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A B S T R A C T

Re-using existing infrastructure has become a standard approach for the development of marginal offshore
oil fields. Many small discoveries are, however, located in remote areas or require unreasonably high costs
to be tied back to already installed production facilities. Feasible solutions must be found to develop such
prospects in a cost-efficient way. In this paper, we analyze whether sequential development of two stand-
alone small fields (A and B) using the same production facilities can be an economical strategy compared
to the investment in parallel development. We apply and compare two different approaches to evaluate such
a sequential strategy. The first considers that the decision maker maximizes the recovery factor of Field A
first and then invests in Field B disregarding the information about uncertain factors (‘‘myopic’’ approach).
The second approach allows accounting for the decision maker’s ability to optimize the development strategy
given it can learn about uncertainties over time and initiate switching between two fields when it is optimal,
or leave Field B undeveloped (‘‘options’’ approach). We account for several sources of uncertainty affecting
the project value: Fields A and B reservoir uncertainty that is replicated by a benchmark reservoir model, oil
price, operational expenditure (OPEX), and capital expenditure (CAPEX) to switch between two fields. Our
findings are threefold: (1) sequential investment can be the preferred development concept for small stand-
alone discoveries; (2) the sequential development strategy allows the downside risks of the investment to be
partly hedged, including the reservoir, oil price, and cost risks; (3) the ‘‘options’’ approach is needed to capture
the additional monetary value of such a strategy and is considered to be a superior method to assess the value
of the sequential production as opposed to a ‘‘myopic’’ approach.
. Introduction

The average size of new hydrocarbon discoveries in mature pro-
uction areas such as the Norwegian continental shelf (NCS) has been
teadily decreasing in the last few decades (NPD, 2019). Developing
maller fields is associated not only with lower profits, but also with
ore risks (Dias, 2004). Field development decisions have to be made

acing relatively more subsurface uncertainty because of the high cost
f drilling appraisal wells compared to the expected revenues of small
rospects.

A standard way to develop a small offshore field is to connect it
o existing infrastructure (NPD, 2020). This can significantly reduce
apital expenditures needed to develop a satellite field and increase
evenues of already installed infrastructure due to tariffs paid to the
acility owner. However, in some cases it is not possible to use a
ie-back solution. This is the case if a discovery is located too far
rom already installed production facilities. Other reasons could be
ome capacity constraints and technological challenges that make the
ie-back too costly (Lei et al., 2021).

∗ Corresponding author.
E-mail address: semyon.fedorov@ntnu.no (S. Fedorov).

In this paper, we develop a method to evaluate the opportunity to
use a single production unit to develop several small offshore fields
sequentially. We analyze sequential development as a cost-efficient so-
lution allowing exploration and production (E&P) companies to manage
uncertainty in a small field development process and capture the value
of flexibility. We analyze a project case where an oil company holds
two independent licenses, A and B, that both represent small oil fields
located relatively far away from the existing production infrastructure.
If implemented, the development solution must provide a basis for the
stand-alone production of each discovery. The idea is that a movable
platform or a floating production and operation unit is used to develop
the two fields sequentially.

We first analyze whether sequential production is more beneficial
than the parallel development of Fields A and B using two production
units. For the sequential investment, two different approaches can be
used to estimate the project value under uncertainty. The first one
implies that the decision maker disregards the opportunity to learn
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about the development of such factors as the oil price, expected pro-
duction rate of Field B and CAPEX to switch between two fields during
the production phase of Field A and maximizes the recovery factor
of Field A first, independent of the potential of Field B. Once Field
A is depleted (or starts generating a negative cash flow), the field is
decommissioned and facilities are moved to develop Field B. We refer
to this approach as ‘‘myopic’’. The second approach allows optimizing
the switching decision due to learning about the uncertain factors and,
if optimal, switch from Field A to Field B at a different time than
suggested by the ‘‘myopic’’ approach. We refer to the second approach
for the valuation as the ‘‘options’’ approach as it is based on real options
analysis. Overall, four types of uncertainty are considered to have an
impact on the switching decision: oil price, production level, OPEX and
CAPEX to switch. Although the same factors are used as input for the
valuation under the ‘‘myopic’’ approach, the main difference between
the two approaches is that within the ‘‘options’’ approach the valuation
procedure accounts for the decision maker’s ability to change the course
of the project based on the updated knowledge. The switching decision
can be triggered by, for example, a low level of drilling CAPEX that
is needed to start developing Field B. If this CAPEX is expected to
increase, the optimal strategy might be to switch as soon as possible.
In case information reveals an unfavorable outcome, i.e. low expected
recoverable reserves of Field B, the operator can also decide to leave
Field B undeveloped. The main problem that we consider in this case is
the project valuation using the switching decision optimization based
on updated information about the uncertain factors.

In order to allow for a fair comparison of the sequential and par-
allel development strategies, using both the ‘‘myopic’’ and ‘‘options’’
approaches, we use the same inputs to simulate project cash flows.
We use the production optimization based an oriented workflow to
address the reservoir uncertainty and generate 50 probable realizations
of the oil production profiles of each of the two fields. The underlying
reservoir model represents the benchmark case, Olympus, introduced
by Fonseca et al. (2018). The production optimization based on the
Olympus case also yields realizations of the water injection and water
production rates that impact the level of OPEX. In order to replicate the
development of future oil price, we use a two-factor stochastic process
presented in Schwartz and Smith (2000). The CAPEX components are
modeled as geometric Brownian motion (GBM) processes correlated
with the long-term oil price parameter, which allows the avoidance of
bias in the valuation procedure. For the valuation of the parallel de-
velopment and sequential development using the ‘‘myopic’’ approach,
a rather simple discounted cash flow (DCF) analysis based on Monte
Carlo simulation is used. For the ‘‘options’’ approach, we apply the
least-squares Monte Carlo approach (Longstaff and Schwartz, 2001)
to evaluate the project based on switching time optimization under
uncertainty.

As Cortazar et al. (2021) point out, the solution to the switching
problem is twofold: ‘‘the maximized expected profit given by the flex-
ible operation, and the underlying decision policy, which is defined in
terms of a set of switching boundaries triggering regime transitions’’.
Applying the ‘‘options’’ approach allows us to provide insight on both
considerations making our results relevant for real-world problem set-
tings. Our results show that for a specific case study, the sequential
production is a preferred option compared to the parallel production.
We also demonstrate that the ‘‘options’’ approach is an important
tool to capture the value of flexibility when the sequential produc-
tion strategy is considered. By accounting for the opportunity to tune
the switching strategy depending on the information revelation, the
decision maker can significantly increase the expected project value.

In this paper, we contribute to the literature focusing on petroleum
investment under uncertainty and applications of the real options
approach (ROA) focusing on switching options in oil and gas field
development. The switching option is one of the classic types of real
options that finds various applications in natural resource production
2

problems. A number of contributions study end of the lifetime decisions
for fields and focus on the oil-to-gas production switching option. Hahn
and Dyer (2008) evaluate a switching option from only oil production
to combined oil and gas production in the North Slope of Alaska. Hahn
and Dyer (2008) use two correlated one-factor mean reverting pro-
cesses to model oil and gas prices to determine the optimal course of
action considering the switching decision. They derive the value of the
asset with flexibility using a binomial lattice method and deterministic
production model. Hem et al. (2011) and Thomas and Bratvold (2015)
also evaluate the switching from oil production to gas production in
a depleting field, assuming that oil and gas prices follow two-factor
stochastic processes (Schwartz and Smith, 2000). Hem et al. (2011)
use a zero-dimensional reservoir model to replicate the production
uncertainty, whereas Thomas and Bratvold (2015) use deterministic
input from a material balance simulator. Both studies employ the least-
squares Monte Carlo (LSM) method to optimize the switching timing
and obtain the option values. Hem et al. (2011) and Thomas and
Bratvold (2015) also compare results based on ROA and simplistic DCF
analysis where the switching decision is made ignoring the opportunity
to learn about the uncertainty in the future. Hong et al. (2019) use
the LSM algorithm to analyze the optimal switch time from primary
recovery method to the improved oil recovery. The geological uncer-
tainty, described by a two-factor production model, is considered to be
the only source of uncertainty for the switching decision. Hong et al.
(2019) compare the project value under the state-of-the-art reservoir
management approach and the proposed LSM method considering the
impact of future information on switching time.

We also contribute to the literature that presents work on the value
of flexibility in oil field development. Contributions in this field in-
clude Dias (2004), Suslick and Schiozer (2004), Lin et al. (2013), Santos
et al. (2018, 2021), among others. In this paper, we analyze the eco-
nomic effect of a field development strategy that can be highly relevant
for stand-alone small discoveries. To the best of our knowledge, the
sequential production strategy has not been evaluated before. We also
contribute to previous research methodologically by accounting for
four types of uncertainty that affect the optimal decision: geological, oil
price, operational and capital expenditure. Moreover, compared to the
existing contributions, we provide a much more practice-oriented and
realistic modeling approach to reservoir uncertainty by means of the
production optimization based on the Olympus case. This makes our
method more relevant for real-life problem settings. We demonstrate
how to utilize the results of production optimization in the real options
valuation procedure and decision-making process. Consequently, we
extend the above-mentioned contributions, which mostly use simplistic
approaches for the reservoir uncertainty modeling and account only
for at most two types of uncertainty. Our analysis shows that the
LSM approach is able to handle such an amount of uncertain factors
within the valuation procedure. At the same time, the results that the
LSM approach provides, are still intuitive enough to be used for the
decision support. Despite the complexity of the problem, we obtain
a tractable decision rule for making a switch between two licenses.
We also contribute to the literature by modeling the CAPEX and the
oil price as two correlated stochastic processes. Cardenas et al. (2018)
argue that the effect of the correlation between oil price and capital
costs on the project valuation is not thoroughly studied in the literature.

