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Abstract. Let X be a topological space with Noetherian mod p cohomology and let C∗(X;Fp)

be the commutative ring spectrum of Fp-valued cochains on X. The goal of this paper is to
exhibit conditions under which the category of module spectra over C∗(X;Fp) is stratified

in the sense of Benson, Iyengar, and Krause, providing a classification of all its localizing

subcategories. We establish stratification in this sense for classifying spaces of a large class
of topological groups including Kac–Moody groups as well as whenever X admits an H-space

structure. This in particular identifies the corresponding Balmer spectrum and proves the

generalized telescope conjecture in all of these cases. More generally, using Lannes’ theory
we prove that stratification for X is equivalent to a condition that generalizes Chouinard’s

theorem for finite groups.
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Introduction

Background and motivation. In a series of papers [BIK08, BIK11b] culminating in [BIK11c],
Benson, Iyengar, and Krause classified all modular representations of a finite group G up to
a certain equivalence relation: Two representations are considered equivalent if they can be
constructed from each other via the tensor-triangulated structure available on the stable module
category StModFpG of G. More precisely, they show that the localizing tensor-ideals of StModFpG
are parametrized by subsets of the projective variety of the group cohomology ring H∗(G;Fp).

Earlier, a similar classification theorem was obtained by Neeman [Nee92] for the derived cate-
gory of a Noetherian commutative ring A; in this case, localizing subcategories are parametrized
by the Zariski spectrum of A. Both classification problems admit a common formulation in the
setting of stable homotopy theory, as noticed first by Hovey, Palmieri, and Strickland [HPS97]:
Given a commutative ring spectrum R, we may ask when the localizing subcategories of the
category ModR of R-module spectra are parametrized by the Zariski spectrum Spec(π∗R) via
certain support functions. When this is the case, we follow Benson, Iyengar, and Krause and say
that ModR is stratified or simply that stratification holds for R. It turns out that, in general,
stratification is only reasonable to expect when R is Noetherian, i.e., when π∗R is a graded
Noetherian ring, so we will work under this assumption from now on.
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Neeman’s theorem is then the special case that R = HA, the Eilenberg–Mac Lane ring spec-
trum of a Noetherian commutative ring A. Another important source of Noetherian commutative
ring spectra comes from unstable homotopy theory, given by commutative ring spectra of Fp-
valued cochains C∗(X;Fp) on a topological space X with Noetherian mod p cohomology. In this
language, the theorem of Benson, Iyengar, and Krause establishes stratification for cochains on
X = BG, the classifying space of a finite group G, see [BIK11a]. Their work has subsequently
been extended by Benson and Greenlees [BG14] and more recently in [BCHV17] for classifying
spaces of certain topological groups as well as by Shamir [Sha12] for certain spaces constructed
from iterated spherical fibrations. This motivates the following guiding question:

Question. For which spaces X with Noetherian mod p cohomology ring is the category ModC∗(X;Fp)

of module spectra over the commutative ring spectrum of cochains C∗(X;Fp) stratified?

The goal of the present paper is to establish stratification in this sense for cochains on a large
class of topological groups as well as for H-spaces with Noetherian mod p cohomology, and to
provide a provide a systematic approach to answering this question in general.

Main results. We first consider commutative ring spectra of cochains on classifying spaces of
topological groups, extending our previous work in [BCHV17]. By reducing to the case of compact
Lie groups via work of Broto and Kitchloo [BK02], we in particular establish stratification for
Kac–Moody groups.

Theorem A (Theorem 3.17). If K is a Kac–Moody group, then ModC∗(BK;Fp) is stratified.

Hopf spaces with Noetherian mod p cohomology form the second class of examples. Our proof
of stratification in this case relies crucially on several deep results in unstable homotopy theory
stemming from the resolution of the Sullivan conjecture, as outlined below. In particular, we
make use of a structure theorem for H-spaces due to Broto, Crespo, and Saumell [BCS01] and
Castellana, Crespo, and Scherer [CCS07].

Theorem B (Theorem 4.17). If X is a connected H-space with Noetherian mod p cohomology,
then ModC∗(X;Fp) is stratified.

Finally, we formulate an approach to answering the above question for any space with Noe-
therian mod p cohomology, based again on Lannes’ theory [Lan92] and its consequences. This
allows us to reduce this categorical classification problem to a condition that suitably generalizes
Chouinard’s theorem [Cho76] about projective representations for finite group; the terminology
will be introduced more carefully in the next subsection.

Theorem C (Theorem 5.12). Let X be a p-good connected space with Noetherian mod p coho-
mology, then ModC∗(X;Fp) is stratified if and only if X satisfies Chouinard’s condition.

In particular, we verify Chouinard’s condition for H-spaces with Noetherian mod p cohomol-
ogy, thereby recovering Theorem B as an instance of Theorem C.

Whenever ModR is stratified we can in fact deduce more consequences than just a classification
of the localizing subcategories of ModR, see Theorems 1.9 and 1.10 below. For example, strat-
ification implies that the thick subcategories of compact objects in ModR are in bijection with
specialization closed subsets of Spech(π∗R), and hence identifies the Balmer spectrum [Bal05] of
ModR as

Spc(ModR) ∼= Spech(π∗R).

In particular, we thus determine the Balmer spectrum of ModC∗(X:Fp) whenever X is a connected
H-space with Noetherian mod p cohomology, or when X is the classifying space of a Kac–Moody
group.
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In addition, stratification implies a version of Ravenel’s telescope conjecture [Rav92] for ModR,
see [Bar19] for a recent survey. In our context, the generalized telescope conjecture amounts to the
statement that the subcategory of acyclics of any localization functor on ModR which preserves
filtered colimits is compactly generated. We thus obtain the generalized telescope conjecture for
all the aforementioned types of spaces.

Outline of the methods. From our perspective, stable homotopy theory provides a convenient
context for developing an abstract descent theory for stratifications that places the results men-
tioned above in a uniform setting. Consider thus a morphism f : R→ S of Noetherian commuta-
tive ring spectra, i.e., homotopically coherent ring spectra with Noetherian graded commutative
coefficient rings. Inspired by [BIK11c] and [BG14], in [BCHV17] we isolated two key conditions
on f that guarantee that stratification descends from ModS to ModR along f :

(1) Induction and coinduction along f give conservative functors ModR → ModS , i.e., they
reflect isomorphisms. In this case, we say that f is biconservative.

(2) f satisfies a support theoretic condition called Quillen lifting.

Geometrically, these conditions correspond, roughly speaking, to the surjectivity and injectivity
of the induced map on homogeneous Zariski spectra resf : Spech(π∗S)→ Spech(π∗R).

In [BCHV17], we showed that Conditions (1) and (2) are sufficient to descent stratification
from ModS to ModR. The key novelty in this result was that f was not assumed to satisfy any
additional finiteness conditions, in contrast to the situation studied in the aforementioned works
[BIK11c, BG14]. This opened up the possibility to apply such descent techniques to many new
examples.

Our first aim in this paper is to characterize those biconservative morphisms f : R → S
that allow descent of stratification. In particular, we complement [BCHV17] by showing that
Condition (2) is also necessary for descent; in fact, we exhibit several equivalent characterizations
of this condition. Informally speaking, this shows that our descent theorem is optimal:

Theorem D (Theorem 2.4 and Corollary 2.6). Let f : R → S be a biconservative morphism
of Noetherian commutative ring spectra and assume ModS is stratified, then the following are
equivalent:

(1) ModR is stratified.
(2) The morphism f satisfies Quillen lifting.
(3) Every module M ∈ ModR satisfies the following Avrunin–Scott identities:

suppS(f∗M) = res−1
f suppR(M) and cosuppS(f !M) = res−1

f cosuppR(M),

where f∗ and f ! denote induction and coinduction along f , respectively.

Given a commutative ring spectrum R, this theorem thus reduces the problem of stratifying
ModR to the construction of a suitable morphism f : R → S. By analogy with Chouinard’s
theorem for discrete groups, for the remainder of this introduction we will say that a morphism
f : R→ S satisfies Chouinard’s condition1 whenever f is biconservative.

To prove Theorem D, we introduce and study a stronger version of Quillen lifting called simple
Quillen lifting that in practice is easier to check for a given example. Furthermore, we relate both
Chouinard’s condition as well as simple Quillen lifting to properties of the induced morphism

resf : Spech(π∗S) // Spech(π∗R).

Our main theorems are then an application of this general descent theorem; however, in each
case additional input from unstable homotopy theory is required. Theorem A follows the line of
arguments in our previous paper [BCHV17] and earlier work of Benson and Greenlees [BG14] on

1Note that this terminology is reserved for a more restrictive situation in the main body of the paper.



4 TOBIAS BARTHEL, NATÀLIA CASTELLANA, DREW HEARD, AND GABRIEL VALENZUELA

stratification for topological groups G. The idea is to descent stratification along a morphism of
commutative ring spectra

ρG : C∗(BG;Fp) //
∏
E∈Ep(G) C

∗(BE;Fp),

where the product is indexed on a set of representatives of conjugacy classes of elementary abelian
p-subgroups of G. By virtue of Theorem D, it suffices to show that ρG satisfies Quillen lifting
and Chouinard’s condition. In the case of a Kac–Moody group, the first property follows from
a generalization of Quillen’s F -isomorphism to Kac–Moody groups due to Broto and Kitchloo
[BK02], see Theorem 3.10. The verification of Chouinard’s condition for ρG uses the construction
of an appropriate compactly generated G-space X equipped with specified isotropy, which may
be thought of as a suitable replacement of the morphism BG → BU(n) induced by a unitary
embedding of a compact Lie group G. In fact, our methods apply more generally to spaces
occurring in the Broto–Kitchloo hierarchy of compact Lie groups [KM98], see Theorem 3.14.

We would like to mimic this approach for an arbitrary connected space X with Noetherian
mod p cohomology. However, we are immediately confronted with the problem of finding a
homotopical analogue of the morphism ρG for X, which in turn relies on finding a replacement
of the notion of elementary abelian subgroup for X. We resolve this problem by making use
of Lannes’ [Lan87, Lan92] and Miller’s [Mil84] work on the Sullivan conjecture to construct a
morphism of commutative ring spectra

ρX : C∗(X;Fp) //
∏

(E,ϕ)∈E(X) C
∗(BE;Fp).

The product in the target is indexed on homotopy classes of maps ϕ : BE → X which induce
finite algebra morphisms in mod p cohomology.2 For X = BG the classifying space of a finite
p-group, ρX specializes to the restriction functor featuring in the work of Chouinard, Quillen,
as well as Benson–Iyengar–Krause. We thus view ρX as a suitable catalyst for our descent
techniques; in particular, we say that X satisfies Chouinard’s condition if ρX does.

Lannes’ theory provides a bijection between the set E(X) appearing in the target of ρX and
isomorphism classes of objects in the Rector category of H∗(X;Fp), a category which generalizes
Quillen’s category for X = BG. An elaboration of this observation combined with Rector’s
work [Rec84] then proves that ρX satisfies Quillen lifting for any p-good connected space X
with Noetherian mod p cohomology, see Proposition 5.8. In light of Theorem D, this establishes
Theorem C.

We then demonstrate this framework in the case of H-spaces X with Noetherian mod p
cohomology. By Theorem C, in order to prove stratification for ModC∗(X;Fp), it remains to show
that ρX satisfies Chouinard’s condition. To this end, we make use of a theorem due to Broto,
Crespo, and Saumell [BCS01] and Castellana, Crespo, and Scherer [CCS07], according to which
any H-space X with Noetherian mod p cohomology may be “decomposed”, after p-completion,
into the classifying space of an abelian compact Lie group and a nilpotent space with finite mod
p-cohomology. Combined with work of Henn, Lannes, and Schwartz [HLS93], we arrive at:

Theorem E (Theorem 5.15). Any connected H-space X with Noetherian mod p cohomology
satisfies Chouinard’s condition, i.e., induction and coinduction along ρX are conservative.

Theorem B is now an immediate consequence of Theorem C and Theorem E. In fact, we
also give a proof of Theorem B that does not rely on Theorem E, but instead applies Theorem
C directly to the fiber sequence provided by the deconstruction of H-spaces, see the proof of
Theorem 4.17. In particular, our result applies to S3〈3〉, the 3-connected cover of S3, to provide
an example of a commutative ring spectrum for which we deduce stratification, but are currently
unable to prove costratification.

2For simplicity, we omit p-completions throughout the introduction.
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Organization of the paper. The first two sections deal with the interaction between the
stratification theory of Benson–Iyengar–Krause and morphisms of commutative ring spectra,
culminating in the proof of our main descent theorem. Section 1 starts with a review of support
theory and then studies base-change and conservativity in this context. The subject of Section
2 is the proof of Theorem D. Along the way, we establish the main properties of Quillen lifting
and simple Quillen lifting, augmented by some examples.

From Section 3 onwards, we specialize to cochains on spaces with Noetherian mod p cohomol-
ogy. Theorems A, B, and C are proven in Sections 3, 4, and 5, respectively. Each section begins
with a review of the necessary background material and concludes with explicit examples.

Notation and conventions.

