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Abstract
We use a real Nurse Rostering Problem and a validated model of human sleep to formulate the Nurse Rostering Problem 
with Fatigue. The fatigue modelling includes individual biologies, thus enabling personalised schedules for every nurse. We 
create an approximation of the sleep model in the form of a look-up table, enabling its incorporation into nurse rostering. 
The problem is solved using an algorithm that combines Mixed-Integer Programming and Constraint Programming with a 
Large Neighbourhood Search. A post-processing algorithm deals with errors, to produce feasible rosters minimising global 
fatigue. The results demonstrate the realism of protecting nurses from highly fatiguing schedules and ensuring the alertness 
of staff. We further demonstrate how minimally increased staffing levels enable lower fatigue, and find evidence to suggest 
biological complementarity among staff can be used to reduce fatigue. We also demonstrate how tailoring shifts to nurses’ 
biology reduces the overall fatigue of the team, which means managers must grapple with the issue of fairness in rostering.

Keywords  Nurse rostering · Fatigue · Sleep · Mixed-Integer programming · Constraint programming · Large 
neighbourhood search · Operations research

1  Introduction

Adverse psychological and physiological effects of night 
rotations on nurses are well documented [45]. Impaired 
vigilance and performance occurs as a result of increased 
sleepiness and can seriously compromise workers’ health and 
safety [7], as well as patient safety [31, 36, 66] and [12]. This 
underscores the importance of avoiding nurse rosters that 
cause fatigue. Shift work regulations have been established to 
hinder employee exhaustion. Such rules and regulations are 
a key part of the constraints in the Nurse Rostering Problem 
(NRP), see for example [10]. Because such rules over-
simplify the conditions underlying fatigue, sleep deprivation 

and different kinds of fatigue continue to have adverse effects 
on nurses.

In this work we expand from the typical NRPs to incorporate 
modeling of fatigue using a validated sleep model. We include 
individual biology in the fatigue modelling and minimise 
fatigue to enhance nurse health and reduce the risk of human 
errors due to impaired vigilance. This is formalised in the Nurse 
Rostering Problem with Fatigue (NRPwF). We incorporate 
an approximation of the [49] fatigue model in the form of a 
lookup-table. The NRPwF is used to solve realistic problem 
instances based on real-life data. Our research demonstrates 
that the worst cases of fatigue can be significantly reduced. It 
serves as a proof of concept for incorporating a general sleep 
model in an NRP, and is generalisable to other rostering and 
workforce planning problems. The NRPwF implementation 
produces rosters minimising the global maximum fatigue, 
and demonstrates how biology is an important factor when 
creating fatigue minimising rosters. We further demonstrate 
how minimally increasing the number of staff makes it possible 
to significantly reduce the fatigue experienced by nurses.
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Our main contributions are listed below:

–	 Creating an approximation of an advanced sleep model, 
and demonstrating it can be integrated into the novel 
Nurse Rostering Problem with Fatigue (NRPwF)

–	 Introducing realistic biological profiles enabling person-
alised schedules

–	 Studying the concept of fairness in rostering in light of 
insights into individual fatigue

–	 Creating a new algorithm combining Mixed-Integer Pro-
gramming and Constraint Programming to facilitate a 
Large Neighbourhood Search solving the NRPwF, with 
a post-processing procedure to handle cases where the 
approximation is erroneous

–	 Demonstrating how minimising maximum cases of 
fatigue affect rostering depending on biology, and how 
increased staffing levels reduce fatigue

The outline of this paper is as follows. In Sections 2.1, 2.2, 
and 2.3 we present relevant literature in sleep research and 
nurse rostering. In Section 3, the fatigue model at the core 
of our project is presented, and preliminary analyses of its 
effects are performed. We go on to create a typical NRPwF 
in Section 4, and demonstrate how a fatigue model approxi-
mation can be utilized despite cases of imprecision. This 
is done by implementing an algorithm to find high quality 
solutions, that are based on the approximation, in Section 5. 
In Section 6 the use of our algorithm is demonstrated, veri-
fied, and in some cases post-processed as part of our com-
putational study. We further perform analyses on the effects 
of rosters in light of biological profiles and staffing levels. 
In Section 7, we make concluding remarks and give sugges-
tions for future research.

2 � Related literature

This section introduces literature on typical NRPs and the 
most prominently used solution methods. It briefly reviews 
how fatigue is included in Operations Research (OR) litera-
ture, as well as presenting relevant fatigue models from the 
realm of sleep research. Lastly it summarises the identified 
gaps in related literature.

2.1 � Key concepts of nurse rostering literature

The NRP is a scheduling problem which assigns a number of 
shifts with predefined start and end times to a set of nurses 
in a given planning period.

NRPs typically include coverage constraints, ensuring 
a minimum number of nurses on duty in each shift; time 
related constraints e.g. a number of hours to be worked by 

each nurse during the planning period; and constraints cap-
turing work regulations [10].

A range of different rules and regulations exist in the 
nurse rostering literature. The many different variations are 
too many to mention explicitly, but scheduling rules that 
ensure nurses have sufficient rest times are of particular rel-
evance in this work.

Examples of works that avoid double shifts and too many 
consecutive work days are [24] and [35]. For additional 
details on the NRP we refer readers to [10, 29], and [13] for 
an overview of the problem type and to [16] and [62] for two 
recent examples of papers on nurse rostering.

In this work, as no widely accepted standard NRP exists, 
we formulate an NRP based on guidelines from Safe Work 
Australia [61].

Additionally, some more ambiguous concepts compli-
cate the modelling of some NRPs. One important concept 
is fairness. While there is no agreed definition of fairness 
in the NRP literature, authors frequently claim to model 
it. Typically, this entails an even distribution of something 
considered desirable or undesirable. [26] states “In OR the 
definition of fairness is vague. It usually takes the form of 
preventing inequalities”.

This statement concurs with the work of [60], which cal-
culates a score for preference fulfilment for each nurse and 
maximizes the lowest score. Similar approaches are pre-
sented in [65], which investigate fairness in NRPs specifi-
cally, and propose measures that balance out soft constraint 
violations. Similarly, [4] balances out the number of granted 
requests by using a piecewise linear function of penalties 
increasing with the number of unfulfilled requests for a par-
ticular nurse. Different interpretations of fairness also exist 
in the literature, e.g. the hierarchical understanding of fair-
ness in [2].

However, assuming fairness in NRPs is mostly under-
stood as an even distribution of something desirable or 
undesirable, a question of philosophical nature should be 
posed; does this even distribution reflect a desire for equal-
ity or equity among staff? That is, when literature on nurse 
rostering e.g. balances out night shifts, is this done because 
an equal number of night shifts (equality) is considered a 
truly fair distribution, or is it simply the best proxy for 
equity in fatigue? Consequently, if equity is fully or partly 
relevant for the fair distribution of fatiguing shifts, then a 
tool for estimating individual staff fatigue incorporated in 
the rostering process will improve fairness in rosters. Until 
now this discussion has only been of theoretical value as no 
tool to evaluate the individual fatigue of rosters has existed. 
However, in this work we define fairness as a measure of 
equity in fatigue, and optimise to find the most fair rosters. 
Simply put: we create rosters with (as near as possible) 
equally tired staff rather than balancing out shifts that are 
assumed tiring.
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A second important concept affected by the availability 
of our fatigue model is patient safety. While the relation 
between fatigue due to sleep deprivation and performance 
is subject to ongoing research, models combining homeo-
static and circadian drives (such as our fatigue model) can 
be used to predict a variety of performance and sleepiness 
measures [25, 54]. The reduction in performance accelerates 
with increased fatigue levels [57]. Similarly to our equity-
focused definition of fairness, this motivates the optimisation 
of rosters to find the lowest possible worst case of fatigue.

2.2 � Solution methods applied to nurse rostering

NRPs are solved in numerous ways, e.g. Artificial Intel-
ligence (AI) approaches, Constraint Programming (CP), 
metaheuristics and mathematical programming approaches 
[22]. In the realm of CP, [21] tackles nurse rostering, among 
other problems, with lazy clause generation. Other exam-
ples of CP include [50] and [55]. Examples of AI methods 
include [30], which builds on CP and integrates fuzzy con-
straints with branch and bound. The hybrid artificial bee 
colony algorithm presented in [5] is another AI method 
used, where the bee operator is replaced with the hill climb-
ing optimizer. According to [11], metaheuristic methods 
seem to be the dominant technique when solving real-world 
problems. Examples are the combined bat algorithm and 
particle swarm optimization by [14], ant colony optimisa-
tion with semi random initialization by [1] the tabu search 
based metaheuristic of [60], and the case-based reasoning 
approach of [28].

There are three main drawbacks to these meta-heuristic 
approaches. Firstly they have parameters that require tun-
ing for each application. Secondly, once the parameters 
have been tuned for a certain set of example inputs, it is 
unclear for which other inputs the same tuning works. 
Thirdly the user has no feedback if the parameter tuning 
is incorrect. The results may be good, or poor, but unless 
there is another approach to compare them with the user 
cannot know.

In the realm of mathematical programming approaches, 
the standard Mixed-Integer Programming (MIP) models are 
among the most explored ones, see e.g. [4, 6], and [44]. 
Different decomposition methods have also been explored, 
with variants of column generation being popular modeling 
choices [19, 37], and [71]. These approaches typically pro-
vide optimality gaps, which give some confidence about the 
solution quality.

Notably, the literature on nurse rostering often focuses 
on solution techniques [47]. We argue there should be an 
increased focus on creating models that are useful in practice 
and that provide insights for real-life decision makers.

In particular, we have found no published research on 
nurse rostering integrating a validated sleep model.

We address this gap, in Section 5, by designing an NRP 
that focuses on minimising fatigue to reduce risks of acci-
dents and improve nurse health, and create managerial 
insights for decision makers based on our computational 
results. This implies less focus on proof of technical con-
cepts such as the optimality gap. Rather, we focus on:

–	 finding high-quality solutions in terms of reducing 
fatigue more than the standard scheduling rules do within 
reasonable run times for realistic instances, and

–	 identifying managerial insights.

2.3 � Fatigue modeling literature

When models in OR deal with subjects such as tiredness, 
stress and work strain, they often present some version of 
a fatigue model. The term fatigue is used ambiguously. It 
is often loosely defined, if defined at all. In [42] a job rota-
tion tool designed to provide less monotonous and repetitive 
tasks for employees is presented. Authors define fatigue as 
“the physical stress that each process induces on the opera-
tors”, and it was shown in [43] that job rotation plans could 
reduce the total accumulated physical fatigue per opera-
tor. According to [34], “Fatigue is a stochastic factor that 
changes according to other factors such as environmental 
conditions, work type, and work duration”, which they han-
dle using chance constraints. In [27], fatigue is not defined 
explicitly, but rather linked to road transport crashes and fall-
ing asleep while driving, in an effort to evaluate regulations.

While the different approaches to modelling fatigue 
in the examples mentioned above are useful, literature in 
medical sciences and biology often distinguishes between 
acute fatigue and chronic fatigue, further differentiated into 
muscular fatigue, mental fatigue, psychomotor fatigue and 
chronic fatigue associated with post-viral syndromes [18]. 
We argue that literature within sleep research best fits the 
fatigue experienced by shift workers. This literature deals 
with fatigue fitting the definition provided in [18]: “the drive 
to sleep”. This is the sense in which we use the term fatigue 
in this work.

