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The integration of Multimodal Data (MMD) and embodied learning systems (such as

Motion Based Educational Games, MBEG), can help learning researchers to better

understand the synergy between students’ interactions and their learning experiences.

Unfolding the dynamics behind this important synergy can lead to the design of intelligent

agents which leverage students’ movements and support their learning. However,

real-time use of student-generated MMD derived from their interactions with embodied

learning systems (MBEG in our case) is challenging and remains under-explored due

to its complexity (e.g., handle sensor-data and enable an AI agent to use them). To

bridge this gap, we conducted an in-situ study where 40 children, aged 9–12, played

MBEG on maths and language development. We automatically, unobtrusively, and

continuously monitored students’ experiences using eye-tracking glasses, physiological

wristbands, and Kinect, during game-play. This allowed us to understand the different

cognitive and physiological dimensions of students’ progress (right/wrong responses)

during the three different stages of the MBEG problem-solving processes, namely

the “see-solve-move-respond” (S2MR) cycle. We introduce the novel Carry Forward

Effect (CFE); a phenomenon occurring in such games, whereby students propagate,

or “carry forward,” the cognitive and physiological effects derived from their MMD, to

subsequent phases in the see-solve-move-respond cycle. By identifying moments when

the Carry Forward Effect is congruent (or not) to students’ learning performance, we

uncover opportunities for feedback delivery to encourage or subdue the impact of

the CFE. Our results demonstrate the importance of wristband and eye-tracking data

as key indicators for prioritizing adaptive feedback to support students in MBEG and

emphasize the significance of using MMD to support students’ performance in real-time

educational settings.
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1. INTRODUCTION

Accurately assessing the cognitive and physiological processes
underlying learning and play can enable researchers to
understand the complex interactions occurring, system
developers to design systems that account for those processes,
and educators to scaffold the use of those learning systems
(Clegg et al., 2017; Giannakos et al., 2020). Wearable and
physiological sensors (e.g., eye-tracking glasses, smartwatches,
wristbands, motion sensors) access data from students and
enable us to capture their cognitive and physiological states
(hereafter referred to as physio-cognitive states) in real-time.
Our goal is to extract the (near) real-time indicators (proxies)
for physio-cognitive states and design a system to support and
(potentially) enhance student’s learning performance1.

It is important to understand that the most salient physio-
cognitive measures are responsible for human learning. Provided
that such measurements can be computed and monitored in
real-time, this advancement can help designers, developers,
and educators proactively provide suitable feedback or scaffold
students at appropriate times. Providing unsuitable feedback,
or providing suitable feedback at inappropriate times, might
have detrimental effects on students’ performances (Schwartz and
Bransford, 1998). Recent research has expressed much interest
in the seamless integration of proactive and reactive support
(e.g., presenting information to scaffold a student’s problem-
solving ability) to individual learning environments (Hattie and
Timperley, 2007; Haapalainen et al., 2010; Wisniewski et al.,
2020). The vision of this work is in alignment with Weiser’s
goals for the creation of environments saturated with sensing,
computing, and wireless communication that gracefully support
the needs of individuals and society (Weiser and Brown, 1997)
(i.e., amplifying humans’ learning capabilities, in our case).

Advances in mobile, wearable and sensing technologies,
and the respective infrastructural developments, has enabled
the automatic, unobtrusive, and continuous collection and
synchronization of data from multiple sources (Sharma and
Giannakos, 2020). Specifically, these sources empower us to
collect attentional and cognitive (mobile eye-tracking glasses)
motion (skeletal tracking) and physiological (electrodermal
activity (EDA) and Heart Rate Variability (HRV) from
wristbands) aspects of problem-solving. Moreover, analysis
of such data provides a better understanding of the physiological
(Di Lascio et al., 2018; Gashi et al., 2019; Mirjafari et al., 2019)
and/or cognitive (Duchowski et al., 2018; Schaule et al., 2018;
Gao et al., 2020) processes that underlie student performance,
and also provide feedback to support their learning performance
and interactions with technology (Liu et al., 2017; Sarsenbayeva
et al., 2019). Our goal is to fuse physiological and cognitive
information, extracted from wearable and ubiquitous sensing
devices, for three distinct purposes: (1) to explain and predict
learning performance; (2) to understand the physio-cognitive
processes responsible for the different levels of learning

1In this paper, the learning performance is measured by the correctness of students’
responses to the in-game questions.

performance; and (3) to design an intelligent agent that leverages
sensing-based data to scaffold the learning processes.

To accomplish this, we collected and analyzed student’s eye-
tracking, motion and physiological (EDA, HRV) data, while
they solved mathematical and English grammar problems [in
the context of the motion based educational games (MBEG)].
We extracted multimodal measurements/features to explain and
predict their learning performance and processes during various
phases of problem-solving. The Multi-Modal Data (MMD)
streams were analyzed to allow us to understand the key MMD-
based indicators that are important to explain and differentiate
between various levels of learning performance. We also present
the design of an intelligent agent that leverages a combination of
gaze, physiological-based measurements. The goal of the agent is
to provide students with adaptive and seamless feedback, based
on their physio-cognitive responses. To do so, we introduce two
concepts that are central to the primary goal of the paper, the See-
Solve, Move, Respond (S2MR) phases and the Carry Forward

Effect (CFE).
See-Solve, Move, Respond phases describe the three stages

which occur during a student’s interaction with a learning system.
Problem-solving is initiated as the learning system prompts the
student with a stimulus (e.g., question) to solve. The student sees
and reads the question, mentally solves it, and visually identifies
their desired response (See-Solve phase). Next, the studentmoves
toward their computed answer and performs a physical action
(i.e., gesture) to engage or select it (Move phase). Finally, the
student responds to the question by providing their desired
(right/wrong) answer to the agent as their response (Respond
phase). Decomposition of this complete process constitutes one
complete cycle of question presentation – solving – responding.
This S2MR cycle re-starts each time a new question is delivered
to the students and terminates once the students have provided
their response. In this contribution, MMD was recorded during
all three phases and was analyzed according to the S2MR phases
in which it occurred, to explain/predict the learning performance
levels and to select the most important MMD measurements
from the aspect of performance prediction. The resulting selected
measurements will be used to inform the design of the MMD-
driven intelligent agent. One key advantage of the S2MR phases
is that this division provides a generalizable sectionizing of a
student’s interactions with a learning system and can, therefore,
be easily modified to fit any pragmatic definition of these phases
in a particular learning system. Another advantage of defining
the S2MR phases is the affordance of “early” predictions, which
may provide the system with ample time to support struggling
students or assist in preventing mistakes within a single problem
solving cycle.

Carry Forward Effect describes the capacity of an MMD
measurement/feature to explain/predict a student’s learning
performance across the different S2MR phases. If a measurement
proves to be important (i.e., is highly associated with learning
performance) across all three phases of the S2MR cycle, it is said
to have a CFE. CFE acts as an early warning/predictor of students’
performance. Early prediction of student behavior/performance
has gained considerable traction in past research (Wolff et al.,
2014; Hasan and Aly, 2019; Raga and Raga, 2019; Naseer et al.,
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2020). For example, Hasan and Aly (2019) used performance
data from weekly quizzes and homework to predict students’
final grades and researchers were able to identify students
who were at risk of obtaining a low grade or course failure.
Similarly, Raga and Raga (2019) used the click-stream data
from an online course to predict student performance using a
deep neural network architecture. Wolff et al. (2014) developed
early prediction models to determine both dropout and failure
probabilities in online courses. Recently, Naseer et al. (2020) also
used click-stream data to predict collaborative performance using
advanced machine learning algorithms in a software engineering
course. Furthermore, several efforts in various domains have
used machine learning methods for early prediction of student
disengagement and dropout in an attempt to prevent the students
from course withdrawal (Ruipérez-Valiente et al., 2017; Umer
et al., 2017; Ortigosa et al., 2019; Cannistrà et al., 2020; Kemper
et al., 2020). A common theme of the aforementioned early
predictions research is to begin supporting students as early as
possible during their interactions (or academic progression), to
prevent adverse behavior which might impact, or correlate with,
student’s performance or engagement. For example, if a model is
able to predict (with acceptable confidence) that a student will
drop.out or perform poorly, then we can implement steps to
prevent the occurrence of these events. These prediction efforts
involve longitudinally collected data with similar long term
dependent variables (e.g., dropout, at-risk students, low grades).
To the best of our knowledge, there are limited short-term studies
on early prediction (Lee-Cultura et al., 2020a), and other efforts
are in a very specific context of intelligent tutoring system (Piech
et al., 2015; Chen et al., 2018; Bhatt et al., 2020). Moreover, several
studies employ methods that are based on complex algorithms
which are difficult to describe (e.g., deep learning and hidden
Markov models) and, thus, act as a “black-box” prediction of
performance/engagement (aside a small number which use open
learner models Badea and Popescu, 2020; Hooshyar et al., 2020;
Somyürek et al., 2020). In turn, these studies do not directly relate
to concrete design implications which can be leveraged for a
scaffolding tool. With CFE, we aim for a systematic definition
of measurements that can be easily monitored during short-
term problem solving, while providing clear design guidelines
to support struggling students. We provide both an inferential
and predictive modeling approach to identify the measurements
which might be detrimental to a student’s learning performance,
in a manner that is easy to understand for practitioners and
designers alike.

The Carry Forward Effect is not an early detection of the
relationship between a measurement and the wrong response.
To detect whether a multimodal measurement displays CFE, all
the phases are included from the presentation of the problem to
receiving a response. First, the measurement has to be related
to the correctness of the response in all the phases for it to be
considered a CFE candidate. Second, the strength of the relation
should decrease from the problem solving phase to the phases
that are decreasingly less related to the problem solving. Once we
establish that the measurement is related to the wrong response
in all the phases and there is a slight decrease in the strength of
this relation, we propose that remedial action is needed. It is not

the case with all the measurements but the measurements that
display CFE are the ones that should be considered important.
Moreover, the behavior they (measurements that display CFE)
serve as a proxy for should be scaffolded in a manner that the
learning performance is improved. The core idea underlying this
examination of measurements is that if there is a behavior that is
so detrimental for learning performance that it has lasting trails
into the non-problem-solving behavior, such behavior should
be flagged and appropriate scaffolding should be provided to
the students.

The main idea behind CFE is to provide prioritization for
measurements to provide the feedback. We propose that the
measurements that show CFE should be prioritized (to provide
feedback accordingly) than those that do not show CFE. The
main reason for this distinction is the fact that CFE extends to
the non-problem-solving phases as well, showing the detrimental
effect on learning (as our results suggest). Our proposal is that
once the CFE-based measurements are taken care of by certain
feedback mechanisms, only then the system should cater for
other measurements.

In this paper, we show how CFE is determined using MMD
collected from two games: suffizz and seaformuli. The main idea
is that the students’ interaction with the system is divided into
phases: see-solve-move-respond. See and solve are the problem
solving phases while move and respond are not related to the
problem solving, per se. However, it is important to understand
whether certain proxies for problem-solving behaviur (e.g., stress
or cognitive load) are having their trails not only in the see-
solve phases but also in the move and respond phases. In
such situations, remedial actions corresponding to such behavior
should obtain higher priorities than those who do not leave their
trails in the non-problem-solving behavior.

With these two novel concepts (S2MR and CFE) in
consideration, our work presents (1) empirical evidence that
quantifies the relation between student’s learner performance
and MMD in real-time; (2) MMD measurements characterized
by CFE; and finally, (3) implications for the design of an AI
agent which leverages sensor data. Specifically, we investigate the
following research questions (RQ):

1. How are a student’s multi-modal measurements associated
with their learning performance (correctness of their
responses) during the different phases of the S2MR cycle?

