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A B S T R A C T   

This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a 
threat that may result in an accident. The proposed VoP model is based on information value theory and con
siders both prediction accuracy and action failure probability over time. The optimal response time is dependent 
on parameters: the ratio between the accident cost and response action cost, accident probability, action failure 
probability, prediction performance, and response strategy (a series of sequential responses or a single response). 
A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is 
done to evaluate how optimal response time changes with those parameters. The case study show that it is 
reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be 
postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to 
calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum in
vestment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the 
threshold of being precautionary; and it is reasonable to increase action cost.   

1. Introduction 

1.1. Background 

When an iceberg is approaching an offshore installation, it is not 
clear whether a collision will happen. For such a threat that has a po
tential to damage an asset of interest, the decision-maker needs to decide 
how to respond to avoid accidents with the lowest cost. For example, one 
can tow the iceberg away [1] immediately after the iceberg is observed, 
to avoid any risks, but it is unnecessary in most cases since the chance of 
collision is very low. Thus, after receiving the first signals of a threat (e. 
g., seeing an iceberg), the decision-maker does not need to respond until 
she/he has higher confidence that the threat will make a damage. Sit
uation changes rapidly, and validity of prediction is also time-varying 
[2, 3]. When prediction is made early, the signal for anticipating 
either an accident or no accident may be very weak [4], or there is too 
much noise and too many possible future scenarios. The prediction ac
curacy may be insufficient to support decision-making. Short-term 
prediction tends to be more accurate, and it may be worthwhile to 
postpone the response. However, relying on short-term prediction leaves 

little time for action implementation; a failed action may lead to a 
disastrous result. 

Therefore, after observing a threat, a question is raised: when is the 
optimal time to respond? In other words, what is the optimal prediction 
horizon to use? We call this as the “optimal responding problem”. It is a 
question to both decision-makers and the academics because a 
responding decision must be made under partial predictability where it 
is possible to take observations and predict the behavior of the threat (e. 
g., the iceberg) but only to a certain degree. Here, the response time tr is 
a time interval and it is defined in relation to time tt when the hazardous 
situation terminates as illustrated by Fig. 1. The time point of response 
tpr is the time to make & accept a prediction and implement a given 
response action to prevent accident. By default, a response includes 
making a prediction based on the information available, decision- 
making based on the prediction result, and a potential following ac
tion to reduce risks. An actual action will follow the decision-making if 
an accident is predicted to occur while no actual action is implemented if 
no accident is predicted. 

Determining the optimal time to respond is a generic problem and is 
valuable for the planning of time-critical and expensive response 
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actions, risk prediction and control during operation (e.g., flood [5], 
ship collision [6, 7], vehicle collision [8]), design of predictive and 
intelligent alarms [9], threat management, emergency response [10–12] 
(such as when we stop watching a hurricane and start evacuation), 
system health monitoring and response [13–15]. Ambiguity in when to 
respond can lead to action delay and eventually cause incident or ac
cident [16]. Solving this problem also bring benefits to action planning 
in autonomous systems which can take in and process information from 
the environment to make decisions themselves. 

In practices, the problem of when to respond to a threat is resolved by 
risk monitoring, experience, or regulation rules. An example is response 
to ships on collision course with an offshore installation in the North Sea, 
where there are fixed time limits for various response actions (alarm, 
mustering, evacuation). As for how rules are set, the rationale is often 
not very clear. When it comes to risk monitoring, a risk threshold is 
usually assumed to exist to trigger an response action [17]. Such a 
threshold is like an alarm trip point. If risk exceeds the threshold, action 
should be taken, otherwise not. To formulate a good rationale to 
determine when to respond to threat, how far in the future we are 
predicting/monitoring the risk, how soon the threat will propagate into 
an accident (which is called the process safety time in the process in
dustries [18]), or the availability of actions when the threshold is 
breached [19] should also have been considered. Overall, rationale for 
when to respond and approach to derive optimal response time are 
needed so that risk can be further minimized, and system safety can be 
maintained at a better cost-efficient manner. 

1.2. Time of response 

In the field of psychology and neuroscience, speed-accuracy tradeoff 
[20, 21] is used to describe the complex relationship between an in
dividual’s willingness to respond slowly and make relatively fewer er
rors compared to the willingness to respond quickly and make relatively 
more errors. The time interval until the decision-maker decide from the 
presentation of stimulus is called the choice reaction time [22–24]. From 
the information theory and behavioral decision-making points of view, 
there is a cost in spending time for information accumulation [25, 26]. A 
decision-maker tends to respond later if accuracy is emphasized and 
tends to decide early if speed is emphasized. If high discriminability can 
be reached early, the decision-maker is able to decide early [27]. 

Following the speed-accuracy tradeoff, this paper proposes a novel 
rationale, and a mathematical problem formulation to determine when 
to respond to threat. The key to determine whether to respond imme
diately or to postpone is whether future updated information will give a 
more reliable prediction to warrant the postponing; what should be 
managed is the tradeoff between decreased cost by increased prediction 
accuracy, and increased cost by acting late, as illustrated in Fig. 2. The 
optimal time to respond is when the marginal expected gain of predic
tion is equivalent or smaller than the marginal cost of postponing action. 