There are several models of human sleep that can be uti-
lized either directly or as part of quantitative tools to evalu-
ate the fatigue of shift workers, e.g. [3, 8, 32, 40, 41, 53, 56, 
67]. These models tend to be used as tools for retrospective 
evaluation. It is rare for such tools to be deployed prospec-
tively, i.e. explicitly incorporating them into models that 
perform planning. However, we have identified some few 
examples of this.

The fatigue model in [73] is based on the [32] “Sleep, 
Activity, Fatigue, and Task Effectiveness (SAFTE)” 
model, and incorporates it in a staff scheduling tool, where 
the SAFTE-model has been used to simulate the fatigue 
score of all possible schedules and ranking them in four 
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categories depending on degree of fatigue. In [75], the 
authors were inspired by the Fatigue Audit Inter Dyne 
(FAID) system [59]. [75] simplified the FAID model, 
resulting in a linearisation of an exponential function 
suitable for a MIP framework. The problem considers 
minimising fatigue in work shift scheduling for air traf-
fic controllers. The linear fatigue model is improved in 
[76], by the addition of a dampening parameter in cases 
of extreme fatigue. This is shown to fit the results of the 
FAID model better. A similar model and technique is used 
for shift scheduling of aircraft maintenance crews in [39]. 
[38] present a MIP model for nurse scheduling taking into 
account fatigue using two different approaches. The first 
is survey-based and the second uses a sinusoidal func-
tion that includes a parameter implying individual nurses’ 
chronotype (propensity to sleep at different times), based 
on work presented in [17] to approximate fatigue at the 
end of a week.

[9] proposes the TDSPFM, a Truck Driver Scheduling 
Model where fatigue is modeled using the non-linear fatigue 
model proposed in the model of [33], which is itself based 
on the three process model of [3]. The non-linear TDSPFM 
is solved using the evolutionary algorithm of the built-in 
Excel 2013 solver.

Our fatigue modelling is based on the work of [49], where 
a validated model of human sleep and circadian rhythms is 
presented. It is discussed in more detail in Section 3. We 
aim to minimise the changes and adjustments to it, both to 
conserve the realism provided by the sleep model itself and 
to ensure the continued relevance of our approach as sleep 
models are improved and extended. We utilise an approxi-
mation technique unused in related literature; namely a 
lookup table. This technique, presented in Sections 3.2 and 
3.3 is conceptually simple, but the generality of the approxi-
mation technique makes it relevant when sleep research pro-
gresses and new models are produced, as long as the implicit 
assumption holds.

The referenced works based on validated sleep models 
have made significant adjustments to models to fit the OR-
framework. Our general approximation technique is aug-
mented with post-processing, as described in Section 6.2.1, 
to find solutions that truly match the validated sleep model.

All works where sleep models are used in prospective 
planning, except [38], assume homogeneous biology among 
staff. Furthermore, a review of fatigue (which includes 
works dealing with fatigue related to sleep drive) in per-
sonnel scheduling and operations was published recently. It 
states: “In conclusion, we view the ‘next frontier’ of work 
on this topic as being the development of fatigue predic-
tion, measurement and mitigation models within operational 
research that are calibrated for individual workers. Although 
challenging, this is a direction that has potential for great 
research opportunities and practical benefits.” [77] In this 

work, we take individual nurse biology into account in the 
prospective planning of fatigue minimising rosters, leading 
to interesting managerial insights, described in Sections 6.3 
and 6.4.

3 � The fatigue model

In this section we present a fatigue model based on the 
sleep model of [49]. This sleep model has been subject 
to testing and parameter-tuning, and similar models have 
been based on it since. It combines the [48] model of the 
ascending arousal system with the [23] human circadian 
pacemaker. In the fatigue model, a sleep/wake switch is 
included, which models how a human falls asleep and 
wakes up as a result of internal processes in the brain and 
light conditions. The impact of shift work on the model 
is that it precludes sleep. During the times a person is at 
work, the fatigue model is restricted from entering a sleep-
ing state. While there is a large set of parameter values 
defined in the sleep model of [49], such as parameters 
related to internal brain processes and predefined times for 
dusk and dawn, these values are not altered in the fatigue 
model and are considered fixed in this work. Only two 
inputs are provided by us to the fatigue model: biological 
profiles (discussed in Section 3.1) and the time of forced 
wakefulness (work and commuting time).

This functionality of forced wakefulness has been used 
in other works, such as [48] and [25] to model total sleep 
deprivation, [51] to model shift work, and [64] and [72] 
to model work schedules. The fatigue model of [49] is 
written in Matlab [20] and solved using a built-in ordinary 
differential equation solver.

A notable characteristic of typical rostering problems, 
as opposed to more general scheduling problems, is that a 
set of possible shifts is defined. Our NRPwF model admits 
four shifts in accordance with [61] guidelines for manag-
ing the risk of fatigue at work to represent realistic and 
advisable shift times:

–	 Day shift “D” 07:00 - 15:00
–	 Evening shift “E’ 14:30 - 22:30
–	 Night shift “N” 22:00 - 07:30(+1 day)
–	 Off-shift “O”

To add to the realism, we have chosen to include 45 minutes 
of forced wake-time before and after work, to represent com-
muting. Depending on the roster a nurse works, the fatigue 
model calculates fatigue based on his or her shifts.

The initial values of the fatigue model variables reflect a 
well-rested individual where the circadian rhythm has been 
given time to stabilize in the individual’s preferred phase. 
To ensure this, we simply let the sleep model run for long 
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periods without any work, thus obtaining the default initial 
fatigue model state. The individual has typical biological 
parameter values, meaning default parameter values from 
the model of [49] are used. These have been validated in 
previous works. For details see [48, 49], and [23].

In Fig.  1, two plots of a four day example roster 
{D,N,N,O} are presented. The fatigue is illustrated in the 
top plot and visibly oscillates according to the time of the 
day (hours 0, 24, etc. represent midnight). As a result of the 
two night shifts, the fatigue level is notably higher during 
the third and fourth day, compared to the two previous days. 
The sleep drive typically exists in an interval [-2mV,8mV]1 
depending on biological parameters and other factors that 
affect sleep. In this work, it is sufficient to compare fatigue 
values knowing that a lower fatigue is always beneficiary. 
However, for a more intuitive understanding of how different 
periods of sleep deprivation correspond to different values 
of fatigue, see e.g. [25].

In the bottom plot of Fig. 1, the activities at all times, 
in the form of sleep, wakefulness and work, are presented. 
By comparing the bottom plot to the top plot, one can see 

the relation between the sleep drive and whether the nurse 
is sleeping or is awake. As mentioned previously, the only 
effect of the rosters on the fatigue model is the forced wake-
fulness that occurs when working shifts (and commuting 
before and after work).

Note that night shifts are defined to begin during the end 
of a day, so the night shifts in Fig. 1 during days 2 and 3 
begin at hours 46 and 70. From the activity plot it is clear 
that the nurse only got a short period of sleep between night 
shifts, falling asleep around hour 67, before the nurse was 
forced to awaken 45 minutes prior to the second night shift 
beginning at hour 70.

In this work, the fatigue model is taken to be the best 
representation available of a nurse’s fatigue at any time, and 
the fatigue scores provided by the model are thus sometimes 
referred to as the true fatigue of a nurse. In Section 3.2 the 
fatigue model is approximated for incorporation in NRPs. It 
is referred to as the rolling horizon approximation or simply 
approximation.

3.1 � Biological variations

In this work we wish to take into account that fatigue devel-
ops differently for different individuals, as “knowledge of 
individual circadian phase in shift workers could identify 
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Fig. 1   Plots of how fatigue and activity of a nurse with typical biological parameters change as time passes. The nurse is scheduled to work the 
4-day roster {D,N,N,O}

1  The neuro-physiological model of sleep drive is a voltage across 
certain neurons, measured in millivolts
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times of impaired alertness and thereby inform individu-
alized countermeasures for improving workplace safety, 
overall health, and wellbeing.” [69] The model presented in 
[49] has previously been used to gain insights into the physi-
ological basis for inter-individual differences in circadian 
timing (see e.g. [49] [64, 72]) and the circadian response to 
simulated shift work (see e.g. [52, 70]). It is thus a good fit 
for introducing individual biological differences. We present 
our approach to modelling biological variations as a set of 9 
biological profiles in Section 6.1.

3.2 � Approximating the fatigue model

The fatigue model is inherently non-linear, and incorporat-
ing it in an NRP is not trivial. When creating a parameter 
to represent fatigue in our NRPwF, time is discretised into 
days.

Evaluating the fatigue created by all possible rosters of 
realistic sizes is futile. The number of possible rosters is 
simply too large. For example, for a roster with 4 shifts and 
a planning period of 42 days, an upper bound on the number 
of possible rosters is approximately 1.93 × 1025 . The number 
of practically feasible rosters would be lower, but for real-
istic sets of constraints, the number of rosters would still 
be huge.

To deal with this issue, we develop a rolling horizon 
approximation of the fatigue model, using explicit enumera-
tion of all possible rosters of a given number of days Th . 
The rosters of length Th are stored in a lookup table. This 
approach implicitly assumes there exists a finite number of 
days ( Th ) shorter than the planning horizon of the full roster, 
that provides a useful approximation of the fatigue. When 
evaluating a time period [t − Th + 1, t] , this period is referred 
to as the evaluation horizon. The sequence of shifts worked 
during the evaluation horizon is referred to as the evaluation 
pattern. For every evaluation pattern we elicit the nurse’s 
maximum fatigue on day t. Clearly the longer the horizon, 
the better the estimate. The best estimate from the model is, 

of course, when the complete work history of the nurse is 
entered into it: in effect this is an infinite horizon.

The action of performing an evaluation of a full individ-
ual roster, thus obtaining the model’s best possible predic-
tion of the fatigue scores (the true fatigue), is referred to as 
a full roster evaluation (FRE). The action of performing an 
evaluation of an individual roster using the rolling horizon 
approximation is referred to as a rolling horizon evaluation 
(RHE). RHEs can be performed for different evaluation hori-
zons t, indicated through the notation RHEt.

In Table 1, we present an example of a RHE3 , i.e. the roll-
ing horizon evaluation given a three-day evaluation horizon. 
The 7-day individual roster IndR = {N,N,O,D,D,E,O} 
begins on day 1 and it is approximated using a 3-day rolling 
horizon approximation. The true fatigue is found by evalu-
ating the full IndR and storing the fatigue scores each day, 
while the approximation evaluates the 7 different 3-day indi-
vidual rosters IndP1… IndP7 and storing the fatigue score 
obtained on the last day of each pattern, as demonstrated in 
Table 1. For days 1 and 2, we assume off-days before the 
beginning of IndP3, which do not affect the initial values of 
the fatigue model. As a consequence, the 3-day RHE results 
match the FRE results for days 1… 3 , but from thereon dif-
ferences may arise.

