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Abstract—Automation and the use of robots for welding
operations is an important research topic. Being able to automate
and, thus, save time for setting up and using robotic welding
for complex, large-scale structures made of reflective materials,
such as aluminium, will provide clear economic and competitive
advantages. However, challenges coming from the ability to
accurately detect and calibrate the robot for a given physical
workpiece in addition to noises, such as the reflections, make it
hard to develop and demonstrate a feasible automation solution.
This paper proposes combining laser line scanning technology
with CAD-based analysis of a workpiece geometry to support the
identification of relevant elements of the workpiece in the physical
world and thus support welding operations. An extendable
trigger definition method is proposed to identify features of
interest in a workpiece. The method can potentially support
the execution of welding sequences, which in our case can be
represented as a sequence of triggers that have to be observed
and followed at the robot runtime to weld the workpiece together.

Index Terms—Robotic welding, Aluminium welding, Laser line
scanner, Computer-aided design

I. INTRODUCTION

Building complex products out of aluminium may require
hundreds of kilometres of welding paths. Engineering such
products, definition and preparation for manual welding may
require weeks and months of work. The welding of aluminium
demands special protective equipment and good ventilation for
welders as the process involves serious HSE risks. Developing
a reliable robot-based solution would bring economic advan-
tages that, besides saving time and costs, will let humans avoid
dangerous jobs.

Developing a robotized solution requires bringing to-
gether software-intensive and cyber-physical system (CPS)
approaches to allow robot welding work cells to cope
with uncertainties adjusting the process dynamically for the
currently welded workpiece. Using Computer-Aided Design
(CAD) models describing expected workpieces being currently
welded together, the reliable vision system can provide the
right combination for building a dynamically adjustable sys-
tem.

Some gaps and limitations exist between CAD and real-
world data sensing-driven approaches. CAD-based offline pro-
gramming approaches [1] promise automation of program
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generation for robotic welding based on simulated environ-
ments. However, real-world imperfections and deviations are
not considered. Thus, to transition into practical welding
and achieve higher automation, sensors have to be adapted.
Simultaneously, purely vision-based systems depend on image
processing quality and may face difficulties against complex
geometries. That is especially important when considering the
sensitivity of aluminium welding to deviation.

Previous research works on different robotic welding trig-
gers in combination with different sensor technologies are
available in the literature. In [2], and [3], a hardware-based
trigger generator is used to acquire the laser scanner data
at fixed time intervals. A stop trigger defined by volumes
outside which no seam tracking is allowed was presented
in [4]. A trigger of fault detection and diagnosis that identifies
when the feature points deviate from the requirements was
presented in [5]. A literature review on the topic of robotic
welding triggers has revealed that several challenges remain
to be resolved. Hence, in this paper, we propose to support the
robotic welding of aluminium with a laser line scanner-based
trigger definition method that takes into account the problems
inherent to aluminium welding. Such as the problematic re-
flectivity of the material during the laser line scanning and the
high accuracy of the weld seam detection needed. In addition
to taking into account the CAD-based approach needed for
automating as much as possible the process.

The contributions of this paper can be summarized as
follows. 1) A robotic welding trigger definition method com-
posed of trigger creation and evaluation algorithms. 2) Trigger
threshold values that can be used for correct pose-reached
validation based on results from sensitivity characterization
tests (performed on aluminium parts) and analyzed data from
proposed evaluation metrics. 3) A procedure for creating
and evaluating robotic welding triggers that can be used to
verify welding paths generated from offline programming
environments.

The rest of the paper is organized as follows. Section II
describes key works in the state of the art. Section III presents
the approach for triggers definition to assist robotic welding
operations. Section IV describes an implementation, followed
by Results in Section V, and Discussion in Section VI. Finally,
the conclusions, and future work are outlined in Section VII.



II. STATE OF THE ART

The nominal welding paths are commonly taught to the
robot in a CAD environment via a manual and offline pro-
gramming process (OLP). However, the actual location and
orientation of the weld joints of the workpiece will differ from
the ideal CAD environment due to tolerances and imprecisions
in the sim-to-real calibration. It is thus necessary to introduce
sensors for aligning the nominal workpiece with the observed
geometry.

Sensors for robotic welding are primarily used to detect
and measure process parameters and features such as the weld
joint geometry and the location and shape of the weld pool,
inspecting welds for defects and assessing their quality, in
addition to online control and correction of the robotic welding
process [6]. Sensors for geometry measurements are utilized
in seam-tracking [7], [8] and weld joint or component search,
allowing the nominal robot path to be altered in response to
geometrical deviations. The objective of the weld joint search
is to ensure that the weld bead is accurately deposited in the
weld joint. The weld joints or seams are then typically located
by performing one or more measurements around the nominal
starting point of each weld joint before welding. Alternatively,
several weld joint positions and orientations can be found
simultaneously, but less accurately, by estimating the full 3D
pose of the workpiece [9].