Information value theory has been used to quantify the added value 
from information and support rational decision making under uncer
tainty [28–34]. Value of information (VoI) is recommended for sensi
tivity analysis for reliability analysis [33], probabilistic safety 

assessment [29] and safety management [35]; here, a sensitivity anal
ysis is to evaluate which input variables one should collect more infor
mation to reduce their uncertainty. VoI is also used for making 
testing/inspection and maintenance decision [14, 32]. Prediction is to 
provide information. The value of prediction can be evaluated in a 
similar manner of information. A Value of (imperfect) Prediction (VoP) 
method based on information value theory is formulated to calculate the 
optimal response time quantitatively. The gain from an improved pre
diction can be evaluated by the cost reduction when the predicted result 
is used in decision-making. The cost of acting later can be modelled by 
the increased probability of failure of the action due to reduced time 
available. The optimal time to respond can be found by minimizing the 
total cost as the combination of gain from improved prediction by 
postponing and loss from acting later. This paper does the following:  

• Develops a utility model of the tradeoff phenomenon.  
• Proposes a solution for the “optimal responding problem” by 

modeling the tradeoff.  
• Formulates the “optimal responding problem” and its solution 

through probabilistic mathematics. Such formulation provides a 
unified manner to describe and solve the problem and enables a 
general application of the solution. 

1.3. Potential contributions of this research 

This research provides a novel rationale to determine when to 
respond provided in this paper can reduce ambiguity in the timing of 
decision-making, thus, lower the possibility of decision error [16]. The 
methodological novel contribution of this research can be expected from 
the formulation of the “optimal responding problem” and the VoP model 
as a solution. Thus, the optimal response time can be derived. 

In addition, the method proposed in this paper can also be used to 
answer the following questions:  

• Whether can we rely on our prediction? 
• How good must the prediction be to be usable or to provide addi

tional value?  
• How much can we invest in the response action? 
• What is the risk threshold between making decisions based on pre

diction and making decisions without prediction (such as taking a 
precautionary approach or simply tolerating the risk)? 

In the remainders of this paper, Section 2 describes the problem and 
its assumptions, mathematical representation, and proposed solu
tion. Section 3 presents additional theoretical applications of the 
proposed VoP model. Section 4 describes a case study and result 
obtained by using the proposed method. Section 5 includes impli
cations and discussions; and finally, Section 6 concludes the study. 

Fig. 1. Response time (time is not represented to scale).  
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2. Mathematical description of the problem and solution 

2.1. The optimal responding problem 

To find the optimal response time, we can have the following general 
assumptions: 

1. The threatening event terminates at time tt, either because an acci
dent occurs, or the threat is not relevant anymore.  

2. The system state in the future is unknown. It is not clear whether an 
accident will happen or not until the last moment. However, the 
(statistical) probability of occurrence can be described.  

3. The system state in the future is partially predictable, which means 
that the prediction of future system state is imperfect, and accuracy 
will be not 100%.  

4. Predictability of system state improves when prediction horizon 
(how far ahead we predict) is shorter. Namely, we are more confident 
to discriminate “no accident” and “accident” when the threat is 
approaching.  

5. Costs and chances of failure (fail to eliminate the threat under the 
period of time tr available) of potential actions are known.  

6. Under a certain prediction horizon tr, the prediction model predicts 
whether the accident will happen or not (the prediction output is 
binary: “yes” or “no”) at time tr in the future. For instance, if the 
prediction horizon is 3 h, the model predicts whether the accident 
will occur or not in 3 h. 

7. The decision-maker will respond immediately according to the pre
diction if the decision-maker trusts the prediction, meaning no time 
gap between prediction and response action. 

8. The decision-maker only uses the result of one prediction to deter
mine whether to implement the response action or not. Since pre
dictions always are made based on accumulated and updated 
information, earlier predictions can never be more reliable than the 
later one. Using multiple (redundant) predictions will not improve 
accuracy either.  

9. It is not possible to change the response after a decision has been 
made. 

The termination time tt may be known or not known. In the cases 
when we are only interested in a specific time, for example a deadline, or 
the execution time of a planned activity, the termination time tt is 
considered known. For continuous operation, we are concerned with the 
whole operation period. We do not know when an accident will occur, 
and the termination time tt is considered unknown.  

• For the first scenario when the termination time tt is known, the 
solution could tell us the optimal time is to respond (t before the 
specific termination time point tt).  

• For the second scenario when the termination time tt is not known, a 
monitoring process is introduced assuming that the termination time 
is tr time period ahead of current time in the future. The response 

action will only be taken when the prediction predicts “accident”. 
The solution tells us what the best prediction horizon is for the 
monitoring. 

When the prediction horizon T is a list of discrete values, the 
following elements are considered: 

• S is a set of states, preliminarily expressed by [“accident”, “no acci
dent”], corresponding to accidental scenario and safe scenario. The 
cost associated with each state is expressed by Cacc and Cno acc 
respectively.  

• R is a set of response action alternatives [r1, r2, …, rn], and their costs 
of implementation.  

• Pri is a set of failure probabilities of action alternative ri under 
various periods of time available. 

• P is a set of prediction performances for different prediction hori
zons. True positive rate (TPR) and false positive rate (FPR) are used 
as prediction performance measurements. TPR is known as sensi
tivity, recall or probability of detection, while FPR is known as 
probability of false alarm. TPR and FPR can be derived from the 
prediction error matrix (also called confusion matrix) [36].  

• T is a set of time (prediction horizon) alternatives.  
• pacc is the occurrence probability of an accident at termination time tt 

conditional on threat presence; correspondingly, 1-pacc is the occur
rence probability of no accident. 