We noted that the fatigue model’s initial values reflect a well-
rested individual with a stable circadian rhythm before intro-
ducing the RHE. However, in the case of RHEs, some evalua-
tion patterns can follow a night shift (see e.g. IndP5 in Table 1). 
Because a night shift stretches into the following day and forces 
a state of wakefulness in the beginning of that day, we intro-
duce an additional initial fatigue model state for all evaluation 
patterns that succeed a night shift - essentially this is the RHE 
approximation extended to include the initial night-shift.

3.3 � Testing the rolling horizon approximation

We run our FRE and our RHEs for different evaluation hori-
zons on a collection of 30 real-life rosters of 42 days worked 

Table 1   Demonstration of how the rolling horizon approximation 
evaluates the different 3-day patterns that exist as parts of IndR. The 
rolling horizon approximation uses the information from the last day 

of the evaluation patterns, and save them to comprise the approxi-
mated fatigue scores for all days. Shift codes in bold represent the 
scores stored for each evaluation pattern

Day -1 0 1 2 3 4 5 6 7

IndR N N O D D E O
IndP1 O O N
IndP2 O N N
IndP3 N N O
IndP4 N O D
IndP5 O D D
IndP6 D D E
IndP7 D E O
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by anonymous nurses at the Austin hospital in Melbourne 
to evaluate the quality of our approximation. We perform 
our analysis with Th ∈ [3,… , 7] . This is because prelimi-
nary testing implies Th ≤ 2 is insufficient, and Th ≥ 8 would 
imply generating a very large lookup-table. The large look-
up table would be time consuming to generate and poten-
tially increase the complexity of our NRP, depending on 
implementation. It should be noted, the realistic length of 
the look-up table depends on the number of possible shifts 
that exist in separate time slots for each nurse; a larger col-
lection of shift times will entail exponentially larger look-up 
tables. The first Th days of the RHEs will naturally be iden-
tical to the FRE.2 Thus, we disregard the data for the first 
7 days. This gives us 30 rosters of 35 days for 9 biological 
profiles. Every day, in each roster, for all biological profiles, 
we identify the fatigue scores3, and thus get 9450 data points 
to compare the FRE with each of the RHEs.

A difference in sleep drive of 0.10 mV is regarded as 
irrelevant by the developer of the model in [49], thus there 
is a good match if in most cases the errors between FRE and 
RHEs are less than this. To evaluate the full model (FRE) the 
algorithm solves a differential equation using the MATLAB 
ordinary differential equation solver “ode23”, see [63]. The 
0.10 mV benchmark for magnitudes of errors necessitated 
a significant reduction in the tolerances of the differential 
equation solver, as compared to the default values. Our tests 
included several rosters in violation of the Safe Work Aus-
tralia guidelines, which should thus be considered relatively 
tough.

To evaluate the quality of the rolling horizon approxi-
mations of different evaluation horizons, we want to com-
pare each data point in the FRE with each data point in the 
RHEs, by quantifying the errors of the approximations. 
For every RHE of a given evaluation horizon, for each data 
point, we subtract the value provided by the RHE from the 
value provided by the FRE for the same data point. E.g., 
for a 3-day rolling horizon approximation we find the value 
of FRE − RHE3 for all 9450 data points. We then sort the 
errors, and obtain percentiles to get an overview of how large 

the errors are. Negative values in a given percentile would 
imply the RHEs are larger than the FRE and vice versa.

Results of the analysis are presented in Table 2. Firstly, 
we note that errors decrease for longer evaluation horizons, 
as expected. For all percentiles, the longer evaluation hori-
zons have errors closer to 0 in Table 2. Secondly, it is notable 
how the magnitude of the errors are larger than the irrelevant 
magnitude 0.1 (less than -0.1 or more than 0.1) in roughly 
7% of cases. Furthermore, it is notable that approximations 
both over- and underestimate the fatigue of nurses regularly. 
Arguably positive differences, underestimating the fatigue, 
is a worse error in case the RHE is used for rostering.4 How-
ever the underestimate, at the 95th percentile, is still less 
than the irrelevant magnitude, and even at the 99th percentile 
for the larger horizons the deviation is below 0.5mV. This 
compares with fatigue levels that rise to values over 6mV 
even in the most alert-safe rosters, and well over 10mV in 
a normal roster.

To understand how errors occur, we consider one of the 
evaluated 42-day rosters, denoted realroster1.

During the first 30 days, the FRE and RHE are close to iden-
tical, with only irrelevant differences. On day 30, lasting into 
day 31, the nurse works the first of three consecutive night 
shifts, ending with a shift from late hours on day 32 until 
the morning on day 33. On days 34 and 35, the nurse is still 
recovering from this shift sequence, and fatigue is above 
rested levels. This leads to a small but visible error appear-
ing few days later as presented in Fig. 2.

realroster1 =

{O,O,E,E,D,O,O,E,E,D,O,O,E,D,

D,E,D,D,O,O,E,E,D,D,O,O,O,O,

O,N,N,N,O,O,O,N,N,N,O,O,O,O}

Table 2   Results of subtracting 
values of RHEs of different 
evaluation horizons from the 
FRE of 30 real rosters. Values 
for all biological profiles are 
used. (The units in the fatigue 
model are millivolts)

Evaluation Horizon 1st perc. 5th perc. 10th perc. 90th perc. 95th perc. 99th perc.

FRE − RHE3 -1.5024 -0.3074 -0.1169 0.0224 0.0895 0.7230
FRE − RHE4 -1.3593 -0.3014 -0.0969 0.0144 0.0631 0.6078
FRE − RHE5 -1.1767 -0.2859 -0.0879 0.0088 0.0454 0.5438
FRE − RHE6 -1.0473 -0.2606 -0.0743 0.0058 0.0411 0.4636
FRE − RHE7 -1.0355 -0.2019 -0.0551 0.0049 0.0389 0.4968

2  Except for possible errors due to the use of numerical methods in 
the differential equation solver
3  Specified in Section 4.2 below.

4  The RHE seeks to approximate the full FRE evaluation of a roster 
as closely as possible. If the RHE is used for rostering, and predicts 
a lower level of fatigue than the FRE, then it is likely to be an under-
estimate of the actual fatigue due to the roster. In this case a roster 
predicted to be alert-safe by RHE, could (with low probability) cause 
fatigue and consequently result in medical errors. If, on the other 
hand, the RHE predicts a higher level of fatigue than the FRE, then it 
is likely that the real fatigue is overestimated. A roster based on this 
RHE might be non-optimal in terms of staff level, but would be alert-
safe, and not result in fatigue causing medical errors.
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On day 36, the FRE has evaluated a long roster and 
has slightly different parameter values than in the fully 
rested state. If the nurse had some continuous off-days 
from day 36, the FRE would eventually fall back to fit the 
RHE4 again, but as consecutive night shifts occur days 36, 
37, and 38, the errors rather increase. As a result, errors 
marginally larger than the 0.1 threshold occur in several of 
the following days, although the shapes of the two graphs 
are very similar and intuitively imply high precision in the 
approximation.

However, in Table 2, some errors are far larger than those 
illustrated in Fig. 2. This is due to an additional effect, and 
we illustrate a particularly tough roster from the collection 
of real rosters to demonstrate it, realroster2:

In realroster2 , the consecutive night shifts on days 4 to 7 lead 
to a similar shift in the circadian rhythm as we observed in 
Fig. 2. However, when the second sequence of four con-
secutive night shifts occur, one can observe an interesting 

realroster2 =

{O,O,O,N,N,N,N,O,O,O,N,N,N,N,

O,D,O,N,N,N,O,O,O,O,N,N,N,N,

O,O,O,N,N,N,N,O,O,O,N,N,N,O}

difference in the activity plot in Fig. 3. On day 13, the RHE4 
calculates that the nurse will have a short nap before going to 
work (notice the dip in the red dotted activity plot), while the 
FRE does not. From that day and onwards, the two graphs 
diverge consistently both in terms of maximum daily fatigue 
values and in the shapes of the two graphs.

The RHE4 calculates a nap on day 13 because it just 
exceeds a threshold for specific values of brain activity 
inherent in the fatigue model (not just the sleep drive/
fatigue value), while the FRE only comes close to that 
same threshold. In real life it is unclear whether the nurse 
would, in fact, sleep at this time or not. However the diver-
gence between FRE and RHE shows that the two scenarios 
- staying awake or sleeping at this time - has significant 
knock-on effects for the nurse’s alertness.

The notion that minor errors at any point in time can lead 
to different activities and thus escalate into large differences, 
brings up an important consideration. In reality, the nurse might 
or might not have a nap prior to the night shift, depending on a 
variety of external factors such as noise, light, telephone inter-
ruptions etc. Consequently it could be FRE that diverges from 
reality and not RHE. In this work, however, we regard the FRE 
is the best model available for predicting real-life sleep patterns 
and treat it as a prediction of true fatigue values.
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Fig. 2   Excerpt of the fatigue on days 35 to 39 as roster1 is evaluated through FRE and RHE4 . Notice a small error from the beginning of day 36, 
lasting throughout the days in the plot
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With this discussion in mind, for RHE we choose a 
4-day horizon in our computational experiments. This 
gives a practical size of the NRPwF, accepting that what-
ever the horizon, some differences from FRE are likely 
to occur.

4 � The nurse rostering problem with fatigue

In this Section, we present a brief formal problem descrip-
tion in Section 4.1 and a model formulation in Section 4.3. 
As we use a mix of different techniques for implementa-
tion of our model, we provide a short explanation of key 
concepts in Constraint Programming before presenting the 
model according to Mixed-Integer Programming-tradition.

4.1 � Problem description

The following hard constraints are based on Safe Work 
Australia’s guide for managing the risk of fatigue at work 
[61]. Every day in the planning period, each nurse should 
be allocated either one work shift or an off-day. At least a 
minimum number of nurses must be assigned to work on 
each day, evening and night shift. The number of succes-
sive night shifts is restricted. After ending a night shift, or 
a sequence of consecutive night shifts, every nurse should 

have two consecutive nights without work. Nurses should 
not be assigned backward rotation, meaning that on the 
day after a shift, the next shift should be the same shift 
type, or a shift starting later. Restricting backward rotation 
thus ensures minimum rest times between shifts. There is 
also an upper limit to the number of consecutive days of 
work a nurse can have.

Nurses have a maximum number of hours they cannot 
exceed on average throughout the planning horizon, and 
for realism we also constrain the average minimum num-
ber of hours. Furthermore, there exists a maximum number 
of hours a nurse can work in any week. In our case, this 
can be regarded as a maximum number of weekly shifts, 
as all work shifts last 8.5 hours (see Section 3). Nurses are 
guaranteed to have a weekend off with a given frequency. 
A weekend off is defined as not working the night shift 
Friday, any shift Saturday, nor the day or evening shift 
Sunday. Two consecutive off-days should be ensured for 
each nurse with a reasonable frequency.

We formulate an objective function reflecting the dis-
cussions of fairness and patient safety in Section 2.1. We 
thus minimise the highest fatigue experienced by any nurse 
at any time in the planning period; the global maximum 
fatigue (GMF).

This objective function has some weaknesses. It can be 
brittle in the sense that it does not take into account any 
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Fig. 3   Excerpt of both the fatigue and the corresponding activity on days 12 to 16 as roster2 is evaluated through FRE and RHE4
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other fatigue scores than the very worst one. As a result, 
rosters could have arbitrarily high fatigue scores for other 
nurses and on other days, as long as they are below the 
GMF, without deteriorating the objective function value.