2. How can multi-modal measurements inform the design of a
physio-cognitive aware intelligent agent?

The contribution of this work is 3-fold:

• Methodologically,we usemultiple data streams (eye-tracking,
physiological, and kinematics data) to study the relationship
between physio-cognitive behavior and performance in the
context of MBEG.

• Analytically, we show the relation between a student’s MMD
measurements and their learning performance across the
S2MR cycle (i.e., the interaction phases).

• Conceptually, we provide insights for the design of a physio-
cognitive aware intelligent agent, derived from children
wearing sensing technologies during MBEG play.
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1.1. Theoretical Background: Scaffolding in
Problem-Based and Game-Based Learning
(GBL)
Scaffolding in problem based learning (PBL) plays an important
role when the problems are structured (Reiser, 2004) or ill-
structured (Hmelo-Silver, 2004). There can be a number of
strategies to scaffold students during PBL. For example, enlisting
interest (Belland et al., 2017), expert modeling, and question
prompts (Van de Pol et al., 2010), and pointing toward important
problem elements to consider (Wood et al., 1976). These scaffolds
can affect the quality and correctness of the solution (Oliver and
Hannafin, 2000). Janson et al. (2020) argue that scaffolding in PBL
could be critical for the successful fostering of PBL, especially
in technology-mediated environments. Taking the scaffolding
a step further in technology-enhanced environments, Kim and
Hannafin (2011) showed that the dynamic scaffolds provide
a better interaction between the learners and the scaffolding
source than the static scaffolds. Both procedural (e.g., step-by-
step tutorials) and conceptual (e.g., providing hints or cues)
scaffolds could help the learners in over-coming the learning
challenges, provided they are supporting the learning and
problem-solving processes, i.e., in a dynamic manner (Cagiltay,
2006; Way and Rowe, 2008). Sharma and Hannafin (2007)
further argue for seamlessly integrating and balancing different
scaffolds into the learning contexts. In line with Sharma and
Hannafin (2007), Chen (2020) also suggests situated scaffolding
to improve motivation and learning performance. Whereas,
Haruehansawasin and Kiattikomol (2018) showed that such a
scaffolding would be especially beneficial for the low-achieving
learners. Janson et al. (2020) provide a systematic approach,
adapted from Kim and Hannafin (2011), to scaffold learners in
PBL by dividing the whole problem-solving process into five
phases (i.e., engagement, exploration, explanation, justification,
and reflection) and provide appropriate feedback in each of these
phases. The positive effects of dynamic technology-mediated
scaffolding are also highlighted in a meta-analysis by Kim and
Hannafin (2011).

When it comes to GBL, scaffolding has been extended from
a teacher (or more knowledgeable peer, Wood et al., 1976;
Collins et al., 1991) to a software-based tool to support learners
(Collins et al., 1991; Quintana et al., 2004). Similar to PBL
scaffolding in GBL can both be procedural and conceptual.
Recent results have emphasized the role of scaffolds in improving
both the learning outcomes (Honey and Hilton, 2011; Garris
et al., 2017) and learning experiences (Neulight et al., 2007; Broza
and Barzilai, 2011) in GBL. In their review of scaffolding in digital
GBL, Melero et al. (2011) found that such scaffolds promote
positive attitudes along with positive effects on learning and
highlighted the use of automatic tools (e.g., prompts, examples,
hints, cognitive tools) in providing better scaffolds. The adaptive
and fading nature of the scaffolds in such environments is highly
important so that the learners can get support when they most
require it (Ke, 2016). It was shown that the inherently dynamic
interaction with the GBL environments might lead to trial-
and-error behavior (Leemkuil and Jong, 2011). Therefore, it is
important to design scaffolds that can support learners in a
dynamic manner (Kao et al., 2017). However, the timing and type

of scaffolds in such an environment should be carefully planned,
as they can moderate the effectiveness of the support provided to
the learners (Wouters and Van Oostendorp, 2013).

In this contribution, with CFE, we propose a MMD-
based approach to combine and prioritize scaffolds while
student are interacting with technology-enhanced problem-
solving environments. We argue that it is important to
provide scaffolding, especially in technology-enhanced learning
environments, in a dynamic and stepwise manner (as shown by
the recent work cited above). Previous theoretical and empirical
contributions to both PBL and GBL have indicated toward a
dynamic and stepwise scaffolding methods to be better than their
static and overall counterparts. In our case, the “See-Solve-Move-
Respond” phases provide us with an opportunity to design dynamic
scaffolds; whereas, the CFE provides an approach to combine and
prioritize the type of feedback necessary at a given moment in the
problem-solving process. We use data from various sources not
only to identify the different phases in the learners’ interaction
with the game but also to showwhichmeasurements during these
interactions (e.g., cognitive load, stress, fatigue) are to be taken
into consideration while providing support for the learners.

2. RELATED WORK

In this section, we review contributions that assess performance
using the individual gaze, physiological (EDA, HRV) and motion
data streams used in our research. Additionally, we present
the rationale behind the use of these streams by citing a
collection of studies that have demonstrated great potential of
MMD over individual constituent data sources, for measuring
learning performance.

2.1. Gaze-Based Performance Assessment
Over the past few decades, gaze data has been used to assess
performance in various scenarios. In the earlier years of eye-
tracking technology, gaze data was primarily considered a
research tool and used only in controlled lab studies. However,
with the advent of mobile eye-tracking technologies, gaze data
has established itself as an ecologically valid source. Concerning
learning contexts, eye-tracking has been used in a number
of educational domains and paradigms such as programming
(Sharma et al., 2013), online and distance learning (Kizilcec
et al., 2014), multimedia learning (Alemdag and Cagiltay, 2018),
and GBL (Zain et al., 2011; Conati et al., 2013; Heinemann
et al., 2020). For example, gaze-behavior was employed for
evaluation purposes in GBL settings. Notably, adaptive hints
during an educational game were shown to increase the students’
performance, as well as the degree to which they paid attention
to the hints (Conati et al., 2013). In a similar vein, eye-tracking
data was also used to evaluate design decisions in serious games
to augment student performance (Zain et al., 2011; Heinemann
et al., 2020).

Additionally, eye-tracking data has been used to explain,
understand, and monitor several learning processes, such as
cognitive workload (Duchowski et al., 2018; Schaule et al., 2018),
attention (Abdelrahman et al., 2019), mind-wandering (Hutt
et al., 2019), information processing behavior (Sharma et al.,
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2020a), and fatigue (Rostaminia et al., 2017). Recently, off-the-
shelf mobile eye-trackers have extended eye-tracking research
beyond lab settings and into more ecologically valid educational
settings. In this domain, mobile eye-tracking data has been used
for skill-estimation of the students (Augereau et al., 2016) and to
estimate the amount of attention students paid to their textbooks
(Ishimaru et al., 2016). Mobile eye-trackers have also been used in
informal learning settings, such as museums, to understand how
students interact in exhibitions (Jung et al., 2018) and with their
peers (Sharma et al., 2020b). Furthermore, mobile eye-tracking
data has helped researchers understand students’ collaborative
behaviors in informal learning settings dependant on tangible
user interfaces (Schneider et al., 2016).

Overall, gaze data has proven useful in explaining and
predicting problem-solving performance and problem-solving
behavioral patterns. Many of the findings conducted in stationary
eye-tracking settings can be transferred to mobile and wearable
contexts (i.e., using eye-tracking glasses). Therefore, in this
contribution, we used mobile eye-tracking glasses to record
students’ gaze data. This data is used to model student’s cognitive
and attentional processes.

2.2. Physiological Data-Based
Performance Assessment
There is a large body of research dedicated to performance
assessment using physiological data (i.e., EDA and HR/HRV).
These recent contributions utilize low-cost consumer-grade
smartwatches (Goyal and Fussell, 2017; Schaule et al., 2018)
and wristbands designed for research purposes (Gjoreski et al.,
2018; Kosch et al., 2019) to explain or predict the performance
of students (Rissler et al., 2018; Sharma et al., 2020c), drivers
(Solovey et al., 2014), players (Tognetti et al., 2010; Huynh et al.,
2018), and workers (Rissler et al., 2018; Kosch et al., 2019). For
example, the direction of intensity change in phasic EDA was
used to infer the performance of participants in a collaborative
task (Goyal and Fussell, 2017). Features extracted from EDA
and HRV have been used to monitor cognitive workload in
conjunction with self-reports of NASA Task Load Index (NASA-
TLX) (Gjoreski et al., 2018; Kosch et al., 2019). Moreover,
significantly high correlations were found between workplace
performance and heartbeat regularity (Mirjafari et al., 2019).
By utilizing HRV features measured with Photoplethysmograph
(PPG), Zhang et al. were able to classify cognitive workload with
an accuracy of 97% and 87% during static and interaction testing,
respectively (Zhang et al., 2018). In a recent contribution, features
computed from EDA, HRV, Blood Volume Pulse (BVP), and skin
temperature were used to predict the cognitive performance in
various studies with a low error-rate (Sharma et al., 2020c).

Moreover, in educational contexts, there has been an
increase in approaches that utilize physiological responses for
gauging engagement, monitoring learning performance, and
adapting learning difficulty. Di Lascio et al. (2018) used an
Empatica E4 (Emp, 2021) physiological-monitoring wristband
to assess students’ engagement during lectures. In a follow-
up work, “physiological synchcrony” was combined with EDA
features to estimate the engagement between presenters and

their audience (Gashi et al., 2019). Similarly, Radeta et al.
(2017) used EDA measurements to compare two interactive
learning experiences for children: a mobile game and animated
storytelling. The authors were able to quantify and link learning
for both experiences to EDA peaks. Furthermore, data-driven
clusters, including EDA, were used to explain children’s various
construction activity strategies (Worsley and Blikstein, 2015).
Lastly, EDA was used to monitor self-regulation strategies while
students were answering a set of questions as part of their exams
(Noroozi et al., 2019).

Overall, physiological data collected from wearable and
sensing devices has proven to be transformative for tracking
students’ performance in different contexts. Our research
investigates the extent to which physiological data can provide
insights into students’ learning in an accurate and timely manner.
In doing so, we extend previous relevant studies and showcase
the applicability of physiological data affordances in the context
of intelligent learning systems.

2.3. Why MMD?
Aholistic understanding of complex learning processes cannot be
attained when only using individual data sources (Sharma et al.,
2019a; Sharma and Giannakos, 2020). For example, eye-tracking
and EEG do not provide students’ affective information, while
facial data, HRV, EDA, and similar physiological data sources
lack cognitive and attentional aspects of these processes. The
aforementioned data streams each provide knowledge regarding
select aspects of students’ learning processes and/or outcomes,
but to gain a holistic understanding of the processes correlated
to a student’s learning performance (Giannakos et al., 2019;
Sharma et al., 2019a), the fusion of information extracted
from multiple data sources is necessary (i.e., MMD, Blikstein
and Worsley, 2016). Research has shown that MMD provides
better results, regarding students’ performance prediction and
behavior explanation. When combined, these data demonstrate
synergistic relationships and provide researchers with a richness
of information that is bigger than the sum of the components.

In numerous studies, predictive performance models
containing fused data sources have outperformed predictive
performance of the individual data sources (Cukurova et al.,
2019; Giannakos et al., 2019; Liu et al., 2019; Sharma et al.,
2019b, 2020c; Lee-Cultura et al., 2020a). For example, one study
which used a modified-Pacman game, found that the fusion of
EEG, eye-tracking and facial data streams, outperformed the
individual data streams when predicting player performance
(Giannakos et al., 2019). Similarly, in an adaptive self-assessment
test, the combination of eye-tracking, facial features, EDA,
and HRV data showed lower error rates than the individual
components when predicting engagement and performance
(Sharma et al., 2019b). In the same vein, combining features
from eye-tracking, motion, EDA and HRV have resulted in better
performance prediction during children’s play with MBEG,
than the individual data stream (Lee-Cultura et al., 2020a).
Lastly, in a diverse set of studies (e.g., games and learning tasks),
the combination of facial data, EDA, BVP, and HRV resulted
in a lower error rate while predicting participant’s cognitive
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performance when compared against the error rate achieved by
the individual features (Sharma et al., 2020c).