The remainder of this paper is organized as follows. In Section 2,
we describe the investment problem that an oil company faces when
considering a sequential investment in the development of two hydro-
carbon fields. In Section 3, we formulate and develop the modeling
approach for the valuation of the project under both parallel and
sequential development. For the ‘‘options’’ approach we introduce the
optimization algorithm to evaluate the option to switch between two
licenses. In Section 4, we introduce a case study, providing a detailed
description of the Olympus reservoir case and assumptions regarding
the oil price and cost uncertainty modeling. Section 5 presents the

results and sensitivity analysis. Section 6 concludes the paper.
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2. Problem statement

An oil company is evaluating whether to invest in the development
of two oil field licenses offshore Norway. We assume that the two fields
are identical in terms of the reservoir characteristics. Therefore, we
disregard the assessment of which field should be developed first to
maximize the overall value. This assumption can be straightforwardly
relaxed by adding a different underlying reservoir model that can
represent the range of reservoir uncertainty in Field B. This would also
require to choose the optimal development sequence, identifying which
field should be developed first. However, in most of the cases, it will
be optimal to develop a field with higher expected initial oil in place.

Fig. 1. The field development strategies and valuation choices.

Due to the remoteness from existing infrastructure, only stand alone
development can be considered in both cases. A conventional approach
using two different production units to develop Fields A and B in
parallel might be both costly and risky due to prominent reservoir un-
certainty and the small size of the individual discoveries. As illustrated
in Fig. 1, we analyze whether a sequential development of the two
3

licenses with a single production facility can improve their revenues
and decrease the downside risk of the project sufficiently to make the
development economically viable. For the sequential development, a
flexible production and operation unit that can be moved from the
Field A to the Field B location must be considered. This strategy
significantly reduces the risk of occurrence of stranded assets if both
or one of the fields’ reservoir performance proves to be much lower
than expected, making the production unit unemployed. Therewith,
apart from saving capital costs, the sequential strategy can contribute to
the implementation of the policies aiming to reduce the environmental
impact of petroleum production.1 The central question in terms of the
sequential development strategy is determining the time when Field A
should be abandoned and the production unit moved to develop Field
B. Having the flexibility to leave Field B undeveloped can be also highly
valuable if additional information turns out to eventually render the
investment uneconomical.

The first approach that can be used is to maximize the recovery
factor of the Field A and decommission it once it has depleted enough
to be economically non-viable to be developed further. We refer to this
strategy as the ‘‘myopic’’ approach. Fig. 2 illustrates the project timeline
under the ‘‘myopic’’ approach.

The second approach implies that the oil company maximizes the
value of the overall project rather than maximizing only the revenue
generated by Field A. We refer to this as the ‘‘options’’ approach.
Intuitively, the optimal decision in some scenarios might be to switch
to Field B production at a different time than suggested by the first

1 This includes the UN sustainability goals, the European Green Deal, and
Norwegian climate action plan in particular. Delaying Field B production can
also allow using novel solutions for carbon capture and implement production
facility electrification using offshore wind to decrease the carbon footprint
from operations.
Fig. 2. Project timeline under the ‘‘myopic’’ approach.
Fig. 3. Project timeline under the ‘‘options’’ approach.
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approach. This decision can be driven by the state of several factors,
including the oil price, the expected remaining reserves of Field A,
expected production of Field B, the level of OPEX of Field A and CAPEX
needed to switch from Field A to B. The possibility to learn about these
factors over time can also allow assessing whether the investment in
Field B is profitable. Fig. 3 illustrates that starting from year 𝑌𝑠, the
earliest point when the regulator can approve the abandonment of Field
A upon reaching a certain recovery factor, the field operator decides
whether it is optimal to ‘‘exercise’’ the option to switch from Field A to
Field B or to continue developing Field A and reevaluate the decision
at the next decision point. If the expected values of both decisions
are negative; i.e., prolonging the production of Field A and switching
to Field B, the field operator can decommission Field A and leave
Field B undeveloped. Our goal is to identify whether accounting for
the switching flexibility can affect the results of the project valuation
based on the ‘‘myopic’’ approach and impact the choice between the
‘‘parallel’’ and ‘‘sequential’’ development strategies.

We use the Olympus benchmark case as an underlying reservoir
model for both fields to capture the effect of production uncertainty
on the decision-making process and project valuation. Both fields are
considered to be small discoveries with estimated recoverable reserves
ranging from 51.6 to 107.5 mmbbl throughout 50 equally probable
realizations of the reservoir uncertainty (mean of 82.6 mmbbl).

3. Methodology

This section describes the key components of the proposed valuation
of the investment in two oil fields. The valuation is based on a simula-
tion approach. Fig. 4 illustrates the main building blocks and states the
output produced by each block as well as the information flow between
individual blocks.

Fig. 4. The valuation procedure (uncertainty modeling blocks, output produced by
each block and information flow between blocks).

In this paper, we use an ensemble of 50 realizations of the Olym-
pus benchmark reservoir model2 to estimate the possible outcomes of
the hydrocarbon production. Based on the benchmark case data and
drainage strategy described in Fonseca et al. (2018), we perform the
production optimization (see Section 3.1) that yields 50 realizations
of oil and water production and water injection rates of Field A that
maximize the economic value of the field development under static
conditions (fixed oil price and control parameters). In order to make
our results less case-dependent and decrease the complexity of the
production optimization task, we assume that Field A and Field B are

2 Benchmark reservoir models are developed by the reservoir optimization
community to test methods for field development optimization under geo-
logical uncertainty. Using the benchmark cases allows the standardization of
the set of models, problem definition and objective function calculation. This
makes the comparison of results proposed by different researchers fair. It also
provides consensus on best practices for field development optimization.
4

identical in terms of reservoir properties. That means that we use the
same 50 realizations to replicate the reservoir uncertainty of Field B.

Then we proceed to the valuation of the parallel and sequential
production strategies, where we account for several additional uncer-
tain factors that can affect the decision making process. Section 3.2
describes the oil price simulation process. In the case of the parallel
development, the oil price level affects only the abandonment time
of Fields A and B. In the sequential development, the decision maker
would optimize the switching timing between the two fields (within the
‘‘options’’ approach) taking into account the oil price level, CAPEX and
information regarding expected production of Field B. The simulated
production profiles and oil prices also impact the level of OPEX and
CAPEX. The estimation process is described in Section 3.3. Combining
the output of the modeling blocks, we simulate the project cash flows
and perform the project valuation under parallel and sequential produc-
tion. For the latter case, cash flows for both the ‘‘myopic’’ and ‘‘options’’
approaches are simulated. Within the ‘‘options’’ approach, these cash
flows are used for the switching time optimization (see Section 3.4)
and valuation of the project with flexibility.

3.1. Production optimization

One of the main factors driving risk in small field development is
the reservoir uncertainty. In this paper we use the Olympus benchmark
case presented in Fonseca et al. (2018) as an underlying reservoir
model in order to build the oil production forecast for Field A and
Field B. Clearly, considering two different underlying reservoir models
in order to relax the assumption regarding the fact that Fields A and
B are identical, would increase the production optimization task. The
performance and run time of the economic valuation model presented
in Section 3.4, however, is not expected to be affected by that.

The uncertainty about the reservoir properties in the Olympus case
allows us to account for reservoir uncertainty when evaluating field de-
velopment strategies. Probabilistic approaches have been widely used
in the literature in recent years in order to capture the full uncertainty
range by generating a set of geological realizations (Correia et al.,
2015; Santos et al., 2018; Mahjour et al., 2019, 2022). In addition to
the oil production profiles, we derive good estimates for the level of
water production and water injection, which directly impact the level of
OPEX. In this section we discuss the proposed production optimization
algorithm. More details on the Olympus case and specific parameter
values used for the optimization procedure are provided in Section 4.1,
where we introduce the case study, which is used to illustrate the
application of the proposed valuation methodology.

In order to estimate the production parameters, we use well con-
trol optimization, optimizing the bottom hole pressure (BHP) of the
producer and injector wells when implementing water flooding (WF).
WF is chosen as a default recovery strategy by Fonseca et al. (2018)
who originally introduced the Olympus challenge. The well control
optimization is considered as one of the most attractive approaches
for increasing the recovery factors and the associated profits while
developing both green and mature reservoirs (Mohaghegh et al., 2012;
Amar et al., 2018; Amar and Zeraibi, 2020). However, with a high
number of wells and in the presence of various kinds of uncertainties,
such as the geological data, the degree of complexity in the task of
identifying suitable BHP values increases significantly. Therefore, an
oriented workflow was considered in this study for optimizing the BHP
values of the producer and injector wells.