The system starts in a safe state but with a probability pacc to end up 
in an accidental scenario at termination time tt. The decision-maker 
receives a result from the prediction model with a prediction horizon 
tr ∈T, which tells whether the accident would occur or not at the future 
time point tt (tr time period into the future after prediction is made). If 
the prediction model predicts “accident”, the decision-maker needs to 
take an action r∈ R to prevent the system moving into the accident state. 
The failure probability of the chosen action is ptr ,r. If the prediction 
model predicts “no accident”, the decision-maker will not do anything. 
As shown in Fig. 2, the predicting and responding time will affect the 
cost, and the decision-maker needs to find an optimal response time tr 
before the termination time tt to minimize the expected cost of such 
threatening scenario. If there are multiple response actions available, 
the final solution of this optimal responding problem is a pair of tr and r 
since the response time tr is dependent on the response action r also. If tr 
variable is continuous instead of discrete in the problem formulation, 
then pr can be expressed as a function of tr for response action r. TPR and 
FPR also can be expressed as functions of tr. The notations used for the 
mathematical formulation are presented in Table 1. 

2.2. Value of prediction (VoP) model 

Information has properties like degree of precision, quality, and 
utility [37]. The same applies for prediction models (not limited to 
computational models). The Value of Information (VoI) [28] is usually 

Fig. 2. Illustration of trade-off between prediction accuracy and action failure probability over time.  
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calculated by the following formula: 
VoI = "the value of decision situation with additional information" - 

"the value of current decision situation" 
In this paper, since the information comes from prediction and the 

value is provided by cost reduction, we propose the concept of VoP 
based on VoI as: 

VoP = "the cost of current decision situation without prediction" - 
"the cost of decision situation with prediction" 

The optimal time to respond arrives when VoP does not increase 
anymore, in another word, when the marginal VoP is 0 if the marginal 
VoP is a monotonic function with time, where: 

Marginal VoP (ΔVoP) = "the cost of current decision situation with 
prediction" - "the cost of decision situation with new prediction with a 
unit time shorter prediction horizon" 

When prediction model is not used, the decision maker has the op
tion of being precautionary and taking action immediately or the option 
of tolerating the risk so that no action is taken, as illustrated in Fig. 3. 
Application of a precautionary approach [38, 39] may lead to waste of 
resources. When the risk is too low for a response action, ignoring the 
risk is preferred. The cost of ignoring the risk is expressed by Eq. (1). The 
cost of being precautionary is expressed by Eq. (2). Failure probability of 
the response action can be assumed to be 0 when the response action is 
taken early. Note that respond precautionarily does not mean that the 

response is early enough for the action failure probability to be 0. 

C(ignore the risk) = (1 − pacc) ∗ Cno acc + pacc ∗ Cacc

= pacc ∗ Cacc
(1)  

C(be precautionary|tr, r) = (1 − pacc) ∗ Cno acc + pacc ∗ p tr ,r ∗ Cacc + Cr

= pacc ∗ ptr ,r ∗ Cacc + Cr (2) 

The optimal response should be the option with the minimum cost 
among C(be precautionary|tr, r), C(ignore the risk ), and 
min(C(with prediction|tr, r)). The objective of the optimal responding 
problem is to find the tr for a given action r which minimize expected 
cost as shown by Eq. (3). 

Optimal C(tr, r) = min

⎧
⎨

⎩

C(be precautionary|tr, r)
C(ignore the risk )

min(C(with prediction|tr , r))

⎫
⎬

⎭
(3) 

For a two-states (“accident, “no accident”) system, there are four 
kinds of scenarios considering the prediction model is imperfect. The 
four kinds of scenarios are: 

• True Positive (TP): actual “accident” state which is correctly pre
dicted as “accident”. 

• False Negative (FN): actual “accident” state which is wrongly pre
dicted as “no accident”.  

• False Positive (FP): actual “no accident” state which is wrongly 
predicted as “accident”.  

• Ture Negative (TN): actual “no accident” state which is correctly 
predicted as “no accident”. 

The cost of each scenario is not same. Fig. 4 illustrates that the de
cision process and all the possible consequences after a response deci
sion is made based on a prediction with prediction horizon tr. Both the 
distribution of the four prediction scenarios and the distribution be
tween successful & unsuccessful action are dependent on tr. The ex
pected cost C(with prediction) can be expressed conditionally on taking 
the response action r at tr time ahead of tt as shown by Eq. (4). 

C(with prediction|tr , r) = Expected
(

CTN
tr +CFN

tr +CFP
tr ,r +CTP,S

tr ,r + CTP,F
tr ,r

)

(4) 

In Eq. (4), CTN
tr is the cost of true negative (TN) prediction with cost 

Cno acc; Cno acc can assumed to be 0 because there is no accident; CFP
tr ,r 

represents the cost of false positive (FP) prediction taken with a response 
time tr; CFN

tr is the cost of false negative (FN) prediction; CTP,S
tr ,r represents 

the cost of true positive (TP) prediction and action r is successful while 
CTP,F

tr ,r represents the cost of true positive (TP) prediction but the action r 
fails. To calculate the expected cost, the percentages of the four pre
diction results can be obtained from the confusion matrix [36]. Each cell 
in the confusion matrix shows the number of false positives, false neg
atives, true positives, and true negatives like in Table 2. Prediction 
performance measurements true positive rate (TPR, see Eq. (5)), false 

Table 1 
Notations.  

Notations Descriptions 

VoP Value of (imperfect) prediction 
Cacc Cost of accident which is used to describe the consequence 

of accidental scenario. 
Cno acc Cost when there is no accident. Cno acc is assumed to be 0 in 

this paper. 
pacc Occurrence probability of the accident. 
tr Response time; it is equivalent to prediction horizon and 

time available for action implementation. 
r Response action. 
pr Failure probability of the response action r. 
ptr ,r Failure probability of response action r when there is time 

interval tr is available for implementation. 
Cr The cost of response action r. CA, CB represent cost of 

response action A, B respectively. 
TPR True positive rate. 
TPRtr True positive rate of the predictive model with prediction 

horizon tr. 
FPR False positive rate. 
FPRtr False positive rate of the predictive model with prediction 

horizon tr. 
LR+ Positive likelihood ratio of the predictive model. It is the 

ratio between TPR and FPR. 
C(with prediction|tr, r) Expected cost of the threat response activity if response 

action r is the candidate response action and prediction 
made with prediction horizon tr. 