• Let R be a commutative ring spectrum and write ModR for the category of module
spectra over R, where the symmetric monoidal structure is given by the relative smash
product ⊗ = ⊗R with unit R. If S is a set of objects in ModR, then the smallest
thick subcategory of ModR containing S will be denoted by ThickR(S), and the smallest
localizing subcategory of ModR containing S will be denoted LocR(S). If R is clear from
context, we sometimes omit the corresponding subscript.

• We write H∗(X) for the mod p cohomology of a space X.
• The p-completion of a space X is always meant in the sense of Bousfield–Kan [BK72],

and is denoted X∧p . A space X is called p-complete if the p-completion map X → X∧p is
a homotopy equivalence, and is called Fp-finite if H∗(X) is finite. A space is p-good if
the natural completion map X → X∧p induces an isomorphism on mod p cohomology.

• We write resf : Spech(π∗B)→ Spech(π∗A) for the restriction induced by a morphism of

commutative ring spectra f : A → B, where Spech denotes the homogeneous spectrum
of prime ideals.

• A functor F : C → D is said to be conservative if it detects equivalences; if F is an exact
functor between stable categories, then this is equivalent to F detecting the zero object,
i.e., F (X) ' 0 implies X ' 0 for any X ∈ C.
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conversations. The first author was partially supported by the DNRF92 and the European
Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
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This work was supported by EPSRC grant no EP/K032208/1.

1. Support and base-change

In this section we review the support theory introduced by Benson, Iyengar, and Krause
[BIK08], specialized to the setting of structured ring spectra, and show how this support theory
interacts with a morphism f : R→ S of ring spectra.

1.1. Support theory and stratification. Let R be a Noetherian commutative ring spectrum
and fix a homogeneous prime ideal p ∈ Spech(π∗R). Associated to p, Benson, Iyengar, and
Krause [BIK08, BIK12] have constructed local cohomology and local homology functors on ModR,
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denoted Γp and Λp respectively. In the context of structured ring spectra, these have been studied

in detail in [BHV18, BCHV17], from where we briefly recall their definition. For r ∈ Spech(π∗R),
one first constructs Koszul objects R//r [BCHV17, Section 3], the homotopical quotient of R by
r. This object depends on a choice of generators of r, but the thick subcategory ThickR(R//r)

generated by R//r does not. Consider then the specialization closed set V(p) = {q ∈ Spech(π∗R) |
q ⊇ p}. The inclusion of the localizing subcategory LocR(R//r | r ∈ V(p)) into ModR has a
colimit preserving right adjoint ΓV(p). Moreover, there is a localization functor LZ(p) on ModR
characterized by the property π∗LZ(p)M ∼= (π∗M)p for all M ∈ ModR.

Definition 1.1. For p ∈ Spech(π∗R) we define the local cohomology functor at p as

Γp = ΓV(p)LZ(p).

The functor Γp admits a right adjoint, the local homology functor Λp at p.

Remark 1.2. The functor Γp is smashing, that is, ΓpM ' ΓpR ⊗M for all R-modules M . In
what follows we will denote the essential image of Γp by Γp ModR, and likewise for Λp.

We refer the reader to the aforementioned references for a more detailed construction and
further properties. These functors give rise to a good notion of support and cosupport for R-
modules as follows.

Definition 1.3. Let M be an R-module, then we define the support and cosupport of M as

suppR(M) = {p ∈ Spech(π∗R) | ΓpM 6' 0}, cosuppR(M) = {p ∈ Spech(π∗R) | ΛpM 6' 0}.

The next theorem provides some evidence for the usefulness of these functors, see [BIK11b,
Theorem 7.2] and [BIK12, Remark 8.8].

Theorem 1.4 (Benson–Iyengar–Krause). If R is Noetherian, then the local-to-global principle
holds for R, i.e., for every M ∈ ModR we have

LocR(M) = LocR(ΓpM | p ∈ Spech(π∗R)), ColocR(M) = ColocR(ΛpM | p ∈ Spech(π∗R)).

In particular, M is trivial if and only if suppR(M) = ∅ if and only if cosuppR(M) = ∅.

We will use the fact that both support and cosupport detect zero objects implicitly throughout
the remainder of this paper.

Support theory is used to give a classification of the localizing subcategories of ModR. We
note that there is a pair of natural morphisms{

Localizing subcategories
of ModR

}
suppR //

supp−1
R

oo

{
Subsets of Spech(π∗R)

}
, (1.5)

where for a localizing subcategory S ⊆ ModR and a subset U ⊆ Spech(π∗R) we set

suppR(S) =
⋃
M∈S

suppR(M) and supp−1
R (U) = {M ∈ ModR | suppR(M) ⊆ U}.

Benson, Iyengar, and Krause [BIK11b] exhibit conditions to ensure that the maps in (1.5) are
bijections. To the state their definition, recall that a localizing subcategory D of ModR is said
to be minimal if D has no proper localizing subcategories.

Definition 1.6. Let R be a Noetherian commutative ring spectrum. We say that ModR is
(canonically) stratified if for each p ∈ Spech(π∗R), the localizing subcategory Γp ModR is mini-
mal.
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Remark 1.7. This is slightly different from the definition for triangulated categories given in
[BIK11b], where they require that the local to global principle holds and that Γp ModR is minimal
or non-zero. As seen in Theorem 1.4 the local to global principle always holds for ModR when R
is Noetherian, while in [BCHV17, Proposition 2.13(1)] we show that Γp ModR is always non-zero.
Since we will only consider the canonical action of π∗R on ModR, we will from now on omit the
adjective canonical when referring to stratification.

The next result demonstrates the usefulness of this definition, see [BIK11b, Theorem 4.2] for
the proof.

Theorem 1.8 (Benson–Iyengar–Krause). If ModR is stratified, then the maps (1.5) are inclusion
preserving bijections.

When ModR is stratified, there are a number of further consequences one can deduce, see
[BIK11b, Theorems 1.2, 1.3 and 1.6].

Theorem 1.9 (Benson–Iyengar–Krause). If ModR is stratified, then the following results hold:

(1) There is a bijection between thick subcategories of compact objects in ModR, and special-

ization closed subsets of Spech(π∗R).
(2) For any M,N ∈ ModR, we have

suppR(M ⊗R N) = suppR(M) ∩ suppR(N)

and if M and N are additionally compact R-modules

suppR(HomR(M,N)) = suppR(M) ∩ suppR(N).

As a further consequence, the telescope conjecture hold for ModR, see [BIK11b, Theorem 6.3]
and [BIK11c, Theorem 11.13].

Theorem 1.10 (Benson–Iyengar–Krause). Suppose ModR is stratified by π∗R. Let U be a
localizing subcategory of ModR. Then the following conditions are equivalent.

(1) The localizing subcategory U is smashing, i.e., the associated localizing endofunctor on
ModR preserves colimits.

(2) The localizing subcategory U is generated by compact objects in ModR.
(3) The support of U is specialization closed, i.e, it is a union of Zariski closed subsets of

Spech(π∗R).

1.2. Base-change and conservative maps of ring spectra. A remarkable result proven by
Chouinard [Cho76] is that the projectivity of a module over the group ring of a finite group G
can be tested at all elementary abelian p-subgroup of G combined. This can be interpreted as a
way to detect trivial objects when working in the stable module category of G. In this section,
we study homotopical analogues of this result in the setting of commutative ring spectra. We do
so by expressing the detection of trivial objects as a conservativity property of certain functors
that we introduce hereunder.

Let f : R→ S be a morphism of commutative ring spectra and view S as an R-module via f .
Forgetting along f induces a restriction functor f∗ = Res: ModS → ModR which admits both a
left adjoint f∗ and a right adjoint f !, given by induction (or extension of scalars) along f ,

f∗ = Ind = S ⊗R (−) : ModR // ModS ,

and coinduction, defined as

f ! = Coind = HomR(S,−) : ModR // ModS .

Note that restriction detects equivalences, i.e., a map α : N1 → N2 between S-modules is an
equivalence if and only if f∗(α) is. It follows that f∗ or f ! are conservative if and only if the
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composites f∗f
∗ or f∗f

! are, respectively. We capture this property by introducing the following
terminology:

Definition 1.11. A map f : R→ S of commutative ring spectra is called conservative (resp. co-
conservative) if the associated induction functor f∗ : ModR → ModS (resp. coinduction f !) is
conservative. If a map is both conservative and coconservative, it will be called biconservative.

In [BCHV17] we studied the base-change properties of support and cosupport along a mor-
phism of ring spectra f : R→ S. We single out the following results, where we let

resf : Spech(π∗S) // Spech(π∗R)

denote the map induced by f on Spech(π∗(−)). The first two items of the next result are proven
in [BCHV17, Corollary 3.9 and Proposition 3.12], while the third one strengthens [BCHV17,
Lemma 3.11].

Theorem 1.12. Let f : R → S be a map of commutative ring spectra, M ∈ ModR and N ∈
ModS, then we have:

(1) resf suppS(f∗M) ⊆ suppR(M), and equality holds if f is conservative.
(2) suppR(f∗N) = resf suppS(N) and cosuppR(f∗N) = resf cosuppS(N).
(3) resf cosuppS(f !M) ⊆ cosuppR(M), and equality holds if f is coconservative.

Proof. In light of the references provided above, it remains to verify the last claim. The inclusion
“⊆” holds unconditionally, so it suffices to establish “⊇” when f is coconservative. Let M ∈
ModR and p ∈ cosuppR(M). By adjunction, there are equivalences of S-modules

0 6' f !ΛpM ' f ! HomR(R,ΛpM) ' f ! HomR(ΓpR,M) ' HomS(f∗ΓpR, f
!M).

The last equivalence can be found, for example, in Proposition 2.15 of [BDS16], see their Equation

(2.19). Let V and W be specialization closed subsets of Spech(π∗R) such that V \W = {p} and

write Ṽ = res−1
f (V) and W̃ = res−1

f (W); note in particular that Ṽ \W̃ = res−1
f (p). It then follows

from Corollary 3.8 in [BCHV17] and adjunction that

HomS(f∗ΓpR, f
!M) ' HomS(LW̃ΓṼf

∗R, f !M) ' HomS(S,ΛṼ∆W̃f !M) ' ΛṼ∆W̃f !M.

By Lemma 3.4 of [BCHV17], the cosupport of this expression can thus be computed to be

∅ 6= cosuppS(f !ΛpM) = cosuppS(ΛṼ∆W̃f !M) = res−1
f (p) ∩ cosuppS(f !M).

This implies that p ∈ resf cosuppS(f !M) as desired. �

Lemma 1.13. Fix a prime ideal p ∈ Spech(π∗R). If f : R → S is a map of commutative
ring spectra such that induction f∗ : ModR → ModS considered as a functor on Γp ModR is
conservative (resp. coinduction as a functor on Λp ModR is conservative), then p is in the image

of resf : Spech(π∗S)→ Spech(π∗R).

Proof. Using Theorem 1.12(1) and (2), we get

suppR(f∗f
∗ΓpR) = resf suppS(f∗ΓpR) ⊆ suppR(ΓpR) = {p}.

Now suppose that p is not in the image of resf , then f∗f
∗ΓpR ' 0. Therefore, f∗ΓpR ' 0, so

f∗ : Γp ModR → ModS is not conservative. The version for coinduction follows similarly from
Theorem 1.12(3). �

Under the assumption that Γp ModR is a minimal localizing subcategory of ModR, the converse
holds as well, as we will show after some preparation in Lemma 1.17 below.
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Lemma 1.14. Let p ∈ Spech(π∗R) such that Γp ModR is minimal. Then, for all M ∈ Γp ModR
and all N ∈ ModR,

suppR(M ⊗N) = suppR(M) ∩ suppR(N).

Dually, for all M ∈ ModR and all N ∈ Λp ModR

cosuppR(HomR(M,N)) = suppR(M) ∩ cosuppR(N).

Proof. Since M ∈ Γp ModR, we have

suppR(M ⊗N) ⊆ suppR(M) ∩ suppR(N) ⊆ {p}.
Under the minimality assumption on Γp ModR, the same argument as in the proof of [BIK11b,
Theorem 7.3] implies that if suppR(M) ∩ suppR(N) = {p} then suppR(M ⊗ N) = {p}, which
proves the first claim.

Likewise, the second equality follows from the proof of [BIK12, Theorem 9.5]. �

The next result is a local analogue of [BCHV17, Proposition 3.14].

Proposition 1.15. Let f : R → S be a morphism of Noetherian commutative ring spectra and
suppose that p ∈ Spech(π∗R) is such that Γp ModR is minimal. Then, for all M ∈ Γp ModR,

suppS(f∗M) = res−1
f suppR(M), while cosuppS(f !N) = res−1

f cosuppR(N),

for all N ∈ Λp ModR.

Proof. Let q ∈ Spech(π∗S) with p = resf (q). First, we can use the projection formula [BCHV17,
Lemma 2.2] to write

f∗Γqf
∗M ' f∗(ΓqS ⊗S f∗M) ' f∗(ΓqS)⊗RM.