WF is a rigorous technique for improving oil recovery, which de-
mands relatively low costs to implement, but can significantly improve
and extend oil displacement efficiency. However, the above-mentioned
benefits of WF are dependent on an adequate design and wise choice
of its main control parameters. There are several recent contributions
that proposed relevant workflows for optimizing the control parameters
of WF by combining some numerical, statistical, and optimization
approaches. Among them is Mohaghegh (2011), who establishes an



Journal of Petroleum Science and Engineering 218 (2022) 110933S. Fedorov et al.

v
c

artificial intelligence based proxy for investigating suitable wells for
relaxing their rates in a WF case after performing an initial number
of simulations using a commercial software. Alenezi and Mohaghegh
(2017) developed a smart proxy model for mimicking the outputs
of a commercial simulator during WF optimization of the SACROC
case based on series of artificial neural networks (ANN). Artun (2017)
demonstrated the higher performance of ANN compared with Capaci-
tance Resistance Model (CRM) for modeling interwell connectivity in
WF cases. Hourfar et al. (2019) introduced an reinforcement learning
approach to optimize a WF project. Their workflow was applied on the
Egg-model. Ng et al. (2021) proposed a hybrid model combining an
ANN and two nature-inspired algorithms, particle swarm optimization
and grey wolf optimization, for optimizing the control parameters of
producer and injector wells during the WF phase. Xue et al. (2022)
propose a divide-and-conquer optimization paradigm to decompose
a large scale WF production optimization problem into a number of
simpler data-driven surrogates. Wang et al. (2022) propose a novel
self-adaptive multi-fidelity surrogate-assisted multi-objective produc-
tion optimization algorithm to reduce the computational burden and
enhance the accuracy of the surrogate model.

The BHP values of the wells are chosen with the objective to maxi-
mize the net present value (NPV) and ensure safe and efficient delivery
of hydrocarbons from the well to the collection facilities (Leporini et al.,
2019). Possible problems related to flow assurance occurring during the
transportation (such as liquid loading, wax deposition, sand deposition,
etc.) (Dall’Acqua et al., 2017) or across particular equipment (such as
multiphase valves) (Giacchetta et al., 2014) are addressed. The NPV is
defined as follows (Bellout, 2014):

𝑁𝑃𝑉 =
𝑁𝑠
∑

𝑘=1

(

𝑁𝑝
∑

𝑗=1
𝑃𝑜𝑞

𝑗,𝑘
𝑜 𝛥𝑡𝑘 −

𝑁𝑝
∑

𝑗=1
𝐶𝑤𝑝𝑞

𝑗,𝑘
𝑤𝑝𝛥𝑡𝑘 −

𝑁𝑖
∑

𝑗=1
𝐶𝑤𝑖𝑞

𝑗,𝑘
𝑤𝑖 𝛥𝑡𝑘

)

∕(1 + 𝑟)𝑡. (1)

In the above-equation, 𝑁𝑠 is the number of time-steps 𝛥𝑡 , 𝑁𝑝 and
𝑁𝑖 denote the number of producer and injector wells, respectively. 𝑞𝑗,𝑘𝑜
and 𝑞𝑗,𝑘𝑤𝑝 denote the flow rates of produced oil and water from producers
during time step t, respectively. 𝑞𝑗,𝑘𝑤𝑖 represents the rate of the injected
water during time step 𝛥𝑡. 𝑃𝑜, 𝐶𝑤𝑝, and 𝐶𝑤𝑖 stand for the oil price,
the cost of water produced and injected, respectively, 𝑟 is the annual
discount rate, and 𝑡 is the total number of years. The simulation runs
were performed using the commercial simulator Eclipse. In order to
reduce the computational time of the realizations, a Matlab code was
written for running the cases in Eclipse and extracting their results
automatically. Notably, the simulation runs and the calculations were
done using an Intel® Xeon® Gold 6248 2.50 GHz and 64 Gb of RAM,
and an Intel® CoreTM i7-7700HQ 2.80 GHz and 16 Gb of RAM. The
main steps of the workflow applied for each realization of the reservoir
model are summarized as follows:

• Step 1: Generate a predefined number of runs. In this step, the
Latin Hypercube Design was applied for generating the BHP val-
ues of ‘‘n’’ runs for each realization of the reservoir uncertainty.
This step aimed at ensuring a good distribution of the runs around
the search space and it allows the identification of the regions
susceptible to involve high NPV values. Based on the length of the
BHP intervals and the computational time of each realization, it
was judged suitable to assume n=60 runs.

• Step 2: Simulate the cases using Eclipse and the written Matlab
code.

• Step 3: Sort the runs with respect to their calculated NPV values.
• Step 4: Select the best 5 runs having the highest NPV among the

60 runs.
• Step 5: Apply a grid search technique on the selected 5 runs by

dividing the neighbor regions of the decision variables of these
runs into sub-intervals and simulate the new cases using Eclipse
and the written Matlab code.

• Step 6: Find the best run with the highest NPV value.

The optimization yields oil production, water production and wa-
ter injection rates that maximize the NPV in each realization. We
5

present the results of the production optimization in Section 4.1. Our
primary focus is on the comparison between the project values resulting
from parallel and sequential development strategies that are based
on the same production profiles. Therefore, issues that do not add
much difference between the two strategies, such as well placement
optimization, are not considered in this study. However, the well
control optimization problem presented in the paper can be extended
by considering the optimal well placement. If the well placement is
considered as a decision variable in addition to the procedure that
we discuss, the number of runs needed to achieve the optimal NPV
within the presented well control optimization has to be increased. We
refer to several contributions including Silva et al. (2020), Sayyafzadeh
and Alrashdi (2020) and Kristoffersen et al. (2021) that perform well
placement optimization based on the Olympus case.

3.2. Oil price modeling

We consider that the future oil price evolves over the project
time as a two-factor stochastic process as proposed by Schwartz and
Smith (2000). Earlier contributions including Jafarizadeh et al. (2012)
and Fedorov et al. (2021), demonstrated that this price model presents
a good balance between the ability to replicate the range of uncertainty
in future oil prices and ease of calibration process. However, different
price models such as geometric Brownian motion (GBM) or mean-
reversion process can be used to reflect uncertainty in future oil prices.
We refer to Al-Harthy (2007), Xu et al. (2012) and Fedorov et al. (2021)
who perform a comparison between the above-mentioned price models
in petroleum projects valuation.

The Schwartz and Smith (2000)’s model assumes that the commod-
ity price is driven by two stochastic factors: the long-term factor 𝜉𝑡,
which follows a Brownian motion as given by

𝑑𝜉𝑡 = 𝜇𝜉𝑑𝑡 + 𝜎𝜉𝑑𝑧𝜉 , (2)

where 𝜇𝜉 denotes the drift rate and 𝜎𝜉 is the volatility; and the
short-term factor 𝜒𝑡, which is modeled as a mean reverting Ornstein–
Uhlenbeck process as given by

𝑑𝜒𝑡 = −𝜅𝜒𝑡𝑑𝑡 + 𝜎𝜒𝑑𝑧𝜒 , (3)

where 𝜅 is the mean-reversion coefficient and 𝜎𝜒 denotes the volatility.
As we simulate the development of project cash flows in discrete

time with time steps of one year and apply the risk-neutral valuation
technique, we discretize the risk-neutral versions of both price process
components as given by

𝜉∗𝑡 = 𝜉∗𝑡−1 + 𝜇∗
𝜉𝛥𝑡 + 𝜎𝜉𝜀𝜉

√

𝛥𝑡, (4)

𝜒∗
𝑡 = 𝜒∗

𝑡−1𝑒
−𝜅𝛥𝑡 − (1 − 𝑒−𝜅𝛥𝑡)

𝜆𝜒
𝜅

+ 𝜎𝜒𝜀𝜒

√

(1 − 𝑒−2𝜅𝛥𝑡)
2𝜅

, (5)

where 𝜀𝜉 and 𝜀𝜒 in Eqs. (4) and (5) are standard normal random
ariables and are correlated in each time period with the correlation
oefficient 𝜌𝜉𝜒 .

We use the Kalman filter to calibrate the parameters of Schwartz
and Smith (2000)’s price process. We estimate seven coefficients used in
Eqs. (4) and (5) based on historical spot and futures prices by maximiz-
ing the log-likelihood score. Further details regarding the calibration
process using the Kalman filter are discussed by Thomas and Bratvold
(2015) and Fedorov et al. (2021). The results of the calibration are
presented in Section 4.2.

