = 1 to ζleft = 0
on the left wing after 3 s.
• Step input to θ = 0°, followed by constant input for 10 s.
• Step input to φ = 20°, followed by constant input for 10 s.
• Step input to φ = 0° constant input for 10 s.

Figure 13 shows the results of the second test run. As
expected, the cross-coupling between longitudinal and lateral
direction is increased with asymmetric icing. This can be seen
in how the aerodynamic coefficients in the lateral direction
depend on drag and lift force in fig. 2. By looking at the roll
angle when a step is applied to the pitch angle, e.g. after 10 s.
The pitch does also depend on the roll angle, but to a lower
degree. This can be seen by looking at the pitch angle in
fig. 13b when a step is applied to the roll angle. Figure 13c
and fig. 13d show the icing level on the left and right-wing
respectively. Figure 13e and fig. 13f show the aileron and
elevator deflection. When subject to asymmetric icing, a
significant aileron control effort is needed to keep the aircraft
on a level flight. Given the flight configuration in this test
run, the aileron deflection required to maintain level flight
is about 10°. Hence, asymmetric icing limits the ability to
perform aggressive lateral manoeuvring and can easily cause
saturation of the control signal. The saturation limit of the
control signal will also give an upper threshold to the degree
of asymmetry that can be handled by the uav. Figure 13g and
fig. 13h show the airspeed and throttle, for completeness.
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Figure 13. Performance test run with asymmetric icing

Performance in wind gust

A short performance test is simulated to verify the single
robust controllers’ ability to track references in wind condi-
tions. Compensation for constant winds is commonly han-
dled within the higher-level guidance controller rather than
in the low level stabilizing inner-loop controllers. Therefore,
this simulation is only looking at the wind gusts using the
Dryden gust model[5] of moderate intensity3. The simulation
sequence used in wind conditions is;

• Initial value at θ = φ = 0°.
• Step input to θ = 10°, followed by constant input for 10
seconds.
• Step input to θ = 0° and a simultaneous step input to φ =
20°, followed by constant input for 10 s.
• Step input to φ = −20°, followed by constant input for
10 s.

The resulting response of the UAV in fig. 14 show that the
controller tracks the reference well, in general, although
the oscillations around the reference are more pronounced
compared to the previous simulations. In order to quantify
the ability to reject wind gust disturbances, the integral of the
absolute value of the error,

ie =

∫ t

t0

|e(t)|dt, (26)

is introduced. For the longitudinal case, the integral error is
42.31, while for the lateral case, the integral error is 105.72.

3Moderate means that the wind gusts are of an intensity that is typically
encountered in steady winds of 30 kn
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Figure 14. Single robust controller wind condition test run.

5. CONCLUSION
Two types of inner-loop controllers based on H∞ optimal
control were implemented and tested; a single robust con-
troller and a gain-scheduled controller. In order to mitigate
the effects of icing, both controllers fulfilled closed-loop
requirements to ensure stability and robustness to model un-
certainty. The simulation results showed that both controller
types gave satisfactory results in terms of robustness, stability
and performance. From the performance comparison of the
two controller types, one can conclude that by increasing the
information available and assuming that the level of icing is
known, the performance in terms of settling time and over-
shoot is improved by using a gain scheduled controller. In
another test scenario, in-flight de-icing was performed using
the single robust controller for different levels of airspeed. the
tendency was clear; higher airspeed within the tested range of
reasonable UAV airspeeds minimizes the disturbance related
to instantaneous removal of ice.

How the dynamic modes of a Skywalker X8 fixed-wing UAV
are affected by icing conditions was investigated based on
a simulation model where icing is modelled using linear
interpolation between base aircraft without ice and the worst-
case mixed ice configuration.

APPENDIX: CONTROLLER PARAMETERS
The selected point of attack locations of the aerodynamic
forces are given in table 1. The tuning parameters for the

Table 1. Aerodynamic forces points of attack

yD,r 0.25 m
yL,r 0.4 m
yS,r 0.2 m
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airspeed controller, eq. (24), are based on trial-error tuning,
where kp = 0.068 and ki = 0.057 is found suitable.

Table 2. Longitudinal robust controller summary

Filter parameter Value
ω0 6.2 rad/s
m 2
a 0.001
wc 1

Performance parameter Value
γ∗lon 1.9617

Table 3. lateral robust controller summary

Filter parameter Value
ω0 2.1 rad/s
m 2
a 0.0002
wc 1

Performance parameter Value
γ∗lon 1.9199

Table 4. Longitudinal gain scheduled controllers with icing
level value ζ

ζ γ∗lat ω0 (rad/s) m a wc
0.1 3.6298 13.8 2 0.001 1.0
0.3 3.5165 13.8 2 0.001 1.0
0.5 3.3971 13.8 2 0.001 1.0
0.7 3.2827 13.8 2 0.001 1.0
0.9 3.1956 13.8 2 0.001 1.0

Table 5. Lateral gain scheduled controllers with icing level
value ζ

ζ γ∗lat ω0 (rad/s) m a wc
0.1 2.1699 2.9 2 0.002 1.0
0.3 2.2860 3.2 2 0.002 1.0
0.5 2.3216 3.3 2 0.002 1.0
0.7 2.2860 3.2 2 0.002 1.0
0.9 2.3128 3.2 2 0.002 1.0
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