By Theorem 1.12 and [BCHV17, Proposition 2.13(1)] we have

suppR(f∗ΓqS) = resf suppS(ΓqS) = {resf (q)} = {p}. (1.16)

Since M ∈ Γp ModR, Lemma 1.14 applies in this situation:

suppR(f∗(ΓqS)⊗RM) = suppR(f∗ΓqS) ∩ suppR(M) ⊆ {p}.
It follows that f∗Γqf

∗M 6' 0 if and only if p ∈ suppR(M). But f∗ is conservative, so we conclude
that q ∈ suppS(f∗M) if and only if p ∈ suppR(M).

For the second claim, note that by adjunction there are equivalences of R-modules

Λqf !N ' HomS(S,Λqf !N)

' HomS(ΓqS, f
!N)

' HomR(f∗ΓqS,N).

But we are assuming that N ∈ Λp ModR, so Lemma 1.14 yields

cosuppR(HomR(f∗ΓqS,N)) = suppR(f∗ΓqS) ∩ cosuppR(N) = {p} ∩ cosuppR(N),

where we used (1.16). We conclude that q ∈ cosuppS(f !N) if and only if p ∈ cosuppR(N). �

Lemma 1.17. Fix a prime ideal p ∈ Spech(π∗R), let f : R → S be a map of Noetherian com-
mutative ring spectra, and assume that Γp ModR is minimal. Then the following three conditions
are equivalent:

(1) Induction f∗ : ModR → ModS restricted to Γp ModR is conservative.
(2) The prime ideal p is in the image of

resf : Spech(π∗S) // Spech(π∗R).

(3) Coinduction f ! : ModR → ModS restricted to Λp ModR is conservative.
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Proof. Lemma 1.13 gives one implication, so consider M ∈ Γp ModR with f∗(M) ' 0. By
Proposition 1.15, this implies that

∅ = suppS(f∗M) = res−1
f suppR(M).

Since p is in the image of res and suppR(M) ⊆ {p}, it follows that suppR(M) = ∅, hence M ' 0
by Theorem 1.4. The dual equivalence between (2) and (3) is proven similarly. �

Remark 1.18. Note that the assumption in the previous lemmas are slightly asymmetric: even
though we deduce statements about induction and coinduction, we only assume that Γp ModR
(and not Λp ModR) is minimal.

We can combine the previous two local lemmas in a global statement, which says that con-
servativity for a morphism f of ring spectra is a strengthened form of surjectivity of resf .

Proposition 1.19. Suppose f : R → S is a map of commutative ring spectra and consider the
following two conditions:

(1) f is conservative (resp. coconservative).

(2) resf : Spech(π∗S)→ Spech(π∗R) is surjective.

Then (1) implies (2), and the reverse implication holds provided R is Noetherian and ModR is
stratified.

Proof. We will only prove the claim about conservativity of f , leaving the modifications for the
dual proof to the reader. If f is conservative, then f∗ : Γp ModR ⊆ ModR → ModS is conservative

for all p ∈ Spech(π∗R), so Spech(π∗R) is in the image of resf by Lemma 1.13. This establishes
the implication (1) =⇒ (2).

Conversely, assume that ModR is stratified and that resf is surjective. Let p ∈ Spech(π∗R)
and M ∈ ModR with f∗(M) ' 0. This implies that

f∗(ΓpM) ' f∗(ΓpR)⊗S f∗(M) ' 0.

Since resf is surjective, Lemma 1.17 yields ΓpM ' 0. But p was arbitrary, so it follows by the
local-to-global principle Theorem 1.4 that M ' 0. �

Remark 1.20. The base-change formula in Theorem 1.12 applied to suppR(f∗S) yields

suppR(f∗S) = resf (suppS S) = resf (Spech(π∗S)).

Thus, resf being surjective is the same as having suppR(f∗S) = Spech(π∗R).

Lemma 1.21. Let f : R→ S and g : S → T . If both are conservative (resp. coconservative) then
so is their composite. Conversely, if g ◦ f is conservative (resp. coconservative) then so is f ; if
f∗ is additionally essentially surjective, then g is also conservative (resp. coconservative).

Proof. We verify the last claim about conservativity and leave the proof of the remaining state-
ments to the reader. Consider N ∈ ModS with g∗(N) ' 0. By assumption, there exists
M ∈ ModS such that f∗(M) ' N , hence (gf)∗(M) ' g∗(f∗(M)) ' 0. Since (gf)∗ is con-
servative, M ' 0, so N ' 0. �

Lemma 1.22. If R ∈ LocR(S), then f is biconservative. In particular this holds if f : R → S
admits an R-module retract.

Proof. Indeed, given M ∈ ModR such that f∗(M) ' S ⊗RM ' 0, it follows that N ⊗RM ' 0
for any N ∈ LocR(S). In particular, M ' R ⊗R M ' 0. The argument for coconservativity is
similar. Finally, if f admits an R-module retract, then R ∈ LocR(S). �

We end this section with a formal base-change property for (co)conservativity of maps that
will turn out to be useful later.
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Lemma 1.23. Given a pushout diagram of commutative ring spectra

R
i //

f

��

S

g

��

A
j
// B

such that f is conservative (resp. coconservative), then g is conservative (resp. coconservative)
as well.

Proof. Both statements are consequences of the Beck–Chevalley condition and its dual, which
we briefly recall for the convenience of the reader. The natural equivalence i∗g∗ ' f∗j∗ has a
mate ζ : f∗i∗ → j∗g

∗ given by the composite

f∗i∗
ηg
// f∗i∗g∗g

∗ ' f∗f∗j∗g∗
εf
// j∗g

∗,

where ηg is the unit of the adjunction (g∗ a g∗) and εf is the counit of the adjunction (f∗ a f∗).
In order to show that ζ is an equivalence, it suffices to evaluate it on S and restrict to ModR.
The claim then follows from the equivalence A⊗RS ' B of R-modules. Passing to right adjoints
yields natural equivalences i!f∗ ' g∗j! and, by symmetry, j∗g

! ' f !i∗.
Suppose now that N ∈ ModS such that g∗(N) ' 0, then there are equivalences of A-modules

0 ' j∗g
∗(N) ' f∗i∗(N). Therefore, i∗(N) ' 0 by assumption on f∗ and thus N ' 0. Similarly,

if f ! is conservative, then 0 ' j∗g!(N) ' f !i∗(N) implies N ' 0. �

2. Quillen lifting and stratification

In this section we study stratification in the sense of [BIK11b] for structured ring spectra. We
review and extend our previous work [BCHV17], showing how to descend stratification along a
morphism of ring spectra. To do so, we introduce the notion of simple Quillen lifting, which is
a stronger form of the Quillen lifting property considered in [BCHV17].

2.1. Descent for stratifications. In this section we isolate a condition for descending stratifi-
cation along a morphism of Noetherian commutative ring spectra f : R→ S.

Proposition 2.1. Let f : R→ S be a morphism of Noetherian commutative ring spectra. For a
fixed prime ideal p ∈ Spech(π∗R), the following conditions are equivalent:

(1) Γp ModR is minimal and p ∈ Im(res : Spech(π∗S)→ Spech(π∗R)).
(2) If M,N ∈ Γp ModR are non-zero modules, then HomS(f∗M,f !N) 6' 0.

If we assume additionally that ModS is stratified, then both conditions are equivalent to:

(3) If M,N ∈ Γp ModR are non-zero modules, then

suppS(f∗M) ∩ cosuppS(f !N) 6= ∅.

Proof. We first establish the equivalence between Conditions (1) and (2). By [BIK11b, Lemma
4.1], Γp ModR is a minimal localizing subcategory of ModR if and only if HomR(M,N) 6' 0 for all
non-zero M,N ∈ Γp ModR. Assume (1), then Lemma 1.17 shows that f∗f

∗(M) ' 0 if and only
if M ∈ Γp ModR is zero. This implies that suppR(f∗f

∗M) = suppR(M) for all M ∈ Γp ModR.
Therefore, for non-zero M,N ∈ Γp ModR, we have

0 6' HomR(f∗f
∗M,N) ' HomS(f∗M,f !N).

Conversely, (2) says 0 6' HomR(f∗f
∗M,N) for non-zeroM,N ∈ Γp ModR, hence 0 6' HomR(M,N)

as well as, since f∗f
∗M ∈ LocR(M). Therefore, Γp ModR is a minimal localizing subcategory of

ModR. Furthermore, (2) implies that f∗ and f ! are conservative when restricted to Γp ModR.

Lemma 1.13 then shows p ∈ Im(resf : Spech(π∗S)→ Spech(π∗R)).
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The equivalence of Conditions (2) and (3) is a direct consequence of the formula

cosuppS(HomS(X,Y )) = suppS(X) ∩ cosuppS(Y )

for X,Y ∈ ModS , which by [BIK12, Theorem 9.5(2)] holds whenever ModS is stratified. �

Corollary 2.2. Let f : R → S be a conservative (or coconservative) morphism of Noetherian
commutative ring spectra and assume ModS is stratified, then ModR is stratified if and only if
the following condition holds:

(∗) For any homogeneous prime ideal p ∈ Spech(π∗R) and non-zero modules M,N ∈ Γp ModR
we have suppS(f∗M) ∩ cosuppS(f !N) 6= ∅.

Proof. Assume first that (∗) holds. In order to show that ModR is stratified, we must show

that the localizing subcategories Γp ModR are minimal for all p ∈ Spech(π∗R), which follows
by the implication (3) =⇒ (1) of Proposition 2.1. Conversely, suppose ModR is stratified.

Since f is conservative (or coconservative), resf : Spech(π∗S) → Spech(π∗R) is surjective by
Proposition 1.19, so (∗) follows from (1) =⇒ (3) of Proposition 2.1. �

In [BCHV17] we introduced the concept of Quillen lifting for a morphism of ring spectra
f : R→ S, which we recall below. From the previous corollary, we can then deduce that Quillen
lifting is not only sufficient, but in fact also necessary for descent of stratification along a con-
servative and coconservative morphism of Noetherian ring spectra.

Definition 2.3. A morphism of Noetherian commutative ring spectra f : R → S is said to
satisfy Quillen lifting if for any two modules M,N ∈ ModR such that there is

p ∈ resf (suppS(f∗M))∩resf (cosuppS(f !N)),

there exists a prime ideal Qf (p) := q ∈ res−1
f (p) with q ∈ suppS(f∗M)∩cosuppS(f !N). In this

case, we will refer to Q(p) = Qf (p) as a Quillen lift of p along f .

Theorem 2.4. Let f : R → S be a biconservative morphism of Noetherian commutative ring
spectra and assume ModS is stratified, then the following are equivalent:

(1) ModR is stratified.
(2) f satisfies Condition (∗).
(3) f satisfies Quillen lifting.

Proof. The equivalence of (1) and (2) is the content of Corollary 2.2. Next, we will prove that
Quillen lifting implies Condition (∗). Since f is biconservative, Theorem 1.12 implies that for all
M,N ∈ ModR there are equalities

resf suppS(f∗M) = suppR(M) and resf cosuppS(f !N) = cosuppR(N).

Given p ∈ Spech(π∗R), if M,N ∈ Γp ModR are non-zero modules, then suppR(M) = {p} =
suppR(N), hence also p ∈ cosuppR(N) by [BIK12, Theorem 4.13]. This puts us in the situation
of Quillen lifting, hence the Quillen lift of p along f gives Q(p) ∈ suppS(f∗M) ∩ cosuppS(f !N).

It remains to show that (1) =⇒ (3), which will be proven in Lemma 2.16 below using the
notion of simple Quillen lifting. �

Remark 2.5. If f is finite, then f∗ is conservative if and only if f ! is conservative, see [BCHV17,
Lemma 3.17]. Further, if there exists a natural equivalence f∗ ' f !, then f is finite. Indeed, this
equivalence implies that f ! preserves colimits, and hence the left adjoint f∗ preserves compact
objects. This for example is the situation occurring for the stable module category of a finite
group in [BIK11c], where induction and coinduction coincide.
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Finally, we relate Theorem 2.4 to the notion of Avrunin–Scott stratification introduced by
Hovey and Palmieri in [HP01]. Their Definition 5.5 axiomatizes the Avrunin–Scott theorem in
modular representation theory, see [AS82], [BCR96, Theorem 10.7], and [BIK11c]. The Avrunin–
Scott identities appearing in the next result form a suitable generalization to a morphism f : R→
S for which f∗ is not necessarily equivalent to f !.

Corollary 2.6. Under the assumptions of Theorem 2.4, the equivalent Conditions (1)–(3) hold
if and only if the Avrunin–Scott identities are satisfied for all M ∈ ModR:

suppS(f∗M) = res−1
f suppR(M) and cosuppS(f !M) = res−1

f cosuppR(M).

Proof. Suppose ModR is stratified, then [BCHV17, Proposition 3.14] implies that the Avrunin–
Scott identities are satisfied for all R-modules M . Conversely, assume that these two identities
hold for M,N ∈ ModR. Let p be a homogeneous prime ideal with

p ∈ resf (suppS(f∗M)) ∩ resf (cosuppS(f !N)) ⊆ suppR(M) ∩ cosuppR(N).