3.3. Cost uncertainty modeling

The yearly operating costs 𝑂𝑃𝐸𝑋𝑡 of both licenses are assumed to
consist of a fixed (𝐹𝑂) and several variable parameters that depend on
the yearly production rate of the field 𝑞𝑡𝑛 , the average annual oil price
𝑃𝑡𝑛 , water injection 𝑞𝑤𝑖𝑡𝑛 and water production 𝑞𝑤𝑝𝑡𝑛 rates:

𝑂𝑃𝐸𝑋 = 𝐹𝑂 + 𝑎𝑃 + 𝑏𝑞 + 𝑐𝑞 + 𝑑𝑞 , (6)
𝑡𝑛 𝑡𝑛 𝑡𝑛 𝑤𝑖𝑡𝑛 𝑤𝑝𝑡𝑛
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where 𝑎, 𝑏, 𝑐 and 𝑑 are the coefficients determining the contribution of
each parameter to the total cost.

In this study, we also consider capital expenditure (CAPEX) uncer-
tainty. The amount of CAPEX in our case is mainly dictated by the
cost of construction and installation of the production facilities, drilling
costs and other associated costs. One of the main factors affecting the
switching decision between Fields A and B is the compound CAPEX to
switch that consists of the abandonment cost of Field A, modernization
of the production unit and the drilling of wells in Field B.

Following the approach in Cardenas et al. (2018), we model each
year’s individual CAPEX as GBM processes with an identical drift rate
𝜇𝜃 and volatility 𝜎𝜃 , described by the differential equation:

𝑑𝜃𝑡 = 𝜇𝜃𝜃𝑡𝑑𝑡 + 𝜎𝜃𝜃𝑡𝑑𝑧𝜃 , (7)

where 𝜃𝑡 denotes the CAPEX in year 𝑡 and 𝑑𝑧𝜃 represents the Brownian
ncrement. The discretized version of Eq. (7) can be written as

𝑡+1 = 𝜃𝑡 exp
[(𝜇𝜃−0.5𝜎2𝜃 )𝛥𝑡+𝜎𝜃𝜀𝜃

√

𝛥𝑡] . (8)

Brandão et al. (2005) and Smith (2005) argue that in order to
include cost uncertainty into the risk-neutral valuation procedure in
a correct (from the methodological point of view) way, it can be
modeled using subjective knowledge, but must be directly correlated
with market uncertainty (i.e. the oil price in our case). In the context
of how the risks must be treated in the valuation procedure, the cost
uncertainty falls somewhere between the notion of private and market
risks. Correlating the cost uncertainty with the market parameters
allows bias to be avoided where the valuation based on simulation
paths with high oil prices and low CAPEX can lead to overestimation
of the real option value.

Willigers (2009) provides evidence of a strong correlation between
oil prices and oil rig rental rates. His results indicated that the correla-
tion coefficient between these two parameters in the North Sea and the
Gulf of Mexico was 0.87 with one year’s delay. Using this argument, we
consider that all capital expenditure in time step 𝑡 are correlated with
the long-term component of the oil price in time step 𝑡 − 1.

We correlate the normal random variables of the oil price and
CAPEX stochastic processes as described by Wiersema (2008) and
applied by Cardenas et al. (2018) in the following way:

𝜀𝜃𝑡 = 𝜀𝜉𝑡−1𝜌𝜃𝜉 + 𝜀
√

1 − 𝜌2𝜃𝜉 . (9)

The approach that we take by correlating the CAPEX process and
oil price process allows us to follow the recommendations of Smith
(2005) regarding treatment of different types of risks within a single
risk-neutral valuation procedure. In Section 5.3, we provide sensitivity
analysis on the correlation factor, proving that disregarding the correla-
tion between the CAPEX to switch and the oil price, can lead to biased
valuation results.

3.4. Project valuation and real options approach

In order to estimate the investment value, we use simulated project
cash flows that result from combining the production profiles of Fields
A and B, oil price and cost trajectories (as illustrated in Fig. 4). We first
estimate the project value under the parallel development by means
of Monte Carlo simulation. Then, we apply two alternative approaches
to evaluate the sequential development, a ‘‘myopic’’ approach and an
‘‘options’’ approach. In case of the ‘‘myopic’’ approach, we use a simple
Monte Carlo simulation method to generate realizations of the cash
flow in Field A. The decision rule for abandonment of Field A is based
on cash flow and production levels that indicate the depletion of Field
A. Once Field A is abandoned in year 𝑡𝑚, the facility is moved to develop
Field B, whose cash flow is modeled in the same manner as in Field A.
We assume that it takes 𝑘 years between Field A being abandoned and
Field B starting production. Therewith, we disregard the flexibility to
wait to invest in Field B after the Field A was abandoned. Considering
6

this flexibility would require valuation of a compound option including
both the option to abandon/switch and the option to wait for Field B
investment. This is expected to further increase the additional value
captured by the ‘‘options’’ approach.

In order to account for the switching flexibility in case of the
‘‘options’’ approach, we apply a real options analysis. We identify the
optimal time to switch between two fields accounting for the fact that
in order to make a decision to initiate switching in year 𝑡𝑜, the oil
company can use information resolved by the end of year 𝑡𝑜 − 1. If the
decision to switch is made, production of Field A is ceased at time step
𝑡𝑜 and facilities are moved to Field B, which starts production in year
𝑡𝑜 + 𝑘. In order to allow for a fair comparison between the ‘‘myopic’’
approach and the ‘‘options’’ approach, we use the same simulated cash
flow paths. The key difference between the two valuation approaches is
the time when Field A is abandoned (𝑡𝑚 and 𝑡𝑜) and the opportunity to
leave Field B undeveloped in case of the ‘‘options’’ approach. In some
simulation cases, however, 𝑡𝑚 and 𝑡𝑜 can be the same. By exploiting
the flexibility to leave Field B undeveloped, the oil company can addi-
tionally hedge against the downside risk if the information regarding
the oil price, expected recoverable reserves of Field B and CAPEX to
switch indicates that investing in Field B is sub-optimal. In this case,
production facilities that were used for the development of Field A can
be sold or used for a different license.

For the ‘‘options’’ approach, we use the LSM method introduced
by Longstaff and Schwartz (2001) to identify the optimal time to switch
and whether Field B should be developed in each simulation case.
The LSM has been applied in several recent contributions studying
investment cases in oil and gas under uncertainty (see for exam-
ple Willigers and Bratvold (2010), Fleten et al. (2011), Jafarizadeh
et al. (2012), Thomas and Bratvold (2015), Jafarizadeh and Bratvold
(2015) and Hong et al. (2019)). The main advantage of using the LSM
in our case is its ability to handle multiple sources of uncertainties
in problems with downstream decisions in a computationally effective
manner.

In order to optimize the switching decision, the LSM algorithm
works in a backward fashion starting from the last decision point when
switching is possible. In the last decision point, the option to switch
is exercised if the expected value of the immediate exercise, denoted
by 𝛱𝑡𝑛 (𝑡𝑛, 𝑃𝑡𝑛 , 𝑄𝐵 𝑡𝑛 , 𝐶𝐴𝑃𝐸𝑋𝑡𝑛 ), is larger than zero. In every time step 𝑡
etween the last and the first decision point when the switching is pos-
ible, the LSM algorithm compares the expected value of the immediate
xercise of the option to switch, and the continuation value, associated
ith the decision to continue production of Field A at least until the
ext decision point, expressed as 𝛷𝑡𝑛 (𝑡𝑛, 𝑃𝑡𝑛 , 𝑞𝐴 𝑡𝑛 , 𝑂𝑃𝐸𝑋𝐴 𝑡𝑛 , 𝑄𝐵 𝑡𝑛 ). 𝛱𝑡𝑛
s conditional on the oil price level 𝑃𝑡𝑛 , expected recoverable reserves of
ield B 𝑄𝐵 𝑡𝑛 and CAPEX to switch 𝐶𝐴𝑃𝐸𝑋𝑡𝑛 , while 𝛷𝑡𝑛 is conditional
n the oil price 𝑃𝑡𝑛 , the then-current oil production rate of Field A 𝑞𝐴 𝑡𝑛 ,
he level of operational expenses of Field A 𝑂𝑃𝐸𝑋𝐴 𝑡𝑛 , the expected
ecoverable reserves of Field B if the switching is delayed by one year
𝐵 𝑡+1𝑛 and the expected CAPEX to switch if the switching is delayed
y one year 𝐶𝐴𝑃𝐸𝑋𝑡+1𝑛 . The maximum of the two values indicates the
ptimal switching policy at each point in time.