C(be precautionary|tr,
r)

Expected cost of being precautionary and respond with 
action r at time tpr with tr time period available for action 
implementation. 

C(ignore the risk) Expected cost if the risk is neglected.  

Fig. 3. Illustration of decision tree for determining whether to apply prediction and which prediction horizon to use.  
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positive rate (FPR, see Eq. (6)) and prediction accuracy (ACC, see Eq. 
(8)) can be derived from the confusion matrix. Positive likelihood ratio 
(LR+) (see Eq. (7)) which is used to assess the usefulness of a prediction 
[40] can also be derived. 

True positive rate: 

TPR =
TP

TP + FN
=

TP
P

(5) 

False positive rate: 

FPR =
FP

FP + TN
=

FP
N

(6) 

Positive likelihood ratio (LR+): 

LR+ =
TPR
FPR

(7) 

Accuracy: 

ACC=
TN +TP

FN+TN +TP+FP
=

TN +TP
P+N

= pacc ∗TPR+(1 − pacc)∗ (1 − FPR)

where pacc =
P

P+N
; it is also called prior accident probability

(8) 

To include prediction performance measurement, the cost function 
can be altered into: 

C (with prediction) = Expected
(
CTN + CFP + CFN

+CTP,S + CTP,F)

=
TN

P + N
∗ Cno acc +

FN
P + N

∗ Cacc +
FP

P + N
∗ Cr

+
TP

P + N
∗ [(1 − pr) ∗ Cr + pr ∗ (Cr + Cacc)]

=
1

P + N
{TN ∗ Cno acc + FN ∗ Cacc + FP ∗ Cr + TP

∗[Cr + pr ∗ Cacc]}

= (1 − pacc)

∗

[
TN

TN + FP
∗ Cno acc +

FP
TN + FP

∗ Cr

]

+ pacc

∗

{
FN

TP + FN
∗ Cacc +

TP
TP + FN

∗ [Cr + pr ∗ Cacc]

}

= (1 − pacc) ∗ [(1 − FPR) ∗ Cno acc + FPR ∗ Cr] + pacc
∗{(1 − TPR) ∗ Cacc + TPR ∗ [Cr + pr ∗ Cacc]}

= (1 − pacc) ∗ [Cno acc + FPR ∗ (Cr − Cno acc)]

+pacc ∗ [Cacc + TPR ∗ (Cr + (pr − 1) ∗ Cacc)]

= (1 − pacc) ∗ Cno acc + pacc ∗ Cacc + (1 − pacc) ∗ FPR
∗(Cr − Cno acc) + pacc ∗ TPR ∗ (Cr + (pr − 1) ∗ Cacc)

(9) 

Cno acc is assumed to be 0. The cost function in Eq. (9) is a linear 
function with 6 parameters: pacc, Cacc, FPR, TPR, pr, Cr; pacc and Cacc are 
the probability and cost of accident respectively. pr and Cr are the failure 
probability and cost of response action r. The derivative of the expected 
cost of each input parameter is constant but associated with other input 
parameters meaning that the importance of each parameter to the ex
pected cost is dependent on other parameters. For example, 

ΔC(with prediction)/ΔFPR
= (1 − pacc) ∗ (Cr − Cno acc). The importance of FPR to the expected cost
= (1 − pacc) ∗Cr

C (with prediction)is dependent on the value of pacc and Cr 

Since FPR and TPR are dependent on the response time tr, and pr is 
dependent on the response time tr and the chosen response action, the 
cost function C can be altered into C(with prediction|t,r) in Eq. (10). 

C(with prediction|t, r) = pacc ∗ Cacc + (1 − pacc) ∗ FPRtr ∗ Cr + pacc ∗ TPRtr

∗
(
Cr −

(
1 − ptr ,r

)
∗Cacc

)

(10) 

When only tr and its corresponding FPRtr , TPRtr , and ptr ,r are vari
ants, minimizing C(with prediction|tr, r) is equivalent to minimize: 

FPRtr + TPRtr ∗
pacc

1 − pacc
∗

(

1 −
(
1 − ptr ,r

)
∗

Cacc

Cr

)

FPRtr and TPRtr are conditional on the prediction horizon and model 
used for prediction. They can be expressed as a function of time and 

Fig. 4. Decision tree diagram involving prediction for threat management.  

Table 2 
Confusion matrix.    

Actual   

Accident (positive) No accident 
(negative) 

Predicted Accident (positive) # True Positive (TP) # False Positive (FP) 
No accident 
(negative) 

# False Negative 
(FN) 

# True Negative (TN) 

Sum # Positive (P) # Negative (N)  

T. Zhu et al.                                                                                                                                                                                                                                      
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prediction model, as shown by Eq. (11) and (12) correspondingly. Ac
cording to the overall assumption, the prediction performance improves 
with shorter prediction horizon. The prediction improvement can be a 
result of multisensory integration and information accumulation cross 
over time. Therefore, FPRtr should decrease, while TPRtr should increase 
with shorter prediction horizon tr. 