It follows that

∅ 6= res−1
f (p) ⊆ res−1

f (suppR(M)) ∩ res−1
f (cosuppR(N)) = suppS(f∗M) ∩ cosuppS(f !M),

where the last equivalence uses the Avrunin–Scott identities for M and N , respectively. This
verifies Quillen lifting for the morphism f , so the equivalent Conditions (1)–(3) of Theorem 2.4
hold. �

2.2. Retractive descent. The goal of this subsection is to exhibit sufficient conditions that
guarantee descent of stratification along a morphism of ring spectra. In particular, we will show
that the stratification property is closed under retracts.

Proposition 2.7. Let f : R → S be as above and suppose there exists a map of commutative
Noetherian ring spectra g : S → T satisfying the following two conditions:

(1) gf is biconservative.
(2) gf satisfies Quillen lifting.

If ModS is stratified, then ModR is stratified.

Proof. By Lemma 1.21, f is biconservative. In light of Theorem 2.4, it thus remains to show
that f satisfies Quillen lifting. To this end, let M,N ∈ ModR be two modules such that there
exists p ∈ resf (suppS(f∗M)) ∩ resf (cosuppS(f !N)). Since gf is biconservative, Theorem 1.12
shows that

resf suppS(f∗M) ⊆ suppR(M) = resgf suppT ((gf)∗M)

and
resf cosuppS(f !N) ⊆ cosuppR(N) = resgf cosuppT ((gf)!N),

so p lies in image of resgf . Let Qgf (p) be a Quillen lift of p along gf in Spech(π∗T ). We claim
that

Qf (p) = resg(Qgf (p))

is then a Quillen lift for p along f . It is clear that resg(Qgf (p)) ∈ res−1
f (p). To prove that

resg(Qgf (p)) ∈ suppS(f∗M) ∩ cosuppS(f !M), we will first show that

resg suppT ((gf)∗M) ⊆ suppS(f∗M) and resg cosuppT ((gf)!N) ⊆ cosuppS(f !N).

Indeed, by Proposition 3.14 in [BCHV17] applied to g and using that ModS is stratified, there
are equalities

suppT ((gf)∗M) = suppT (g∗(f∗M)) = res−1
g suppS(f∗M),

so we get
resg suppT ((gf)∗M) = resg res−1

g suppS(f∗M) ⊆ suppS(f∗M).
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The inclusion for cosupport and coinduction is proven similarly. It follows that

resg(Qgf (p)) ∈ resg suppT ((gf)∗M) ∩ resg cosuppT ((gf)!M) ⊆ suppS(f∗M) ∩ cosuppS(f !N),

hence resg(Qgf (p)) is a Quillen lift for p along f . �

Corollary 2.8. If f admits an R-module retract and ModS is stratified, then ModR is stratified.

Proof. In the previous proposition, let g be the section to f ; the claim follows. �

We also have a partial converse to this result:

Proposition 2.9. Suppose R =
∏
i∈I Ri is a finite product of Noetherian commutative ring

spectra, so that ModR '
∏
i∈I ModRi as symmetric monoidal categories. Then ModR is stratified

if and only if the categories ModRi are stratified for all i ∈ I.

Proof. Since R =
∏
i∈I Ri, there is a corresponding decomposition π∗R ∼=

∏
i∈I π∗Ri. Moreover,

the prime ideals of π∗R are of the form
∏
i∈I pi where for some k the ideal pk is a prime ideal

of π∗Rk, and for i 6= k we have pi = π∗Ri. By the construction of Γp, given a prime ideal

p ∈ Spech(π∗R) as above, the localizing subcategory Γp ModR is minimal if and only if the
localizing subcategory Γpk ModRk is minimal. It follows that if ModRi is stratified for each i ∈ I,
then so is ModR. The only if direction is a consequence of Corollary 2.8. �

2.3. Simple Quillen lifting. As we have seen in Section 2.1, we can descend stratification along
a morphism f : R→ S of commutative ring spectra provided two conditions are satisfied:

• f is biconservative.
• f satisfies Condition (∗) or, equivalently, Quillen lifting.

While we discussed the first condition in Section 1, we now turn to the study of the second
condition. In particular, we will introduce a variant called simple Quillen lifting that is satisfied
in many examples and implies Quillen lifting, and establish several of its basic properties.

Definition 2.10. A morphism f : R → S of commutative ring spectra is said to satisfy simple
Quillen lifting if for any M ∈ ModR:

res−1
f resf suppS(f∗M) = suppS(f∗M) and res−1

f resf cosuppS(f !M) = cosuppR(f !M).

Note that the inclusions ⊇ hold unconditionally.

Lemma 2.11. Simple Quillen lifting of a morphism f : R→ S implies Quillen lifting.

Proof. Let p be in resf (suppS(f∗M)) ∩ resf (cosuppS(f !N)), so that res−1
f (p) is non-empty. It

then follows from simple Quillen lifting that we have inclusions

res−1
f (p) ⊆ res−1

f resf (suppS(f∗M)) ∩ res−1
f resf (cosuppS(f !N))

= suppS(f∗M) ∩ cosuppS(f !N),

so that f satisfies Quillen lifting. �

The following observation is immediate from the definition of simple Quillen lifting.

Lemma 2.12. If the restriction map resf : Spech(π∗S)→ Spech(π∗R) is injective, then R→ S
satisfies simple Quillen lifting.

Proof. If resf is injective, then res−1
f resf (U) = U for any subset U ⊆ Spech(π∗S). �

Definition 2.13. We say that a map of (discrete) rings g : A → B is an N -monomorphism if
the kernel of g is nilpotent, and that g is a N -epimorphism if for every b ∈ B there exists an
` such that b` ∈ Im g. A morphism of ring spectra f : R → S is an N -monomorphism (resp.
N -epimorphism) if f∗ : π∗R→ π∗S is.
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Lemma 2.14. If f : R → S is an N -epimorphism, then resf : Spech(π∗S) → Spech(π∗R) is
injective.

Proof. The argument given in [MNN19, Proposition 3.24] can easily be adjusted to prove this.
Namely, factor f∗ as the composite π∗R→ π∗R/ ker(f∗)→ π∗S. The first map is surjective and

so induces an injection on Spech. The fact that Spech(π∗S) → Spech(π∗R/ ker(f∗)) is injective
is shown in [MNN19, Proposition 3.24], and we are done. �

From Lemmas 2.12 and 2.14 we deduce the following.

Corollary 2.15. If f : R→ S is an N -epimorphism, then f satisfies simple Quillen lifting.

The next result in particular finishes the proof of Theorem 2.4.

Lemma 2.16. If ModR is stratified, then f satisfies simple Quillen lifting and hence Quillen
lifting.

Proof. Let M ∈ ModR. We have

res−1
f resf (suppS(f∗M)) ⊆ res−1

f suppR(M) = suppS(f∗M),

where the second equality uses Proposition 3.14 from [BCHV17], which applies because ModR is
stratified by assumption. The reverse inclusion holds unconditionally. Similarly, we deduce that

res−1
f resf (cosuppS(f !M)) = cosuppS(f !M).

This shows that f satisfies simple Quillen lifting and hence also Quillen lifting by Lemma 2.11. �

Remark 2.17. It is not the case that a morphism f : R→ S which satisfies Quillen lifting and such
that ModR and ModS are stratified has to be conservative. Indeed, choose a surjective morphism
of discrete Noetherian commutative rings A → B which gives a morphism of commutative
Noetherian ring spectra f : HA→ HB. Since ModHA ' D(A), the unbounded derived category
of A, and ModHB ' D(B) (see [Lur17, Remark 7.1.1.16]), these are both stratified by Neeman’s
result [Nee92]. Moreover, because A → B is surjective, simple Quillen lifting is satisfied by
Lemma 2.12. However, by Proposition 1.19 induction along f is conservative if and only if the
induced map resf : Spec(B)→ Spec(A) is surjective, which does not hold in general.

Finally, we establish the following partial transitivity properties.

Proposition 2.18. Let R
f−→ S

g−→ T be morphisms of commutative ring spectra and assume
that g is biconservative. If both f and g satisfy simple Quillen lifting, then so does gf .

Proof. We will first verify the claim for induced modules. To this end, let M ∈ ModR; we then
have equalities:

res−1
gf resgf suppT ((gf)∗M) = res−1

gf resf resg suppT (g∗f∗M)

= res−1
g res−1

f resf suppS(f∗M) Theorem 1.12(1)

= res−1
g suppS(f∗M) simple Quillen lifting for f

= res−1
g resg suppT (g∗f∗M) Theorem 1.12(1)

= suppT ((gf)∗M) simple Quillen lifting for g,

where we used that g is conservative in the penultimate equality. The argument is similar for
coinduction, using Theorem 1.12(3). �

We can also prove the following converse to the last result.
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Proposition 2.19. Let R
f−→ S

g−→ T be morphisms of commutative ring spectra such that g is
biconservative. If gf satisfies simple Quillen lifting, then so does f .

Proof. Simple Quillen lifting for gf and the same argument as in Proposition 2.18 gives

res−1
g res−1

f resf suppS(f∗M) = res−1
gf resgf suppT ((gf)∗M)

= suppT ((gf)∗M)

⊆ res−1
g resg suppT (g∗f∗M)

= res−1
g suppS(f∗M).

By Proposition 1.19, resg is surjective, so applying this map to the inclusion above yields an
inclusion

res−1
f resf suppS(f∗M) ⊆ suppS(f∗M),

while the reverse inclusion always holds. The same argument works for coinduction. �

2.4. Examples. We finish this section with some examples of ring spectra for which we can
check that ModR is stratified using the criteria established above. In these cases, it is often
easier to check directly that simple Quillen lifting is satisfied when compared to Quillen lifting.

Example 2.20. Consider the complexification morphism f : KO → KU from real K-theory to
complex K-theory. On homotopy the induced map

π∗KO ∼= Z[η, α, β±1] // Z[u±1] ∼= π∗KU

is given by η 7→ 0, α 7→ 2u2 and β 7→ u4. It follows that this map is an N -isomorphism, so simple
Quillen lifting is satisfied by Corollary 2.15.

The cofiber sequence of KO-modules

Σ1KO
η−→ KO

f−→ KU

shows that f is a finite morphism, and nilpotence of η shows that induction along f is conser-
vative, see [Rog08, Proposition 5.3.1]. By Remark 2.5 coinduction along f is also conservative.
Moreover, the homotopy groups of KU are concentrated in even degrees, and satisfy the sufficient
conditions for stratification given in [DS16, Theorem 1.3]. It follows that ModKU is stratified.
By the preceding discussion and Theorem 2.4 we deduce that ModKO is stratified.

We note that the same argument works in the 2-complete setting, so ModKO∧2 is stratified.

For the next result we recall [Lur17, Definition 7.2.4.21] that a module M over a connective
ring spectrum R is said to have finite Tor-amplitude if there exists an integer n such that for
any discrete R-module N (i.e., πiN = 0 for i 6= 0), we have πi(N ⊗RM) = 0 for i ≥ n.

Example 2.21. Suppose R is a connective (graded) Noetherian commutative ring spectrum with
the property that πiR = 0 for i� 0. Consider the morphism f : R→ τ≤0R ' Hπ0R. In the lan-
guage of [Mat16] this is a descendable morphism, see [Mat16, Proposition 3.34]. Such morphisms
have the property that induction is conservative, see [Mat16, Proposition 3.19]. Moreover, the

map f∗ is surjective, so resf : Spech(π∗R) → Spech(π0R) is injective, and hence simple Quillen
lifting is satisfied. Note that since π∗R is assumed to be graded Noetherian, π0R is Noetherian,
and each πiR is finitely-generated as a π0R-module [BG09, Lemma 4.12]. By Neeman’s result
[Nee92, Theorem 2.8] and the equivalence ModHπ0R ' D(Hπ0R), we thus see that ModHπ0R

is stratified. It follows that whenever coinduction along f is conservative, then ModR is also
stratified by Theorem 2.4.

This will be the case if f is a finite morphism, i.e., if Hπ0R is a compact R-module. We
claim that f is finite if Hπ0R has finite Tor-amplitude over R (for example, if π∗R is regular).
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Indeed, it then follows thatHπ0R us compact as an R-module by [Lur17, Proposition 7.2.4.23(4)].
Therefore, ModR is stratified.

3. Cochains on classifying spaces

In this section, we specialize the work on stratification in the previous sections to the case of
cochains on a space X, in particular, the case where X is the classifying space of a topological
group. Using work of Broto and Kitchloo [BK02] we prove Theorem A of the introduction,
namely that ModC∗(BK) is stratified for K a Kac–Moody group.

3.1. Cochains on topological spaces. Let R be a ring spectrum R and let X be a topological
space. We write C∗(X;R) for the ring spectrum of R-valued cochains on X, i.e., the function
spectrum HomSp(Σ∞+ X,R). In particular, there is an isomorphism π∗C

∗(X;R) ∼= R−∗(X),
the R-cohomology of X. The multiplication of two elements x, y ∈ C∗(X;R) is given by the
composite

Σ∞+ X
∆ // Σ∞+ X ⊗ Σ∞+ X

x⊗y
// R⊗R m // R,

where the first map is induced by the diagonal of X and the last map m is the multiplication on
the ring spectrum R. If R is commutative, then C∗(X;R) inherits the structure of an augmented
commutative R-algebra.