The optimal value function 𝐹 at time step 𝑡𝑛 can be formulated using
he following Bellman equation (Rodrigues and Rocha Armada, 2006):

𝑡𝑛 = 𝑚𝑎𝑥
{

E∗
𝑡𝑛

[

𝛱𝑡𝑛 (𝑡𝑛, 𝑃𝑡𝑛 , 𝑄𝐵 𝑡𝑛 , 𝐶𝐴𝑃𝐸𝑋𝑡𝑛 )
]

,

E∗
𝑡𝑛

[

𝛷𝑡𝑛 (𝑡𝑛, 𝑃𝑡𝑛 , 𝑞𝐴 𝑡𝑛 , 𝑂𝑃𝐸𝑋𝐴 𝑡𝑛 , 𝑄𝐵 𝑡𝑛 )
] }

, (10)

Notably, we must make assumptions regarding the decision maker’s
nowledge regarding the expected recoverable reserves of Field B 𝑄𝐵 𝑡𝑛 ,
𝐵 𝑡+1𝑛 and the expected CAPEX to switch if the switching is delayed
y one year, i.e. 𝐶𝐴𝑃𝐸𝑋𝑡+1𝑛 , at time step 𝑡𝑛. We assume that the
ield operator has perfect information on both parameters when the
ecision to switch is being made. While for the capital expenditure this
ssumption is fully realistic, as oil companies can conclude contracts
ith suppliers in advance, leaving little room for deviations in the
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final cost, the assumption regarding the accurate knowledge of how
much oil can be produced by Field B before drilling production wells
is considered to be strong, but allows us to significantly simplify the
optimization algorithm, which accounts for five uncertain factors, and
makes the valuation procedure more transparent. In case of perfect
information, 𝑄𝐵 𝑡𝑛 is equal to the simulated sum of the future annual
production rates from Field B. In Section 5.3, we test this assumption,
changing the quality of information regarding the expected recoverable
reserves of Field B that the decision maker has when optimizing the
switching timing.

At the decision point 𝑡𝑛 both 𝛱𝑡𝑛 and 𝛷𝑡𝑛 are unknown due to the
fact that they depend on future oil prices and production rates, which
are not observable when the decision is being made. However, we
can estimate the expected value of 𝛱𝑡𝑛 and 𝛷𝑡𝑛 conditional on then-
current information regarding the oil price, productions rates and costs.
We take the approach originally suggested by Longstaff and Schwartz
(2001) and use a linear regression to perform this estimation as given
by

E∗
𝑡𝑛

[

(𝛱𝑡𝑛 (𝑡𝑛, 𝑃𝑡𝑛 , 𝑄𝐵 𝑡𝑛 , 𝐶𝐴𝑃𝐸𝑋𝑡𝑛 ))
]

= 𝛽1𝑃𝑡𝑛

+𝛽2𝑄𝐵 𝑡𝑛 + 𝛽3𝐶𝐴𝑃𝐸𝑋𝑡𝑛 + 𝛽4𝑃
2
𝑡𝑛
+ 𝛽5𝑄

2
𝐵 𝑡𝑛

+ 𝛽6𝐶𝐴𝑃𝐸𝑋2
𝑡𝑛

+𝛽7𝑃𝑡𝑛𝑄𝐵 𝑡𝑛 + 𝛽8𝑃𝑡𝑛𝐶𝐴𝑃𝐸𝑋𝑡𝑛 + 𝛽9𝑄𝐵 𝑡𝑛𝐶𝐴𝑃𝐸𝑋𝑡𝑛

+𝛽10𝑃𝑡𝑛𝑄𝐵 𝑡𝑛𝐶𝐴𝑃𝐸𝑋𝑡𝑛 , (11)

E∗
𝑡𝑛

[

(𝛷𝑡𝑛 (𝑡𝑛, 𝑃𝑡𝑛 , 𝑞𝐴 𝑡𝑛 , 𝑂𝑃𝐸𝑋𝐴 𝑡𝑛 , 𝑄𝐵 𝑡+1𝑛 , 𝐶𝐴𝑃𝐸𝑋𝑡+1𝑛 ))
]

= 𝛼1𝑃𝑡𝑛

+𝛼2𝑞𝐴 𝑡𝑛 + 𝛼3𝑂𝑃𝐸𝑋𝐴 𝑡𝑛 + 𝛼4𝑄𝐵 𝑡+1𝑛

+𝛼5𝐶𝐴𝑃𝐸𝑋𝑡+1𝑛 + 𝛼6𝑃
2
𝑡𝑛
+ 𝛼7𝑞

2
𝐴 𝑡𝑛

+ 𝛼8𝑂𝑃𝐸𝑋2
𝐴 𝑡𝑛

+𝛼9𝑄2
𝐵 𝑡+1𝑛

+ 𝛼10𝐶𝐴𝑃𝐸𝑋2
𝑡+1𝑛

+ 𝛼11𝑃𝑡𝑛𝑞𝐴 𝑡𝑛

+𝛼12𝑃𝑡𝑛𝑂𝑃𝐸𝑋𝐴 𝑡𝑛 + 𝛼13𝑃𝑡𝑛𝑄𝐵 𝑡+1𝑛 + 𝛼14𝑃𝑡𝑛𝐶𝐴𝑃𝐸𝑋𝑡+1𝑛

+𝛼15𝑞𝐴 𝑡𝑛𝑂𝑃𝐸𝑋𝐴 𝑡𝑛 + 𝛼16𝑞𝐴 𝑡𝑛𝑄𝐵 𝑡+1𝑛

+𝛼17𝑞𝐴 𝑡𝑛𝐶𝐴𝑃𝐸𝑋𝑡+1𝑛 + 𝛼18𝑂𝑃𝐸𝑋𝐴 𝑡𝑛𝑄𝐵 𝑡+1𝑛

+𝛼19𝑂𝑃𝐸𝑋𝐴 𝑡𝑛𝐶𝐴𝑃𝐸𝑋𝑡+1𝑛 + 𝛼20𝑄𝐵 𝑡+1𝑛𝐶𝐴𝑃𝐸𝑋𝑡+1𝑛

+𝛼21𝑃𝑡𝑛𝑞𝐴 𝑡𝑛𝑂𝑃𝐸𝑋𝐴 𝑡𝑛𝑄𝐵 𝑡+1𝑛𝐶𝐴𝑃𝐸𝑋𝑡+1𝑛 , (12)

where 𝛼1...21 and 𝛽1...10 denote the regression coefficients.
At each decision point where the option to switch is available, we

take the optimal course of action in each simulation case and calculate
the project value under the ‘‘options’’ approach, discounting cash flows
at a risk-free rate within a risk-neutral valuation routine.

The option to leave Field B undeveloped should be exercised when
both the immediate exercise of the option to switch 𝛱𝑡𝑛 and contin-
uation of the Field A development 𝛷𝑡𝑛 have negative expected values.
Therefore, we identify all simulation cases with negative value function
7

𝐹 at time of optimal switching 𝑡𝑠𝑤𝑛
, found on the previous step of the

procedure. The oil company is then considered to abandon Field A at
𝑡𝑠𝑤𝑛

and sell the production unit that still has a substantial residual
value.

The main requirement for implementing the LSM approach for such
an optimization, is having a large enough set of realizations of each
factor included in the regression function. A potential bottleneck is
the number of needed production profile paths. In our case, 50 real-
izations of the reservoir uncertainty enabled performing the regression
analysis. However, if the decision maker has, for example, only three
production profile paths, this might result in invalidity of the regression
analysis. Fedorov et al. (2020) reach model validity by considering five
realizations of the Olympus case.

4. Case study

4.1. Field development case and production optimization

The considered reservoir model, Olympus case, is a synthetic reser-
voir that has been proposed as a benchmark model for studies aiming
at establishing field development plans under geological uncertainties
Fonseca et al. (2017), Fonseca et al. (2018) and Chaturvedi (2021).
The reservoir involves 16 wells (10 producers and 6 water-injectors)
(see Fig. 5) operating under BHP control mode. In this study, the
producer wells are denoted by P1, P2, . . . , P10, respectively, while the
injector wells are designated as I1, I2, . . . , I6, respectively. The area
of the field is 9 km ×3 km and is bounded on one side by a fault.
The average thickness of the reservoir is 50 m. The model consists of
341,728 grid cells (118 × 181×16), among which 192,750 are active.
The 3D dimensions of grids are approximately 50m×50m×3 m. The
facies types of the reservoir include Channel Sand (in the upper zone),
Shale (in the upper zone and barrier), and Coarse Sand, Medium Sand,
and Fine Sand (in the lower zone). From the perspective of geological
uncertainties, the Olympus reservoir includes 50 different model cases
with different distributions of net-to-gross, porosity, and permeability.
More details about the Olympus model can be found in Fonseca et al.
(2018) and Chaturvedi (2021).

Table 1 states the main parameters used for calculating the NPV
that serves as an objective function for the production optimization
workflow.3

3 All parameters except the oil price are taken from the original publication
of Fonseca et al. (2018). The oil price is revised from 45 $/bbl to 60 $/bbl to
reflect the price levels observed in the first half of 2021. The changes, however,
do not affect the production optimization results.
Fig. 5. Olympus case well placement.
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Fig. 6. Comparison between the resulting NPV values before (base case) and after (best case) the optimization for 50 realizations of the Olympus case.
Table 1
The main economic parameters used for NPV
calculation.
Parameter Unit Value

𝑃𝑜 $/bbl 60
𝐶𝑤𝑝 $/bbl 6
𝐶𝑤𝑖 $/bbl 2
𝑑 fraction 0.08
𝑡 years 20

Before proceeding to the optimization steps for each case of the
ensemble, some preliminary runs were performed in order to set the
maximum and minimum BHP values supported by the producers and
injectors. Table 2 reports the BHP intervals considered for the wells of
the Olympus model in this study.

Table 2
The BHP intervals considered for the wells of Olympus model in this study.