FPRtr = f (tr,model), with constraints 0 ≤ FPRtr ≤ 1. (11)  

TPRtr = g(tr, model), with constraints 0 ≤ TPRtr ≤ 1. (12) 

The failure probability of a response action is dependent on the time 
available for implementation. Shorter time available implies higher 
failure probability. The relation between time and probability may be 
linear, but more complex relationships are also possible. A logarithmic 
function and cumulative gamma distribution allow flexibility to model 
different relations by varying their parameters. In Eq. (13), a logarithmic 
function is used to express the relation between failure probability and 
time available. The Gamma distribution automatically constrains the 
failure probability between [0,1]. Eq. (14) express the action failure 
probability using the Gamma distribution. 

ptr ,r= {

0, if tr ≥ c
b − dlogx(tr − a + 1), ifa ≤ tr < c

1, if tr < a
(13)  

or 

ptr ,r = 1 −
1

Γ(k)
γ
(

k,
(tr − a)

θ

)

(14) 

The failure probability function and its parameters can be estimated 
from historical data, experimental data or from a physical understand
ing of the phenomenon. The failure probability of a response action can 
be dependent on factors such as equipment and manpower availability 
and threat condition. Conditional failure probability functions on other 
factors can be derived for real application. 

When prediction is perfect (TPR =1, FPR = 0), there will be no 
wasted actions (false positive prediction) and no undetected accident 
cost (false negative prediction). The only risk is from failure of response 

action. The potential value of prediction meaning cost reduction is 
maximized. The Value to Invest (VtI) in developing and improving the 
prediction model can be determined by the potential cost reduction 
through perfect prediction and number of applications. The expected 

cost of perfect prediction is expressed in Eq. (15). 

C(perfect prediction|tr, r) = pacc ∗
(
Cr +Cacc ∗ ptr ,r

)
(15)  

2.3. Cost function for a series of responses (a series of predictions and 
actions) 

An underlying assumption in the previous section is that there is only 
one response, namely only one prediction will be made, and one action 
will be taken. Such an assumption is often challenged. In many cases, the 
second action may be possible to be taken if the first action fails, 
formulated as strategy 1 below. An accident will occur only if both the 
first action and the remedial action fail. In addition, we can also make a 
second prediction if the first action fails and proceed further based on 
the second prediction with a shorter prediction horizon (higher accuracy 
because of new information available) to reduce unnecessary response 
action in case the first prediction is false positive (predicted “accident” 
but actual “no accident”), which is formulated as the strategy 2. New 
information can be e.g., that we see that the first action does not have 
the effect that we expected, other characteristics of the situation change 
in unanticipated ways. Before an accident occurs, further information 
may tell the decision-maker that the first prediction was false negative 
(predicted “no accident” but actual “accident”) and allow another 
response. For severe accidents with high consequence, the cost of false 
negative is very high. To reduce the possibility of false negative, we can 
take a second prediction to double check and make decision based on the 
second prediction, which is formulated as strategy 3. The time interval 
between the first and the second prediction should be long enough that 
possible new information will be available. 

The response can be extended to a series of responses, as shown in 
Fig. 5. Five new cost functions are obtained as shown below. In this 
paper, we only consider a series of two actions, no further action C, 
action D etc. can be initiated after action B fails. The principle will be the 
same if more response actions are considered thus not discussed in this 
paper. To take action B, we assume that we can observe action A fails 
after some time so that it is possible to start action B. When it comes to 
prediction, the second prediction can be made after some time if the first 
prediction predicts “no accident” or can be made when action A fails or 
in either situation. 

Strategy 1: Take action B without taking a second prediction 
after action A fails.   

Strategy 2: Take action based on the second prediction after 
action A fails.   

Strategy 3: Predict for the second time if the first prediction 
predicts “no accident” and respond based on the second prediction.   

C(strategy 1) = (1 − pacc) ∗ FPRtr1 ∗
(
CA + ptr1 ,a ∗ CB

)

+pacc ∗
{
(1 − TPRtr1 ) ∗ Cacc + TPRtr1 ∗

[
CA + ptr1 ,a ∗ CB + Cacc ∗ ptr1 ,a ∗ ptr2 ,b

]}

C(strategy 3) = (1 − pacc) ∗
[
FPRtr1 ∗

(
CA + ptr1 ,a ∗ FPRtr2 ∗ CB

)]

+pacc ∗
{
(1 − TPRtr1 ) ∗ Cacc + TPRtr1 ∗

[
CA + ptr1 ,a ∗

(
(1 − TPRtr2 ) ∗ Cacc + TPRtr2 ∗

(
CB + ptr2 ,b ∗ Cacc

))]}
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Strategy 4: Predict for the second time if action A fails or the first 
prediction predicts “no accident”.   

Strategy 5: Be precautionary for the first response action and 
use prediction later if the first action fails.   

With action B available, the cost of being precautionary is also 
different. The new cost function is: 

C( being precautionary | two actions)

= (1 − pacc) ∗ Cno acc + pacc ∗ ptr1 , a ∗ ptr2 ,b ∗ Cacc + ptr1 ,a ∗ CB + CA (16) 

In the extended cost functions, we use:  

- CA is the cost of first response action A.  
- ptr1 ,a is the failure probability of action A with tr1 time period 

available.  
- CB is the cost of second response action B if the response action fails.  
- ptr2 ,b is the failure probability of action B with tr2 time period 

available.  
- CA/B is the cost of either response action A or B.  
- ptr3 ,a/b is the failure probability of action A or action B with tr3 time 

period available. 
- TPRtr1 , FPRtr1 , TPRtr2 , FPRtr2 , TPRtr3 , FPRtr3 are the prediction perfor

mance with prediction horizon tr1, tr2, tr3. 

With strategy 4, the first prediction is the originally assumed one; the 
second prediction with prediction horizon tr2 is made if action A fails or 

is made with a prediction horizon of tr3 if the first prediction predicts “no 
accident”. Consequently, tr2 and tr3 must be smaller than tr1. With 
strategy 5, the first response is taken precautionarily without prediction. 