The research on locating the weld seams using optical sens-
ing methods can be divided into two categories: passive vision
and active vision. In active vision systems, an image sensor
is typically combined with an external light source, optical
filters, and lenses [10]–[12]. In active measurement systems
for welding, laser beams are preferred to other light sources
since bright, well-focused, and narrow beams can be generated
with lightweight sources. In addition, single-frequency sources
allow for better filtering of undesired frequencies and do not
disperse as much as full-spectrum light sources.

Several researchers have contributed to reducing the gap
between simulations and observations using sensor data in
robotic welding. Liu et al. [13] proposed a feature mapping
algorithm for offline correction in case of workpiece or fixture
redesign or change of the robot workstation layout. Chen et
al. [14] detected welding start positions using a proposed two-
step curve fitting method on seam lines in images from a
passive stereo camera system. Based on assumptions of how
the laser stripe will be distorted by the welding groove, Ding
et al. [15] suggested a vision system with a shape-matching
algorithm to achieve initial weld point guiding.

III. APPROACH

A. Proposed system

The proposed system architecture shown in Fig. 1 was
implemented through two different subsystems running on
different machines, which we call CAD and SEN, respec-
tively. The CAD subsystem machine acquires the welding
paths from the CAD model, validating that the trajectory is
correct (i.e. with no collision) and sending this welding path

Fig. 1: Proposed system overview.

to its software-based robot controller to move the welding
robot to the correct position. To achieve this, Siemens NX
along with the NXOpen API was used, shown in Fig 4
with the defined weld. Geometry and weld paths were then
transferred automatically using the NXOpen API [16] to the
Python Robotics Toolbox [17] offline programming environ-
ment (shown in Fig. 5) for trajectory generation. Meanwhile,
the SEN subsystem machine acquires images of the laser
profile with the polarization image sensor [18] implemented
on an industrial camera, extracting the position of the laser line
in image coordinates with subpixel precision, and computing
the proposed trigger. The CAD and SEN subsystem machines
were connected to a small robot communication network using
middleware. The middleware chosen was the ZeroMQ [19]
messaging library and adopted a Publish/Subscribe pattern that
provides asynchronous communication.

B. Proposed trigger definition method

Our approach for defining the trigger to start or stop the
robotic welding using a laser line scanner is composed of two
parts: the trigger creation and the trigger evaluation. We also
consider the two cases where the trigger is either image-based
(i.e. the plain image captured from the laser line scanner is
used without further processing) or vector-based (i.e. the laser
line coordinates extracted from the image). This difference
between the image representation (Figures 2a and 2b), and
vector representation (Figures 2d and 2c) is depicted in Fig. 2.
In this paper, Ir, and Iw are the images of the laser used
either as a reference or during the welding stage, respectively.



(a) Raw image. (b) Cropped raw image.

(c) FP laser extraction method. (d) COG laser extraction method.

Fig. 2: Laser line image, and vector representations.

Algorithm 1 Trigger creation
Input: Message to create trigger MTrigPush
and Similarity mode Simmode
Output: None

1: procedure TRIGGERCREATE(MTrigPush,Simmode)
2: Ir ← Iraw ▷ Raw laser image is used as reference.
3: Ir ← Crop(Ir) ▷ Crop laser reference image.
4: if Simmode is Vector-based then
5: Lr ← ExtractLaser(Ir) ▷ Extract laser coords.
6: Trigger← Lr ▷ Trigger is a vector.
7: else if Simmode is Image-based then
8: Trigger← Ir ▷ Trigger is an image.
9: end if

10: BufferTrigger ← Push(Trigger) ▷ Push trigger to buffer.
11: end procedure

Whereas the Lr, and Lw vectors represent the position of the
laser line in image coordinates with sub-pixel precision used
either as a reference or during the welding stage, respectively.
Furthermore, n represents the number of columns of the laser
line images.