Wells’ type Wells BHP (bar)

Min Max

Producers

P1, P2, P3, P5, and P6 75 130
P4 75 100
P7 75 155
P8 75 165
P9 75 125
P10 75 160

Injectors I1, . . . , I6 220 260

The comparison between the NPV results before (base case) and
after (best case) the optimization for the different Olympus cases is
reported in Fig. 6. As can be seen, significant improvements were made
in the NPV values for all cases after implementing the optimization
approach.
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The build-up phase is considered to take four years, after which
Field A delivers its first oil in Year 5. The optimization yields the
forecast for the oil production, water injection and water production
rates for the first 20 years of the field lifetime. As the production
phase lasts for more than 20 years in many simulation cases, we had to
extrapolate the respective rates for an additional 10 years. As the pro-
duction rate between 20 and 30 years in rather low, the extrapolation
is not expected to provide significant discrepancies with the case if the
production optimization was used for the whole period of 30 years. The
resulting oil production, water injection and water production rates for
three example cases (Olympus 18, 6 and 49), representing the ‘‘worst’’,
‘‘medium’’ and ‘‘best’’ case of the reservoir performance, are illustrated
in Fig. 7. This figure demonstrates the range of uncertainty built in the
Olympus reservoir case.

4.2. Oil price simulation

We calibrate the oil price process parameters based on the historical
market data by using the Kalman filter as demonstrated by Fedorov
et al. (2021). We use the Refinitiv Eikon® data on the ICE Brent
historical futures contracts and Dated Brent spot prices from March
2006 to June 2021.

Table 3
Calibrated parameter values used for the Schwartz–Smith two-factor price process
simulation.

Parameter Value Std error Parameter Value Std error

𝜉0 4.07 – 𝜒0 0.1 –
𝜎𝜉 11.5% 0.005 𝜎𝜒 56% 0.023
𝜇∗
𝜉 −0.45% 0.001 𝜌𝜉𝜒 0.12 0.036

𝜅 0.45 0.006 𝜆𝜒 10.9% 0.011

The resulting oil price process parameters are reported in Table 3.
Fig. 8 illustrates examples of the simulated price paths and confidence
bands based on 2,500 simulated cases.
Fig. 7. Results of the production optimization for three realizations of the Olympus case.
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Table 4
Parameters for the GBM process modeling the CAPEX.
Parameter Value Description

𝜃0𝐴𝑌 2
$100 million CAPEX Field A Year 2 - initial installment for the production facility

𝜃0𝐴𝑌 3
$400 million CAPEX Field A Year 3 - second installment for the production facility, drilling template

𝜃0𝐴𝑌 4
$1300 million CAPEX Field A Year 4 - final installment for the production facility, drilling costs

𝜃0𝐵 𝑡
$100 million CAPEX Field B Year 1 - Field A decommissioning, production facility modernization

𝜃0𝐵 𝑡+1
$550 million CAPEX Field B Year 2 - drilling costs, production facility modernization

𝜇𝜃 2%
𝜎𝜃 10%
Fig. 8. Oil price simulation results, confidence bands and example price paths.

4.3. Costs

During the build-up phase of Field A, the operator incurs capital
costs in Year 2, Year 3 and Year 4, which mainly consist of the facility
cost and the cost of production drilling. Since we assume that Fields A
and B are identical, the cost structure for the two fields for the parallel
development case is the same. In case of the sequential production, in
order to switch to Field B, the operator has to modernize the production
unit in the first year after the production in Field A is shut down,
i.e. year 𝑡, and perform drilling in the second year 𝑡 + 1 in order to
switch to Field B. The production of Field B starts in year 𝑡+ 2, i.e. the
parameter 𝑘 that we introduced in Section 3.4 equals 2.

As mentioned in Section 3.3, we model individual components of
CAPEX as GBM processes correlated with the oil price. We split total
CAPEX into several components that the field operator is expected to
incur in each year (Y2, Y3, Y4 as well as the CAPEX in the first and
second years after Field A is abandoned, 𝑡 and 𝑡+1) that reflect different
types of costs, which are independent from each other. We use identical
parameters for the annual drift rate 𝜇𝜃 of 2% and volatility 𝜎𝜃 of 10%
for GBM processes in Eq. (8). However, each CAPEX process has its
own initial value reflecting an existing estimate as of now for each
component. Initial values for each component and description of types
of cost components are reported in Table 4. We take the same cost
simulation paths for the valuation of the project under the parallel and
sequential development.

Additionally, we must decide on the correlation level between the
CAPEX and the oil price. Willigers (2009), who studies the correlation
between the rig rental rates in the North Sea and oil prices, found that
the correlation coefficient equals 0.87. However, the field development
case that we analyze also includes the cost of components (such as
the production unit) and operations that are less dependent on the
developments in the oil market than the rig rates studied by Willigers
(2009). Therefore, we decided to slightly downgrade the correlation
coefficient used by Willigers (2009) to 0.8. We also include a sensitivity
analysis for the correlation factor in Section 5.3.

Fig. 9 illustrates example simulation paths for the oil price and
CAPEX components, respectively. As can be seen, accounting for the
9

correlation between the oil price and CAPEX allows us to avoid unre-
alistic simulation scenarios, where oil prices are low, whereas CAPEX
is high. Therefore, we can decrease bias when analyzing the switching
option.

Fig. 9. Example path of the oil price and the individual components of CAPEX.

The following parameters are used for Eq. (6) to relate the annual
OPEX (in million $) with the field production rate 𝑞𝑡𝑛 , the oil price 𝑃𝑡𝑛 ,
water injection 𝑞𝑤𝑖𝑡𝑛 and water production 𝑞𝑤𝑝𝑡𝑛 : 𝐹𝑂 = 66.3, 𝑎 = 0.36,
𝑏 = 0.36, 𝑐 = 1.2, 𝑑 = 3.6. This makes the Eq. (6) to take the following
form:

𝑂𝑃𝐸𝑋𝑡𝑛 = 66.3 + 0.36𝑃𝑡𝑛 + 0.36𝑞𝑡𝑛 + 1.2𝑞𝑤𝑖𝑡𝑛
+ 3.6𝑞𝑤𝑝𝑡𝑛

, (13)

4.4. Abandonment

Under the parallel development and the ‘‘myopic’’ approach, Field
A is abandoned as soon the cash flow that it generates approaches
negative values. Based on the discussion with our industry partner and
our preliminary Monte Carlo simulation results, we concluded that it
is more beneficial to decommission Field A earlier than at the moment
when it starts generating negative cash flows under certain conditions.
Firstly, the annual cash flow must be just slightly above zero in year
𝑡𝑛. Secondly, the oil production rate must be rather low. Our results
show that in most of the simulation cases, the cash flow from Field A
is likely to fall below zero. Therefore, decommissioning Field A already
in year 𝑡𝑛 + 1 avoids operating Field A under a negative cash flow for
one year. Our results show that this approach allows an increase in
expected project value under the ‘‘myopic’’ approach compared to the
case where a simple ‘‘decommission only if the cash is negative’’ rule
is used. Therefore, when we compare the ‘‘myopic’’ and the ‘‘options’’
approaches, the percentage difference between project values is more
conservative.

The decision rules that we used to identify the optimal aban-
donment time of Field A under the parallel development and the
‘‘myopic’’ approach are reported in Table 5. Thereby, the abandonment
is triggered, for example, if the annual cash flow generated by the
field is below $20 million and the production rate is lower than 1.5
mmbbl/year. If the cash flow is lower than $10 million, it is worth
sacrificing an even higher production rate (below 2.5 mmbbl/year) to
decommission the field as soon as possible. The field is abandoned in
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Table 5
Decision rule for the abandonment of Field A under the ‘‘myopic’’ approach.

Annual cash flow,
CF, $, million

Production rate, q
(mmbbl/year)

10 < CF ≤ 20 q ≤1.5
0 < CF ≤10 q ≤ 2.5
CF ≤0 q ≤ 3.5

every case where the cash flow falls below zero and the production rate
is lower than 3.5 mmbbl/year.

The salvage value that the production unit is sold for after Field A
is abandoned is set to $200 million in those cases where Field B is left
undeveloped. In cases where both fields are developed, however, the
residual value of the production unit equals $100 million.

4.5. Switching option

Given that the decision to switch is made at time step 𝑡, the
production of Field B starts in year 𝑡 + 2. Fig. 10 illustrates the project
cash flow for an example simulation path where switching is initiated
in Year 15.

Fig. 10. Example of the project cash flow.

The LSM algorithm starts evaluating the switching decision from the
last year when Field A can produce oil, Year 34 in our case (taking into
account information revealed by the end of that year). At that point of
time, the operator has only two alternatives: to initiate switching to
Field B in Year 35 or to leave Field B undeveloped. Therefore, Year 34
serves as the upper time limit for considering the switching option (see
Fig. 11). Due to the fact that the continuation value equals zero in Year
34, the option to switch is exercised in those simulated cases where
the expected value of immediate exercise is above zero. Then, at each
decision point between Year 33 and the first year when the decision to
switch can be made (depends on the level of cash flow from Field A and
the recovery factor in each simulated case), the algorithm defines the
optimal course of action. It evaluates whether to continue production
from Field A for at least one more year or to initiate switching to Field
10
B already next year. Year 10 is assumed to be the lower time limit
for considering the switching option for all simulated cases. We use
a risk-free rate of 2.5% to discount cash flows.