Therefore, there is no TPRtr1 , FPRtr1 in the cost function. When consid
ering a series of responses, the optimal time for the earlier response is 
dependent on the planned later responses except when a precautionary 

approach is taken. An optimization of the later prediction and action is 
needed to obtain an overall optimal response. To calculate the best time 
to decide, a multivariate optimization algorithm, greedy searching 
method, or dynamic programming is needed. 

3. Additional applications of the VoP model 

3.1. Whether we should rely on prediction 

Even though we know that the prediction is imperfect, we may still 
use it because it provides additional value or is better than not using it. 
Therefore, the key question is whether the prediction can improve our 
decisions. From Eq. (17), it can be found that to make the prediction 
provide additional value compared with simply ignoring the risk or 
being precautionary, the VoP should be at least greater than 0 or greater 
than the cost of applying the prediction model. If VoP > 0, then we 
should rely on the prediction, otherwise, not. 

VoP = min(C(ignore the risk), C(be precuationary)) − C(with prediction)
(17) 

Positive likelihood ratio LR+ is one measurement of the usefulness of 
prediction, as calculated by Eq. (7) in Section 2.2. However, positive 
likelihood ratio LR+ does not consider the consequences associated with 

Fig. 5. A series of responses.  

C(strategy 2) = (1 − pacc) ∗ [(1 − FPRtr1 ) ∗ FPRtr2 ∗ CB + FPRtr1 ∗ CA]

+pacc ∗
{
(1 − TPRtr1 ) ∗

[
(1 − TPRtr2 ) ∗ Cacc + TPRtr2 ∗

(
CB + ptr2 ,b ∗ Cacc

)]
+ TPRtr1 ∗

[
CA + ptr1 ,a ∗ Cacc

]}

C(strategy 4) = (1 − pacc) ∗
[
(1 − FPRtr1 ) ∗ FPRtr3 ∗ CC + FPRtr1 ∗

(
CA + ptr1 ,a ∗ FPRtr2 ∗ CB

)]

+pacc ∗
{
(1 − TPRtr1 ) ∗

[(
1 − TPRtr3

)
∗ Cacc + TPRtr3 ∗

(
CA/B + ptr3 ,a/b ∗ Cacc

)]

+TPRtr1 ∗
[
CA + ptr1 ,a ∗

(
(1 − TPRtr2 ) ∗ Cacc + TPRtr2 ∗

(
CB + ptr2 ,b ∗ Cacc

))]}

C(strategy 5) = CA + ptr1 ,a
∗
{
(1 − pacc) ∗

[
(1 − FPRtr2 ) ∗ FPRtr3 ∗ CB + FPRtr2 ∗ CB

]
+ pacc

∗
{
(1 − TPRtr2 ) ∗

[(
1 − TPRtr3

)
∗ Cacc + TPRtr3 ∗

(
CB + ptr3 ,b ∗ Cacc

)]
+ TPRtr2 ∗

[
CB + ptr2 ,b ∗ Cacc

]}}
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different prediction results or the possibility of not relying on prediction. 
We therefore suggest prediction effectiveness as formulated by Eq. (18) 
to measure the usefulness of a prediction model. If the prediction 
effectiveness is larger than 1, the result from prediction is useful. Pre
diction effectiveness (PE) potentially can be used to evaluate the quality 
of diagnostic techniques. 

PE =
min(C(ignore the risk), C(be precautionary))

C(with prediction)
(18) 

The constraint function VoP > 0 can be also used to calculate pre
diction performance requirement (Section 3.2), the risk thresholds 
(Section 3.3), and the maximum investment in a response action (how 
much we can spend to prevent an accident with a known consequence) 
(Section 3.4). 

3.2. Prediction performance requirement 

At any time for a known threat and given response action, the min
imal prediction performance requirement is that the FPR & TPR pair 
makes VoP > 0. The FPR &TPR requirement is dependent on three 
factors: accident probability, action failure probability, and the ratio 
between accident cost and action cost, as shown in Eq. (19). 

Constraint function: 

VoP > 0  

̅̅→
yields  

min(pacc ∗Cacc, pacc ∗ pr ∗Cacc + Cr)

− [pacc ∗Cacc +(1 − pacc) ∗FPR ∗Cr + pacc ∗TPR ∗ (Cr − (1 − pr) ∗Cacc)]〉0  

̅̅→
yields  

min
(

pacc ∗
Cacc

Cr
, pacc ∗ pr ∗

Cacc

Cr
+ 1

)

−

[

pacc ∗
Cacc

Cr
+(1 − pacc) ∗FPR+ pacc ∗TPR ∗

(

1 − (1 − pr) ∗
Cacc

Cr

)]〉

0  

̅̅→
yields  

c > a ∗ FPR + b ∗ TPR (19)  

where a = 1 − pacc, b = pacc ∗
(

1 − (1 − pr) ∗
Cacc
Cr

)
, c = min

(
pacc ∗

Cacc
Cr
,

pacc ∗pr ∗
Cacc
Cr

+ 1
)

− pacc ∗
Cacc
Cr 

The constraint function is linear, and the gradient of the constraint 
function is a constant. With additional constraints that 
0 ≤ FPR ≤ 1 and 0 ≤ TPR ≤ 1, the feasible regions which make VoP 
>0 can be established. The feasible regions of FPR and TPR are different 
dependent on relative costs between being precautionary and ignoring 
risk. The shaded area with a distinguishable pattern is the corresponding 
feasible region for each, as shown in Fig. 6. 

3.3. Risk thresholds 

For a decision maker, a common situation is to determine which 
threats require a response and which threats can be tolerated. A threat 
should be responded if there is reasonably practical measure to reduce 
the risk even lower. Usually, we look at the potential consequence of the 
threat (accident cost), probability of the accidental scenario, or the 
combination, i.e., risk, to determine how to respond, as we do by using 
risk matrices. 