The trigger creation procedure starts with a message con-
taining the order to create the trigger MTrigPush, plus the
similarity mode chosen Simmode. Then, the raw image acquired
from the laser line scanner Iraw is cropped and used as the
reference image Ir. If the Simmode chosen is image-based,
Ir is used as a trigger, whereas if the Simmode chosen is
vector-based, a laser line extraction is performed on the image,
and the resulting laser line coordinates vector Lr is used
as a trigger. Before finishing the procedure, the trigger is
pushed to the trigger buffer BufferTrigger. The whole procedure
to create the trigger is summarized in Algorithm 1. The

Algorithm 2 Trigger evaluation
Input: Message to start evaluating trigger MTrigPop
and Similarity mode Simmode
Output: Publish trigger found message MTrigTrue

1: procedure TRIGGEREVALUATE(MPop,Simmode)
2: Trigger← Pop(BufferTrigger) ▷ Pop from buffer.
3: Iw ← Iraw ▷ Raw laser image is used as weld.
4: Iw ← Crop(Iw) ▷ Crop laser weld image.
5: if Simmode is Vector-based then
6: Lr ← Trigger ▷ Use laser line coords.
7: Lw ← ExtractLaser(Iw) ▷ Extract laser coords.
8: Similarity← VectSim(Lr, Lw) ▷ Vector.
9: else if Simmode is Image-based then

10: Ir ← Trigger ▷ Use a plain image.
11: Similarity← ImageSim(Ir, Iw) ▷ Image-based.
12: end if
13: if Similarity <= Threshold then
14: Start procedure again
15: else if Similarity > Threshold then
16: return Publish(MTrigTrue) ▷ Publish Message.
17: end if
18: end procedure

trigger evaluation procedure starts with a message containing
the order to evaluate the trigger MTrigPop, plus the Simmode
chosen. Then, a previously created trigger is popped from the
BufferTrigger, and a new raw laser image Iw is acquired from
the laser line scanner and cropped. If the Simmode chosen is
image-based, an image-based similarity of Iw against Ir is
computed. Meanwhile, if the Simmode chosen is image-based,
a laser line extraction is performed on Iw to obtain its laser
coordinates Lw, and a vector-based similarity of Lw against
Lr is computed. If the resulting similarity is lower or equal to
a threshold, the procedure is started again, whereas it is higher
than the threshold, a MTrigPTrue message stating that the trigger
has been found is published. The whole procedure to evaluate
a trigger is summarized in Algorithm 2.

C. Trigger definition method metrics

There are different metrics to compute the similarity, and/or
errors, of either images [20], or features extracted from an
image available in the literature. In this work, three different
metrics for measuring the similarity of the laser lines extracted
from an image were used: two based on computing the
similarity or error between two vectors (Cosine Similarity, and
Mean Squared Error), and another metric based on comput-
ing the similarity between two images (Multiscale Structural
Similarity).

a) Cosine similarity: Cosine similarity is a commonly
used metric [21] that is based on finding the cosine of the angle
between two multidimensional vectors. The cosine similarity



of a 2-dimensional vector can be computed as

COSSIM(Lr, Lw) =
Lr · Lw
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where the result is a value between 0 and 1. Being 1 the ideal
case where both vectors are the same.

b) Mean Squared Error: The Mean Squared Error (MSE)
was used to assess the quality of the laser line coordinates
vector during the welding stage Lw with respect to the laser
line coordinates vector used as a reference Lr. The expression
can be written as

MSE(Lr, Lw) =
1

n

n∑
i=1

(|Lri − Lwi |)
2 (2)

c) Multiscale Structural Similarity: The Structural Sim-
ilarity (SSIM) [22] is a similarity metric that is based on a
perceptual model, and it is used to measure the similarity
between two images, not only based on the intensity of the
image, but based on the interdependence of its structure also.
The SSIM can be computed as

SSIM(Ir, Iw) =
(2µrµw + C1) (2σrw + C2)

(µ2
r + µ2

w + C1) (σ2
r + σ2

w + C2)
(3)

where µr, µw, and σ2
r , σ2

w, are the means, and variances of Ir,
and Ir respectively. Meanwhile, σrw is the covariance between
Ir and Iw. Furthermore C1 = (K1L)

2 and C1 = (K2L)
2 are

small constants, where L is the dynamic range of the pixel
values (L = 255 for 8 bits precision), and K1 ≪ 1 and K2 ≪
1 are two scalar constants. In this work, the SSIM is computed
at different scales, and then the results combined, as it was
presented in [23], to conform a Multiscale SSIM (MS-SSIM).

d) Laser line extraction methods: The use of different
methods to extract the position of the Lr, and Lw laser line
coordinates vectors from the Ir, and Iw laser images may lead
to a different result. As it is not the main focus of this paper,
it will be just mentioned that the two laser line extraction
methods considered in this work are based either on the Center
Of Gravity (COG) [24], or the FIR-Peak (FP) [25] methods.