We also consider the fact that the regulator’s approval is needed to
abandon Field A.4 One consequence is that the field operator is obliged
to reach a sufficient recovery factor to be able to decommission the
field. In order to reflect this requirement in the modeling, only those
simulation cases that generate annual cash flow below $70 million and
deliver a production rate below 3.6 mmbbl per year are considered for
a switching decision.

In some simulation cases the LSM optimization results in unrea-
sonably late switching time between Fields A and B, letting Field A
operate with a negative cash flow for several years before initiating the
investment in Field B. This happens, for example, when the expected
value of switching at a later time is higher than the immediate exercise
value due to a high level of CAPEX to switch immediately. In this
case, the algorithm captures the value of waiting to invest in Field
B. If we had accounted for the possibility to abandon Field A first
and then wait to invest in Field B, this value of waiting would have
been addressed more accurately. However, in this paper, we explicitly
disregard such analysis, accounting only for the option to switch with
a fixed time between the abandonment of Field A and the production
start-up for Field B. Therefore, we set another boundary condition,
implying that the switching time suggested by the ‘‘myopic’’ approach
for each simulation case serves as the latest point to switch for the
‘‘options’’ approach. It means that if the LSM optimization yields a
switching time that is later than the one suggested by the ‘‘myopic’’
approach, we take the latter value as optimal. This avoids operating
Field A under negative cash flow for more than one year. Therefore,
the ‘‘options’’ approach can only result in a switching time that is either
equal to the one resulting from the ‘‘myopic’’ approach or earlier. If
the expected value of switching to Field B in year 𝑡𝑠𝑤𝑛

suggested by the
‘‘myopic’’ approach has a negative value, the optimal decision for the
‘‘options’’ approach is to leave Field B undeveloped. In fact, accounting
for the option to wait to invest in Field B after Field A is abandoned can
be considered as a potential extension for future research. The approach
that we take in this paper can be regarded as relatively conservative as
the additional flexibility to wait to invest in Field B is likely to add
more value to the project.

5. Results

5.1. Project valuation

The primary goal of our analysis is to analyze whether sequential
production results in a higher expected project value compared to
parallel development.

Based on the procedure discussed in Section 3, we first evaluate
the value of developing two licenses in parallel, which requires a

4 For example, the Norwegian Petroleum Directorate requires that every
petroleum project on the NCS contributes optimally to overall social benefit
by extracting as much economical reserves as possible (OG21, 2021).
Fig. 11. Project timeline.
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Table 6
Confidence bands of the pre-tax values of the project under the parallel and sequential production (‘‘myopic’’ approach and ‘‘options’’ approach),
$, million.

P10 P50 Expected value (mean) P90

Parallel production −1731.6 −250.8 105.5 2337.7
Sequential production (‘‘myopic’’ approach) −937.3 236.3 625.9 2623.7
Sequential production (‘‘options’’ approach) −812.9 279.8 700.2 2675.3
construction of two production units. The resulting expected value of
parallel development is equal to $151 million.

In case of the sequential development, we use the ‘‘myopic’’ and
‘‘options’’ approaches for the valuation, respectively. As mentioned in
Section 3.4, the main difference between the ‘‘myopic’’ and ‘‘options’’
approaches is the switching time between Fields A and B and the
opportunity to leave Field B undeveloped in the case of the ‘‘options’’
approach. For the ‘‘myopic’’ approach, the decision to switch is made
as soon as the cash flow from Field A approaches negative values. The
valuation approach is based on a simple Monte Carlo simulation. For
the ‘‘options’’ approach, however, we need to know how to optimally
operate the assets in order to be able to evaluate them correctly, i.e. we
need to identify the optimal time to abandon Field A and switch to Field
B (or to leave it undeveloped) for each simulated case. The fact that the
field operator can make optimal decisions over time is addressed within
the ‘‘options’’ approach. Fig. 12 demonstrates how the abandonment
time of Field A changes depending on which approach is used. Applying
the real options analysis results in earlier abandonment of Field A in
56.9% of the total simulated cases. This makes the distribution of the
optimal abandonment time for Field A under the ‘‘options’’ approach
shift to the left compared to the ‘‘myopic’’ approach.

Fig. 12. Field A’s optimal abandonment time distribution, ‘‘options’’ approach vs.
‘‘myopic’’ approach.

We should note that the LSM algorithm does not always capture
the optimal course of action,5 triggering the switching earlier or later
than optimal6 in some simulation cases. This is due to the fact that
the regression function based on the current state of the decision vari-
ables is not a perfect estimate for the future cash flows. Therefore, in
some simulated cases, following the policy suggested by the ‘‘options’’
approach results in lower value than those of the ‘‘myopic’’ approach.
In our case, in 20.4% of the simulation cases the project value under
the ‘‘options’’ approach is lower compared to the value resulting from
the ‘‘myopic’’ approach, while in 21.7% of cases the resulting values are
equal as the switching time is the same. However, in 57.9% of the cases,
the ‘‘options’’ approach identifies a strategy that increases the overall

5 This problem is also discussed by Jafarizadeh and Bratvold (2009)
and Hong et al. (2019).

6 Optimal switching time refers to the time that maximizes the true NPV
that is unobservable for the decision maker when the decision to switch is
made, but can be estimated using simulated cash flow paths.
11
project value compared to the ‘‘myopic’’ approach. This strategy may
be either to switch earlier or to leave Field B undeveloped.

In fact, our results showed that in 16.4% of the simulated cases
the development of Field B has a negative NPV. Due to the fact that
the license owner can learn about the uncertain factors included in the
regression functions in Eqs. (11) and (12) before making the switching
decision, a significant part of the downside risk can be mitigated. Due
to capturing those simulation cases where both the continuation and
immediate exercise values are negative, the number of cases where the
field operator invests in Field B that eventually would turn out to be
unprofitable (based on true NPVs), decreases to 4.5%.

This leads to the fact that the expected project value under the ‘‘op-
tions’’ approach is 11.9% larger compared to the value resulting from
the ‘‘myopic’’ approach. Table 6 summarizes the results for the project
valuation under the sequential production using these two approaches
and the parallel development. The sequential production is clearly the
optimal solution for the investment, resulting in the highest expected
value. If the option to leave Field B undeveloped is not accounted for in
the ‘‘options’’ approach, which means that the operator is considered to
be obliged to invest in Field B irrespective of the information revealed
and we only use the switching timing optimization, the resulting project
value is only 6.5% larger compared to the value resulting from the
‘‘myopic’’ approach.

5.2. Validation

The advantage of our approach is that it allows the modeling of
the effect of several types of uncertainty on the decision to switch. It
allows us to capture the value of learning about the uncertain factors
within the valuation procedure. However, the fact that we included
five uncertain factors in the regression analysis described in Section 3.4
(Eqs. (11) and (12)), makes it difficult to derive tractable option exer-
cise boundaries, illustrating which state of the uncertain factors triggers
the option exercise. Exercise boundaries in real options problems often
serve as validation instruments, enabling the demonstration that the
results are intuitive and, for example, the option exercise is triggered by
a certain combination of the oil price, production level and/or CAPEX.

In this section, we perform such a validation and demonstrate that
the LSM algorithm addresses the decision maker’s ability to use new
information in order to optimize decisions over time and account for
this within the investment valuation procedure. We identify conditions
of uncertain parameters that result in the decision to switch immedi-
ately, continue developing Field A or to abandon Field A, or leave Field
B undeveloped.

Fig. 13 illustrates parameters of each simulated case in Year 14
where the switching option is still available. The decision whether to
switch from Field A to Field B in Year 15 is made based on parameters
observed at the end of Year 14. Cases where the optimal decision
according to the LSM algorithm was to switch in Year 15 are illustrated
in Fig. 13 by blue dots, while the cases where the optimal course of
action was to continue Field A production are illustrated by black dots.
Red dots reflect those cases where the optimal decision is to abandon
Field A in Year 15 and leave Field B undeveloped. The 𝑥-axis refers to
the annual cash flow from Field A in Year 14, 𝑦-axis is the CAPEX to
switch from Field A to Field B in Year 15 (sum of the CAPEX in Year
15 and Year 16), 𝑧-axis is the expected recoverable reserves of Field B
if switching is initiated in Year 15. The annual cash flow from Field A
reflects three parameters included in the regression in Eq. (12) at the
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Fig. 13. Optimal option policy in Year 15 in all simulated cases where option to switch is available (3 components).
Fig. 14. Optimal option policy in Year 15 in all simulated cases where option to switch
is available (2 components, Field B reserves excluded).

same time: the oil production rate from Field A, the oil price and the
OPEX. The data in Fig. 13 reflects the boundary condition that Field
A cannot be decommissioned as long as it generates an annual cash
flow exceeding $70 million. The switching decision is triggered not only
when the expected reserves of Field B are high, but in the whole range
of the 𝑧-axis. Fig. 13 also shows an intuitive result that the decision
maker is most likely to refrain from the investment in Field B if the
information indicates that its recoverable reserves are low.