Furthermore, rostering is a multi-faceted task, and mul-
tiple different qualities are typically desired in most NRPs; 
both for theoretical and especially for practical problems. In 
comparison our objective function is very simplistic. How-
ever, this is done to highlight the effects of introducing our 
novel approach to modelling fatigue, and incorporating other 
qualities to rosters should be considered interesting themes 
of future research.

4.2 � Fatigue scores

We believe the most relevant value to represent a nurse’s 
fatigue throughout a day, both in terms of patient safety and 
nurse health, is the highest fatigue experienced during the 
24 hours of that day.

Notice that high fatigue scores increase during forced 
wakefulness, when at work or commuting, and these are 
the times at which performance is crucial. Outside these 
hours we assume the nurse is able to sleep when fatigued, 
so the maximum fatigue score only occurs while working 
or commuting.

We base our modelling of the NRPwF on approximated 
RHE fatigue scores, which may differ from scores returned 
by the full FRE model, as discussed previously. However, 
we perform a full FRE evaluation on the rosters our system 
computes, and asses the effects of such errors afterwards.

Another issue affected by our objective function is fair-
ness. It is quite typical in nurse rostering to model fairness 
as treating all nurses in the same way, e.g. restricting the 
difference in working tiring or unpopular shifts. However, 
we envisage an alternative perspective on fairness, where 
avoiding the highest fatigue levels for every nurse is more 
fair than treating everyone the same. We also argue it is more 
fair to patients to minimise fatigue levels of staff and to avoid 
huge differences in alertness among nurses. We thus believe 
minimising the maximum fatigue level is interesting and 
arguably can result in more fair rosters. It should be noted 
that the traditional scheduling rules are in place, which treat 
every nurse the same regardless of their biology. This limits 
how differently nurses can be scheduled, as the rules treat 
every nurse the same.

4.3 � Modelling the problem

The NRPwF is modelled in the MiniZinc language [46], 
which can map the model onto either MIP or CP solvers, or 
hybrids. While we choose to formulate the model according 
to MIP tradition in this work, some key CP concepts utilised 
in the algorithm should be explained briefly.

Unlike MIP, where constraints must be in linear form, a 
CP specification (model) can use more expressive built-in 
constraints (e.g. not equal, append, alldifferent, etc.), and 
even new constraints defined within the specification. This 
flexibility helps to simplify the specification, reflect the orig-
inal problem definition, and is well suited for the problem 
presented in this paper.

In CP, a problem is defined by a set of variables, repre-
senting the choices to be made in reaching a solution; con-
straints, representing properties/requirements of the problem 
which must be satisfied in any solution; and the objective, 
whose value is to be optimised. Each variable can take a set 
of values, known as its domain, and each constraint involves 
a subset of these variables. In CP, a process called filtering 
is performed first where an appropriate resolution method is 
applied on each constraint to reduce the domains of its vari-
ables; i.e. the values of variables that violate the constraint 
are removed. When a domain of the variable is changed, it 
is beneficial to run through all constraints that contain this 
variable and see whether this change leads to new domain 
reductions. This process is called propagation. Iteratively, 
a variable is chosen and a value from its domain is assigned 
to it. The filtering and propagation process is triggered on 
each assignment. This sometimes leads to the removal of 
all the values of a variable resulting in a failed value assign-
ment. In the event of a failure, the latest value assignment is 
reconsidered, called backtracking, and a new value is tried. 
The iterative value assignment, and backtracking process is 
called search. So, as defined in [58], CP is based on three 
strategies: filtering, propagation and search.

The choice of variables and constraints in a CP model can 
impact its efficiency. In particular, the use of sophisticated 
global constraints, which have specialised filtering algo-
rithms, can enhance its performance. Therefore, when mod-
elling our problem, we have used the ‘regular’ global con-
straint to capture requirements that apply to every sequence 
of rostered days or shifts; and the ‘cardinality’ constraint to 
enforce coverage for each shift in a roster.

Before presenting our model, we note that a symbol direc-
tory and a full model formulation are available in Appendix 
1. In the NRPwF we assign nurses n ∈ N  to shifts s ∈ S . 
S consists of all the work shifts SW and the off-shift sO . 
The work shifts consist of day, evening and night shifts 
( s ∈ S

W = {sD, sE, sN} ). They are allocated during all days in 
a defined planning period t ∈ T  . In this problem we assume 
all nurses have had a long period of off days before the 
beginning of this roster. For constraints stretching back in 
time to days prior to the defined set of days, we thus assume 
all nurses were assigned off-shifts sO . That is, for all values 
of t ≤ 0 , variables ynst and znt should be interpreted as fixed 
and corresponding to off-shifts. As some restrictions apply 
specifically for weekends, a set of Sundays TS is defined such 
that TS = {t ∈ T|mod(t, 7) = 0}.
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The model in the rest of this section, constraints Eq. 1 - 
Eq. 12, is formalised using MIP integer-linear inequations. 
In our implementation, they are actually modelled and 
implemented using CP global constraints, and solved using 
filtering, propagation and search.

4.3.1 � Coverage

Nurses are assigned through binary variables ynst ∈ {0, 1} . 
ynst = 1 if nurse n works shift s on day t; 0 otherwise.

Constraints Eq. 1 ensure coverage, by enforcing that required 
staffing levels PC

s
 must be respected for all work shifts s on 

all days.

4.3.2 � Short‑term rest

To ensure sufficient rest, different shift transitions and limi-
tations on work patterns are not allowed.

Constraints Eq. 2 enforce that exactly one shift is assigned 
to each nurse per day. Constraints Eq. 3 ensure no nurse 
works more than P

CN consecutive nights. Constraints Eq. 4 
and Eq. 5 make sure that backward rotation is not possible, 
thus securing a minimum period of rest between shifts for all 
nurses. Constraints Eq. 6 state that it is not possible to work 
a night shift followed by an off day and then another night 
shift. This implies that after ending a sequence of consecu-
tive night shifts, the nurse will not be working during the 
night in any of the two following days. Constraints Eq. 7 
set the maximum number of consecutive work days to P

CD.

(1)
∑

n∈N

ynst ≥ PC
s
, s ∈ S

W
, t ∈ T

(2)
∑

s∈S

ynst = 1, n ∈ N, t ∈ T

(3)
t∑

d=t−P
CN

ynsNd ≤ P
CN

, n ∈ N, t ∈ T

(4)ynsN (t−1) + ynsDt + ynsEt ≤ 1, n ∈ N, t ∈ T

(5)ynsE(t−1) + ynsDt ≤ 1, n ∈ N, t ∈ T

(6)
ynsN (t−2) +

∑

s∈{sD,sE ,sO}

yns(t−1)

+ynsN t ≤ 2, n ∈ N, t ∈ T

(7)
∑

s∈SW

t∑

�=t−P
CD

yns� ≤ P
CD

, n ∈ N, t ∈ T

4.3.3 � Long‑term rest

To ensure two consecutive days of rest, a new variable is 
introduced. znt is a binary auxiliary variable used to indicate 
if a nurse is allocated any work shifts during a period of two 
consecutive days ending on day t. Due to nurse preferences, 
the two-day period considered includes the night shift on day 
t − 2 rather than the night shift on day t. This especially affects 
weekends, as znt = 0 , t ∈ T

S , implies nurse n has the nights 
off on Friday and Saturday when they have the weekend off.

Constraints Eq. 8 restrict the hours worked by each nurse to 
be in the interval [ H,H ]. The length of shift s is denoted PH

s
 . 

Constraints Eq. 9 restrict working more than H
W hours every 

week. Constraints Eq. 10 ensure znt indicates work during 
a two-day period. Due to the short-term rest constraints in 
Section 4.3.2, the big M-value 2 is sufficient in constraints 
Eq. 10. Constraints Eq. 11 ensure that no nurse works P

CW 
consecutive weekends. Furthermore, every nurse should 
have two consecutive days off at least once every P

Z days, 
as instructed through constraints Eq. 12.

4.3.4 � Objective function

The variable fnt represents the fatigue score of nurse n ∈ N  
on day t ∈ T  . The value of fnt is retrieved from a lookup 
table where there are multiple additional inputs. The bio-
logical profile b ∈ B of nurse n, information on whether the 
nurse worked a night shift the day prior to the evaluation pat-
tern, and the evaluation pattern itself are all relevant inputs 
for the value of fnt . However, we use the simple fnt syntax 
here, and present a more detailed version in Appendix 1. 
Here, auxiliary variable f GM is introduced to represent the 

(8)H ≤

∑

s∈S

∑

t∈T

PH
s
ynst ≤ H, n ∈ N

(9)
∑

s∈SW

t∑

�=t−6

PH
s
yns� ≤ H

W
, n ∈ N, t ∈ T

S

(10)
2znt − ynsN (t−2) −

∑

s∈SW

yns(t−1)

−ynsDt − ynsEt ≥ 0,n ∈ N, t ∈ T

(11)
P
CW

∑

�=0

zn(t−7�) ≤ P
CW

, n ∈ N, t ∈ T
S

(12)
t∑

�=t−P
Z

zn� ≤ P
Z
, n ∈ N, t ∈ T
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global maximum fatigue score, and is assigned the correct 
value due to constraints Eq. 13. The objective function is 
presented in constraint Eq. 14.

5 � The solution method

Our solution method is presented and discussed here, firstly 
through an introduction to the overall idea and then through 
a more detailed description in Section 5.1.

The general idea of the solution method can be summa-
rized as follows: 

1.	 Find initial solution running the NRP without the fatigue 
model

2.	 Run Large Neighbourhood Search iteratively to reduce 
the approximated global maximum fatigue 

(a)	 When possible, directly minimise the approxi-
mated GMF

(b)	 When necessary, reduce the number of cases 
where an identical approximated GMF value is 
observed in the roster

3.	 Evaluate final roster to identify true GMF

The above steps correspond to the main solution algorithm. 
For a more complete review of it, pseudo-code is provided 
in Algorithm 1 in Appendix 1.

When the true GMF is identified, we consider post-pro-
cessing if the true GMF is notably larger than the approxi-
mated GMF. For a more complete review of the post-pro-
cessing procedure, see Algorithm 2 in Appendix 1.

5.1 � Description

We first use a MIP solver to find a feasible solution when 
the fatigue model is not included in the model; our cur-
rent best solution. From this point on, in every iteration we 
have a current best solution available, with a current ros-
ter parameter denoted y∗

nst
 and a current global maximum 

fatigue parameter denoted f GM∗ . We also denote the cur-
rent 4-day rolling horizon approximated fatigue parameter 
of nurse n on day t f ∗

nt
 , and introduce the current individual 

maximum fatigue parameter of nurse n f IM∗
n

 , defined as the 

(13)f GM − fnt ≥ 0 n ∈ N, t ∈ T

(14)Minimise f GM

highest fatigue experienced by nurse n in the planning period 
f IM∗
n

= maxt∈T(f
∗
nt
).