In this paper, we are mostly interested in the case when R = Hk is the Eilenberg–Mac Lane
spectrum of a field k of characteristic p > 0 for a fixed prime p and that X is a connected space
with H∗(X; k) Noetherian. If X is additionally assumed to be p-good, then the canonical map
X → X∧p induces an equivalence C∗(X∧p ; k) ' C∗(X; k) of commutative ring spectra, see for
example [BCHV17, Lemma 4.8]. When k = Fp, we will usually omit it from the notation.

3.2. Chouinard’s theorem for classifying spaces. We recall that in Section 2 we isolated
two conditions to descend stratification along a morphism f : R→ S of ring spectra, namely that
induction and coinduction along f are conservative, and that f satisfies simple Quillen lifting.
Suppose now that R = C∗(BG) for a topological group G. In order to construct a suitable
morphism f : C∗(BG) → S as above, we associate to G a category, first considered by Quillen
[Qui71].

Definition 3.1. Let G be a topological group. The category Ap(G) has objects the elementary
abelian p-subgroups of G, and morphisms are group homomorphisms induced by subconjugation
in G.

Suppose that Ap(G) is equivalent to a finite category. This is true, for example, when G is a
compact Lie group [Qui71, Lemma 6.3]. Let Ep(G) denote a set of representatives of conjugacy
classes of elementary abelian p-subgroups of G, then the inclusions E ≤ G define a morphism

qG : C∗(BG) //
∏
E∈Ep(G) C

∗(BE).

We would like to know when induction and coinduction along qG are conservative.

Remark 3.2. When G is a finite group, this is essentially Chouinard’s theorem [Cho76] about
projective representations of groups. Indeed, let ModkG be the abelian category of k-linear G-
representations. Chouinard proves that M ∈ ModkG is projective if and only if the restrictions
of M to all elementary abelian subgroups of G are projective. Equivalently, an object M in the
stable module category StModkG of G is trivial if and only if it becomes trivial in StModkE
for E ∈ Ep(G). In this form, Chouinard’s theorem can be reinterpreted homotopically, at least
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for finite p-groups: StModkG embeds fully faithfully into the homotopy category K(InjkG) of
unbounded injective kG-modules, which in turn is equivalent to ModC∗(BG):

StModkG
� � // K(InjkG)

∼ // ModC∗(BG) .

Benson, Iyengar, and Krause [BIK11c, Proposition 9.6] then prove that Chouinard’s theorem
extends to the statement that the functor

q∗G : ModC∗(BG)
//
∏
E∈Ep(G) ModC∗(BE)

is conservative, where q∗G denotes induction along the map qG : C∗(BG) →
∏
E∈Ep(G) C

∗(BE)

induced by the subgroup inclusions E → G.

Example 3.3. When G is a compact Lie group, Benson and Greenlees show in [BG14, Theorem
3.1(i)] that C∗(BG) is in the thick subcategory generated by the C∗(BG)-modules C∗(BE) for
E ≤ G, hence induction and coinduction along qG are conservative by Lemma 1.22.

Remark 3.4. Example 3.3 shows that induction and coinduction along a morphism f : R→ S can
be satisfied even when S is a not a compact R-module. Indeed, if π0G is not a finite p-group and
E ≤ G is some elementary abelian, then C∗(BE) is not necessarily finite as a C∗(BG)-module.
An explicit example is given by Z/2× Z/2 ≤ A4.

Example 3.5. Let G be a compact Lie group, X a finite G-CW complex. As a generalization
of the previous example, consider the category AG(X) whose objects are homotopy classes of
G-equivariant maps ι : G/E → X, where E is an elementary abelian p-subgroup of G, and
morphisms from ι : G/E → X to ι′ : G/E′ → X are G-equivariant maps f : G/E → G/E′ such
that ι′ ◦ f ' ι (see [Qui71, Section 8]). For any (ι : G/E → X) ∈ AG(X), there is an induced
map C∗(XhG)→ C∗(BE) obtained by applying cochains to the Borel construction on ι. These
maps assemble together to give a map

qG,X : C∗(XhG) //
∏
E∈EG(X) C

∗(BE),

where EG(X) denotes a set of representatives of isomorphism classes of objects in AG(X). Using
the techniques of Benson and Greenlees [BG14, Theorem 3.1(i)], Cameron [Cam18, Proposition
5.4.8] has shown that qG,X is biconservative. In particular, [Cam18, Lemma 5.4.11] shows that
C∗(XhG) is in the thick subcategory of ModC∗(XhG) generated by the set of C∗(XhG)-modules
{C∗(EG ×G G/E) : (G/E → X) ∈ AG(X)}, so that Lemma 1.22 applies. Note that if X is
contractible, then one recovers Example 3.3. One can also show that qG,X satisfies Quillen lifting
(this is essentially [Cam18, Proposition 5.4.13]), and so deduce that ModC∗(XhG) is stratified by
H∗G(X), see [Cam18, Theorem 5.4.1].

Taking X = G, considered as a G-space with conjugation action, the Borel construction GhG
is homotopy equivalent to Λ(BG), the free loop space on BG [Smi81].

Example 3.6. Suppose F is a saturated fusion system on a finite p-group S (see [BLO03, Section
1]). Broto, Levi and Oliver introduced the notion of a classifying space for a fusion system,
and Chermak [Che13] showed that it always exists and is unique up to homotopy equivalence.
Then we can associate a classifying space BF which comes equipped with a canonical map
θ : BS → BF , inducing θ∗ : C∗(BF) → C∗(BS) which is split as a map of C∗(BF)-modules
[Rag06, Rag08].

Let Ep(F) (resp. Ep(S)) be a set of representatives of F-conjugacy (resp. S-conjugacy) classes
of elementary abelian p-subgroups in S. We obtain a morphism

qF : C∗(BF) //
∏
E∈Ep(F) C

∗(BE)
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induced by the inclusions ιE : E ≤ S. Those representatives can be chosen in a way that the
map π : Ep(S)→ Ep(F), which assigns a representative in the F-conjugacy class, is a surjection.
Consider the resulting decomposition Ep(S) =

∐
E∈Ep(F) π

−1(E). For each V ∈ π−1(E) there is

an isomorphism f : V → E in F . We can assemble them in a morphism

qE : C∗(BE) //
∏
V ∈π−1(E) C

∗(BV ).

Since f ∈ F , we have f∗ ◦ ι∗E ◦ θ∗ ' ι∗V ◦ θ∗, so it follows that the following diagram commutes:

C∗(BF)
θ∗ //

qF
''

C∗(BS)
qS //

∏
V ∈Ep(S) C

∗(BV )

'
��∏

E∈Ep(F) C
∗(BE)

∏
qE
//
∏
E∈Ep(F)

∏
V ∈π−1(E) C

∗(BV ).

Since θ∗ is split, induction and coinduction along it are conservative by Lemma 1.22. Moreover, qS
is biconservative, because S is a finite p-group (see Example 3.3). By transitivity, the composite
is therefore biconservative as well. But by Lemma 1.21 this implies that qF is also biconservative.

Remark 3.7. More generally, one can consider saturated fusion systems F on a discrete p-toral
group S, i.e., a group that fits in an extension

1 // (Z/p∞)r // S // π // 1

where r ≥ 0 is finite, and π is a finite p-group. As in the case r = 0 considered in Example 3.6,
there is an associated classifying space BF [BLO07, LL15] and a canonical map θ : BS → BF .
The induced map θ∗ : C∗(BF) → C∗(BS) is split as a map of C∗(BF)-modules by [BCHV17,
Proposition 4.24]. The composite

C∗(BF)
θ∗ // C∗(BS)

qS //
∏
V ∈Ep(S) C

∗(BV )

is known to be biconservative when F models a compact Lie group, a connected p-compact group,
or when S is a finite p-group as in Example 3.6, see [BCHV17, Corollary 4.20 and Theorem
4.25]. We also have the map qF as in Example 3.6, and a similar argument shows that qF is
biconservative if and only if qS is biconservative.

3.3. A hierarchy of spaces. In [KM98] Kropholler and Mislin introduced a class of hierarchi-
cally decomposable groups. Given a class X of groups, they define H1X to be the class of groups
G which admit a finite dimensional G-CW-complex X with cell stabilizers in X . Then HX is
defined as the smallest class J containing X such that H1J = J . Of special interest is the class
X of finite groups.

Inspired by this, Broto and Kitchloo [BK02] introduced the following class of groups. Let X
be a class of compactly generated Hausdorff topological groups and let p be a fixed prime. Define
K1X to the class of compactly generated Hausdorff topological groups G for which there exists
a finite G-CW-complex X such that:

(1) the isotropy subgroups of X belongs to X , and
(2) for each finite p-subgroup π < G, the fixed point space Xπ is p-acyclic.

Remark 3.8. The second condition in the definition applied to the trivial subgroup implies that
X is mod p acyclic and then C∗(XhG) ' C∗(BG). Moreover, from the proof of [Cam18, Lemma
5.4.10] we see that C∗(BG) ∈ Thick(C∗(BH)|H ∈ IsoG(X)), where IsoG(X) denotes a set of
representatives of G-conjugacy classes of isotropy subgroups of the G-action on X (which are
compactly generated Hausdorff topological groups by the definition of K1X ).
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In what follows X is the class of compact Lie groups. Examples of groups in K1X are given
by Kac–Moody groups and infinite Coxeter groups, see Example 3.15. For any G ∈ K1X we
let Ap(G) denote the Quillen category associated to G, and Ep(G) a set of representatives for
conjugacy classes of elementary abelian p-subgroups. As with the case of a compact Lie group,
we can construct a morphism

qG : C∗(BG) //
∏
E∈Ep(G) C

∗(BE).

Proposition 3.9. Let G ∈ K1X , then induction and coinduction along qG are conservative.

Proof. Since G ∈ K1X , by definition, there exists a finite G-CW-complex X whose isotropy
subgroups are compact Lie groups, and such that C∗(XhG) ' C∗(BG). Let E ≤ G be an
elementary abelian p-subgroup, then XE is mod p acyclic by hypothesis, and in particular is
non-empty. Then E ≤ G is a subgroup of an isotropy subgroup of G, hence E is subconjugated to
some H ∈ IsoG(X), where the latter is a set of representatives of G-conjugacy classes of isotropy
subgroups of X. Let Ep(H) be a set of representatives of H-conjugacy classes of elementary
abelian p-subgroups in H and write EX (G) = {(H,E)|H ∈ IsoG(X), E ∈ Ep(H)}. Therefore,
one can choose representatives in a way so that the natural map EX (G)→ Ep(G) is surjective.

The composite

q : C∗(BG)
qIso //

∏
H∈IsoG(X) C

∗(BH)

∏
qH
//
∏
H∈IsoG(X)

∏
Ep(H) C

∗(BE),

is biconservative: qIso is so by Remark 3.8 and qH by Example 3.3 since H ≤ G are compact Lie
groups. Now the map q factors through qG : C∗(BG)→

∏
Ep(G) C

∗(BE) by the same argument

as in Example 3.6 using conjugation by elements in G instead of morphisms in the fusion systems.
We conclude that qG is also biconservative. �

Let VG denote the homogeneous prime ideal spectrum of H∗(BG). For an elementary abelian

subgroup E 6 G, let V+
E = VE \

⋃
E′<E resE

′

E VE′ , where resE
′

E : VE′ → VE is the restriction

map. Finally, we write V+
G,E = resEG V

+
E , to denote the restriction of V+

E induced by the map

H∗(BG)→ H∗(BE).

Theorem 3.10. Let X be the class of compact Lie groups and G ∈ K1X .

(1) (Broto–Kitchloo) H∗(BG) is Noetherian and the Quillen map

qG : H∗(BG) // lim←−
E∈Ap(G)

H∗(BE)

is an F -isomorphism.
(2) (Rector) The variety VG admits a decomposition

VG =
∐

E∈Ep(G)

V+
G,E

where Ep(G) denotes a set of representatives for conjugacy classes of elementary abelian
p-subgroups of G.

Proof. The first part is proved by Broto and Kitchloo. The fact that H∗(BG) is Noetherian is
shown in [BK02, Theorem 4.8], while the F -isomorphism is proved in [BK02, Theorem 4.1].

For the second part, we can use the methods of Rector [Rec84] to deduce the decomposition
of the variety VG from the F -isomorphism theorem as in [BCHV17, Theorem 5.6]. In particular,
we claim that the Conditions (1) – (5) of [Rec84, Proposition 2.3] are satisfied for the pair
(Ap(G), H∗(B−)), with proofs analogous to that given in the proof of Theorem 5.6 of [BCHV17,
Theorem 5.6].
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It follows from [Rec84, Proposition 2.5 and Theorem 2.6] that Λ = lim←−E∈Ap(G)
H∗(BE) is a

reduced, Noetherian unstable algebra over the Steenrod algebra. The proof of [Rec84, Theorem
2.6] shows moreover that VΛ

∼=
∐
E∈Ep(G) V

+
G,E . Since an F -isomorphism induces an isomorphism

on varieties, we deduce from this and the first part of the theorem that

VG ∼= VΛ
∼=

∐
E∈Ep(G)

V+
G,E ,

as required. �

Corollary 3.11. Let G ∈ K1X , then

q : H∗(BG) //
∏

E∈Ep(G)

H∗(BE)

satisfies Quillen lifting.