The prevailing advantages of MMD over individual data
streams demonstrated in empirical studies also extend to
collaborative cases (Olsen et al., 2020; Vrzakova et al., 2020).
This shows a synergistic fusion of information when individual
data sources are combined, which results in higher predictive
quality fromMMD. However, despite the indicated advantages of
using user-generated MMD to understand and predict students’
learning experiences, as well as the affluence of using MBEG to
amplify students’ learning (Retalis et al., 2014; Tsai et al., 2015;
Kourakli et al., 2017; Chang and Tsai, 2018; Lee-Cultura et al.,
2020b), little research on wearable and physiological sensors has
been conducted in the domain of maths and language based
MBEG. For this reason, we combine data from mobile eye-
tracking, motion capture, and wristbands to explain and predict
performance in MBEG.

3. THE MOTION-BASED EDUCATIONAL
GAMES

In this section, we provide a detailed account of the two
MBEG used in our study, Suffizz (which centers on English
language competence) and Sea Formuli (which targets arithmetic
competence). In both games, the student is presented with a series
of 5 multiple choice style fill-in-the-blank problems, each with
3 potential answers. The games are Kinect-based (Zhang, 2012)
and transform the student into a living cursor through the use of
gesture (to select on-screen items) and full-body movement (to
relocate selected items). Students select an item by performing a
grabbing gesture and maintaining a closed fist on the item. They
move the selected item by repositioning their body in physical
space and dragging their fist through the air toward their desired
on-screen destination. In this way, the games offer the same
affordances (item selection and item relocation) as though they
were desktop or touch-screen applications. Lastly, both games
are essentially distraction-less. Students are only presented with
a question and an answer set and there are no additional factors
that might influence the students’ performances, such as time
pressure, audio or visual on-screen distractors. In the sections
that follow, we describe game specifics and illustrate the students’
MBEG interactions from an S2MR perspective by walking
through an example problem from the Sea Formuli MBEG.

3.1. Suffizz: A Literacy Suffix Game Show
Suffizz is themed as a game show, in which students (e.g., game
show contestants) practice their English grammar to further
develop their literacy ability. The student is presented with an
English sentence with a missing term, and 3 terms to select
from (i.e., the potential answers, as shown in Figure 1A). To
answers a question, the student must read the sentence and
determine the correct answer from the given terms, perform a
grabbing gesture to select their desired answer, and then move
their selected answer to the blank space in the sentence located at
the bottom of the screen. Once a question had been answered,
the selected word turned green if correct and red, otherwise.
Questions involved the use of correlative conjunctions, irregular

plural nouns, verb tenses, and regular and intensive pronouns.
Figure 1 shows an exemplar flow of gameplay where a student
must select the correct suffix for the word funny provided in the
sentence “this cartoon is ___ than the one we saw yesterday.”
The student is provided with three potential answers: funny, the
funniest, and funnier.

3.2. Sea Formuli: An Underwater Arithmetic
Operations Game
Sea Formuli focuses on developing students’ algebraic thinking
through the practice of maths problems involving fractions,
whole numbers, and decimals. Each question is an arithmetic
equation relating to 3 terms, yet missing either an operator or
operand. Questions are represented by a collection of baskets
sitting on the ocean floor. Potential answers to choose from,
presented as three jellyfish, floating at the top of the screen,
are labeled with either an operand or an operator (as shown
in Figure 2A). The student must determine the missing value
which correctly completes the equation. To answer the question,
the student must use a hand gesture (i.e., grabbing motion)
to select the jellyfish containing their perceived correct answer
(Figure 2B). Once a jellyfish is selected, the two non-selected
jellyfish immediately float off screen. The student must move
their body by bending down to place the jellyfish into the empty
basket (as shown in Figure 2C). The operand (or operator) is
then displayed on the basket, and the question is evaluated. The
basket text turns green if correct and red otherwise.

3.3. S2MR Process in Sea Formula
Breakdown
In this section, we describe the three phases of the S2MR cycle
(Figure 3) exemplified by the Sea Formuli MBEG, by tracing
through a student’s interactions with a single question. Though
this example is Sea Formuli specific, both games share the same
multiple choice fill-in-the-blank question format (with questions
at the base of the screen and answer options at the top of the
screen) and utilize the same physical interaction mechanisms
(e.g., a mid-air grabbing selection gestures). Thus, the following
description can be generalized to explain how the S2MR cycle
takes shape in the Suffizz MBEG as well.

Consider the addition question, 4.02+ _= 8.12, with potential
answers: 4.1, 6.36, and 6.07 (Figure 3A). The See-Solve phase
begins upon the student’s first fixation on the question text (i.e.,
the baskets on bottom of the screen reading 4.02+ _= 8.12,
Figure 3B), as detected via eye-tracking glasses. In this phase, a
student must read, understand, and mentally solve the proposed
question. The student may cycle between question and potential
answers (i.e., comparing potential answers to each other or to the
question), or they may only look at the answers one time, prior to
determining their answer. The followingMove phase (Figure 3C)
begins as the student moves their body to initiate selecting their
desired answer (the jellyfish labeled as 4.1) via mid-air grabbing
hand gesture. The beginning of this phase (and end of the see-
solve phase) is detected as the student’s movement surpasses an
individual threshold computed from the student’s Kinect skeletal
data (as shown in Figure 3B), and it lasts until the jellyfish has
been selected. In the final Respond phase, the student moves their
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FIGURE 1 | A student gesturing through a problem in the Suffizz Motion Based Educational Games (MBEG). (A) A student is presented with a multiple choice English

question to solve using hand gestures and full body movement. (B) The student performs a mid-air hand gesture to select a word. (C) The student bends their body

to move the selected word to the blank space and complete the sentence.

FIGURE 2 | A student gesturing through a problem in the Sea Formuli MBEG. (A) A student is presented with a multiple choice maths problem to solve using hand

gestures and full body movement. (B) The student performs a mid-air hand gesture to select an answer jellyfish. (C) The student bends their body to move the

selected jellyfish to the empty basket to complete the equation.

FIGURE 3 | Description of detecting the three phases. (A) See-Solve: The first fixations on the question marks the beginning of the see-solve phase. (B) Move: The

beginning of the peaks in the movement data mark the beginning of the move phase. (C) Respond: The moment of selection marks the beginning of the respond

phase.

entire body to relocate their selected answer jellyfish to the empty
basket, thereby completing the equation (as shown in Figure 3C).
This phase begins the moment the answer jellyfish (labeled as 4.1)
has been selected, as detected in the game logs.

4. METHODS

4.1. Context
Our study took place in a local public elementary school and
science museum in a European city. After receiving a thorough
description of the study from school teachers and researchers
(also the authors), students volunteered to participate on their
own accord. In each location, the study was conducted by the

researchers in a room strictly dedicated to the experiment set up
to run two experimental setups in parallel.

4.2. Participants
Our sample includes 40 typically developing students (26 F, 14M)
with an average age of 10.9 years (SD = 1.09,min = 9,max = 12
years). In total, thirty students participated at the elementary
school, and ten students at the science center. Students played
6 consecutive MBEG sessions (3 games of each game), totalling
between 9 and 17min in total. In exchange for their participation,
students received a gift card. Prior to running the study, the
national human research ethics organization. All students and
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their guardians were required to provide verbal/written informed
assent/consent, respectively, prior to participation.

4.3. Procedure
We conducted an in-situ experiment that used wearables and
physiological sensors to investigate the physio-cognitive states
experienced by children as they interacted with two different
MBEG. The students were given an Empatica E4wristband (Emp,
2021) and pair of Tobii eye-tracking glasses (Olsen, 2012) to wear.
The students played three consecutive games of Sea Formuli (see
section 3.2) and three consecutive games of Suffizz (see section
3.1). Each game consisted of five algebraic questions. Students
engaged in a practice session of each game and were given an
opportunity to ask the experimenter questions, in order to ensure
a proper understanding of the games’ interactionmechanics prior
to the beginning of game play. None of the children had prior
exposure to MBEG. To reduce the novelty effect, each child
was given 1–2 rounds of practice so that they get used to the
learning environment.

4.4. Data Collections
We gathered wearable and physiological sensors data from
three different sources: eye-tracking, wristband (with sensors for
HRV, blood-pressure, temperature and EDA levels), and kinect
skeleton data. We used data from all three sources to detect
S2MR phases, and we used only eye-tracking and wristband data
to compute MMD measurements. Prior to data collection, all
the ethical permissions were obtained. It is important to point
out here that neither eye-tracking data nor the data collected by
Empatica E4 wristband could be used to trace individual children.
Moreover, the children were given a code and there is no record
of the code-name pairs. The data is kept on the secured servers of
the university and a protected hard drive that is accessible to the
authors only.

Eye-tracking: We collected students gaze data using Tobii
eye-tracking glasses, with a sampling rate of 50 Hz and a one-
point calibration. The students’ field of view was captured using
the Tobii glass controller software and an objective camera built
into the nose bridge of the glasses. The video footage has a
resolution of 1920 x 1080 at 25 Frames Per Second (FPS).

Empatica E4wristbands:We collected four different variables
from the students’ wrist-data: EDA (64 Hz), HRV (1 Hz), skin
temperature (4 Hz), and BVP (4 Hz). However, for the purpose
of this study, we only used the first two variables.

Kinect Skeleton: Students’ skeletal data was recorded at a
sampling rate of 1Hz, using a Microsoft Kinect sensors. This
data consisted of 3D position for the following 25 joints: head,
shoulder-center, spine and hip-center, as well as hand, wrist,
elbow, shoulder, feet, ankle, knee, and hip (both left and right for
the last 8), as shown in the left image in Figure 5.

Screen Recording Video: We used Camtasia to record the
screen that the children were interacting with for having a ground
truth for processing eye-tracking data.

4.5. Data Pre-processing
Eye-tracking: Fixations and saccades were identified using
Tobii’s default algorithm (for details refer to Olsen, 2012).

A filter was applied to remove raw gaze points that were
classified as blinks. Pupil dilation was normalized using the
methods described in Lee-Cultura et al. (2021). Finally, in
the final eye-tracking data pre-processing step, we computed
the correspondences between the video from the eye-tracker’s
objective camera (objective video) and the screen recording
video (ground-truth). These correspondences are called
homographies. This process was adopted from Lee-Cultura et al.
(2021) (the process is shown in the Figure 4).

Wrist band: A simple smoothing function was applied to the
time series of the EDA and HR (to remove unwanted spikes). We
divided our signal in to windows, where each ‘window’ described
a time segment containing 10 s of data, and successive windows
contained a 5 s overlap. Similar to pupil dilation, EDA andHR are
highly susceptible to personal and contextual biases; such as pre-
existing physical health conditions, time of the day, the students’s
age, gender, and amount of sleep. To remove the subjective and
contextual bias from the data, we normalized EDA and HR using
the first 30 s of the data streams.

Kinect Skeleton: No pre-processing was required.