Since the occurrence of accident is uncertain, being precautionary is 
a main principle to deal with the risk that we cannot afford to ignore 
[39]. The boundary condition between being precautionary and 
ignoring the risk can be derived from: 

C(be precautionary) = C(ignore the risk) (20) 

Meaning: 

pacc ∗ pr ∗ Cacc + Cr = pacc ∗ Cacc 

According to Eq. (20), boundary values for accident consequence, 
probability, and risk between being precautionary and tolerate the risk 
can be obtained and they are: 

Fig. 6. Feasible regions of TPR & FPR which makes VoP >0.  

Fig. 7. Illustration of risk threshold between being precautionary and ignoring the risk.  
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Cacc =
Cr

(1 − pr) ∗ pacc  

pacc =
Cr

(1 − pr) ∗ Cacc  

pacc ∗ Cacc =
Cr

(1 − pr)

Decision maker should be precautionary and respond if pacc, Cacc, or 
pacc ∗ Cacc exceed the boundary value, which means being precautionary 
and respond is able to obtain a lower residual risk; otherwise, the risk 
can be tolerated and ignored as illustrated by Fig. 7. For example, 
consider the extreme case where the response action has 100% success 
probability, Cacc/Cr must be larger than 1/pacc to make the response 
action rational and worth taken. 

With prediction which provides positive value is involved, two new 
response boundaries are established, as illustrated by Fig. 8. One is 
upper boundary which is between being precautionary and trusting 
prediction; the other one is the lower boundary which is between 
trusting prediction and ignoring risk. 

For the lower boundary, following the principle that C (with pre
diction) > C (ignore the risk), we get: 

pacc ∗ Cacc + (1 − pacc) ∗ FPR ∗ Cr + pacc ∗ TPR ∗ (Cr − (1 − pr) ∗Cacc)〉pacc

∗ Cacc 

For scenario with potential accident consequence, the condition to 
tolerate the risk is: 

Cacc < Cr ∗

[
(1 − Pacc) ∗ FPR

(1 − pr) ∗ Pacc ∗ TPR
+

1
(1 − pr)

]

= Cr ∗

[
(1 − Pacc)

(1 − pr) ∗ Pacc ∗ LR+
+

1
(1 − pr)

]

or 

Cacc

Cr
<

1
(1 − pr)

∗

[
(1 − pacc) ∗ FPR

pacc ∗ TPR
+ 1

]

=
1

pacc ∗ (1 − pr)
∗

[
(1 − pacc)

LR+
+ pacc

]

When it comes accident probability for a known consequence, the 
condition to ignore the risk is: 

pacc <
1

1 +
[
(1 − pr) ∗

Cacc
Cr

− 1
]
∗ LR+

=
Cr

(1 − pr) ∗ Cacc
∗

(1 − pr) ∗ Cacc

Cr + [(1 − pr) ∗ Cacc − Cr] ∗ LR+

When it comes to risk (probability*consequence), the condition to 
ignore the risk is: 

pacc ∗ Cacc <
Cr

1 − pr
∗

[

pacc +
(1 − pacc) ∗ FPR

TPR

]

=
Cr

1 − pr
∗

[

pacc +
1 − pacc

LR+

]

When prediction is involved, the minimum accident cost, minimum 
accident probability, and risk to initiate the response has changed. The 
availability of partial predictability pushes down the risk acceptance 

level. When prediction is involved and LR+ > 1, the risk tolerance 
threshold is reduced for both probability and consequence. LR+ > 1 is 
not difficult to achieve when VoP>0. The consequence tolerance 

threshold is reduced by a ratio of 
[
(1− pacc)

LR+ + pacc

]
, and the probability 

tolerance threshold is reduced by a ratio of (1− pr)∗Cacc
Cr+[(1− pr)∗Cacc − Cr ]∗LR+; the risk 

tolerance threshold is reduced by
[
pacc +

1− pacc
LR+

]
. The reduction ratio is in 

contrary with LR+, which means the better prediction, the high reduc
tion of the risk tolerance threshold. Therefore, when there is no pre
diction, the risk tolerance threshold is quite high in order to initiate the 
response action; the consequence of the accident must be quite high 
compared with the action cost. It is not rational to initiate a costly 
response action for a threat with low risk, which meets the common 
sense. 

For the upper boundary, following the principle that C (with pre
diction) >C (be precautionary), we get: 

pacc ∗
Cacc

Cr
+ (1 − pacc) ∗ FPR + pacc ∗ TPR ∗

(

1 − (1 − pr) ∗
Cacc

Cr

)〉

pacc ∗ pr

∗
Cacc

Cr
+ 1 

For a threat with potential accident consequence, the condition to be 
precautionary is: 

Cacc >
Cr

1 − pr
∗

1 − pacc ∗ TPR − (1 − pacc) ∗ FPR
(1 − TPR) ∗ pacc

=
Cr

1 − pr
∗

Predicted negative (FN + TN)

False negative(FN)

When it comes accident probability with a known consequence, the 
condition to be precautionary is: 

pacc >
1 − FPR

Cacc
Cr

(1 − TPR) ∗ (1 − pr) + TPR − FPR

=
Cr

(1 − pr) ∗ Cacc
∗

Cacc ∗ (1 − FPR) ∗ (1 − pr)

Cacc(1 − TPR) ∗ (1 − pr) + Cr(TPR − FPR)

When it comes to risk (probability*consequence), the condition to be 
precautionary is: 

pacc ∗ Cacc >
Cr

(1 − pr)
∗

[
1 − pacc ∗ TPR − (1 − pacc) ∗ FPR

1 − TPR

]