Proof. This is the same argument as given in [BCHV17, Theorem 5.10]. �

Remark 3.12. In fact, inspection of the proof shows that q actually satisfies simple Quillen lifting,
by an argument similar to Proposition 4.3.

Finally we need the next result—the stratification result follows from [BIK11c], as in [BG14,
Theorem 4.2(i)], while the Avrunin–Scott identities are then a consequence of Corollary 2.6.

Theorem 3.13 (Benson–Iyengar–Krause). For any elementary abelian p-subgroup E, the cate-
gory ModC∗(BE) is stratified by H∗(BE). Moreover, for any morphism E′ → E of elementary
abelian p-subgroups with induced morphism f : C∗(BE)→ C∗(BE′), the Avrunin–Scott identities
are satisfied, i.e.,

suppC∗(BE′)(f
∗M) = res−1

f suppC∗(BE)(M)

cosuppC∗(BE′)(f
!M) = res−1

f cosuppC∗(BE)(M)

for all M ∈ ModC∗(BE).

Combining the previous results we obtain the following.

Theorem 3.14. Let X denote the class of compact Lie groups. Then, for any G ∈ K1X , the
category ModC∗(BG) is stratified by H∗(BG).

Proof. We apply Theorem 2.4 to the morphism

qG : C∗(BG) //
∏
Ep(G) C

∗(BE).

Note that Ep(G) is finite, see the discussion at the bottom of page 630 of [BK02]. By Corol-
lary 3.11 and Proposition 3.9 stratification of ModC∗(BG) will follow if

∏
Ep(G) ModC∗(BE) is

stratified, but this follows from Proposition 2.9 and Theorem 3.13. �

By Theorem 1.10, we deduce that the telescope conjecture holds for ModC∗(BG) withG ∈ K1X .

Example 3.15 (Stratification for Kac–Moody groups). Unitary forms of Kac–Moody groups
can be understood as an extension of the class of compact Lie groups with whom they share
many properties. For example, they have a maximal torus of finite rank and a notion of Weyl
group which is generated by reflections, see [Kum02]. The Weyl group of a Kac–Moody group
is a Coxeter group which is, in general, infinite.

The study of the topology of Kac–Moody groups and their classifying spaces was initiated by
Kitchloo in his thesis and followed by many authors, see for example [Kit98, BK02, AR03, Kit14].
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In fact, the interest in the groups G ∈ K1X studied in the previous section arose because Kac–
Moody groups give examples of groups in K1X , see [BK02, Section 5].

Theorem 3.16 (Broto–Kitchloo). Let X denote the class of compact Lie groups, then any Kac–
Moody group K is in K1X . Moreover, the Weyl group of K belongs to the class K1X .

When combined with Theorem 3.14, we deduce the following.

Theorem 3.17. Let K be a Kac–Moody group and W the Weyl group of K. Then ModC∗(BK)

and ModC∗(BW ) are stratified.

4. Hopf spaces with Noetherian mod p cohomology

The structure of H-spaces with Noetherian mod p cohomology is quite well understood. Using
Lannes’ T -functor and Bousfield nullification functors, those spaces fit into a fibration where the
base and the fibre are finite and Eilenberg–MacLane H-spaces, respectively, see [BCS01] and
[CCS07]. In this section, we use this decomposition and the work in the previous sections to
show that for a connected H-space X with Noetherian mod p cohomology ring, the category of
modules over C∗(X) is stratified.

4.1. Unstable algebras over the Steenrod algebra. The mod p cohomology of any space X
is equipped with an action of the mod p Steenrod algebra Ap. In fact, it is a graded Ap-module,
and the action of Ap satisfies additional properties, such that H∗(X;Fp) is an object in the
abelian category of unstable modules over the Steenrod algebra U , see [Sch94] for example. We
let K denote the category of unstable algebras over the Steenrod algebra; that is, an object K ∈ K
is an unstable module together with maps ρ : K⊗K → K, η : Fp → K satisfying some additional
axioms, again see [Sch94]. The diagonal of X equips H∗(X;Fp) with a multiplication, which
satisfies certain compatibility relations with the Steenrod algebra, so that the mod p cohomology
of any space is in fact an object of K.

We recall that a morphism f : R → S of Fp-algebras is said to be an F -monomorphism if
every element in ker(f) is nilpotent, and an F -epimorphism if for every s ∈ S, there exists a
natural number n such that sp

n ∈ Im(f). We say that f is an F -isomorphism if it is both an
F -monomorphism and an F -epimorphism. If the number n can be chosen independently of s,
then we say that it is a uniform F -isomorphism. Lannes’ machinery gives a criterion for when a
morphism of unstable algebras is an F -monomorphism or F -epimorphism.

Theorem 4.1. [HLS93, Corollary II.1.4] Let φ : K → K ′ be a morphism of unstable algebras.
Then the morphism of Fp-algebras underlying φ is an F -monomorphism (resp. F -epimorphism)
if and only if

HomK(K ′, H∗(BV )) // HomK(K,H∗(BV ))

is surjective (resp. injective) for all elementary abelian p-groups V .

Given a topological space X, taking cohomology induces a morphism

[BV,X] // HomK(H∗(X), H∗(BV ))

and Lannes’ theory [Lan92] establishes conditions under which it is a bijection. Recall that we
write X∧p for the Bousfield–Kan p-completion of a space X.

Theorem 4.2 (Lannes). Let X be a topological space such that H∗(X;Fp) is of finite type, then
taking mod p cohomology induces a bijection

[BV,X∧p ]
' // HomK(H∗(X), H∗(BV )).

Moreover, if π1X is a finite p-group, then [BV,X] ∼= [BV,X∧p ].
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Proof. The first part of the statement is [Lan92, Theorem 3.1.1]. For the second, by the obstruc-
tion theoretic argument of [DZ87, proof of Theorem 3.1], the natural map X → X∧p induces an
isomorphim [BV,X] ∼= [BV,X∧p ]. �

One can combine Theorems 4.1 and 4.2 into the following.

Proposition 4.3. Let X and Y be topological spaces such that H∗(X) and H∗(Y ) are of finite
type. Let f : X → Y be a map such that

[BV,X∧p ] // [BV, Y ∧p ]

is injective (resp. surjective) for all elementary abelian p-groups V , then f∗ : H∗(Y ) → H∗(X)
is an F -monomorphism (resp. F -epimorphism).

Finally, we state a theorem proven by Miller [Mil84, Theorem 1.5] that allows us to remove
p-completions when mapping from classifying spaces of elementary abelian p-groups.

Theorem 4.4 (Miller). Let X be a connected nilpotent space, then the canonical map X → X∧p
induces an isomorphism

map∗(BV,X)
' // map∗(BV,X

∧
p ).

Corollary 4.5. Let X be a connected nilpotent space with finite fundamental group, then the
canonical map X → X∧p induces an equivalence

[BV,X]
' // [BV,X∧p ].

Proof. We recall that if Y is a path-connected space, the forgetful map [BV, Y ]∗ → [BV, Y ] is
surjective and two elements have the same image if and only if they are in the same orbit by the
action of π1(Y ). Now consider the following commutative diagram

π1(X) //

��

[BV,X]∗ //

∼=
��

[BV,X] //

��

π0(X) = ∗

∼=
��

π1(X∧p ) // [BV,X∧p ]∗ // [BV,X∧p ] // π0(X∧p ) = ∗.

The diagram shows that [BV,X] → [BV,X∧p ] is surjective. To prove injectivity, one needs to
prove that given two pointed maps f, g : BV → X such that f∧p , g

∧
p ∈ [BV,X∧p ] differ by the

action of π1(X∧p ), then f and g differ by the action of π1(X). This is the case if π1(X)→ π1(X∧p )
is surjective, for example, when π1(X) is finite. �

4.2. BZ/p-nullification and nilpotent fibrations. We collect some material about BZ/p-
nullification and nilpotent fibrations that we will use later in this section. Our main references
for the former are [Far96, Bou94], while we refer to [BK72] for the latter.

Let A be a space. Dror-Farjoun [Far96] and Bousfield [Bou94] construct a localization functor
PA : Top → Top that universally inverts the map A → ∗, the so-called A-nullification. In more
detail, a space X is A-null if the canonical map A→ ∗ induces a weak equivalence

X ' map(∗, X)
∼ // map(A,X).

If A and X are connected, this is equivalent to a weak equivalence ∗ ' map∗(A,X) on pointed
mapping spaces. The functor PA is coaugmented and takes values in A-null spaces. Moreover, if
X is a space and Y is an A-null space, then the coaugmention of PA induces a weak equivalence

map(PAX,Y )
∼ // map(X,Y ),
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i.e., PA is left adjoint to the inclusion of the category of A-null spaces into Top. It follows that
PA preserves finite products and hence H-spaces; in fact, if X is an H-space, then X → PAX
is an H-map of H-spaces. In [Bou94, Proposition 2.9], Bousfield proves that PA preserves the
property of being simply connected.

Remark 4.6. It is an open problem (see [Far96, Question 9.F.7]) whether PA also preserves
nilpotency.

We now specialize to the case A = BZ/p. Miller shows that map∗(BZ/p,X) is weakly
contractible for any nilpotent space X with bounded mod p cohomology, see [Mil84, Theorem
C], so we get:

Theorem 4.7. A connected nilpotent space with bounded mod p cohomology is BZ/p-null.

Moreover, by Theorem 4.4, if X is connected and of finite type, then there are weak equiva-
lences

∗ ' map∗(BZ/p, PBZ/pX) ' map∗(BZ/p, (PBZ/pX)∧p ),

so (PBZ/pX)∧p is BZ/p-null as well.
Recall that a fibration f : E → B of connected spaces is called nilpotent if the fiber of f is

connected and the canonical action of π1E on πiF is nilpotent for all i ≥ 1. In this case, we will
also refer to

F // E // B

as a nilpotent fiber sequence. Note that a space X is nilpotent if and only if X → ∗ is a nilpotent
fibration. Furthermore, the following two-for-three property holds for nilpotent fibrations: If

X2
f2 // X1

f1 // X0

are fibrations with connected fibers, then if two of the three maps f1, f2, f1f2 are nilpotent
fibrations, then so is the third, see [BK72, Proposition II.4.4]. In particular, if f : E → B is a
fibration with E and B both nilpotent, then f is a nilpotent fibration.

In [BK72, Section II.4.8], it is shown that the p-completion of a nilpotent fiber sequence is
again a fiber sequence, i.e., if f : E → B is a nilpotent fibration, then f∧p : E∧p → B∧p is a fibration
with fiber F∧p . In particular, if X is nilpotent, then so is X∧p .

We collect these results in a lemma for later use.

Lemma 4.8. Let f : E → B be a nilpotent fibration of connected spaces with fiber F such that
E is nilpotent and B is BZ/p-null and of finite type, then p-completion gives a nilpotent fiber
sequence

F∧p // E∧p // B∧p

with BZ/p-null base B∧p .

Proof. It follows from the assumptions on f and E that the base space B is nilpotent, so B∧p is
also BZ/p-null by Theorem 4.4. Furthermore, p-completion yields the indicated fiber sequence,
which is nilpotent because both E∧p and B∧p are. �

4.3. Stratification along fiber sequences. Let F → E → B be a fiber sequence where E and
B are connected. The universal property of the pushout in commutative ring spectra provides a
canonical map

ι : C∗(E)⊗C∗(B) Fp // C∗(F ).

As explained in more detail in [Sha09], we can refine this map as follows: Without loss of
generality, we can assume that ΩB is a topological group and that F is a ΩB-space (by using
Kan’s loop group functor [Kan58, GJ09], for example). Consider the ring spectrum R = C∗(ΩB)
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and let R→ Fp be the canonical map, which allows us to view Fp as an R-module. Note that the
Rothenberg–Steenrod construction shows that EndR(Fp) ' C∗(B), see [DGI06, Section 4.22].
Note that as in the proof of [Sha09, Lemma 5.5] C∗(F ) is an R-module. By [DW09, Lemma
2.10] there is an equivalence of R-modules C∗(E) ' HomR(Fp, C∗(F )) which fits into a map of
R-modules

C∗(E)⊗C∗(B) Fp ' HomR(Fp, C∗(F ))⊗EndR(Fp) Fp
ι′ // C∗(F ), (4.9)

where ι′ is adjoint to the identity map on HomR(Fp, C∗(F )) via

HomR(HomR(Fp, C∗(F ))⊗EndR(Fp)Fp, C∗(F )) ' HomEndR(Fp)(HomR(Fp, C∗(F )),HomR(Fp, C∗(F ))).

The composite constructed in (4.9) then coincides with ι as defined above.

Definition 4.10. We say that the fiber sequence F → E → B with E and B connected is of
Eilenberg–Moore type (at the prime p) if the map ι is an equivalence.