4.6. Multimodal Measurements
In this section, we define the MMD measurements used in
this paper. All the data was aggregated using a 10 s window
throughout the different phases of the interaction. Once the
windows were formed, all the measurements were computed and
normalized between zero and one using aMinMax normalization
process. Once the data were normalized, we used measurements
from relevant literature to capture the student’s learning. The
selected measurements have been shown to have distinguished
ability across different performance levels. Table 1 provides the
definition and appropriate reference for eachmeasurement. After
computing measurements from the MMD, we also computed
the features associated with each measurement, as shown in
Table 1. These features were selected based on their previously
demonstrated high predictive power regarding performance
prediction Sharma et al. (2019b, 2020c) and have been used in
contemporary multimodal research for education and problem-
solving (Blikstein and Worsley, 2016; Andrade et al., 2017;
Worsley and Blikstein, 2018; Lee-Cultura et al., 2020b).

Cognitive load is a gaze-based proxy to the mental effort
invested when solving a given problem (Palinko et al., 2010;
Joseph and Murugesh, 2020). We used eye-tracking data to
compute cognitive load as a function of pupillary activity
(Duchowski et al., 2018).

Transitions between Areas of Interest (AOIs) are indicative
of “how learners are processing the visual information.” This
measurement is mostly used in multimedia learning scenarios
(Ginns, 2005; Sung and Mayer, 2012; Khacharem et al., 2013) to
examine whether the learners are processing the information in a
manner that improves the learning performance. After the AOIs
were defined on the stimulus screen (Figure 5 left), we computed
the percentage of three types of gaze transitions between distinct
AOIs: between question and right option; between question and
wrong options; and between right and wrong options.

Information Processing Index is the ratio between global
and local information processing. Global processing is a series
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FIGURE 4 | Example of homography calculation. The fiducial markers are the black and white tags fastened to the screen (left). The red dots, connected by a red line,

represent corresponding locations in the different video recordings (ground truth and objective view from eye-tracking glasses). The correspondence matrix allows us

to determine this line.

TABLE 1 | Definitions of the features computed from the MMD measurements

described in section 4.6.

Feature type Definition

Value histogram Mean, median, SD, skewness, kurtosis of the values.

ARMA Auto-regressive moving average: maps the current value

to the history of time series.

GARCH Generalized Auto-regressive conditional

heteroscedasticity: maps the current variance to the

historical variance of time series and the heterogeneity of

the appearance of the values.

of short fixations and long saccades, while local processing is a
series of long fixations and short saccades. A high value of this
index indicates a large area of screen explored per unit time. This
index shows howmuch information is received by the learners in
a given period of time (Unema et al., 2005; Poole and Ball, 2006).

Saccade Velocity: is the velocity of the saccades and is related
to the perceived difficulty of a problem-solving task (Bronstein
and Kennard, 1987; Smit and Van Gisbergen, 1989).

Mean HR: corresponds to the mean HR of the child
per second. An increase in HR is often related to stressful
situations (Harada, 2002; Herborn et al., 2015).

Number of EDA peaks is computed using the method
proposed by Di Lascio et al. (2018) and is often associated with
physiological arousal (Di Lascio et al., 2018; Gashi et al., 2019)
and engagement (Hernandez et al., 2014).

Phasic EDA level: EDA signal is comprised of two parts:
the tonic and phasic components. The tonic component of the
EDA signal is the one with slow evolving patterns. The phasic
component of the EDA signal is the one with rapid changes and
is found to be related to physiological arousal (Di Lascio et al.,
2018). In this paper, we consider only the mean phasic EDA
component as a measure of physiological arousal (Hasson et al.,
2008; Leiner et al., 2012).

4.7. Data Analysis
To address our first RQ (determining the association between
students’ MMD measurements/features and their learning

performance during different phases of the S2MR cycle), we
used two separate methods: inferential statistics using the MMD
measurements and predictive modeling with MMD features.
To answer our second RQ, (informing the design of a physio-
cognitive aware agent using MMD), we present results based on
the novel CFE. In the sections that follow, we present details
concerning inferential statistics and predictive modeling, and
then we introduce the CFE and related terms.

4.7.1. Inferential Statistics
The measurements described in section 4.6 were normalized
using a MinMax normalization (with the exception of time
to the first fixation on the question). Each variable was
computed for all three phases of the interaction, as defined
by the S2MR cycle, namely, See-Solve, Move, and Respond.
We used a repeated-measure ANOVA to test the differences
between these measurements and the correctness of each answer
provided by students. The student’s unique ID was used as the

grouping variable. Prior to this, we also checked for normal
distribution (using a Shapiro-Wilk Test) and homoscedasticity
of the measurements (using a Breush-Pagan test). We used z-

transforms to normalize the distribution (e.g., cognitive load and
mean HR) when the variables were not normally distributed.
If the variables were not homoscedastic, we used a Welch

correction for the ANOVA (e.g., saccade velocity, Information
Processing Index (IPI), amount of movement, posture stability,
heart rate, phasic EDA, number of EDA peaks). Further, a
Bonferroni correction was applied to counteract the effect of
multiple comparisons on the p-values of the tests.

4.7.2. Predictive Modeling
In machine learning, ensemble models combine the decisions
from multiple models to improve overall prediction accuracy.
They have been shown to be advantageous over individual
predictive models (Avnimelech and Intrator, 1999; Gavrishchaka
et al., 2010; Qiu et al., 2014). In this paper, we combine
predictions from 7 different algorithms: Support Vector
Machines (Chapelle and Vapnik, 2000) with linear, radial, and
polynomial kernels; Gaussian process models (Williams and
Rasmussen, 2006) with linear, radial, and polynomial kernels;
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FIGURE 5 | Left: example AOIs for a question. We defined three AOIs on the screen, (1) the question, (2) the right option, and (3) the wrong options. Shows an

example of the AOI positions for a single question. The question always remained at the same position on the screen but right and wrong options changed their

positions for the different questions randomly. Right: Schematic representation of the joints as detected by the Kinect sensor.

and M5 model trees. These methods are designed to improve
the stability and accuracy of machine learning algorithms.
One way of using the results from multiple models is to use
a weighted average from all of the prediction algorithms. The
weights for individual predictions are determined according to
their accuracy during the validation phase. There are 3 major
advantages of these methods (Avnimelech and Intrator, 1999;
Gavrishchaka et al., 2010; Qiu et al., 2014):

1. We can compare the performance of the ensemble methods
to the diversification of our models predicting cognitive
performance. It is advised to keep a diverse set of models to
reduce the variability in the prediction and hence, to minimize
the error rate. Similarly, the ensemble of models yields a
better performance on the test case scenarios (unseen data),
as compared to the individual models in most cases.

2. The aggregate result of multiple models involves less noise
than the individual models. This leads to model stability
and robustness.

3. Ensemble models can be used to capture the linear and non-
linear relationships in the data. This can be accomplished
by using two different models and forming an ensemble of
the two.

We performed out-of-sampling testing (i.e., leave-one-
participant-out), dividing the data-set into 3 subsets: 1) training,
2) validation, and 3) testing set. The data set was split based on
student identifiers. The testing set was put aside (10 % based
on student ID). All of the models were trained and validated
using the training and validation sets with cross-validation. The
cross-validation was also performed using leave-one-participant-
out. We observed our data set to be heavily unbalanced.
Particularly, it contained five times more right answers than
wrong answers. To account for this, we applied Synthesizing
Minority Oversampling Technique (SMOTE) Lusa et al. (2013).
We implemented the SMOTE strategy by identifying the five

nearest neighbors for each original point of the minority class

and then added four new (synthetic) points. The five new points

were generated using the mean of the original point’s four closest
neighbors and then adding/subtracting 25 and 50%, respectively,
of the SD of the four neighbors to/from the mean.

The following metrics were used to evaluate the performance
of the ensemble classifier:
Precision= TP / (TP+ FP);
Recall= TP / (TP+ FN);
F1 score= 2TP / (2TP+ FP+ FN).
Where, TP = true positive; FP = false positive; TN = true
negative; FN = false negative. For the purpose of evaluating
prediction quality, the “right” class is the “positive” class. For
the baseline prediction, we selected the “majority class baseline,”
rather than the “random allocation baseline,” to accommodate for
the skewed nature of our data-set.

4.7.3. Carry Forward Effect
In order to understand the CFE, we first introduce the concept
of “affinity” as the “direction of relation.” In a t-test (or ANOVA
or any other between group comparison), we regard affinity as
the direction of the higher value. For example, if the students’
attention is higher for the right answers (than for wrong answers),
we say that “attention has affinity with the right answer.” If
students’ stress is higher for wrong answers (than for right
answers), then we say that “stress has affinity with the wrong
answer.” For correlations tests (parametric and non-parametric),
the affinity matches the sign of the correlation coefficient (either
negative or positive).

We define CFE from three perspectives: (1) inferential
statistics; (2) predictive modeling; and (3) design of an artificially
intelligent agent that provides feedback to support learning.

From the inferential statistics perspective, CFE is defined by
the following 4 conditions (Figure 6, left): (1) in all three phases
of the S2MR cycle, there is a significant difference for a given
variable between the correctness levels (i.e., right or wrong); (2)
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FIGURE 6 | A classification scheme for the three classes of Carry Forward Effect (CFE) by inferential statistics (left) and predictive modeling (right).

the significant difference has the highest effect size in the See-
Solve phase; (3) the effect size is higher in the Move phase than
the Respond phase; and (4) all affinities are in the same direction.
Moreover, we define three classes of CFE according to these
conditions. Given that all four conditions hold true, we have
Perfect CFE. If all conditions are true, except for condition four,
we have PseudoCFE. Otherwise, there we have no CFE.

From the predictive modeling perspective, CFE is defined by
the following 3 conditions (Figure 6, right): (1) in all three phases
of the S2MR cycle, the given feature appears in the top 10% of the
most important features; (2) according to feature importance, the
feature’s rank2 is the highest in the See-Solve phase; and (3) the
feature’s rank is higher in the Move phase than in the Respond
phase. We justify limiting the most important features to the
top 10% to keep the discussion of CFE related measurements
to a reasonable number. In practice, this limit can be set to any
scaled variable importance in the predictive model (e.g., 0–1 or
0-100) or any top percentage (e.g., x%). The choice belongs to
the researchers, designers, and practitioners, and depends on
the number of measurements desired for future consideration
(e.g., as metrics to be integrated into AI agent). Furthermore,
we then define three classes of CFE (i.e., Perfect, Pseudo, and
None) according to these conditions as follows. When all three
conditions are true, we have Perfect CFE. If all conditions are
true, except for condition three, we have Pseudo CFE. Otherwise,
we have no CFE. The role of a predictive feature (e.g., used to
predict learning performance) is to explain the variance in the

2The rank of the feature is determined by the fact that how important it is in the
prediction of the dependent variable as compared to other features.

learning performance variable. This predictive feature might or
might not have the same predictive power in the various phases.
Moreover, it can or cannot be in the list of most important
features for the prediction. A measurement/feature showing CFE
has to be in the first quartile of the feature importance and
rank should be decreasing from the problem-solving phase to a
non-problem-solving-phase.

5. RESULTS

Concerning the correctness of the answer (right or wrong), there
were no significant differences between the three phases of the
S2MR cycle (i.e., See-Solve, Move, and Respond). Additionally,
we did not find gender or age bias connected to the correctness
of students’ responses. This section is organized as follows: (1)
we present inferential statistics results from the individual data
streams (i.e., eye-tracking, physiological, and motion); (2) we
discuss the CFE results using inferential statistics; (3) we present
the predictive modeling results derived from combining the
MMD; (4) we present the CFE results using predictive modeling.
The first and third parts answer the RQ1 (association of MMD
measurements with the learning performance). Whereas, the
second and fourth parts provide address RQ2 (the design of a
physio-cognitive aware agent).