IV. EXPERIMENTAL IMPLEMENTATION

The experimental setup, as shown in Fig 3, was composed
of an industrial welding robot, its welding equipment, and
a laser line scanner attached next to the end-effector of the
industrial welding robot employing a bracket. The industrial
welding robot used was a Yaskawa Motoman GP25-12 with
position control over Ethernet, and the welding equipment
was a Fronius WF60I Robacta Drive CMT. Meanwhile, the
laser line scanner was composed of a laser line projector
model Z-LASER Z25M18S3-F-640-LP45 operating in the red
wavelength and a polarization image sensor implemented in
the industrial camera model MATRIX VISION mvBlueFOX3-
2051pC. For more details about the hardware and software
architecture of the laser line scanner used, the reader is referred
to [18].

Fig. 3: The setup used in the experiments. Welding robot with
a laser profile scanner.

Fig. 4: CAD model of the test part with weld defined (shown
in yellow).

A. Experimental software architecture

The software architecture used in the experiments is com-
posed of two well-differentiated execution modes, each of
them with different states and tasks, as can be seen in Fig. 6.
When the system initializes, it enters the first mode, called
Teach mode in Fig. 6a. During the Teach mode, the CAD
machine is the publisher of the robot communication network,
whereas the SEN machine is the subscriber and awaits the
orders from the CAD machine. Once the Teach mode has
started, the CAD1 task is executed, moving the welding robot
to the CAD model welding start position state. As the position
of where the welding should start in the CAD model is
some millimetres away from the real-world coordinates, a



Fig. 5: Robotics toolbox used as offline programming environ-
ment with part and weld path loaded (visualized with Swift).

fine adjustment is done manually using the welding robot
teach pendant during the HUMAN1 task to correct this small
deviation. After this fine manual adjustment, the system is
considered to be in the real-world position for starting to weld.
The CAD machine then updates its welding-start position (task
CAD2) and publishes a message to the network, in which
the SEN machine is the subscriber, to create the welding-start
trigger (task SEN2). In this state, the welding-start trigger is
considered taught. Then, a similar process is followed again
during the CAD3, HUMAN2, CAD4, and SEN2 task sequence
to create the welding-end trigger. After the Teach mode is
finished, and the welding-start and welding-end triggers are
taught, the system enters the Weld mode.

During the Weld mode in Fig. 6b, human intervention is
only needed to start the process, once it is started, the rest of
the tasks are fully automated. This is in contrast with the Teach
mode, in which human intervention was needed in two of the
tasks to adjust the positions. In the Weld mode, and contrary
to the Teach mode, the SEN machine becomes the Publisher of
the network, and the CAD machine, the subscriber. The reason
for this exchange of roles is that the CAD machine has to wait
for the message coming from the SEN system with the sensor
feedback of when it should continue with the next task. When
the Weld mode is started, the SEN machine starts evaluating
the trigger for the welding-start (task SEN3) and publishes
a message to tell the CAD machine to start moving the
robot to its CAD-model welding-start position (task CAD5).
Once the welding-start trigger evaluation is finished, and the

welding-start similarity is found, the SEN machine stops the
trigger evaluation (task SEN4), and publishes a message to
tell the CAD machine to stop the robot, and start the welding
torch (task CAD6). Then, the SEN machine starts evaluating
the trigger for the welding-end (task SEN5) and publishes
a message to tell the robot to start moving the robot to
the CAD-model welding-end position (task CAD7). Once the
welding-end trigger evaluation is finished, and the welding-
start similarity is found, the SEN machine stops the trigger
evaluation (task SEN6), and publishes a message to tell the
CAD machine to stop the robot, and stop the welding torch
(task CAD8). In this state, the welding is considered finished,
and the system can go back to the Teach mode.

This process of welding-start, and welding-end trigger cre-
ation, and evaluation strategy can be performed again on every
desired weld seam in the aluminium part, although for the
presented experiments it was done for one weld seam only.

B. Sensitivity characterization of the trigger method

To characterize the sensitivity of the trigger metrics, a series
of discretized weld gun positions were examined based on
common torch angles and translation shifts experienced during
welding. Table I summarizes the parameters along with the
respective boundaries and step sizes used. The work angle
Rw, and stick angle Rs can be seen depicted in Fig. 7a and 7b
respectively. The tool direction represents translational move-
ment along the weld gun vector. The transverse movements
are decomposed into two perpendicular directions, X, and Z,
relative to the weld direction. Each parameter was explored in
a single degree of freedom, totalling 47 positions.