To reduce complexity when performing iterations, we fix 
the roster ynst to be identical to the roster in the current best 
solution y∗

nst
 , except for some specifically chosen combina-

tions of nurses n and days t denoted by the neighbourhood 
parameter Nnt . If Nnt takes the value 0 then ynst is fixed to the 
value of y∗

nst
 , otherwise (if it takes the value 1), then ynst can 

be allocated a new value
In every iteration of our algorithm, we create a new roster 

ynst with new approximated fatigue scores fnt resulting in 
a new GMF f GM . In every iteration, the algorithm either 
reduces the GMF ( f GM < f GM∗ ), finds a new solution 
with unchanged GMF and fewer occurrences of the GMF 
( f GM = f

GM∗
⋂
(sum

n∈N,t∈T(fnt = f
GM∗) < sum

n∈N,t∈T(f
∗
nt
= f

GM∗)) ), or is 
not able to find a better solution and keeps the current best 
( ynst = y∗

nst
 ). Attempting to reduce the GMF is the standard 

approach, while attempting to reduce occurrences of the 
GMF is done when symmetry or unsuccessful previous 
attempts indicate this is more promising.

When we are no longer able to improve the solution, we 
perform a full roster evaluation of it, and if errors have relevant 
magnitude, we follow the process in Section 5.1.3. We provide 
a conceptual illustration of the algorithm in Fig. 4 with a brief 
description of each step.

5.1.1 � Minimising GMF

As seen from Fig. 4, the algorithm firstly creates an initial 
solution, identifying y∗

nst
 and f GM∗ . Assume there are not 

many occurrences of the f GM∗ and that a new solution has 
been found recently, the standard optimisation approach 
of minimising the GMF is implemented. This means we 
implement the objective function presented in constraint 
Eq. 14 in Section 4. All combinations of nurses and days 
described below constitute the neighbourhood when 
performing the standard optimisation approach: 

1.	 The full individual schedules of a set of nurses NF expe-
riencing the GMF ( Nnt = 1, n ∈ N

F
, t ∈ T  , provided 

that n ∈ N
F|f IM∗

n
= f GM∗, n ∈ N )

2.	 The full individual schedules of a set of nR random 
nurses NR ( Nnt = 1, n ∈ N

R
, t ∈ T  , provided that 

N
R = rand(N −N

F
, nR)

3.	 The off-shif ts of all  nurses in the roster 
( Nnt = 1, n ∈ N, t ∈ T|ynsOt = 1)

We fix the roster ynst of any iteration to be equal to the current 
best roster y∗

nst
 , except for the defined neighbourhood where 

Nnt = 1 , as below:

(15)ynst = y∗
nst
, n ∈ N, s ∈ S, t ∈ T|Nnt = 0
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5.1.2 � Minimising occurrences of the global maximum 
fatigue

Assume the response to the question of recent progress in 
Fig. 4 is “yes”, and another iteration is performed. If there 
are many occurrences of nurses experiencing the GMF 
( fnt = f GM∗ for more than some few n ∈ N, t ∈ T  ) and/or 
our algorithm has not been able to produce a new solution 
in recent iterations (we consider ourselves stuck in a local 
optima). In this case, the neighbourhood is defined in the same 

way as for the standard optimisation approach, with the nota-
ble exception that if there are more than nF nurses in NF , the 
set is redefined as a randomly drawn subset of maximum nF of 
the nurses experiencing the GMF. Furthermore, we minimise 
the occurrences of the GMF. This also entails restricting the 
maximum fatigue score of all nurses to the current best BMF. 
While the nonlinearities are handled by the CP solver in our 
algorithm, we still provide a MIP linearisation for intuitive 
understanding. Let the binary variable f Occ

nt
∈ {0, 1} be equal 

to 1 if nurse n experiences the GMF on day t, 0 else.

Fig. 4   Flow chart of algorithm
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Constraints Eq. 16 ensure that no nurse is assigned a fatigue 
score that is higher than the GMF of the previous iteration, 
while constraints Eq. 17 state that f Occ

nt
 must take a value 

higher than 0 if fnt = f GM∗ , but can be 0 otherwise. Mini-
mising f Occ

nt
 in constraint Eq. 18 thus entails minimising the 

number of occurrences of the GMF.

5.1.3 � Ensuring RHE is close to FRE

Assume, after some iterations of the algorithm in Fig. 4, 
that there has been no recent progress (the evaluation of this 
question is discussed in more detail in Section 6.2) A FRE 
is performed to unveil the true fatigue of the best solution, 
before the GMF of the FRE is compared to f GM∗.

If the true GMF turns out higher than the f GM∗ , with 
a margin larger than the 0.10mV threshold of relevance, 
we perform post-processing and repeat the FRE on the 
new roster produced in post-processing. We assume extras 
(casuals / interim nurses) can step in on some limited num-
ber of shifts when necessary, as is common in real-life. In 
our solution method, that means we can substitute a tiring 
shift in our roster with an off-day. Post-processing is thus 
done by removing the shift prior to the true GMF identified 
in the FRE. This is repeated until the true GMF is below 
f GM∗ + 0.10 mV or a maximum number of post-processing 
iterations is reached. The post-processing is discussed fur-
ther in Section 6.2.1, and pseudocode is available in Algo-
rithm 2 in Appendix 1.

6 � Computational study

The algorithm is run using Python3.6.8 to define neighbour-
hoods and calls MiniZinc 2.3.2 using the built-in MIP-solver 
gurobi8.1.1 to find the initial solution and the CP-solver 
Chuffed 0.10.4 [15] to search within the given neighbour-
hoods. Matlab R2018 is called to create the lookup-table of 
approximated fatigue values and to perform the FRE. Com-
putational experiments are run using an HP EliteBook 820 
G3 with the specifications below:

(16)fnt ≤ f GM∗, n ∈ N, t ∈ T

(17)f Occ
nt

− fnt + f GM∗
> 0, n ∈ N, t ∈ T

(18)Minimise
∑

n∈N

∑

t∈T

f Occ
nt

CPU ∶ Intel Core i7 − 6500U CPU @ 2.50GHz − 2 cores

RAM ∶ 16Gb

6.1 � Instances

When performing computational studies, we would ideally use 
real instances. However, as collecting information about indi-
vidual biology would be both complicated and controversial, 
we create biological profiles b ∈ B by making changes to two 
parameters in the fatigue model that represent common differ-
ences in biology related to sleep [49]. These two parameters 
represent the average sleep-time and the chronotype of a human.

The average-sleep-times parameter is by default calibrated 
for a person with a normal chronotype, which is ≈ 7 hours 
sleep when fully rested beforehand. According to the devel-
oper of the model of [49], 5 and 9 hours are realistic varia-
tions within the adult population in real-life. To identify the 
right parameter values for the sleep times, we thus vary the 
one parameter typically reflecting this in the adult popula-
tion to get the right hours of sleep (see constant offset D0 in 
[49]), while all other parameters are left at their default val-
ues. To get a meaningful number of these nurses represented, 
we draw biological profiles for nurses with a 10% chance of 
having a short sleep time ( ≈ 5 hours) or a long sleep time ( ≈ 9 
hours), leaving an 80% probability of the most common value 
( ≈ 7 hours). The chronotype parameter is by default set to 
its standard value representing the most common “day-time 
chronotype”. We similarly provide chronotype parameters 
that are somewhat uncommon, but within realistic varia-
tions in the adult population, to create “morning-type” and 
“evening-type” biological profiles (see intrinsic period �c in 
[49]). We assume these two parameters are not correlated, 
and thus produce the 9 different biological profiles in Table 3.

In Table 3, the probability of drawing each profile is given 
depending on the average sleep time and the chronotype of any 
given nurse. Clearly this very coarse grouping of biological 
profiles does not come close to capturing the real-world varia-
tions of biology affecting sleep. However, the profiles facilitate 
analyses of the effects of some common differences in biol-
ogy among nurses. Furthermore, as these parameters represent 
two aspects of sleep that would be possible to unveil using 
e.g. a survey, our profiles represent a realistic and pragmatic 
approach to including biology in real-life rostering.

Furthermore, deciding on the number of nurses relative to 
minimum staffing levels, as ensured by coverage constraints, 

Table 3   Illustration of the probability of drawing different biological 
profiles for the nurses in our instances. The index-value of each of the 
biological profiles is given in parenthesis

Average sleep time

Short ≈ 5 Normal ≈ 7 Long ≈ 9

Chronotypes Probabilities 0.1 0.8 0.1
Morning-type 0.1 0.01 (5) 0.08 (4) 0.01 (6)
Day-type 0.8 0.08 (2) 0.64 (1) 0.08 (3)
Evening-type 0.1 0.01 (8) 0.08 (7) 0.01 (9)
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is not trivial. We have used real-life 12-week rosters from 
the Intensive Care Unit (ICU) at the Alfred in Melbourne, 
Australia as a basis for the minimum staffing parameter. This 
ICU is an ideal starting point for creating instances that are 
realistic while ensuring that biological profiles are the only 
differences between nurses. Firstly, the ICU is the largest 
in the state of Victoria in Australia [68], making it scalable 
despite the skill-mix variations in real-life rostering prob-
lems. Secondly, the activity at the ICU is inherently intermi-
nable, and as a result shift work is planned around the clock.

In the real-life data, several nurses work part-time. This 
counteracts the desired homogeneousness of our nurses, but 
by calculating the ratios between full-time equivalents and day, 
evening and night shifts, we calculate conservative estimates 
of the minimum coverage requirements. These are 7, 5, and 5 
nurses for day shifts, evening shifts, and night shifts respec-
tively, given a total staff of 30 full-time nurses, and correspond 
to the parameter PC

s
, s ∈ S

W in the model in Section 4. Other 
data and parameter values are retrieved from the Safe Work 
Australia guidelines [61], and can be found in Appendix 1. 
As a result of this approach to creating instances, the only dif-
ference between instances is the number of nurses with each 
biological profile, unless stated otherwise. We generate 20 
instances and analyse them in the following sections.

6.2 � Minimising the global maximum fatigue scores

In Fig. 5, the minimisation of the global maximum fatigue 
score of Instance 1 is illustrated. Black circles with the black 
lines striking through represent the GMF ( f MG∗ ) in each iter-
ation. Blue circles represent one or more nurse’s individual 
maximum fatigue score ( f IM∗

n
 ) in each iteration (some circles 

are hidden behind each other). The green line represents the 
number of occurrences of the current GMF in each iteration 
( 
∑

n∈N

∑
t∈T f

Occ).
In Fig. 5, Iteration 0 simply produces any feasible solu-

tion to the NRPwF; a roster that respects all scheduling rules 
defined in the Safe Work Australia guidelines. Note that 
these guidelines correspond to the standard constraints in 
nurse rostering literature, meaning that the GMF of the roster 
obtained in iteration 0 corresponds to what one would expect 
to see in a typical NRP paper. As our model iterates to reduce 
the GMF, we thus find solutions that increasingly outperform 
typical rosters in terms of the single highest fatigue score.

During the first iterations, the global maximum fatigue 
clearly decreases, before stabilising at 5.90. Had we only 
performed 40 iterations on this instance, and not noted the 
change in number of occurrences of the GMF, we would 
likely conclude that the algorithm seemed to converge. How-
ever, from the green line in Fig. 5 we can see that while the 
global maximum fatigue score remains 5.90 during itera-
tions 5 to 43, the number of occurrences of the 5.90-score 
gradually decreases from 60.