Example 4.11. (1) Every trivial fibration F → F ×B → B is of Eilenberg–Moore type in
light of the equivalence C∗(F ×B) ' C∗(F )⊗Fp C

∗(B).
(2) Recall that a fibration F → E → B is simple if the action of π1(B) on the homotopy

groups of F is trivial and π1(B) is abelian. If F → E → B satisfies an Eilenberg–Moore
convergence theorem, such as when π1(B) acts nilpotently on H∗(F ) [Dwy74], then it is
of Eilenberg–Moore type. In particular, this is satisfied if the fibration is simple, e.g., a
fibration of H-spaces and H-maps.

(3) In [Sha09, Lemma 5.6], the author shows that the morphism of R-modules ι is a Fp-
cellular approximation of C∗(F ) if R is proxy-small, see also [DGI06, Proposition 4.10].
Moreover, in the proof of [Sha09, Proposition 5.8] it is shown that C∗(F ) is Fp-cellular
if π1(B) acts nilpotently on Hn(F ) for every n. Both of these conditions are satisfied if
π1(B) is a finite p-group and F of finite type, so ι is an equivalence in this case.

Lemma 4.12. Suppose F → E → B is a fibration of Eilenberg–Moore type with H∗(B) finite. If
g : C∗(E)→ C∗(F ) is the induced map on mod p cochains, then both g∗ and g! are conservative.

Proof. Since H∗(B) is finite, the induced map f : C∗(B)→ Fp is cosmall by [DGI06, Proposition
3.16], i.e., C∗(B) ∈ ThickC∗(B)(k). In particular, f∗ and f ! are conservative by Lemma 1.22.
Moreover, because the fibration is of Eilenberg–More type, there is a pushout square of commu-
tative ring spectra

C∗(B) //

f

��

C∗(E)

g

��

k // C∗(F ).

It follows that we are in the situation of Lemma 1.23, so g∗ and g! are conservative. �

Recall that we write PBZ/p for the BZ/p-nullification functor; see Section 4.2 for the basic
properties of BZ/p-nullification.

Lemma 4.13. Let F
i−→ E → B be a nilpotent fiber sequence of connected spaces with mod

p cohomology of finite type and assume that E is connected nilpotent and B is connected and
BZ/p-null. Then the induced map H∗(i) : H∗(E) → H∗(F ) is an F -monomorphism. If the
fibration is simple, then H∗(i) is an F -isomorphism.

Proof. The conditions of Lemma 4.8 are satisfied, so the p-completion of F → E → B results in
a nilpotent fiber sequence

F∧p // E∧p // B∧p (4.14)
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with BZ/p-null base. The evaluation map then gives an equivalence map(BZ/p,B∧p ) ' B∧p since
B is connected. Now applying π∗map(BV,−) to the fiber sequence of (4.14) gives an exact
sequence

π1(B∧p ) // [BV,F∧p ]
φV // [BV,E∧p ] // π0(B∧p ) = ∗ .

We see that φV is surjective and it identifies [BV,E∧p ] with the orbit space by the action of
π1(B∧p ) on [BV,F∧p ]. If the fibration is simple, then φV is a bijection. Then the following natural
composite is a monomorphism

HomK(H∗(F ), H∗(BV )) ' [BV,F∧p ] // [BV,E∧p ] ' HomK(H∗(E), H∗(BV )),

and even an isomorphism when the fibration is simple, as a consequence of Lannes’ Theorem, see
Theorem 4.2. Since this holds for all elementary abelian p-groups V , we deduce from Theorem 4.1
the conclusion for H∗(E)→ H∗(F ). �

Proposition 4.15. Let F → E → B be a nilpotent fiber sequence of Eilenberg–Moore type with
E nilpotent. Assume H∗(F ) and H∗(E) are Noetherian and H∗(B) finite, then the induced map
i : C∗(E)→ C∗(F ) descends stratification, that is, if ModC∗(F ) is stratified, then so is ModC∗(E).

Proof. The goal is to apply Theorem 2.4 to the induced morphism of ring spectra

i : C∗(E) // C∗(F ),

which allows us to descend the stratification from ModC∗(F ) to ModC∗(E). For this we need to
check that i satisfies Quillen lifting and that induction and coinduction along i are conservative.

Since B is a connected nilpotent space with finite mod p cohomology, it is BZ/p-null by
Theorem 4.7. Therefore, Lemma 4.13 implies that i induces an F -isomorphism H∗(E)→ H∗(F ),
so i satisfies simple Quillen lifting by Corollary 2.15, hence Quillen lifting by Lemma 2.11.
Moreover, Lemma 4.12 applies to show that induction and coinduction along i are conservative.

�

Remark 4.16. Consider a trivial fibration F → F × B → B with H∗(F ) Noetherian, H∗(B)
finite, and suppose that ModC∗(F ) stratified. Note that i : C∗(F × B) → C∗(F ) is surjective
on π∗, and in particular, an F -epimorphism. Using this instead of Lemma 4.13 in the proof of
Proposition 4.15 yields the stratification of ModC∗(F×B).

4.4. Noetherian Hopf spaces. Since H-spaces are simple, any fibration of H-spaces and H-
maps is simple, and therefore of Eilenberg–Moore type. Moreover, simple spaces are in particular
nilpotent, and hence p-good [BK72, Proposition V.3.4]. It follows that C∗(X) ' C∗(X∧p ), see
Section 3.1.

For the following, we recall that a discrete p-toral group P is a group with a normal subgroup
P0
∼= (Z/p∞)r such that π = P/P0 is a finite p-group. If the discrete p-toral group is abelian,

then P splits and it is isomorphic to a product P ∼= (Z/p∞)r × π. In particular, the classifying
space of any abelian p-discrete toral group is Fp-equivalent to a compact abelian Lie group since
BP∧p

∼= ((BS1)r ×Bπ)∧p .

Theorem 4.17. If X is a connected H-space with Noetherian mod p cohomology, then ModC∗(X)

is stratified.

Proof. By [BCS01, Theorems 1.2,1.3] (see also [CCS07]), the homotopy fiber of the H-map
X∧p → (PBZ/pX)∧p is equivalent to K(P, 1)∧p , where P is an abelian discrete p-toral group.
Moreover, the base space (PBZ/pX)∧p is BZ/p-null and has finite mod p cohomology. Note that
since X is an H-space, then (PBZ/pX)∧p inherits the structure of an H-space and the nullification
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map is an H-map, since both nullification and completion are homotopy functors with commute
with finite products. The corresponding fiber sequence is of Eilenberg–Moore type, so the map

ι : C∗(X)⊗C∗(PBZ/pX) Fp // C∗(K(P, 1))

is an equivalence. Since C∗(K(P, 1)) ' C∗(BA), where A is a compact abelian Lie group,
ModC∗(K(P,1)) is stratified by [BG14] or [BCHV17], so we can apply Proposition 4.15 to deduce
the claimed result. �

As a consequence of Theorem 1.10, the the telescope conjecture holds for ModC∗(X) for any
connected H-space X with Noetherian mod p cohomology.

4.5. An explicit example. We conclude this section with an explicit example given by X =

S3〈3〉, the 3-connected cover of S3. This space fits in a principal fibration BS1 i−→ S3〈3〉 j−→ S3

induced by the fundamental class S3 → K(Z, 3). The mod p cohomology of S3〈3〉 is

H∗(S3〈3〉) ∼= Fp[x2p]⊗ Λ(y2p+1).

In cohomology, H∗(Bi) : H∗(S3〈3〉) → H∗(BS1) sends x2p to xp, so this is an F -isomorphism.
Then C∗(Bi) : C∗(S3〈3〉)→ C∗(BS1) satisfies simple Quillen lifting by Corollary 2.15. Since S3

is simply connected and has finite cohomology, Lemma 4.12 implies that C∗(i) : C∗(S3〈3〉) →
C∗(BS1) is biconservative. As a consequence of Theorem 2.4, ModC∗(S3〈3〉) is stratified.

Note that the morphism C∗(i) : C∗(S3〈3〉) → C∗(BS1) is neither finite nor split. Indeed,
because all spaces involved are simply connected, the fiber sequence ΩS3 → BS1 → S3〈3〉 is of
Eilenberg–Moore type, so we have a pushout square of commutative ring spectra

C∗(S3〈3〉)
C∗(i)

//

��

C∗(BS1)

��

k
C∗(j)

// C∗(ΩS3).

Since H∗(ΩS3) is infinite-dimensional, the morphism C∗(j) is not finite, and thus neither is C∗(i).
Further, the ring H∗(BS1;Fp) does not contain nilpotent elements, so the previous cohomology
calculation implies that C∗(i) cannot admit a retraction even on homotopy groups.

This means that none of the known techniques for establishing costratification (for exam-
ple, [BCHV17, Proposition 3.20 or Theorem 3.27]) apply to the morphism C∗(i) : C∗(S3〈3〉) →
C∗(BS1), so we currently do not know whether ModC∗(S3〈3〉) is costratified.

5. Chouinard’s condition and stratification

In order to use the descent results of Section 2 to study stratifications for ModC∗(X) for general
topological spaces X with Noetherian mod p cohomology, we need to first find a candidate
morphism ρX : C∗(X)→ S with ModS stratified. The goal of this section is to construct such a
morphism ρX using Lannes’ theory and to then deduce from Rector’s generalization of Quillen’s
stratification theorem that ρX satisfies Quillen lifting.

5.1. Rector’s category. Given the distinguished role played by the cohomology of elementary
abelian p-groups V for detecting when a morphism in K is an F -isomorphism, it is convenient
to organize Ap-algebra morphisms from a fixed K ∈ K to H∗(BV ) in a category R(K). This
category was introduced by Rector [Rec84], generalizing previous work of Quillen [Qui71] on the
cohomology of compact Lie groups.
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Definition 5.1. Let K be a Noetherian unstable Ap-algebra. The Rector category R(K) of K
has as objects pairs (V, ϕ), where V is an elementary abelian p-group and ϕ : K → H∗(BV ) is
a morphism of unstable algebras which is finite, i.e., H∗(BV ) is a finitely generated K-module
via ϕ. A morphism f : (V, ϕ)→ (V ′, ϕ′) between objects in R(K) is given by a monomorphism
f : V → V ′ such that H∗(Bf) ◦ ϕ′ = ϕ.

Remark 5.2. This category is in fact the opposite of the so-called fundamental category of K
as defined by Rector, cf. Definition 1.2 in [Rec84]; by now, it is more conventional to work with
R(K) instead of Rector’s original category R(K)op.

Example 5.3. Let G be a compact Lie group. Then Lannes’ theory shows that R(H∗(BG))
is equivalent to the Quillen category Ap(G) of G introduced in Section 3, see the discussion in
[HLS95, Section 5.3].

If K ∈ K is Noetherian, Rector showed that R(K) is equivalent to a finite category, since
isomorphism classes of objects are determined by Ap-invariant prime ideals and K has finitely
many prime ideals. Moreover, there is only a finite set of morphisms since the set Hom(V, V ′) of
abelian group homomorphisms is finite for two elementary abelian p-groups V, V ′. The functor
from R(K) to K which assigns H∗(BV ;Fp) to (V, ϕ) induces a natural homomorphism

rK : K // lim←−R(K)
H∗(BV ).

Rector [Rec84] and Broto–Zarati [BZ88] prove rK provides a close approximation to K:

Theorem 5.4 (Rector, Broto–Zarati). Let K be a Noetherian unstable Ap-algebra, then rK is
an F -isomorphism.

In his work on equivariant cohomology Quillen [Qui71, Section 10 and 11] shows how this
gives a decomposition of the prime ideal spectrum of H∗(BG). Rector proves a similar result
[Rec84, Theorem 1.7]. Note that Rector states the result in terms of the maximal ideal spectrum
instead of the prime ideal spectrum - as explained after Proposition 11.2 of [Qui71], the results
also hold for the prime ideal spectrum, with the exception that the ‘Weyl group’ (denoted by
Wφ below) no longer acts freely, but rather only transitively. In order to state these results, we
need to introduce some notation, similar to that used in Section 3.3.

For an elementary abelian group E, we recall that VE = Spech(H∗(BE)) and that V+
E =

VE \
⋃
E′<E resE

′

E VE′ , where resE
′

E : VE′ → VE is the restriction map. For K ∈ K, we will

write VK = Spech(K). If φ : K → H∗(BE) is a morphism in R(K), then resφ denotes the
corresponding restriction map on varieties. We let

Vφ,E = resφ(VE) and V+
φ,E = resφ(V+

E ).

Finally, we let Wφ denote the group of automorphisms of (E, φ) in R(K), and let E(K) denote
a set of representatives for the isomorphism classes of objects in R(K).

Theorem 5.5 (Rector). Let K be a Noetherian unstable Ap-algebra, then:

(1) There is a decomposition of varieties

VK =
∐

(E,φ)∈E(K)

V+
φ,E .

(2) Wφ acts transitively on V+
E , and V+

φ,E
∼= V+

E /Wφ.

(3) Vφ,E ⊆ Vφ′,E if and only if there is a morphism (E′, φ′)→ (E, φ) in R(K).