5.1. Sea Formuli Eye-Tracking Results
We observed no significant difference between the time to the
first fixation on the question from right and wrong options
[F(1, 39) = 1.83, p = 0.17, Figure 7, left]. There was also no
significant difference in the percentage of transitions between
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FIGURE 7 | Tobii eye tracking results for the Sea Formuli MBEG. Left: time to the first fixation on the question. Right: percentage of transitions between the question,

right and wrong options.

FIGURE 8 | Tobii eye tracking results for the Sea Formuli MBEG. Left: Cognitive load. Middle: Information processing index. Right: Saccade velocity.

the question and the right option [F(1, 39) = 3.02, p = 0.09, red
curve in Figure 7, right]. However, the percentage of transitions
between the wrong options and question was significantly higher
for the wrong responses, than for the right responses [F(1, 39)
= 29.20, p = 0.00001, green curve in Figure 7, right]. Further,
the percentage of transitions between the wrong options and
the right option was higher and was significantly higher for the
right response than for the wrong response [F(1, 39) = 41.59, p =
0.000001, blue curve in Figure 7, right]. This indicates that for
the right responses, students compare all optionsmore thanwhen
they provide a wrong response.

There was a significant difference in cognitive load during

the See-Solve phase associated with the correctness of answer

[F(1, 39) = 19.34, p = 0.00001, red curve in Figure 8, left].
The cognitive load associated with wrong responses was

significantly higher than with right responses during the See-

Solve phase (Figure 8, left). However, there was no difference
in cognitive load associated with the correctness of the answers

during either the Move [F(1, 39) = 1.01, p = 0.31, green curve in
Figure 8, left] or Respond [F(1, 39) = 0.98, p = 0.32, blue curve in
Figure 8, left] phases.

There was a significant difference in the IPI associated
with the correctness of the answers during all three phases
(Figure 8, middle). The IPI associated with right answers was

significantly lower in all three phases than the IPI associated

with wrong answers. However, this difference reduced as
students transitioned from the See-Solve phase [F(1,37.04) = 14.25,
p = 0.0003] to the Move phase [F(1,30.56) = 7.29, p = 0.008], to the
Respond phase [F(1,26.21) = 4.14, p = 0.04].

Similarly, we observed significant differences in saccade
velocity associated with the correctness of the answers during all
three phases of the S2MR cycle (Figure 8, right). The saccade

velocity associated with right responses were significantly

lower for all three phases than the saccade velocity associated

with the wrong responses. However, the differences reduced
from the See-Solve phase [F(1,36.06) = 15.24, p = 0.0003] to the
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FIGURE 9 | Empatica E4 results for the Sea Formuli MBEG. Left: Mean heart rate. Middle: Phasic electrodermal activity (EDA). Right: Number of EDA peaks.

Move phase [F(1,37.18) = 3.95, p = 0.05], but then increased as
students transitioned to the Respond phase [F(1,25.31) = 11.42,
p = 0.001].

5.2. Sea Formuli Empatica E4 Results
We observed a significant difference in mean HR between the
right and wrong responses. During each phase of the S2MR
cycle, the wrong response was associated with a higher mean
HR (Figure 9, left). We also observed a diminishing difference
as students transitioned from See-Solve [F(1,37.65) = 31.21, p =
0.00001] to Move [F(1,37.65) = 14.25, p = 0.0003], to Respond
phase [F(1,26.45) = 11.42, p = 0.001].

We did not observe a difference in tonic EDA levels for the
right and wrong responses during any phase of the S2MR cycle
[solve: F(1, 39) = 3.11, p = 0.08; move: F(1, 39) = 2.44, p = 0.12;
answer: F(1, 39) = 1.01, p = 0.31]. Further, there was no significant
difference between phasic EDA levels for the right and wrong
response during the Respond phase [F(1,34.37) = 0.38, p = 0.53].
However, phasic EDA levels were higher for the wrong responses
than for the right response during both the See-Solve [F(1,37.87) =
13.61, p = 0.0004] and Move [F(1,27.51) = 10.51, p = 0.002] phase
(Figure 9, middle).

Finally, for all three phases of the S2MR cycle, a wrong
response was associated with a higher number of EDA peaks
(Figure 9, left). However, this difference is highest during the
Move phase [F(1,37.04) = 31.21, p = 0.00001], followed by the
See-Solve [F(1,31.78) = 14.25, p = 0.0003], and lastly, the Respond
phases [F(1,27.21) = 4.14, p = 0.05].

5.3. Sea Formuli CFEE: Inferential Statistics
Table 2 shows the effect sizes from the ANOVA (with or
without Welch correction) for the different measurements across
correctness of answers (i.e., right and wrong) during the phases
of the S2MR cycle. For IPI and mean HR, the effect sizes decrease
from the See-Solve to Move to Respond phase. Further, the effect
sizes associated with these transitions (See-Solve to Move, and
Move to Respond) have the same affinities between the given
measurement and dependent variable (e.g., both mean HR and
IPI are always lower for the correct response). Thus, we conclude
that IPI and mean HR demonstrate a Perfect CFE.

Considering saccade velocity, the effect size for the See-Solve
phase is the highest, followed by the Response phase, and then
the Move phase. Moreover, all effect sizes have the same affinity
between the saccade velocity and the correctness of the answers
(e.g., always lower for the right response).Therefore, the saccade
velocity exhibits Pseudo CFE.

The difference in cognitive load between right and wrong
responses was only significant during the See-Solve phase
indicating no CFE. The number of EDA peaks was also
significantly different between the right and wrong responses
for all three S2MR phases. However, the effect size for the See-
Solve phase was not the highest. Thus, we conclude that the

number of EDApeaks does not displayCFE. Finally, concerning
tonic EDA, there was no difference between the right and wrong
responses, consequently, we conclude that tonic EDA does not

indicate CFE.

5.4. Sea Formuli Prediction Results
Table 3 shows the prediction results for the correctness of
answers. The random baseline for the prediction is low (precision
= 0.50; recall = 0.50; F1-score = 0.50), while the majority class
prediction baseline is very high (precision = 0.83; recall =
1.00; F1-score = 0.90). Thus, it is not possible to improve the
prediction’s recall. We note that by using data from the See-Solve
phase, it is possible to improve the precision (0.89) and F1-score
(0.91) by small margins. On the other hand, using data from
the other two phases (i.e., Move and Respond), prediction recall
cannot be improved. However, the precision of the performance
prediction has improved in the last two phases when compared
to the majority class baseline.

5.5. Sea Formuli CFE: Predictive Modeling
Considering the CFE from the predictive modeling, we note
that mean cognitive load, mean HR, mean IPI, and IPI’s first
auto-regressive coefficient demonstrate Perfect CFE because
their individual feature importance ranks are the highest in the
See-Solve, followed by Move, then Respond phases (Table 4,
Figure 10). The set of features with a Pseudo CFE includes:
first AR coefficient for HR, second AR coefficient for cognitive
loads, mean phasic EDA, and saccade velocity SD. This is because
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TABLE 2 | The effect sizes for the MMD measurements for the three phases and the corresponding CFE they exhibit.

Sea Formuli effect size Suffizz effect size

Measurement See-Solve Move Respond CFE Type See-Solve Move Respond CFE Type

Cognitive load 0.26 0.06 0.06 none 0.45 0.29 0.05 none

Information processing index 0.22 0.16 0.12 Perfect 0.32 0.18 0.12 Perfect

Saccade velocity 0.21 0.12 0.17 Pseudo 0.21 0.15 0.12 Perfect

Mean Heart Rate 0.31 0.21 0.16 Perfect 0.41 0.21 0.17 Perfect

#EDA peaks 0.21 0.31 0.21 none 0.39 0.32 0.13 Perfect

Tonic EDA 0.09 0.11 0.04 none 0.03 0.10 0.03 none

Phasic EDA 0.21 0.18 0.01 none 0.34 0.21 0.01 none

TABLE 3 | Predictive modeling results for the correctness of the responses using the data from the three different phases.

Sea Formuli prediction results Suffizz prediction results

Phase Precision Recall F1-score Precision Recall F1-score

See-Solve 0.8889 0.9333 0.9106 0.8913 0.9111 0.9011

Move 0.8730 0.9166 0.8943 0.8478 0.8667 0.8571

Respond 0.8438 0.9000 0.8710 0.8000 0.8511 0.8247

FIGURE 10 | Variable Importance for predictive modeling using data from the different phases in Sea Formuli.

these features have their highest individual feature importance
rank in the See-Solve phase, but their individual feature rank in
the Move phase is smaller than in the Respond phase (Table 4).
The remaining features do not exhibit any CFE for either of the
following two reasons: (1) they do not appear in the top 10%most
important feature list for any phase of the S2MR cycle, or (2) their
highest individual rank does not occur in the See-Solve phase.

5.6. Suffizz Eye-Tracking Results
There was no significant difference in the time to first fixation
on the question for the right or wrong responses [F(1, 39) = 0.49,

p = 0.32, Figure 11, left]. There was also no significant difference
in the percentage of the transitions from the question to the
right option [F(1, 39) = 0.02, p = 0.91, Figure 11, right]. However,
the percentage of transitions between the wrong options and
question was significantly higher for the wrong response than
that for the right response [F(1, 39) = 19.33, p = 0.001, Figure 11,
right]. Further, the percentage of transitions between the wrong
options and the right option was significantly higher for the
right response than for the wrong response [F(1, 39) = 37.62, p =
0.0001, Figure 11, right]. This indicates that for right responses,
students compare the options more than when they provide the
wrong responses.
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TABLE 4 | Top 10% features from all the three phases, the ranks of these features in the three different phases and accordingly, the CFE they exhibit.

Sea Formuli ranks for predicting correctness of an answer Suffizz ranks for predicting correctness of an answer

Feature See-solve Move Respond CFE Type Feature See-solve Move Respond CFE Type

HR Mean 5 6 8 Perfect HR Mean 3 4 8 Perfect

HR SD 7 - - none HR SD 13 - - none

HR AR1 3 7 5 Pseudo HR AR1 14 9 2 none

HR AR2 - 2 7 none HR AR2 - 2 - none

PEDA mean 10 10 13 Pseudo Peaks mean 11 14 11 Pseudo

PEDA SD 14 4 6 none Peaks SD 8 3 14 none

PEDA AR1 - - 1 none Peaks AR1 - - 4 none

CL Mean 4 8 9 Perfect CL Mean 10 11 12 Perfect

CL SD 8 11 - none CL SD 9 13 3 none

CL AR1 11 13 3 none CL AR1 2 10 6 Pseudo

CL AR2 12 14 14 Pseudo CL AR2 7 1 5 none

SV SD 2 5 4 Pseudo SV SD 1 5 1 Pseudo

SV AR1 1 3 - none SV AR1 12 7 - none

SV AR2 - - 2 none SV AR2 - - 10 none

IPI Mean - - 12 none IPI Mean - - 7 none

IPI SD 6 9 11 Perfect IPI SD 6 8 9 Perfect

IPI AR1 9 12 10 Perfect IPI AR1 5 12 13 Perfect

IPI AR2 13 1 - none IPI AR2 4 6 - none

FIGURE 11 | Tobii eye tracking results for the Suffizz MBEG. Left: time to the first fixation on the question. Right: percentage of transitions between the question, right

and wrong options.

There was a significant difference in cognitive load

(Figure 12, left) associated with the correctness of answers

during the See-Solve and Move phases [See-Solve: F(1, 39) =
25.97, p = 0.0001; Move: F(1, 39) = 6.65, p = 0.01]. However, no
such difference was detected during the Respond phase [F(1, 39)
= 0.05, p = 0.94]. The cognitive load associated with wrong

answers was significantly higher than with right answers

during the See-Solve and Move phases.
There was a significant difference in IPI (Figure 12, middle)

associated with the correctness of the answers during all phases

of the S2MR cycle. The IPI associated with right responses was

significantly lower in all three phases than the IPI associated

with wrong responses. However, this difference reduced as
students transitioned from the See-Solve phase [F(1,36.24) = 34.69,
p = 0.0001] to the Move phase [F(1,35.46) = 27.39, p = 0.0001], and
finally to the Respond phase [F(1,36.21) = 23.54, p = 0.0001].