From this point, the global maximum fatigue continues to 
decrease from iteration 43 to 48, converging to 5.44. For this 
value of the GMF, however, the number of occurrences also 
remains unchanged, and we can thus be more confident we have 
found a high-quality solution. These results illustrate that rather 
than determining an exact number of iterations for all instances, 
we should terminate our algorithm when we have reason to 
believe the maximum global fatigue score has converged, i.e. 
when our algorithm has no progress in a reasonable number of 
iterations. We set this limit to 20 iterations without either finding 
a new GMF or reducing the number of occurrences of the GMF.

6.2.1 � Errors and post‑processing

In Fig. 5, there is a spike in the fatigue score in iteration 103. 
Iteration 103 represents the FRE performed after termination of 
our algorithm. From the large difference in fatigue score in itera-
tion 102 and iteration 103, there is clearly at least one case of 
significantly higher true GMF than estimated in iteration 102. To 
counteract this, we use extras, as mentioned briefly in Section 5.

In reality, it is common in most hospitals to have access 
to some number of extras that can cover for staff when nec-
essary. We assume that a ward of 30 full-time nurses has 
access to extras that can cover one shift per week on average, 
i.e. up to six shifts can be covered by extras in our planning 
period. When the true GMF is 0.10mV, or more, higher than 
the approximated GMF, the last work day prior to the true 
GMF is replaced with an off-shift for the nurse experienc-
ing the GMF. If the process is performed six times and the 

Fig. 5   Figure demonstrating change in the value, and the number of 
occurrences, of the global max fatigue for Instance 1. Iteration 0 is 
the initial feasible solution, while Iterations 1 to 101 are based on the 
approximated fatigue scores. Iteration 102 is the true global maxi-
mum fatigue score and Iteration 103 is the result of post-processing



	 K. K. Klyve et al.

1 3

global maximum fatigue is still more than 0.10mV larger 
than the approximated global maximum fatigue score, we 
assume that we have exhausted the ward’s budget for extras 
on single shifts, and accept that the fatigue is higher than 
implied by the approximation. Note that in introducing the 
post-processing procedure, we implicitly allow for violations 
of the minimum total work hours ensured by Constraints 
Eq. 8. Pseudocode for the post-processing procedure is pre-
sented in Algorithm 2 in Appendix 1.

In Fig. 5, the last iteration, iteration 104, is the result of 
using an extra worker for one single shift. In the example of 
Instance 1, the approximated global maximum fatigue value 
was 5.44, the true evaluation was 5.78, and after post-process-
ing (adding one off-shift) the true fatigue value became 5.51.

In the column of Iteration 0 in Table 4, the global maxi-
mum fatigue scores of the initial feasible roster is provided. 
The subsequent columns up to the column denoted “Last” 
present the global maximum fatigue based on the approx-
imated fatigue scores. Later columns all include the true 
fatigue scores provided through FREs and errors found by 
comparing the FREs with the approximated fatigue score in 
the latest iteration of our algorithm. If errors are greater or 
equal to the threshold of relevance, 0.10mV, extras are used 
to cover single shifts, and new FRE-values are provided in 
subsequent columns.

Immediately we notice the stark difference between GMF 
in rosters in Iteration 0 and the column denoted “Last”. As 

all feasible solutions to the NRPwF must respect the Safe 
Work Australia guidelines, one might not expect the poten-
tial for reducing the GMF was very large to begin with. 
However, results in Table 4 underscore that the algorithm is 
able to reduce the approximated GMF vastly by explicitly 
minimising it (1.06mV on average for all instances).

From results in Table 4, it is clear that post-processing is 
necessary in 9 of the 20 instances to reduce the error to an 
acceptable magnitude. In five cases one extra shift is suf-
ficient, in two cases we need two extras, and in two cases 
we need three extras. The post-processing technique seems 
effective, as evidenced by the results in Table 4. Notably, 
all errors are positive (FRE-scores are larger than RHE4

-scores), which can seem surprising given results in Table 2. 
However, the global maximum fatigue scores obtained after 
FRE are not necessarily the same nurses and shifts that are 
estimated to have the maximum global fatigue by the RHE4 . 
With 30 nurses and 42 days in a roster, there could poten-
tially be large true fatigue scores in seemingly arbitrary parts 
of the final roster, as became clear when analyzing errors in 
Section 3.3. With this in mind, it makes sense that errors 
tend to be positive.

Results in Table 5 demonstrate that focusing only on the 
approximated values from our lookup-table (in practise this 
means focusing on shorter shift patterns) does not guarantee 
against producing tiring schedules for some nurses (see e.g. 
Instance 7), but it proves to be a highly useful proxy. The 

Table 4   The table presents global maximum fatigue scores for 20 instances. All values are given in milliVolts

Initial Values based on RHE4 Values based on FRE

Instance Iter 0 Iter 10 Iter 20 Iter 40 Iter 60 Iter 80 Iter 100 Last True Error 1 extra 2 extras 3 extras

1 6.66 5.90 5.90 5.90 5.44 5.44 5.44 5.44 5.78 0.34 5.51
2 6.66 5.90 5.90 5.44 5.35 5.35 5.35 5.35 0.00
3 6.66 5.90 5.90 5.90 5.90 5.90 5.90 5.92 0.02
4 6.66 5.90 5.90 5.44 5.35 5.35 5.35 5.35 0.00
5 6.66 5.90 5.90 5.44 5.44 5.44 5.44 5.47 0.03
6 6.66 5.90 5.90 5.90 5.90 5.90 6.19 0.29 5.91
7 6.66 5.90 5.44 5.44 5.35 5.35 5.35 5.35 6.13 0.78 5.36
8 6.66 5.90 5.90 5.90 5.90 5.66 5.44 5.44 5.50 0.06
9 6.66 5.90 5.90 5.90 5.44 5.44 5.35 5.35 5.36 0.01
10 6.66 5.90 5.90 5.90 5.53 5.44 5.44 5.44 5.54 0.10 5.44
11 6.66 5.90 5.90 5.90 5.90 5.90 5.90 5.94 0.04
12 6.66 5.90 5.90 5.59 5.35 5.35 5.35 5.35 5.36 0.01
13 6.66 5.90 5.90 5.90 5.90 6.06 0.16 6.05 6.01 5.96
14 6.66 5.97 5.90 5.90 5.90 5.90 5.90 5.90 5.97 0.07
15 6.66 5.90 5.81 5.44 5.35 5.35 5.35 5.89 0.54 5.7 5.69 5.36
16 6.66 5.90 5.90 5.90 6.06 0.16 6.01 5.96
17 6.56 5.90 5.90 5.44 5.44 5.44 5.44 5.44 5.51 0.07
18 6.66 5.90 5.90 5.90 5.90 5.35 5.35 5.35 5.36 0.01
19 6.66 5.90 5.90 5.90 5.90 5.90 5.90 6.21 0.31 6.06 5.95
20 6.66 5.90 5.90 5.90 6.08 0.18 5.98
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longer shift patterns are considered, the better the proxy, as 
implied by results in Section 3.3. Furthermore, managers can 
ensure a high-quality roster if they combine this approach 
with a full evaluation of rosters after they are created and 
also use extras for single shifts. Our results suggest this num-
ber can be small, and in many cases 0.

6.2.2 � Roster insights

The large plateaus in Fig. 5 stand out as an interesting char-
acteristic, which provides some insights to the structure of 
the NRPwF when minimising the global maximum fatigue. 
Note that 5.90 is the approximated fatigue score for a nurse 
of biological profile 1 working the shift pattern {O,N,N,N} 
or the pattern {D,N,N,N}. In other words, to reduce the 
objective function value, all such patterns for nurses of bio-
logical profile 1 must be removed without introducing an 
even higher fatigue score somewhere in the roster. This is 
an example of a pattern that can occur frequently, as the 
probability of a nurse having biological profile 1 is 64%, and 
three consecutive nights is the maximum number of nights.

However, as the algorithm has removed high fatigue scores 
from the roster, this has affected the number of different 
shifts worked by nurses of different biological parameters. 
In Table 5 we present some key information on the average 
number of different shifts worked by nurses of each biological 
profile. 30 nurses working 42 days and a minimum of 7 day 
shifts, 5 evening shifts, and 5 night shifts per day, implies each 
nurse should work a minimum of 9.8 day shifts and 7 evening 
and night shifts each, as seen in the last row in Table 5.

It is clear from Table 5 that nurses of different biologi-
cal profiles are assigned very different numbers of different 
shifts. Nurses of the most typical biological profile 1 work 
on average 10.41 day shifts, 8.21 evening shifts, and 7.10 
night shifts. They thus work approximately their share of 
each shift type. Nurses of biological profile 1 work on aver-
age 0.10 of the tiring triple night-patterns. The low number 
of triple night-patterns is notable, and make sense seeing 

that most instances in Table 4 have no approximated fatigue 
scores of 5.90.

Nurses of all the nine biological profiles have little negative 
impact on their sleep from working day shifts, and it is thus nat-
ural to compare profiles by looking at the number of night shifts 
and evening shifts they are able to perform without producing 
high fatigue scores. If we analyse the values in Table 5, we 
can see that the sleep times tend to affect the number of shifts 
worked during hours the nurse would otherwise sleep. Nurses 
that have short sleep times, i.e. nurses of biological profiles 2 
(12.51 nights), 5 (14.75 nights), and 8 (9.22 nights), work more 
night shifts than the minimum requirement per nurse.

On the other hand, nurses with long sleep times work few 
night shifts on average (profile 3 works 2.59 and profile 9 
works 1.40) with the exception of the morning chronotype 
profile 6 (11.83 nights). The case of profile 6 is interesting, 
because it contradicts a notion of a straight-forward relation 
between length of sleep times and the frequency of night 
shifts. However, we can see that the number of evening shifts 
worked by nurses of biological profile 6 is 1.17. This could 
mean that for nurses with a morning chronotype, it is more 
problematic to work evening shifts and easier to work night 
shifts than for nurses of other chronotypes. Intuitively this 
makes sense, as morning type sleepers go to bed early and 
as a result this can make evening shifts more challenging 
than for other chronotypes. Also, with most other biological 
profiles clearly favouring evening shifts over night shifts, it 
is practical not to assign evening shifts to nurses of profile 6 
from a combinatorial perspective.

It seems that when minimising the global maximum 
fatigue, we must take special notice of the needs of nurses 
with long sleep times and customize the rosters for them. 
This entails treating nurses differently in order for them to 
be similarily fatigue when they are the most tired, possibly 
denouncing the simplified fairness rules typically presented 
in rostering literature, where e.g. nurses are assigned the 
same number of the unpopular night shifts. The customiza-
tion could both entail ensuring sufficient off-days and rest 

Table 5   Roster statistics for 
each of the 9 biological profiles 
in the 20 instances. The first 
three columns identify each 
biological profile’s sleep time 
and chronotype, while columns 
4-7 give average numbers of 
different shift types allocated

Biological Sleep Chrono- Avg. Avg. Avg. Avg. Nr.
profile time type Day Evening Night triple night

1 Normal Day 10.41 8.21 7.10 0.10
2 Short Day 6.94 6.10 12.51 0.55
3 Long Day 13.33 9.82 2.59 0.00
4 Normal Morning 10.11 7.18 8.44 0.49
5 Short Morning 5.00 6.00 14.75 2.50
6 Long Morning 12.83 1.17 11.83 1.33
7 Normal Evening 10.79 6.49 8.51 0.59
8 Short Evening 14.56 2.22 9.22 1.67
9 Long Evening 16.40 8.20 1.40 0.00
Avg. Min. 9.8 7 7
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times, but it is also notable that the chronotype of a nurse 
seems to decide which shifts are most disadvantageous to 
the nurses.