We would like to discuss the situation when K is the mod p cohomology of a topological
space X. For suitable X, the objects and morphisms in R(K) = R(H∗(X)) can be realized by
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maps between spaces. Indeed, let X be a p-good connected topological space such that H∗(X)
is Noetherian. Consider Rector’s category R(H∗(X)) associated to the Noetherian unstable
Ap-algebra H∗(X); for simplicity, we write this simply as R(X). By Theorem 4.2 any map of
unstable Ap-algebras φ : H∗(X)→ H∗(BV ) with V an elementary abelian p-group is realized by

a unique map up to homotopy φ̃ : BV → X∧p , i.e., H∗(φ̃) = φ. Since X is p-good, this provides
a map

ρφX : C∗(X) ' C∗(X∧p )
C∗(φ̃)

// C∗(BV )

with π∗ρ
φ
X = φ. We record this result here.

Lemma 5.6. Let X be a p-good connected topological space X, then for any pair (V, φ) ∈ R(X)

there exists ρφX : C∗(X) → C∗(BV ) as above with π∗ρ
φ
X = φ. Moreover, for any morphism

f : (V, φ)→ (V ′, φ′) in E, we obtain a commutative diagram as follows

C∗(X) C∗(BV )

C∗(BV ′),

ρφ
′
X

ρφX

C∗(Bf)

which realizes the commutative diagram

H∗(X) H∗(V )

H∗(V ′)

φ′

φ

H∗(Bf)

on homotopy.

Proof. Everything but the claim that we can realize the commutative diagram on homotopy
by maps of cochains has been shown. This follows because the maps produced by applying
Theorem 4.2 are unique up to homotopy; since φ ∼= H∗(Bf)◦φ′, there is a unique map BV → X∧p
realizing φ ∼= H∗(Bf) ◦ φ′ on cohomology which factors through Bf : BV → BV ′. Taking

cochains, we deduce that C∗(Bf) ◦ ρφ
′

X ' ρ
φ
X . �

Let E(X) be a set of representatives of isomorphism classes of objects in R(X), i.e., E(X) =
E(H∗(X)). We thus obtain a map of commutative ring spectra

ρX :=
∏

(E,φ)∈E(X) ρ
φ
X : C∗(X) //

∏
(E,φ)∈E(X) C

∗(BE) (5.7)

for any p-good connected topological space X. This will be our candidate for descending strati-
fication.

5.2. Quillen lifting for cochains of spaces. We now show that the morphism ρX constructed
in the previous section always satisfies Quillen lifting. We continue to assume that X is a p-good
connected topological space with Noetherian mod p cohomology.

Proposition 5.8. The morphism ρX : C∗(X) →
∏

(E,φ)∈E(X) C
∗(BE) defined in (5.7) satisfies

simple Quillen lifting.

Proof. In order to prepare for the proof, we start by introducing some notation. Let VX =
Spech(H∗(X)) and VE(X) = Spech(

∏
E∈E(X)H

∗(BE)), and write ρ = ρX . By Theorem 5.5
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there is a commutative diagram

VE(X)

resπ∗ρ // VX

∐
(E,φ)∈E(X) VE //

∼=

OO

∐
(E,φ)∈E(X) V

+
φ,E .

S =

OO

Let p ∈ VX be a prime ideal. Since S is a bijection, we may choose a pair (E, φ) ∈ E(X) in which
p originates: this means that there exists a (not necessarily unique) prime ideal O(p) ∈ V+

E ⊆ VE
with S([O(p)]) = p, where [O(p)] denotes the image of O(p) under the quotient map V+

E → V
+
φ,E

of Theorem 5.5(2).
To simplify the notation further, we write suppE(X)(N) for the support of a

∏
E∈E(X) C

∗(BE)-

module N . As observed in [BCHV17, Section 5.2], the support of ρ∗M for M ∈ ModC∗(X)

decomposes as

suppE(X)(ρ
∗M) ∼=

∐
(E,φ)∈E(X)

suppC∗(BE)((ρ
φ
X)∗M),

where we use Lemma 5.6 to realize morphisms φ : H∗(X)→ H∗(BE) as ρφX : C∗(X)→ C∗(BE).
This decomposition will be used implicitly throughout the proof. We need to show that, for any
module M ∈ ModC∗(X), there is an equality

res−1
ρ resρ suppE(X)(ρ

∗M) = suppE(X)(ρ
∗M), (5.9)

leaving the modifications for the dual claim about the cosupport of the coinduction of M to the
interested reader. From now on, let us fix such a module M .

Since the inclusion “⊇” in (5.9) holds automatically, it remains to prove the reverse inclu-
sion. To this end, consider a prime ideal r ∈ VE(X) with the property that p := resρ(r) ∈
resρ suppE(X)(ρ

∗M); in particular, suppE(X)(ρ
∗M) is non-empty. Our goal is to show that

r ∈ suppE(X)(ρ
∗M). We first claim that

(♣) any prime ideal O(resρ(r)) in which resρ(r) originates is contained in suppE(X)(ρ
∗M).

To this end, choose q ∈ suppE(X)(ρ
∗M) such that resρ(r) = resρ(q). In particular, there exists

(E, φ) ∈ E(X) such that q ∈ VE . Without loss of generality, we may assume that p in fact
originates in (E, φ) with O(p) = q: Indeed, if not there exists a (E′, φ′) with E′ of smaller p-rank
than E and a monomorphism f : E′ → E such that q is in the image of the associated restriction
map resf : VE′ → VE . The map f fits into a commutative diagram of unstable algebras over the
Steenrod algebra, as displayed on the left,

H∗(X)
H∗(φ)

//

H∗(φ′) %%

H∗(BE)

H∗(f)

��

C∗(X)
C∗(φ)

//

C∗(φ′) %%

C∗(BE)

C∗(f)

��

H∗(BE′) C∗(BE′),

which by virtue of Lemma 5.6 lifts to the commutative diagram on the right. Using the Avrunin–
Scott identities (Theorem 3.13(2)) applied to C∗(f), we see that any prime ideal q′ ∈ VE′ which
maps to q under resf must be in res−1

ρ (p)∩ suppE(X)(ρ
∗M), so we can replace q by q′ and (E, φ)

by (E′, φ′) if necessary. Since E has finite p-rank, we see that this process must stop at a finite
stage, so we can assume p in fact originates in (E, φ).

By Theorem 5.5(2) all prime ideals in which p originates are related by an isomorphism in
R(X) . Since Lemma 5.6 shows that every such isomorphism can be realized by a commutative
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diagram of cochains as in the previous paragraph, we deduce that O(p) is in suppS(ρ∗M) for
any choice of O(p), finishing the proof of (♣).

In order to finish the proof of the proposition, it remains to prove that r itself is contained
in suppE(X)(ρ

∗M). Let (E, φ) ∈ E(X) be such that r ∈ VE ⊆ VE(X). As before, we can find a

monomorphism f : (E′, φ′)→ (E, φ) in R(X) and a prime ideal r′ ∈ V+
E′ such that resf (r′) = r.

In particular, we see that

resφ′(r
′) = resφ resf (r′) = resφ(r) = resρ(r),

hence r′ = O(resρ(r)) is a prime ideal in which resρ(r) originates. From (♣) we know that
r′ ∈ suppE(X)(ρ

∗M), so Theorem 1.12(1) implies r ∈ suppE(X)(ρ
∗M) as desired. �

5.3. Chouinard’s condition for cochains on spaces.

Definition 5.10. A p-good connected topological space X with Noetherian mod p cohomology
is said to satisfy Chouinard’s condition if the map ρX of (5.7) is biconservative, i.e., if induction
and coinduction along ρX are conservative.

Remark 5.11. Proposition 1.19 exhibits a necessary condition for ρX to be conservative: resρX
needs to be surjective. This is indeed the case and follows from the decomposition of the variety
VH∗(X) in Theorem 5.5(1) and (2).

Theorem 5.12. Let X be a p-good connected space with Noetherian mod p cohomology, then
ModC∗(X) is stratified if and only if X satisfies Chouinard’s condition.

Proof. Suppose that ρX is biconservative. Proposition 2.9 and Theorem 3.13 show that the
category Mod∏

(E,φ)∈R(X) C
∗(BE) '

∏
(E,φ)∈R(X) ModC∗(BE) is stratified. Since Quillen lifting for

ρX has been proven in Proposition 5.8, we can descend stratification along ρX by Theorem 2.4,
so ModC∗(X) is stratified.

The only if direction follows from Proposition 1.19 and Rector’s strong form of Quillen strat-
ification given in Theorem 5.5. �

Example 5.13. Let X be a connected finite complex. Then Rector’s category consists only of
the trivial subgroup: indeed, for any elementary abelian p-group V and any map f : BV → X,
Lannes’ theory says that H∗(f) : H∗(X) → H∗(BV ) is trivial. This also follows from Miller’s
solution of the Sullivan conjecture [Mil84], since any map BV → X is nullhomotopic. The map
H∗(f) is thus finite if and only if V = {e}, the trivial group. Moreover, the canonical map
C∗(X) → Fp is biconservative. This follows from the same argument in Lemma 4.12: because
H∗(X) is finite, we have C∗(X) ∈ ThickC∗(X)(Fp), and so Lemma 1.22 applies. We deduce that
C∗(X) is stratified.

Remark 5.14. More generally, suppose X is a connected finite CW-complex, and R a Noetherian
commutative ring spectrum so that π∗C

∗(X;R) is Noetherian. There is a splitting

R // C∗(X;R)
s // R

of R-modules, where the morphism s is given by evaluating at a basepoint ∗ ∈ X. We have
that C∗(X;R) ∈ ThickC∗(X;R)(R) by induction on the number of cells of X. It follows that
s is biconservative. Moreover, the splitting implies that π∗s : π∗C

∗(X;R) → π∗R is surjective,
and hence simple Quillen lifting is satisfied by Lemma 2.11. It follows from Theorem 2.4 that
ModC∗(X;R) is stratified.
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5.4. Chouinard’s condition for H-spaces with Noetherian mod p cohomology. Finally,
we verify that H-spaces with Noetherian mod p cohomology satisfy Chouinard’s condition. In
particular, this demonstrates that the stratification of H-spaces with Noetherian mod p coho-
mology (Theorem 4.17) fits into the more general framework of this section.

Theorem 5.15. Let X be an H-space with Noetherian mod p cohomology, then X satisfies
Chouinard’s condition, i.e., the map ρX constructed in (5.7) is biconservative.

Proof. As in the proof of Theorem 4.17, [BCS01] provides a nilpotent fiber sequence of Eilenberg–
Moore type

K(P, 1)∧p
i // X∧p

j
// (PBZ/pX)∧p ,

in which P is an abelian discrete p-toral group and (PBZ/pX)∧p is a BZ/p-null nilpotent space
with finite mod p cohomology. We recall that C∗(K(P, 1)∧p ) ' C∗(BA) for A an abelian compact
Lie group. We may thus replace K(P, 1) by BA. The proof of Lemma 4.13 shows that the induced
map H∗(i) : H∗(X) → H∗(BA) is an F -isomorphism. Because H∗(X) and H∗(BA) are both
finitely generated Fp-algebras, H∗(i) is even a uniform F -isomorphism, see the remark after
A.2 of [Hen98], and hence H∗(i) induces an isomorphism of Rector categories R(BA) ∼= R(X),
by [Rec84, Proposition 1.5]. In particular, passage to isomorphism classes gives a bijection
E(BA) ∼= E(X) induced by precomposing with H∗(i).

Given (E, φ) ∈ E(BA), by Lemma 5.6, there is a map ρφBA : C∗(BA) → C∗(BE) such that

π∗(ρ
φ
BA) = φ. Then, for the corresponding object (E, φ ◦H∗(i)) ∈ E(X), the map ρφBA ◦ C∗(i)

is a model for ρ
φ◦H∗(i)
BA , since π∗(ρ

φ
BA ◦ C∗(i)) = φ ◦ H∗(i). Therefore, the map ρX defined in

Equation (5.7) can be taken to be ρBA ◦ C∗(i), i.e., the following diagram commutes:

C∗(X)
ρX //

C∗(i)

��

∏
(E,φ◦H∗(i))∈E(X) C

∗(BE)

C∗(BA)
ρBA

//
∏

(E,φ)∈E(BA) C
∗(BE).

Lemma 4.12 applies to show that C∗(i) is biconservative, while ρBA is biconservative by [BG14,
Theorem 3.1(i)], as observed in Example 3.3. It follows from Lemma 1.21 that ρX is biconserva-
tive as well. �

Alternative proof of Theorem 4.17. Any H-space is simple and hence p-good, so by Theorem 5.12
it suffices to show that X satisfies Chouinard’s condition. This is the content of Theorem 5.15;
the claim follows. �

Example 5.16. We return to the example of X = S3〈3〉 considered in Section 4.5. We recall

that S3〈3〉 fits into a principal fibration BS1 i−→ S3〈3〉 j−→ S3. Rector’s category R(S3〈3〉) consists
of a single non-trivial object, given by the inclusion ι : Z/p→ S1. Let f : C∗(S3〈3)〉 → C∗(BZ/p)
denote the composite C∗(Bι) ◦ C∗(i). This map is an F -isomorphism, and so f satisfies simple
Quillen lifting by Lemma 2.11. As we have already seen, C∗(i) is biconservative, and so is
C∗(Bι) by Example 3.3. It follows that f and hence ρS3〈3〉 are biconservative, and we again

deduce stratification of C∗(S3〈3〉).
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