Lastly, the saccade velocity (Figure 12, right) associated with
right responses was significantly lower during all three phases

of the S2MR than the saccade velocity associated with the

wrong responses. However, there difference reduced from the
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FIGURE 12 | Tobii eye tracking results for the Suffizz MBEG. Left: Cognitive load. Middle: Information processing index. Right: Saccade velocity.

FIGURE 13 | Empatica E4 results for the Suffizz MBEG. Left: Mean heart rate. Middle: Phasic EDA. Right: Number of EDA peaks.

See-Solve phase [F(1,33.56) = 28.97, p = 0.0001] to the Move
phase [F(1,33.18) = 24.25, p = 0.0001] and then an increase in
the difference as students transitioned to the Respond phase
[F(1,35.41) = 13.42, p = 0.001].

5.7. Suffizz Empatica E4 Results
We observed a significant difference in mean HR (Figure 13,
right) between the right and wrong responses. For all three
S2MR phases, the wrong response was associated with the higher
mean HR. Additionally, the difference diminished as the students
transitioned from the See-Solve [F(1,36.54) = 38.32, p = 0.0001] to
Move [F(1,35.43) = 29.85, p = 0.0001], and finally to the Respond
phase [F(1,29.58) = 15.41, p = 0.001].

We observed no significant differences in tonic EDA levels
for the right and wrong responses in any of phase of the S2MR
cycle [See-Solve: F(1, 39) = 1.81, p = 0.07; Move: F(1, 39) = 1.56,
p = 0.11; Response: F(1, 39) = 0.98, p = 0.35]. Further, there was
no significant difference between the phasic EDA levels for the
right and wrong response during the Respond phase [F(1,33.26)
= 0.01, p = 0.89]. However, phasic EDA (Figure 13, right) levels
were higher for the wrong responses than for right responses
during both the See-Solve [F(1,34.53) = 28.47, p = 0.0001] and
Move [F(1,37.62) = 21.23, p = 0.0001] phases.

Lastly, in all three phases of the S2MR cycle, a wrong response
was associated with a higher number of EDA peaks (Figure 13,
middle). This difference was the highest for the See-Solve phase
[F(1,35.84) = 38.47, p = 0.0001], followed by the Move [F(1,35.23)
= 34.37, p = 0.0001], and finally, the Respond phase [F(1,24.27) =
24.34, p = 0.0001].

5.8. Suffizz CFE Results–Inferential
Statistics
Table 2 shows the effect sizes from the ANOVA (with or without
Welch correction) for the different measurements across the
correctness of answers (right and wrong) during the three phases
of the S2MR cycle. For IPI, saccade velocity, number of EDA
peaks, and mean HR, the effect sizes decreased from the See-
Solve to the Move to the Respond phase. Further, the effect sizes
associated with the phase transitions (See-Solve to Move, and
Move to Respond) had the same affinity for a given measurement
and dependent variable (e.g., all four measurements were lower
for the correct response). Thus, we conclude that IPI, saccade
velocity, number of EDA peaks, and mean HR demonstrate

a Perfect CFE. Moreover, the difference in cognitive load and
phasic EDA, between right and wrong response, was only
significant during the See-Solve and Move phases. Therefore,
cognitive load and phasic EDA do not show CFE. Finally, we
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FIGURE 14 | Variable Importance for predictive modeling using data from the different phases in Suffizz.

conclude that tonic EDA does not indicate CFE, since there was
no difference between the right and wrong responses for tonic
EDA levels.

5.9. Suffizz’s Predictive Modeling Results
Table 3 shows the prediction results for the correctness of
answers. The random baseline for the prediction is low (precision
= 0.50; recall = 0.50; F1-score = 0.50), while the majority class
prediction baseline is very high (precision = 0.75; recall = 1.00;
F1-score = 0.85). This indicated that it is not possible to improve
the prediction’s recall. However, we can improve the precision
(0.89) and F1-score (0.90) by considerable margins by using the
data from the See-Solve phase. In the Move phase, precision
(0.85) can also be improved considerably but only marginal
improvements are able for the F1-score (0.86, rounded up to two
digits). Finally, using data from the Respond phase, it is possible
to improve the precision (0.80) considerably, but it is not possible
for either of the other metrics.

5.10. Suffizz’s Carry Forward
Results–Predictive Modeling
Considering the CFE from the predictive modeling for Suffizz,
we observe that cognitive load mean, HR, mean and IPI SD, and
first auto-correlation coefficient (AR1) demonstrate Perfect CFE
because their individual feature importance ranks are the highest
in See-Solve, followed by Move, and then the Respond phases
(Figure 14 and Table 4). The set of features that demonstrates
Pseudo CFE contains: first AR coefficient for cognitive load,
mean number of EDA peaks, and saccade velocity SD. This
is because these features have their highest individual feature
importance rank in the See-Solve phase, but their individual
feature rank in the Move phase is smaller than in the Respond
phase (Figure 14 and Table 4). The remaining features do not
exhibit CFE for either of the following two reasons: (1) they do
not appear in the top 10% of the most important feature list for

any phase of the S2MR cycle, or (2) their highest individual rank
does not occur in the See-Solve phase.

6. DISCUSSION

In this contribution, we present a study that investigates the
relationship between students’ MMD measurements and their
learning performance (i.e., RQ1) and how these relationship can
inform the design of a physio-cognitive aware agent (i.e., RQ2).
We addressed RQ1 using inferential statistics and predictive
modeling. We presented the concept of CFE and used the
design implications of CFE to address RQ2. In this section, we
discuss the results connected with the CFE, with a focus on its
generalizability. Then, we present an interpretation of the results
through the lens of RQ1, followed by design guidelines based on
CFE as a response to RQ2.

6.1. Generalizability of the CFE
We observe different classes of CFE (perfect/pseudo), to be
present in both the games, Sea Formuli and Suffizz. The
CFE results clearly demonstrate a considerable overlap in the
measurements that exhibit the CFE. However, certain specificities
across the results between the two games are present. First,
according to inferential results, IPI and heart rate demonstrate
a Perfect CFE for both games; saccade velocity shows Pseudo
CFE for the Sea Formuli and Perfect CFE for the Suffizz;
finally, the number of EDA peaks contains Perfect CFE for
Suffizz, but no CFE exists for Sea Formuli. Second, based on
predictive modeling, Perfect CFE was exhibited by mean heart
rate, mean cognitive load, and IPI (SD and first auto-regression
coefficient). Whereas, saccade velocity SD shows Pseudo CFE for
both the games.

For Sea Formuli, the collection of measures with CFE contains
HR AR1 (Pseudo), mean phasic EDA (Pseudo), and CL AR2
(Pseudo); while for Suffizz it contains mean number of EDA
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peaks (Pseudo) and CL AR2 (Pseudo). These results show three
levels of generalizability regarding the CFE: (1) CFE exists in
the games with the different interactive elements and different
domains; (2) some MMD measurements show the same CFE
across both games (i.e., heart rate, IPI, and cognitive load,
but with different effect sizes); and (3) there are some MMD
measurements that show CFE but have different classes for
different games (i.e., perfect in one game and pseudo in other).
The results also reveal game-specific CFE. However, additional
experiments are required to conclude if these specificities are due
to interaction or domain differences between the games.

6.2. Interpretation of Results: RQ1
In this study, we captured and analyzed students’ MMD as they
problem-solved mathematics and language questions offered
by two different MBEG. The MMD included physiological
and eye-tracking data. We devised a novel index called CFE
that illustrates the explainability (based on inferential statistics)
and the prediction ability (based on predictive modeling) of
the measurements/features, extracted from MMD, in terms of
student’s learning performance.

In both games, during the See-Solve phase, each of cognitive
load, IPI, saccade velocity, mean HR, number of EDA peaks,
and mean phasic EDA have a significant relationship with
students’ performance. The first three measurements (cognitive
load, IPI, saccade velocity) were extracted from eye-tracking
data, while the remaining three were derived from the Empatica
E4 wristband data. Further, these eye-tracking variables were
significantly lower for the right responses than for the wrong
responses. According to previous research, high cognitive load
is detrimental to learning outcomes/performance (De Neys and
Schaeken, 2007; Feldon et al., 2018; Mutlu-Bayraktar et al., 2019).
Cognitive load, as measured by eye-tracking data, contains an
interaction of intrinsic, germane, and extraneous components
(Paas et al., 1994; Sweller et al., 1998). The intrinsic components
include the proficiency and mental models of the students. The
extraneous components include the content and its presentation.
Finally, the germane component results from the interaction
between the student and information (Paas et al., 1994; Sweller
et al., 1998). In each case, guiding students’ attention to specific
parts of the screen (Jarodzka et al., 2010) and providing worked
examples (VanGog et al., 2015)might have a positive relationship
with the student’s cognitive load and learning performance. It is
important to point out here that, we are not attempting to keep
the cognitive load to a very low level. We are proposing remedial
actions for the prevention of cognitive-overload (for which we
do not have a measurement) by avoiding very high cognitive
load values.

Additionally, in both MBEG, saccade velocity was higher
for the interactions associated with wrong responses than for
the interactions associated with right responses. Previous eye-
tracking research has shown saccade velocity to be related
to task complexity and perceived task difficulty (Smit and
Van Gisbergen, 1989; Schubert and Zee, 2010). We offer
two plausible explanations for these two events (e.g., students
having high saccade velocity and providing wrong responses),
coinciding in a significant manner. First, the question content

might be too complicated for students; and second, the students
perceive the problems as difficult to solve. In both cases,
performance is hindered, and in both cases, introducing guiding
feedback is necessary to improve students’ task-based proficiency
(Lipp and Hardwick, 2003).

The final eye-tracking measurement, IPI, also demonstrated
significant differences between right and wrong responses for
both MBEG. Recall that IPI is the ratio between global and
local processing (Unema et al., 2005; Poole and Ball, 2006).
A significantly higher IPI during interactions associated with
wrong responses indicates that global processing is higher when
students encounter a problem that they are unlikely to solve
(i.e., provide a wrong response). This suggests that students are
unable to properly manage their attention span when they are
faced with challenging questions for which they are unlikely to
solve correctly (Tsai et al., 2012). An additional explanation for
higher global processing could be that the students are looking
back and forth between the options and the question and between
the options themselves. Such patterns are indicative of guessing
behaviors and are often encountered in learning systems with
multiple choice questions and quizzes (Tsai et al., 2012). In such
cases, attention and/or strategy based feedback might assist the
students (Collignon et al., 2020).

Concerning the physiological measurements, during the See-
Solve phase in both MBEG, the mean HR was significantly
higher for wrong responses than the right response. Higher
mean HR indicates higher stress levels (Harada, 2002; Herborn
et al., 2015), which have been shown to be detrimental to
learning performance (Sharma et al., 2019a,b). The significant
relation between wrong responses and mean HR illustrates
that students experience higher stress levels when they provide
a wrong response. Consequently, in such cases an affective
intervention (e.g., removing time constraints or pausing the
game) could help the students re-establish their performance
levels (McCraty, 2005).

Furthermore, for both MBEG, the number of EDA peaks
and the mean phasic EDA levels were higher in cases of
wrong responses than right responses. High levels of phasic
EDA and a high number of EDA peaks are correlated
with higher emotional arousal (Di Lascio et al., 2018)
and found to be negatively correlated to students’ learning
outcomes/performances (MacLean et al., 2013). Thus, in these
cases, feedback to regulate students’ emotional tendencies should
be employed, as previous research demonstrates this to be highly
effective in scaffolding the problem-solving processes (Lipnevich
and Smith, 2009; Harley et al., 2019).