6.3 � The effects of increased staff levels 
on maximum fatigue levels

To analyze the effect of staff size on the global maximum 
fatigue score in a roster, we take Instances 1-20 solved in 
Section 6.2 and add one or two full-time nurses of biologi-
cal profile 1 to evaluate the effects. The instances with extra 
full-time nurses are simply referred to with +1 or +2 in 
subscripts, e.g. Instance 1+1 and FRE+1 . Results based on 
FREs are presented in Table 6.

In Table  6 we present true fatigue scores for all 20 
instances after post-processing.5

There are some instances where the global maximum 
fatigue scores are reduced greatly in Table 6, while there 
are others that have no or very little improvement. From the 
average values in the last row, we can see a slightly larger 
average improvement from adding the first nurse in column 
FRE

pp

+1
 compared to FREpp , than comparing the two later 

columns with their priors ( FREpp

+1
 to FREpp

+2
 and FREpp

+2
 to 

FRE
pp

+3
 ), but average differences in GMF from adding a nurse 

are generally small. It is interesting to compare the second 
column FREpp containing true fatigue scores after post-pro-
cessing for the original instances with the last column, as we 
do in FREpp - FREpp

+3
 , where the total improvement in GMF 

from adding three nurses to the staff is presented.
It is clear that instances with the highest GMF in the origi-

nal instances FREpp have the largest improvements. That is, 
Instances 3, 6, 11, 13, 14, 16, 19, and 20 all have improvements 
of 0.50 or more, and they all had FREpp-values in the region of 
5.90-6.00 in Table 6. These improvements have quite clearly 
come as a direct result of being able to remove triple night-
patterns for the nurses of a normal biological profile and in 
some cases adding extra off-shifts to compensate for errors in 
our 4-day rolling horizon approximation. On the other hand, 
of the 7 instances that had FREpp-values in the range 5.30-5.40 
(Instance 2, 4, 7, 9, 12, 15, and 18) in the original instance, 
only three had an improvement of relevant magnitude.

Despite errors occurring when performing FREs, there is 
only one case of increased objective function values when 

calculating the FREPP
3

-FREPP (Instance 15). For this instance, 
the results of approximated GMFs was unchanged when three 
nurses were added to the group of staff, and the error when 
performing the FRE happened to be larger for the FREPP

3
 

than the FREPP . However, this error is well within the 0.10 
threshold of relevance. Results in Table 6 thus seem realistic.

The above mentioned results highlight two interesting 
insights. Firstly, and perhaps unsurprising to practicing 
nurses, increased staff levels enable less tiring rosters. 
Managers should note that avoiding the most undesirable 
shorter patterns tend to reduce nurse fatigue. Secondly, 
when biological profiles are as coarsely divided as in our 
experiments, the effects of removing every occurrence of a 
short and tiring pattern becomes important. When adding 
an additional nurse means the last nurse of biological profile 
1 no longer has to work any triple night shifts, the GMF is 
typically reduced by a lot. If adding the additional nurse 
only reduces the occurrences of triple night shifts among 
nurses with biological profile 1, the GMF is unchanged or 
changed within the threshold of relevance. However, in reality, 
every individual’s biology will differ to some extent, and if 
this information was truly available and incorporated in the 
fatigue model, there would likely be small reductions in the 
GMF in cases where our model only shows a reduction in 
occurrences of the GMF. It is therefore reasonable to look 

Table 6   True fatigue scores of running our algorithm on Instances 
1-20 with none, one and two full-time extra nurses added to the staff. 
Average values in the last row

Instance FREpp FRE
pp

+1
FRE

pp

+2
FRE

pp

+3
FRE

pp

+1
-FREpp

+2

1 5.51 5.36 5.30 5.19 0.32
2 5.35 5.35 5.35 4.94 0.41
3 5.92 5.80 5.36 5.35 0.57
4 5.35 5.35 5.31 5.22 0.13
5 5.47 5.36 5.35 5.35 0.12
6 5.91 5.38 5.19 5.15 0.76
7 5.36 5.36 5.36 5.36 0.00
8 5.50 5.46 5.47 5.34 0.16
9 5.36 5.37 5.24 4.9 0.46
10 5.44 5.44 5.30 4.92 0.52
11 5.94 5.90 5.36 5.34 0.60
12 5.36 5.35 5.36 5.35 0.01
13 5.96 5.36 5.36 5.35 0.61
14 5.97 5.82 5.80 5.35 0.62
15 5.36 5.40 5.36 5.39 -0.03
16 5.96 5.49 5.47 5.44 0.52
17 5.51 5.43 5.47 5.35 0.16
18 5.36 5.35 5.36 5.36 0.00
19 5.95 5.37 5.35 5.35 0.60
20 5.98 5.97 5.59 5.43 0.55
Average 5.63 5.48 5.39 5.27 0.35

5  To evaluate the effect of adding full-time nurses to instances, we 
could look at both the FRE-values without post-processing and the 
FRE-values with post-processing. However, ignoring post-processing 
entails assuming managers would ignore surprisingly high fatigue 
scores, and we believe this is unrealistic. We thus compare the cases 
with post-processing, and use pp in superscript to mark this (e.g. 
FRE

pp

+1
 ), but note that the number of extra shifts introduced in post-

processing varies, from 0 (most common) up to six (the maximum 
number of added off-shifts).
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at the average values of reduction of the GMF in Table 6 to 
estimate the effect of adding one additional nurse to the staff. 
Thus, the average values of 0.14, 0.11 and 0.10 mV decrease 
in GMF per added staff are likely reasonably close to the 
actual decrease one can expect from adding a full-time nurse 
to a ward of 30 full-time nurses. Simply put, the reduction 
in fatigue by adding an additional nurse is small, but not 
irrelevant.

6.4 � The value of knowing each individual’s biotype

While utilizing sleep models in rostering is in itself 
uncommon at most real-life hospital wards, the introduction 
of different biological profiles is especially novel. To 
evaluate the impact of it, we run our algorithm minimising 
the global fatigue score for a set of 30 nurses that all have 
the normal biological profile 1. When the final roster is 
produced, we perform new FREs on the final roster, this 
time applying other biological profiles to all nurses. That is, 
all nurses are evaluated assuming biological profile 2, before 
all nurses are evaluated assuming biological profile 3, etc. 
Essentially we test how well we can minimise global fatigue 
scores without taking into account individual biology.

In Table 7 the global maximum fatigue scores are pro-
vided. Comparing the values in this column across all 
biological profiles, we see that the standard profile 1 has 
a global maximum fatigue score of 6.00, which is near the 
average maximum global fatigue score across all biological 
profiles of 5.96.

Table  7 provides some pointers to which profiles 
contribute to increasing and reducing the fatigue. The 
profiles with global maximum fatigue scores higher than 
biological profile 1 are profiles 3 (6.65), 6 (6.38) and most 

notably 9 (7.00). Nurses with these three biological profiles 
have in common their long sleep time. This indicates that 
the long sleep time is a key characteristic of the nurses 
that are easily fatigued, which corresponds to results in 
Section 6.2.2. In those experiments, long time sleepers were 
spared the most tiring shifts. In this case, such individual 
customization was not made, and the global maximum 
fatigue scores of long time sleepers is far higher than in any 
of the rosters produced in Section 6.2 as a result. Similarly, 
short time sleepers tend to have lower fatigue scores than 
biological profile 1 had in Table 7, with scores 5.64 for 
profile 2, 5.05 for profile 5, and 5.26 for profile 8.

We note that the morning chronotype nurses all have 
a lower global maximum fatigue score than the day and 
evening chronotype nurses with the same sleep times 
(profile 4 has lower global maximum fatigue score than 
profiles 1 and 7, etc.) This is interesting, especially knowing 
that rosters were created to minimise the global maximum 
fatigue of nurses with a day chronotype. This indicates that 
it is advantageous for a nurse to have a morning chronotype 
over a day chronotype, although results would be dependant 
on shift definitions and commuting. The difference 
between day and evening chronotypes is more unclear, as 
global maximum fatigue scores are 6.00, 5.64, and 5.82 
for day chronotypes and 6.09, 5.26, and 7.00 for evening 
chronotypes in Table 7.

By revisiting results in Section 6.2 of running our 20 
instances in Table 4, an interesting realisation occurs, that the 
fatigue score of the normal biological profile 1 in Table 7 is 
in fact quite poor. The approximated GMF for the case of 30 
nurses with biological profile 1 is 5.90 (triple night pattern) 
and the true GMF is 6.00.6 The poor results for 30 nurses 
of the normal biological profile 1 imply that variations in 
biological profiles are beneficial when minimising the GMF. 
With the insights acquired in Section 6.2.2 in mind, it seems 
nurses with different chronotypes act as complementary 
resources at the ward, an interesting notion for those looking 
to recruit new shift workers.7

To date practical studies on the impact of medical staff 
rosters on patient outcomes, have only explored the more 
obvious causes of fatigue such as long shifts and high work-
ing hours per week. For example [66] records that “nurses 
working more than 50 h/week showed the highest adverse 
nurse outcome scores.”

Table 7   Key fatigue score statistics for the same roster where all 
nurses are assumed to have the biological profile in the leftmost 
column. The roster was produced by our algorithm minimising the 
global maximum fatigue score for 30 nurses, all with biological 
profile 1

Biological Sleep Chrono- Global maximum
profiles time type fatigue score

1 Normal Day 6.00
2 Short Day 5.64
3 Long Day 6.65
4 Normal Morning 5.62
5 Short Morning 5.05
6 Long Morning 6.38
7 Normal Evening 6.09
8 Short Evening 5.26
9 Long Evening 7.00
Average 5.96

6  The error is just below 0.10 in this roster, and thus no post-processing 
occurred. Some rosters were post-processed in Table 4, making a direct 
comparison of the GMF between rosters imperfect.
7  An interesting parallel to the notion of using complementary 
chronotypes in scheduling exists in [74], where the reason for differ-
ences in chronotypes are theorised from an evolutionary perspective. 
[74] argue that humans likely evolved to co-sleep as families or even 
tribes, and that different chronotypes would reduce the time they were 
collectively vulnerable, thus enhancing safety.
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We look forward to the deployment of alert-safe rosters 
which will allow their calculated fatigue scores to be cor-
related with reported patient impacts.

7 � Conclusions and future work

First and foremost, this work demonstrates that prospective 
use of advanced sleep models in nurse rostering is realistic. 
The work is generalisable to other industries, and is a first 
step towards reaching the next frontier of individualised 
fatigue mitigation.

We have presented and formalised the Nurse Rostering 
Problem with Fatigue by approximating and incorporating an 
advanced sleep model in a general NRP. An algorithm com-
bining Mixed-Integer Programming and Constraint Program-
ming to form a Large Neighbourhood Search was introduced. 
The algorithm created high-quality rosters minimising the 
global maximum fatigue for all nurses. Instances were cre-
ated as 6-week rosters using real-life data. We further demon-
strated the use of a post-processing technique in cases where 
approximation errors are larger than a threshold of relevance.