TABLE I: Testing parameters

Parameter Minimum Maximum Discretization Step
Work angle, Rw −5◦ 5◦ 0.5◦, 1◦(Rw > ±2)
Stick angle, Rs −5◦ 5◦ 0.5◦, 1◦(Rs > ±2)

Tool direction, Tz -5 mm 11 mm 2 mm
Transverse direction, Tx 1 mm 9 mm 2 mm

V. RESULTS

The proposed trigger metrics elaborated in Section III-C,
Cosine Similarity (COSSIM), Multiscale Structural Similarity
(MS-SSIM), and Mean Square Error (MSE) with laser line ex-
traction methods FIR-Peak (FP), and Center Of Gravity (COG)
are graphed in Fig. 8. The data points were collected based
on the weld gun configurations derived from the parameters
described in Table I.

VI. DISCUSSION

The COSSIM, MS-SSIM and MSE trigger metrics tests
were carried out on the setup depicted in Fig. 3 based on
initial positions generated from CAD following the procedure
depicted in Fig. 6, and finally graphed in Fig. 8. Based
on the weld gun displacements explored, all the proposed
metrics seem capable of determining whether a trigger position
is reached given that a viable threshold value is set. On
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Fig. 6: System states and tasks for each mode of the software architecture used in the experiments.

(a) Work angle Rw, tool direc-
tion Tz and transverse direction
Tx.

(b) Stick/drag angle Rs.

Fig. 7: Welding torch angles, and directions.

initial inspection, MS-SSIM seems to perform better than its
counterparts, with the output value decreasing corresponding
to displacements of the weld gun. However, it is important to
note that as the underlying mechanism of the MS-MSSIM
is based on image pixel analysis, exposure to arc welding
light and welding sparks would create random noise in the
image, disrupting the output value of the MS-SSIM. So, it
can be considered a valid metric to trigger the welding-start,
but the COSSIM and MSE metrics (which use the laser line
coordinates, instead of the unprocessed image) should be

prioritized to trigger the welding-end, as they are more robust
to random changes in the image.

Regarding the threshold values that could potentially be
used in a robotic welding system, and based on the experi-
ments in Fig. 8. We consider that a viable trigger threshold
for the vector-based similarity metric COSSIM could be set to
0.95 for both laser line extraction methods. Whereas, a viable
trigger threshold for the image-based similarity metric MS-
SSIM, could be set to 0.90, as the experiments show this is
a more sensitive metric. Finally, for the MSE, which is based
on measuring the error, we consider a viable threshold to be
2× 104 approximately.

In its current state, the manual steps, HUMAN1, and
HUMAN2, described in Fig. 6 were intended primarily for
testing purposes. However, to achieve a fully automatic sys-
tem, simulations of projected laser lines from CAD could in
theory be used to bypass these manual steps, if combined
with other calibration methods. Works such as Abu et al.
[26], and Mohammadikaji et al. [27], have previously incor-
porated such techniques successfully for optical measurement
purposes. Examination of this is left as subject to further
work. The robot trajectories were pre-calculated prior to
movement (CAD1) and the manually corrected (HUMAN1) to
characterize the trigger sensitivities. Hence, real-time motion
was not implemented for the given scope. For a full system,
an extended solution with real-time seam-tracking should be
implemented as a movement policy after weld positions have
been identified. Furthermore, to overcome the computational
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Fig. 8: Similarities and errors of the two angles, and two translations tested.



costs, the performance of CAD-to-Robot can be improved by
implementing GPU for certain operations [28].

VII. CONCLUSION

A trigger method has been proposed to create and evaluate
robotic welding triggers (i.e. for starting or stopping the
robotic welding) with laser line scanners to verify real-world
welding positions to those generated in CAD. The architecture
of a laser line scanner makes it possible to calculate the
similarity between two laser lines using either the raw image
without further processing or performing a laser line extraction
on the images and then calculating the similarity between
the resulting vectors. The decision to compute either an
image-based or vector-based similarity makes choosing the
right metric for each case a necessity to trigger the robotic
welding. The COSSIM, MS-SSIM and MSE metrics were
used to identify viable methods for weld gun location and
pose triggering for laser line projection setups. The considered
metrics were found viable, meaning trigger threshold values
could be defined to determine whether a correct weld gun
pose was achieved. While MS-SSIM was shown in general to
have more consistent output values with the displacement of
the weld gun, its underlying mechanism is subject to potential
noise for reasons elaborated in Section VI.

Potential trigger threshold values have been proposed by the
authors for all of the metrics. Values of 0.95, 0.90, and 2×104
were found to be viable within the frame of the experiments
for COSSIM, MS-SSIM, and MSE, respectively. Finally, a
procedure for creating and evaluating robotic welding triggers
was described in Section IV-A and depicted in Fig. 6.
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