During the Move and Respond phases of the S2MR cycle,
we observed a collection of counter-intuitive MMD-based
differences. For example, IPI, saccade velocity, mean HR, and the
number of EDA peaks were each significantly different for right
and wrong responses. Moreover, these unexpected differences
all share the same affinities (though, with lower effect sizes)
with the students’ performance levels. Specifically, IPI, saccade
velocity, mean HR, and the number of EDA peaks had an affinity
with the wrong responses, indicating that these measurements
have detrimental effects on learning performance. Interestingly,
because no problem-solving takes place during these phases,
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there is no justifiable basis for these effects to occur. However,
these results reveal that for phases unrelated to the problem-
solving aspects of the MBEG interaction (i.e., Move, Respond),
students continued to display behavioral patterns which had
affinity with the wrong responses.

These aforementioned behavioral patterns (IPI, saccade
velocity, mean HR, number of EDA peaks) exhibit the CFE.
The basic concept behind the CFE is that the effect sizes “carry
forward” to subsequent phases of S2MR, and diminish in size
along the way. The measurements that demonstrate the CFE (i.e.,
perfect or pseudo) are decisive for the current task and also the
forth-coming tasks in following phases. If a measurement has
an affinity with the desired outcome (e.g., the right response in
our case), then the CFE should be promoted, otherwise (i.e., if
the measurements have an affinity with the undesired outcome),
remedial steps should be taken to reduce/terminate the negative
consequences of this chain of behavioral patterns.

Our inferential statistics showed that four measurements
exhibit CFE (perfect or pseudo): IPI, saccade velocity, mean
HR, and number of EDA peaks. Predictive modeling associated
CFE (perfect or pseudo) with the following: fixation duration
(SD and auto-regression), cognitive load (mean, SD), HR (mean
and auto-regression), and mean phasic EDA. Moreover, there is
considerable overlap in the basic measurements (refer to Table 2,
except cognitive load) in these two sets3, and these results hold
true for both MBEG (as discussed in section 6.1). Therefore,
we continue with the basic measurements (i.e., cognitive load,
IPI, saccade velocity, HR, phasic EDA, and the number of
EDA peaks) for the remainder of this discussion. Lastly, a

critical commonality shared by these measurements is the

affinity with the wrong response. Hence, in the context of this

study, we discuss design of an AI agent that mitigates these

detrimental effects.
It is important to point out that what is detrimental is neither

the measurement nor the CFE. The detrimental fact is that the
measurement displays CFE. For example, if students are showing
moderate stress and at the same time their responses are correct,
there is no requirement of remedial action. The reason is that we
are measuring stress and not chronic stress. Remedial action is
required in the cases where a high stress level has corresponding
incorrect responses. We propose that the requirement of such
remedial action is elevated in the cases where the stress is not only
related to wrong responses but also showing CFE.Moreover, CFE
presents an approach to prioritize theMMDmeasurements in the
following order. (1) If the measurement shows perfect CFE and
is associated with the incorrect response. (2) If the measurement
shows partial CFE and is associated with the incorrect response.
(3) If the measurement is associated with the incorrect response.

While CFE provides an approach to prioritize the scaffolds,
the key factor in deciding the scaffold is the factor that is
negatively related to the problem-solving process (e.g., lack of
knowledge, low self-efficacy). These factors, in turn, are related
to certain behavioral aspects (e.g., lack of knowledge could lead to
cognitive load, especially the intrinsic cognitive load and low self-
efficacy could lead to stress). MMD-based measurements provide

3IPI is a Pseudo function of fixation duration.

a proxy to these factors (e.g., pupil diameter for cognitive load
and increase in heart rate for physiological stress).

6.2.1. CFE From Statistical and Predictive

Standpoints
The main reason for using both the statistical and predictive
modeling of the data was to showcase that CFE can be established
between measurements and learning performance (i.e., the
correctness of the responses in our case) using any method that
provides an estimate of the models’ quality. In our examples,
there are considerable similarities based on the measurements
that we used for statistical models and the measurements that
were used for extracting features in the predictive modeling.
Information processing index, heart rate, saccade velocity, and
the number of EDA peaks are the measurements that show
one kind (either perfect or pseudo) CFE in both statistical
and predictive modeling. These measurements and the related
implications are in the next subsections. However, there are
certain differences in the results from the two modeling
approaches as well. First, the cognitive load does not show
any CFE in the statistical modeling while the mean and
autoregressive coefficients of cognitive load show CFE in the
predictive modeling. Second, phasic EDA also shows CFE using
predictive modeling, while it does not show any CFE using
statistical modeling. Another set of differences in the results from
these two modeling approaches is in the strength of CFE. Both
these differences could be attributed to the fact that the statistical
approaches used in this paper assume linear relationships
between the variables, whereas there is no such assumption
in the predictive modeling. Moreover, with some prediction
algorithms, we are looking for non-linear relations (e.g., support
vectormachines andGaussian processmodeling with polynomial
kernels). It has also been argued that both extremes of cognitive
load are detrimental to learning performance (Czikszentmihalyi,
1990; Collins et al., 1991), indicating a non-linear relationship.
Another reason for using these two modeling approaches in the
paper is to provide both ways of inferring CFE. The benefit
of using statistical modeling is the opportunity to find direct
relationships between the dependent and independent variables.
On the other hand, the benefit of predictive modeling is the
ability to utilize non-linear relationship and stronger quality
measurements than statistical modeling.

We have carried out the two analyses to showcase that the CFE
can be established using either the inferential statistical methods
or the predictive modeling methods. The main idea is to show
the compatibility of the effect with the two sets of methods. The
decision about which one of the two methodologies to be used,
completely depends on the availability of the data and level of
explanation power required appropriate by the researcher.

6.3. Toward a Physio-Cognitive Aware
Intelligent Agent to Support Learning (RQ2)
We distilled a set of MMD measurements that demonstrate CFE
(Perfect or Pseudo), relative to the students’ level of correctness
(right or wrong). In this section, we offer a collection of
design guidelines motivated by the behaviors of these variables.
Additionally, we provide a feedback agent design comprised of
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the aforementioned guidelines and a decision-making protocol
that prioritizes the type of feedback (attentional, cognitive,
affective) to provide students during the different phases of
their MBEG play interaction. While designing an MMD-based
intelligent agent, in case of conflicting recommendations, we
prioritize recommendations based on the variables in the
following class order: Perfect CFE→ PseudoCFE→ No CFE. In
the case of a tie, variable importance (in the terms of predictive
power with respect to the dependent variable) and/or the effect
size of the variable will be the deciding factor.

The following design of an agent is one of the primary
implications of the results of these studies. The main idea here
is that we are proposing a method to prioritize the feedback
(in the cases it is necessary). The main discussion is about the
prioritization in this subsection. The type of feedback is inspired
from the related research and to prove that such a system works,
further development and testing are necessary. Moreover, our
results show that there are significant relations between the
multi-modal measurements and the correctness of the students’
responses. In the light of these results, we are proposing certain
implications for interventions. These individual interventions
have been shown to be able to help students in improving their
learning performance and learning experiences.

6.3.1. Measurements to Feedback
If a measurement has an affinity with the right response (or
more generally, if it exhibits affinity with positive outcomes and
performance variables), remedial action is not needed. However,
it is important to provide students with feedback, such as
encouragement, as positive re-enforcement has been linked to
positive effects on students’ task-based outcomes/performance
and self-esteem Helm (2007). Contrarily, when a measurement
has an affinity with the wrong response, there is a need for
remedial action in order to counter the CFE.

In the remainder of this subsection, we present mechanisms
that have been found to be effective in terms of reducing the
impact of adverse cognitive and physiological behavior. Among
theseMMDmeasurements, three were derived from eye-tracking
glasses (i.e., cognitive load, saccade velocity, IPI), and two from
physiological sensors (i.e., HR and EDA).

First, if a student’s cognitive load is high (e.g., negative affinity
with performance), there are several methods/strategies that can
be integrated into an AI agent, which reduce cognitive load so
that it is no longer detrimental to the student’s productivity.
For example, the AI agent can present a related solved example
problem, or provide content related hint to help the student
solve the problem correctly. Alternatively, the agent could scale
down the question difficulty, by providing an easier (but related)
problem to solve. This provides the student with an opportunity
to practice (and internalize) the target concepts, and build self-
assurance, before increasing the complexity of the problems at a
later stage. It is important to point out here that we do not aim
to reduce cognitive load to zero, our aim is to keep the cognitive
load at a manageable level so that we minimize the probability of
cognitive overload (which we do not have a measurement for).
Therefore, we want to avoid higher values of cognitive load.

Second, we consider periods where a high saccade velocity
(indicating high perceived task difficulty/complexity) is detected.
In this scenario, the problem content might not be difficult
given a student’s expertise, however, they still may perceive it
as such. Correspondingly, a small hint might help a student
solve the problem correctly while providing them with additional
“confidence” for the future problems. Alternatively, if the given
problem is difficult for a student to solve (e.g., beyond their
knowledge set or cognitive capabilities), a content-based hint
may assist them, and prepare them for upcoming problems. If the
AI agent has an estimate of the student’s expertise in the given
domain (e.g., from their responses to previous questions), then
the AI agent can choose between these two feedback options; that
is, small hint or solved examples.

Concerning the last eye-tracking measurement, IPI may
require counter-active measures to prevent or deter CFE.
Specifically, we propose the use of gaze-contingent support
(Sharma et al., 2015) when considering feedback for increasing
the local processing (i.e., decreasing IPI) or the global processing
(i.e., increasing IPI). Gaze-contingent interfaces overlay on-
screen content with a domain expert’s gaze (Jarodzka et al., 2010).
Gaze-contingent is useful in explaining different concepts to
students and novices as the overlays illustrate how an expert’s
gaze traverses the interface while the expert solves a similar
problem (Jarodzka et al., 2010; Van Gog et al., 2015). This
approach has the capacity to help the students manage their
attention (and in turn information processing behavior) in a
manner that might increase the probability of correct responses.

The final two measurements, EDA and mean HR, derive
from physiological sensing (e.g., the Empatica E4 wristband) and
are, respectively, related to the student’s physiological arousal
and physiological stress. To deter increasing mean HR (often
indicative of high stress levels and in our case, associated with
a negative affinity with performance), the agent should suggest
that the student take a short pause from the learning activity, so
they can relax before resuming the activity under a lower stress
level. Stress can have a negative impact on the performance, as
was found in our results. Therefore, suggesting a small pause
might reduce stress, and increase the probability of bringing
students closer to a state that students’ experience when optimally
engaged in an activity (i.e. "flow" state) (Czikszentmihalyi, 1990)
and reinforce their abilities to be able to respond correctly in the
future problems.

6.3.2. Type and Timing of Feedback
In the previous section, we presented which type of feedback
to deliver to students, according to the different measurements
computed from the MMD. In this section, we define how the
CFE can be used to prioritize this feedback (Figure 15 shows the
summary). Prioritized decision making is useful for supporting
two scenarios. First, the gameplay session structure (i.e., time
or space resources) may only be able to accommodate single
feedback delivery. Second, the delivery of various and, at times,
conflicting feedback (e.g., saccade velocity suggests an easier
problem based on perceived difficulty and EDA suggests a more
difficult problem based on arousal; or one feedback suggests
positive enforcement and the other feedback suggests corrective)
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FIGURE 15 | Prioritizing the MMD measurements based on CFE.

could result in students’ disengagement from the MBEG or
hinder the student’s state of “flow.” Following, we discuss the
prioritized order for the types of feedback based on the class of
CFE present.