7.1 � Technical outcomes

Nurse rostering is a time-consuming task, and poor roster-
ing choices can easily result in fatigue and medical errors. 
This paper described how a fatigue model can be success-
fully integrated with a nurse rostering model and solved to 
a practical scale (30 nurses over 6 weeks) using a hybrid 
algorithm. Current systems implement rules, such as the 
guidelines in [61], to avoid fatiguing rosters. The results 
show that, compared with a roster which merely implements 
such a generic set of rules, levels of fatigue can be reduced 
by more than 1.00mV with an integrated fatigue model in 
the rostering system.

7.2 � Managerial insights

In practice, managers should be aware of the potential ben-
efits for nurse health and patient safety, and innovative health 
care institutions should consider pilot projects with real-life 
implementation.

Among other results, our research demonstrates two 
closely linked insights: 

1.	 Minimising the global maximum fatigue for nurses of 
different biological profiles entails assigning them dif-
ferent numbers of shifts during evening and night time

2.	 Without customisation to individual nurses’ biology, we 
cannot expect to create rosters that limit, as well as pos-
sible, the highest fatigue levels

In a practical setting this means that managers must treat 
nurses differently in order to minimise the global maximum 
fatigue. This entails grappling with an idea of what fairness 
is in rostering. While it is easy and tempting to treat every 
nurse exactly the same irrespective of their reaction to work-
ing round the clock, this does not suffice if managers wish to 
create rosters that focus on nurse health and patient safety.

Furthermore, our results support the intuitive notion that 
biological parameters linked to sleep time affect the fatigue 
experienced from shift work. That is, nurses who are rested 
and uninterrupted and sleep approximately 5 hours are more 
resilient to shift work than those who sleep 7 or 9 hours. 
Furthermore, the fatigue experienced from working at differ-
ent hours seem to be affected by the chronotype of a nurse, 
and results from minimising the global maximum fatigue of 
nurses demonstrate that while day and evening chronotype 
nurses should not be assigned a lot of night shifts, the evening 
chronotype nurses should not be assigned too many evening 
shifts. Furthermore, our results indicate that nurses’ different 
chronotypes can prove complementary when creating rosters.

Our research demonstrates how minimally increasing the 
staff levels makes it possible to decrease the global maxi-
mum fatigue levels. Our results indicate that the average 
of global maximum fatigue scores decrease by a small but 
significant magnitude for each additional nurse, assuming 
the additional nurse has a normal biology in terms of sleep.

We have not been able to prove the optimality of the solu-
tions we have obtained, due to the vast complexity of the 
problem. To guarantee the validity of managerial results, 
optimal solutions would be preferable. Nonetheless, we do 
not believe the current algorithm contains any biases that 
could affect the managerial results.

7.3 � Future work

Real-life implementation and evaluation of the impact on nurse 
health and patient safety would be very useful. It is not clear 
what the impact of our proposed model would have on a mul-
titude of different real-life rostering aspects. What effect will 
it have on work culture when planners specifically focus on 
equity? Could this rather radical change in the understanding 
of fairness imply conflict among staff? And what legal aspects 
should be considered when using fatigue tools for planning? 
We invite researchers to investigate such related topics.

Most real NRPs are in reality multi-objective problems, 
and it would be interesting to see the effects of combining 
our proposed minimisation of the worst fatigue scores with 
other objectives such as individual preferences, other fair-
ness measures, and personnel costs. Introducing other objec-
tives to the NRPwF would change the problem significantly, 
and likely imply the need for a new solution method, and so 
these topics of future research are closely intertwined. The 
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current post-processing method is realistic, but simple. It 
would be interesting to see work where alternative strate-
gies to simply removing shifts and assigning an off-day are 
considered.

The general approach for incorporating the sleep model, 
where the approximation is created through a look-up table, 
is likely useful in OR within other areas of application. Fur-
thermore, as sleep models are improved, research on rostering 
using sleep models should be updated and improved. Noting 
the vast impact of variations in two of the most common bio-
logical profiles, it would be very interesting to see the impact 
of more refined biology in nurses. From a rostering perspec-
tive, it would be particularly interesting if future sleep mod-
els were able to take into account how other factors such as 
individuals’ social life etc. affects sleep patterns. There are 
examples of attempts at this, see e.g. [51]. For many nurses, 
work-life balance includes a preference towards following the 
circadian rhythm of the rest of society, to enable daily chores 
and meeting others with a more standard work schedule.

A Symbol directory and model

A.1 Indices

Symbol Description

n Nurse
s Shift
sD Day shift
sE Evening shift
sN Night shift
sO Off-shift
t, � Day
b Biological profile
w Indication of night shift one day 

prior

A.2 Sets

Symbol Description Range

N Nurses 1… 30
T Days 1… 42
T
S Sundays 7,14… 42

Symbol Description Range

S Shifts {sD, sE , sN , sO}

S
W Work shifts {sD, sE , sN}

A.3 Parameters

Symbol Description Value

PC

sD
Minimum staff coverage of work shift day 7

PC

sE
Minimum staff coverage of work shift day 5

PC

sN
Minimum staff coverage of work shift day 5

H Minimum total work hours 210

H Maximum total work hours 228

PH

sD
Length of day shift [hours] 8.5

PH

sE
Length of evening shift [hours] 8.5

PH

sN
Length of night shift [hours] 8.5

P
CN Maximum number of consecutive night 

shifts
3

P
CD Maximum number of consecutive work days 6

H Maximum number of weekly work hours 50

P
CW Maximum number of consecutive work 

weekends
2

P
CW Maximum number of days between two 

off-days
10

A.4 Decision variables
ynst ∈ {0, 1} is a binary variable determining if shift s ∈ S

W 
is worked by nurse n ∈ N  on day t ∈ T  . ynst constitutes the 
roster in the NRPwF.

znt ∈ {0, 1} is a binary auxiliary variable indicating if nurse 
n ∈ N  works during a two-day period ending on a day t ∈ T  . 
f Max
n

 is a continuous variable equal to the maximum fatigue 
score value of nurse n ∈ N  for the entire planning period.

A.5 Model

A.5.1 Coverage

(19)
∑

n∈N

ynst ≥ PC
s
, t ∈ T, s ∈ S

W
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A.5.2 Short‑term rest

A.5.3 Long‑term rest

A.5.4 Objective function

(20)
∑

s∈S

ynst = 1, n ∈ N, t ∈ T

(21)
t∑

�=t−P
CN

ynsN� ≤ P
CN

, n ∈ N, t ∈ T

(22)ynsN (t−1) + ynsDt + ynsEt ≤ 1, n ∈ N, t ∈ T

(23)ynsE(t−1) + ynsDt ≤ 1, n ∈ N, t ∈ T

(24)ynsN (t−2) + ynsO(t−1) + ynsN t ≤ 2, n ∈ N, t ∈ T

(25)
∑

s∈SW

t∑

�=t−P
CD

yns� ≤ P
CD

, n ∈ N, t ∈ T

(26)H ≤

∑

s∈S

∑

t∈T

PH
s
ynst ≤ H, n ∈ N

(27)
∑

s∈SW

t∑

�=t−6

PH
s
yns� ≤ H

W
, n ∈ N, t ∈ T

S

(28)
2znt − ynsN (t−2) −

∑

s∈SW

yns(t−1)

−ynsDt − ynsEt ≥ 0, n ∈ N, t ∈ T

(29)
P
CW

∑

�=0

zn(t−7�) ≤ P
CW

, n ∈ N, t ∈ T
S

(30)
t∑

�=t−P
Z

zn� ≤ P
Z
, n ∈ N, t ∈ T

(31)f GM − fnt ≥ 0 n ∈ N, t ∈ T

(32)Minimise f GM

A.5.5 Alternative objective function used 
in cases of many cases of GMF or no recent 
progress

f Occ
nt

∈ {0, 1} is a binary variable equal to 1 if nurse n experi-
ences the GMF on day t, 0 else. f GM∗ is the global maximum 
fatigue parameter from the previous iteration.

A.6 The relation between the fatigue score 
variable and the lookup‑table

Assume the lookup-table is described by parameter PScore
bs1s2s3s4w

 , 
where index b is the biological profile, indices s1 , s2 , s3 , and s4 are 
the shifts assigned on days t − 3 , t − 2 , t − 1 , and t of the evalu-
ation pattern, and the index w is 1 if nurse n worked a night shift 
prior to the evaluation pattern, 0 else. The constraints below 
ensure a linear relation between variables fnt and the lookup-table 
of fatigue scores. We also introduce the binary auxiliary variable 
pns1s2s3s4wt , indicating if nurse n works the pattern indicated by 
the s-indices prior to a night shift or not on day t. Furthermore, 
we introduce the sets B consisting of all biological profiles and 
the sets NB

b
 consisting of all nurses of biological profile b.

Constraints Eq. 36 ensure that the variable pns1s2s3s41t can 
only have the value 1 if nurse n works the evaluation pattern 
defined by the s-indices if it occurs subsequent to a night 

(33)fnt ≤ f GM∗, n ∈ N, t ∈ T

(34)f Occ
nt

− fnt + f GM∗
> 0, n ∈ N, t ∈ T

(35)Minimise
∑

n∈N

∑

t∈T

f Occ
nt

(36)

pns1s2s3s41t − ynsN t−4 − yns1t−3

− yns2t−2 − yns3t−1 − yns4t ≤ −4,

n ∈ N, s1, s2, s3, s4 ∈ S, t ∈ T

(37)

pns1s2s3s40t −
∑

s∈S�sN

ynst−4 − yns1t−3

− yns2t−2 − yns3t−1 − yns4t ≤ −4,

n ∈ N, s1, s2, s3, s4 ∈ S, t ∈ T

(38)
∑

s1∈S

∑

s2∈S

∑

s3∈S

∑

s4∈S

1∑

w=0

pns1s2s3s40t = 1, n ∈ N, t ∈ T

(39)
fnt − PScore

bs1s2s3s4w
pns1s2s3s4wt ≥ 0,

b ∈ B, n ∈ N
B
b
, s1, s2, s3, s4 ∈ S,w ∈ {0, 1}, t ∈ T
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shift, while constraints Eq. 37 ensure the same relation if the 
evaluation pattern occurs subsequent to a different shift than 
the night shift. Constraints Eq. 38 ensure that the variable 
pns1s2s3s4wt can only be equal to 1 once for every combina-
tion of nurses and days, ensuring that the variable pns1s2s3s4wt 
becomes an indicator of the evaluation pattern and prior 
night shift for nurse n on day t. Constraints Eq. 39 ensure the 
variable fnt cannot be lower than the approximated fatigue 
score of nurse n in the lookup-table if the nurse works the 
evaluation pattern and prior night shift defined by s-indices 
and w on any day t. Algorithm 1  Algorithm 2 

B Pseudocodes

B.1 Algorithm for solving the Nurse 
Rostering Problem with Fatigue

Algorithm 1   Solving the Nurse Rostering Problem with Fatigue. 

B.2 post‑processing function

Algorithm 2   Post-processing function. 
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