Slicing Fig. 13 into a two-dimensional chart, we can analyze how
the relation between the cash flow from Field A indicated in the 𝑥-
axis and CAPEX to switch indicated in the 𝑦-axis impact the decision to
switch. As can be seen in Fig. 14, the option to switch immediately is
exercised only in those simulated cases where the CAPEX to switch is
relatively low.7 Our results show that in those simulation cases where
the LSM algorithm initiates the switching decision relatively early
(before Year 15), it captures those cases in which CAPEX are rather

7 The fact that Field A’s annual cash flow falls below $70 million is often
caused by an oil price decline, which causes that the simulated CAPEX to
switch also decrease due to the correlation with the oil price.
12
low. Fig. 15 illustrates the 95-th percentile of CAPEX of those simulated
cases, in which the optimal decision is to switch to Field B immediately.
It means that only 5% of simulated cases that were exercised have a
higher CAPEX to switch in a specific year. Thus, if the simulated CAPEX
to switch is above the threshold, it is unlikely that immediate switching
is optimal. After Year 15 the factor of low CAPEX to initiate switching
becomes less significant as Field A reaches a maximum recovery factor
and has to be decommissioned in an increasing number of cases. In
these conditions, the investment in Field B is triggered if the expected
investment value is positive, no matter how high the CAPEX to switch
is.

Fig. 15. 95th percentile of CAPEX for all simulated cases where switching is optimal
in a specific year.

Overall, this validates that the LSM algorithm captures the optimal
course of action in a significant number of simulated cases. This is
done due to the possibility to rely the knowledge that the decision
maker has when considering the switching option with the future cash
flows that are unobservable when the decision is made. However, the
accuracy of the switching time optimization depends strongly on the
‘‘quality’’ of the information the decision maker can obtain regarding,
for example, the recoverable reserves in Field B. In the following section
we discuss how the accuracy of the LSM optimization can change if
different assumptions about the information ‘‘quality’’ are used.

5.3. Sensitivity analysis

Our assumption that the field operator obtains perfect information
regarding expected recoverable reserves of Field B before they can
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make the decision to switch enabled reaching high accuracy in the
LSM algorithm. The regression function describes the future cash flow
that is unavailable to the decision maker when the switching decision
is being made, quite well. This captured the optimal course of action
(based on true NPVs) in most of the simulation cases. However, the as-
sumption about the perfect information can be considered rather strong
as hydrocarbon reservoirs are exposed to high amount of uncertainty,
especially small ones. Performing an extensive appraisal program in
such reservoirs might be too costly.

In this section we test different assumptions regarding the decision
maker’s knowledge about the reservoir uncertainty for Field B. We com-
pare the percentage of project value increase created by the ‘‘options’’
approach compared to the ‘‘myopic’’ approach when the ‘‘quality’’ of
the information about the expected recoverable reserves of Field B is
reduced from 1 (perfect information) to 0.1 – 0.95. If there is perfect
information about the reservoir parameters, 𝑄𝐵 𝑡𝑛 , which is used in the
regression analysis in Eqs. (11) and (12), is equal to the simulated sum
of the future annual production rates from Field B. This provides the
decision maker with the actual value of the production potential of
Field B. We now assume that the ‘‘quality’’ of the reservoir information
is reduced from 1 to 0.9. It means that the information regarding the
recoverable reserves can deviate from the true value within a range of
+/−10%. The degree of deviation is determined by a random parameter
𝑘 generated from a uniform distribution 𝑘 ∼ 𝑈 (0.9, 1.1). For each
simulation case, the actual sum of the future annual production rates
from Field B is multiplied by 𝑘. In this way we model that 𝑄𝐵 𝑡𝑛 is
an imperfect estimate of the production potential of Field B. When
the reservoir information ‘‘quality’’ is further decreased to 0.1, 𝑘 ∼
𝑈 (0.1, 1.9), 𝑄𝐵 𝑡𝑛 can differ from the actual recoverable reserves within a
range of +/−90%, which reduces the accuracy of the LSM algorithm as
the regression function describes future cash flows with much less pre-
cision. This can be analyzed through the difference between expected
project values resulting from the ‘‘options’’ approach and the ‘‘myopic’’
approach. The expected project value under the ‘‘options’’ approach
when perfect information is used, is an upper boundary that provides a
maximal difference between project values under the two approaches.

Fig. 16. Sensitivity of the percentage difference between expected project values under
the ‘‘options’’ and ‘‘myopic’’ approaches to changes in the ‘‘quality’’ of the reservoir
information for Field B.

Fig. 16 illustrates that the percentage difference between the respec-
tive values decreases from 11.9% in case of the perfect information
to 5.8% when the information ‘‘quality’’ equals 0.1. If the possibility
to leave Field B undeveloped is not accounted for, the respective
value reduces from 5.7% to 2.1%. As already mentioned above, several
existing contributions point out that the LSM approach becomes less
reliable when factors included in the regression analysis are not able
to describe the future cash flow. In our case, when the information
‘‘quality’’ from Field B is low (equals 0.1), the 𝑄𝐵 𝑡𝑛 parameter becomes
statistically insignificant for the regression function. This results in the
‘‘options’’ approach increasing the project value only in 44.3% of the
simulated cases compared to the ‘‘myopic’’ approach (vs 57.9% when
13
the perfect information is used). In this situation, the parameter 𝑄𝐵 𝑡𝑛
can be excluded from the regression functions. This makes the LSM
algorithm take into account only learning about the oil price, OPEX
and CAPEX levels, which still improves the expected project value
compared to the ‘‘myopic’’ approach.

As already mentioned, the only contribution in the petroleum lit-
erature studying the effect of uncertain future CAPEX on optimal
field development decisions and a real option value, points out that
considering correlation between the CAPEX and the oil price is very
important for the project valuation results (Cardenas et al., 2018). Our
results confirm this finding. Fig. 17 illustrates the percentage difference
between the expected project value under the ‘‘options’’ and the ‘‘my-
opic’’ approaches. In case the correlation between the CAPEX and the
oil price is disregarded, the valuation can result in an overestimated
option value. This results from the fact that simulation paths with high
oil prices and low switching cost (as well as the opposite case) in
particular time steps can be frequently found. This is not in line with the
market reality, and is considered to be a bias that affects optimal option
policy. As the correlation factor is increased, these biased estimations
cease, leading to more realistic project value estimations. The chosen
correlation factor of 0.8 allowed us to realistically address the value of
the option to switch. Overall, we can conclude that accounting for the
correlation between oil prices and the level of CAPEX to switch is of
high importance for valuation of such investment problems.

Fig. 17. Sensitivity of the percentage difference between expected project values under
the ‘‘options’’ and ‘‘myopic’’ approaches to changes in correlation factor between the
oil price parameter and CAPEX.

6. Conclusion

This paper analyzes the economic potential of a sequential produc-
tion strategy using the same production facilities for two oil fields. This
strategy is considered as a cost-efficient solution for the development
of marginal fields that cannot be tied back to existing infrastructure. By
investing sequentially, the operator can gather additional information
regarding uncertain parameters: the expected production rates of both
oil fields, the oil price, OPEX of the first field and CAPEX to switch.
We perform the valuation of the sequential production using two
approaches: the ‘‘myopic’’ and ‘‘options’’. In the ‘‘myopic’’ approach,
the switching is initiated only when Field A is depleted fully (reaches a
negative cash flow). The ‘‘options’’ approach allows for early switching
if it maximizes the overall value of the project due to opportunity
to learn about uncertain factors and hedges the downside risk of
developing Field B.

We use the Olympus benchmark case as an underlying reservoir
model for both fields and apply an oriented workflow to address the
full range of the technical uncertainty embedded in the Olympus case.
We also model the oil price and CAPEX to switch as two correlated
stochastic processes.

For the ‘‘options’’ approach, we implement a real options valuation
procedure. We consider the decision to switch between two licenses
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as an optimization problem that is solved by the LSM algorithm. The
optimization yields the optimal timing to switch between two licenses
for each simulation case.

Our results suggest that sequential production and accounting for
the option to switch earlier or leave the second field undeveloped can
add substantial value that might affect the final investment decision.
Our analysis also supports the findings by Cardenas et al. (2018) re-
garding the importance of the correlation between capital expenditure
and the oil price for valuation of the flexibility in petroleum projects
where CAPEX is one of the decision variables. Overall, our findings
allow to conclude that the sequential production is a viable strategy
for development of marginal stand-alone fields and can be considered
to be used in practice. Applying a real options analysis is then needed
to quantify the economic effect of flexibility embedded in this strategy.

Future research may be aimed at: (1) analyzing the value of addi-
tional flexibility to delay investment in subsequent field(s) after the first
field had been decommissioned by considering the compound option;
(2) addressing the opportunity to invest in appraisal of future field(s)
in a more robust manner by means of history matching and Bayesian
updating; (3) solving the optimal development order problem that we
omitted by assuming that the two oil fields are identical.
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