We claim that CFE possesses an innate priority ordering that
dictates the sequence in which to address MMD measurements
with feedback delivery. The highest priority is given to
measurements which exhibit Perfect CFE, followed by Pseudo
CFE, and lastly, no CFE. The rationale behind this prioritization
assignment is that the CFE propagates to phases where it is
“undesirable” and therefore, should be prevented or subdued.
Thus, we propose a CFE priority order of Perfect, Pseudo, None.
In our case (using our set of MMD measurements), the resulting
order is mean HR or IPI, followed by saccade velocity, followed
by all remaining measurements listed in Table 2.

However, each CFE type contains MMD measurements,
which may also lead to different (or worst case, conflicting)
feedback suggestions. For example, the feedback suggestions for
mean HR and IPI might suggest the student take a pause to
reduce physiological stress, and show an expert’s gaze patterns
to manage the student’s visual attention. Correspondingly,
further prioritization is needed within the aforementioned CFE
type prioritization. Additionally, as previously mentioned, there
might only be time for delivery of one feedback mechanism, or it
may not be possible (or purposeful) to deliver multiple feedback
options in tandem (e.g., it is counter-productive to show the
students the expert’s gaze patterns during a pause). Therefore,

within CFE type prioritization, we guide the decision-making
process by the effect sizes of the given MMD measurements, in
terms of their affinity with the dependent variable.

In our dataset, meanHRhas a higher effect size (0.31, 0.21, and
0.16 for the See-Solve, Move, and Respond phases, respectively)
than IPI (0.22, 0.16, and 0.12 for See-Solve, Move, and Respond
phases, respectively). Therefore, we assign the mean HR with
a higher priority than IPI. Applying this rule to the remaining
MMD variables results in the following priority order: mean
HR, IPI, saccade velocity, and all remaining measurements from
Table 2.

Once MMDmeasurements have been prioritized according to
their CFE type and effect size, the variables with no CFE remain.
We propose a two-step process to prioritize these variables: (1)
the order of the significance as See-Solve >Move > Respond; (2)
higher effect sizes take precedence. For example in Sea Formuli,
phasic EDA (which is significantly different between levels of
correctness during see-solve and move phases) had a higher
priority over cognitive load (significantly different between the
correctness levels during the see-solve phase). However, for
Suffizz, Cognitive load (0.45 effect size in See-Solve phase) also
takes precedence over phasic EDA (0.34 effect size in See-Solve
phase). Applying this strategy to the MMD measurements from
Table 2 result in the following priority order: mean HR, IPI,
saccade velocity, cognitive load, phasic EDA, and the number of
EDA peaks.

Finally, if the above criteria are identical for two MMD
measurements, the measurement with affinity to an undesired
outcome variable (e.g., performance, engagement) is assigned
priority over the measurement with affinity to the desired
outcome variable. Our working hypothesis suggests that this
case is rare and thus, ranking measurements in their order of
preference for feedback suggestions will not be needed. For
example, we do not need to use this as a tie-breaking rule for the
MMDmeasurements used in this contribution.

6.4. Theoretical and Practical Implications
In this contribution, we present a special phenomenon CFE that
indicates toward certain physio-cognitive measurements having
extended effects on the learning experiences and performances
than the others. CFE could be used by educators and learning-
technology designers to understand and develop scaffolding
tools to support learners in GBL settings. As aforementioned,
CFE provides the sequence in which to address multimodal
measurements while supporting the learners. Such a priority
sequence is important when the time for support is short
or the frequency of supporting cues should be low. Tropper
et al. (2015) suggested that the scaffold should be adaptive,
dynamic, and fading (should be provided fewer times as the
learners’ interaction with the environment becomes longer).
With CFE, it is possible for scaffolds to gradually “fade-away” by
providing the feedback with the highest priority. CFE can also
be used in more generalized scenarios than GBL. For example,
in Intelligent Tutoring Systems (ITS), where there are clear
steps/phases to complete the given task. One of the recurring
problems in ITS and cognitive tutors is the “assistance dilemma”
(Koedinger and Aleven, 2007; McLaren et al., 2014), which is the

Frontiers in Artificial Intelligence | www.frontiersin.org 21 January 2022 | Volume 4 | Article 713176

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Sharma et al. Keep Calm and Don’t Carry-Forward

requirement of the trade-off between the timing of providing the
feedback and the amount of feedback provided. Excess feedback
might be detrimental to learning performances and experiences
(Koike et al., 2021). At the same time, supporting students
at the wrong time could drastically increase their cognitive
demands (Schwartz and Bransford, 1998) and also have negative
impacts on their task performance and affective states (Hattie
and Timperley, 2007; Wisniewski et al., 2020). CFE might be
helpful in the situations where the amount of feedback requires
regulation by suggesting the most appropriate feedback for
the moment.

As we mentioned in section 1.1 that in both problem-
based and GBL settings, it is important to provide the learners
with dynamic and adaptive scaffolding (Quintana et al., 2004;
Leemkuil and Jong, 2011). The combination of the CFE and
the see-solve-move-respond phases could be an automatic and
data-driven solution for the “assistance dilemma” (Miwa et al.,
2012; Maniktala et al., 2020). It is important to provide a
timely and appropriate amount of feedback to the learners (Li
et al., 2018) and if we know the problem-solving phase the
learner is in and the priority list of the feedback options, we
can optimize the learning experience by controlling multiple
feedbacks (Li et al., 2018). It is also important to understand
the constraints of the interactive situation before providing the
feedback (Khodeir et al., 2018), which can be achieved by having
the CFE-based priorities a way to optimize the constraints-
solution. Furthermore, CFE can be considered an addition to the
existing learner models. There have been individualized sensor
data added to pre-existing learner models. For example, affective
states (Grawemeyer et al., 2017; Rajendran et al., 2018), and eye-
tracking based measurements (Njeru and Paracha, 2017). CFE
can provide a way to combine data and measurement from
multiple sensors in a single learner model by using the priorities
as weights in the model and to predict/understand the learners’
needs in a better manner.

One of the key considerations emerging from this
contribution is that the performance measure used was a
dichotomous correct/incorrect division. The choice of the
learning performance measure and/or the learning experience
measurement might have an impact on the findings. For
example, if the measure of interest is not the performance but it
is the skill-acquisition or comprehending the problem solving
processes. In such a case, the CFE would have to be considered
using the multimodal measurements that would correspond
to and be associated with “lack of” acquired skill and “poor
understanding” of the problem solving process. Similarly, the
see-solve-move-respond cycle will have to be altered to reflect
the correct phases of the underlying tasks. Moreover, in cases
where the performance measure is more complicated than a
dichotomous correct/incorrect marking, the complexity and
nuances of the performance measurement would have to be
taken into account. For example, if the learning task is a synthesis
task (e.g., concept-mapping), then the various factors of a
successful synthesis should be considered (e.g., understanding,
evaluation, and transfer in the case of concept-mapping). In
such cases, the multimodal measurements would have to be
examined against an individual component of the performance

measurement, which might result into a complex model (i.e.,
difficult to implement).

In this contribution, we have combined eye-tracking data with
heart rate and EDA to define various learning constructs. For
example, cognitive load (pupil data), engagement (EDA), and
stress (heart rate). The main idea is to combine/fuse them in a
manner so that we can not only detect different thematic phases
from the interaction but also provide meaningful and actionable
feedback to the learners. This is inline with the contemporary
research using the MMD for improving understanding and
design of educational technology (Giannakos et al., 2019; Liu
et al., 2019; Sharma et al., 2019a; Lee-Cultura et al., 2020b).
The measurements from different data sources could also be
used to indicate a broader learning construct. For example, pupil
diameter, heart rate, and number of EDA peaks could be used
to define a new multimodal measurement of physio-cognitive
stress/load while solving educational problems. Recent research
has shown that fusing the data together results in better models
in the learner-technology environment (Giannakos et al., 2019;
Liu et al., 2019) but whether combining measurements from
the different sources would offer a better understanding of the
underlying phenomenon is yet to be seen and therefore more
research is required in this direction.

When it comes to the scaling-up aspects of the CFE, our
contribution could be extended by only using data from the
sources that are available in a ubiquitous manner. Following
the same process as to find the CFE with other data sources
would provide the priority order of the measurements at hand.
This would help the educators and designers create seamless
and at-scale scaffolding systems (e.g., using data from a smart
watch and webcam to capture hear rate and facial expressions,
respectively). The see-solve-move-response cycle could also be
extended to any other situation where the problem-solving steps
can be detected as phases and the data could be collected from the
individual phases. Recently, in related fields such as UbiComp,
there have been approaches to scale-up the sensing using mobile
and pervasive data-sources (Visuri et al., 2018;Wang et al., 2019).
We believe that our work could be scaled up with such techniques
and with contextual awareness (tracking the performance for
a given task, Hossain and Roy, 2019), ambient intelligence
(using multiple sensors in a setting, Giannakos et al., 2020),
and monitoring/tracking students to provide them support in
a seamless manner (Weiser and Brown, 1997). However, there
might be separate practical and ethical concerns with exploring
the appropriate scale to which CFE can be extended.

6.5. Limitations and Future Work
This contribution has a practical and theoretical impact on the
embedding AI within educational technologies, however, there
are limitations that must be addressed for further improvement.
For example, we are determine if cognitive load or stress
induced during MBEG play sessions, originated from the
problem-solving task or the novelty of interaction (although,
the children were given a few rounds to play the games so that
they can get acclimatized with the learning environment). To
accommodate for this, future work will include a longitudinal
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study to reduce the novelty of the interaction, and so we can
assess the root cause of students’ cognitive load and stress.
Next, although we altered the problem content to align with
the students’ projected abilities (as defined by their year of
study), a different age range (other than 9–12) may have
yielded different results. Moreover, in our approach, we used a
particular measurement to portray students’ performance (i.e.,
the correctness). This measurement is widely used; however,
using a different measurement as the dependent variable may
yield different results. Thus, although we followed an ecologically
valid and accurate research design, we acknowledge that other
methodological decisions might play an important role in the
results. Future avenues emerging from this work is implementing
a realized system that adheres to the design guidelines and
conducting a study to determine its efficacy (relative to students’
performance). Additional work stems from the fact that this
study has utilized state-of-the-art sensing equipment with high
quality data collections. An interesting challenge of future studies
is the need to consider the feasibility and performance of MMD
collected from widely used sensing technology (e.g., estimating
eye-tracking via cameras, more affordable wristbands). Solving
such a challenging engineering problem will pave the way for
democratizing this technology and allow individuals and society
to leverage physio-cognitive aware learning systems. Another
avenue for the future work would be to combine the low-level
multi-modal measurements into high-level constructs to obtain
a more holistic understanding of the learning processes in GBL.
This could be made possible by understanding the interrelations
among the low-level measurements and then exploring their
relations with various measures of learning performance and
learning experiences. Finally, the individual characteristics of
the learners (e.g., motivation, strategy, attitudes) could impact
the relationship between the multimodal measurements and the
learning performance. Another future aspect of this work is
to examine how such variables moderate/mediate the relations
presented in this contribution.

7. CONCLUSION

In conclusion, we presented a study with 40 students playing
two MBEG where their MMD (eye-tracking, HR, and EDA)
were recorded. Using both inferential statistics and predictive
modeling, we defined CFE with respect to the correctness of the
students’ responses (right or wrong). We deduce that the notion
of CFE plays a vital role in the design of feedback/support to
be used in an intelligent agent to support students based on
their personal MMD measures. Our results show that HR and
information processing behavior measurements require the most
attention. However, these CFE-based findings require further
experimentation for generalization, and there is a need to
further explore the CFE with MMD to establish a generalized
theoretical framework.
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