=
Cr

(1 − pr)
∗

Predicted negative(FN + TN)

False negative(FN) + 1− pacc
pacc 

When prediction which provides positive value is involved, the 
thresholds of accident consequence, probability, and risk to be precau
tionary is pushed up. For accident consequence, the threshold increases 
by a rate of 1− pacc∗TPR− (1− pacc)∗FPR

(1− TPR) ; the probability threshold is increased by 

a ratio of Cacc∗(1− FPR)∗(1− pr)
Cacc(1− TPR)∗(1− pr)+Cr(TPR− FPR); the threshold of risk level increases by 

a rate of 
[

1− pacc∗TPR− (1− pacc)∗FPR
1− TPR

]
. Therefore, it may not be necessary to be 

precautionary anymore if there is partial predictability that the decision 
maker can rely on for the same threat. 

Risk thresholds established above only consider a single time point, 
namely the current time. The potentially improved predictability in the 
future is not considered. The established risk thresholds tell us “Should 

Fig. 8. New boundaries when there is partial predictability.  
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we ignore the risk, or respond based on prediction, or just be precau
tionary and take action immediately?” without considering the option of 
postponing decision. In the same way, risk thresholds between 
responding now and responding later considering the whole-time 
spectrum can be established in a similar way. 

3.4. Maximum response investment 

Another situation that the decision maker needs to determine how 
much cost to invest in response action for accident prevention of a 
known threat. For a threat with a potential accident consequence of Cacc 
and occurrence probability of pacc, what is the maximum cost that should 
be spent on accident prevention? In this case, we should compare the 
cost of taking action based on imperfect prediction (or the cost of being 
precautionary) with the cost of ignoring the risk. 

When partial predictability is not considered, the condition to 
respond is: 

C(be precautionary) < C(ignore the risk)

Meaning: 

Cr < (1 − pr) ∗ pacc ∗ Cacc 

The maximum cost we should spend in accident prevention should be 
(1 − pr) ∗ pacc times of the damage that the accident could cause, which 
is much smaller than the potential accident consequence. Assuming pacc 

= 0.1 and pr = 0, the maximum cost should be invested for accident 

prevention is only 10% of the accident consequence. 
When the decision is made under partial predictability, the condition 

to respond is: 

C(with prediction) < C(ignore the risk)

Meaning: 

Cr < Cacc ∗ (1 − pr) ∗

[
pacc ∗ TPR

pacc ∗ TPR + (1 − pacc) ∗ FPR

]

= (1 − pr) ∗ pacc ∗ Cacc ∗

[
LR+

1 − pacc + pacc ∗ LR+

]

The maximum cost we can spend in accident prevention is Cacc ∗ (1 −

pr) ∗ pacc ∗
[

LR+
1− pacc+pacc∗LR+

]
. It is 

[
LR+

1− pacc+pacc∗LR+

]
times higher than the 

maximum responding cost when predictability is not considered. If the 
prediction is near perfect, the cost we can spend for accident prevention 
is slightly smaller than the damage of the accident. For accidents with a 
small probability, the investment in response action is much smaller 
than it would be if we do not consider the capability of prediction. The 
investment in response action increases after prediction capability is 
considered. Low response action investment based on risk (expected 
cost) is not reasonable anymore. Hence, predictability should be taken 
into account. 

4. Case study on iceberg management 

Iceberg management for collision avoidance is a time-critical task. If 
an iceberg is detected and approaching a Floating Production Storage 
and Offloading unit (FPSO), the offshore installation manager (OIM) 
needs to decide whether and when to respond. Iceberg collisions can be 
extreme events, depending on the iceberg mass and the drifting speed. 
Iceberg drifting is observable physical process that depends on weather 
and ocean dynamics. This process can only be partially understood and 
modelled. Therefore, whether collision will occur or not is only partially 
predictable. There have been many studies of iceberg trajectory pre
diction for iceberg management to prevent iceberg-offshore structure 
collision [3, 41]. To handle threatening icebergs and prevent collision, 
different measures can be taken dependent on the size of iceberg, 

Fig. 9. Decision tree diagram involving prediction for iceberg management.  

Table 3 
Costs of accident and response.  

Prior collision 
probability (pacc) 

Collision 
severity 

Cost factor 
(Cacc) 

Action type Cost 
factor (Cr) 

0.1 

No collision 0 Disconnection 50 
Light 
collision 

10 Towing 1 

Medium 
collision 

300 – – 

Severe 
collision 

4000 – –  
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weather, and time available etc. [1, 42] It is common to monitor the 
iceberg and evaluate the risk of collision when the iceberg is far away 
[43, 44]. When the iceberg moves closer, and a collision is more likely to 
happen, an actual action is needed. For big and threatening icebergs, 
towing is the common response action. For small icebergs, water cannon 
and propeller washing are more commonly used. Disconnecting the 
FPSO is usually the last option, because of the high cost of disconnection 
[45]. Only towing and disconnection are considered in this case study. 

4.1. Preliminary analysis 

The decision-maker is to find the optimal response time and action to 
minimize cost. Fig. 9 illustrates the decision tree diagram for iceberg 
management. Being precautionary and ignoring the risk are included as 
options in the decision tree diagram. 

4.1.1. List of assumptions and input data 
The following assumptions in addition to those listed in Section 2.1 

are needed in this case: 

Fig. 10. Assumptions about prediction performance and towing failure probability in relation to time (prediction horizon).  

Fig. 11. Expected cost of response actions with prediction horizons for light collision. (Note: for light collision, the costs of disconnecting action are much higher 
than the costs of towing action and ignoring the risk. Therefore, disconnecting is not shown in this figure.). 

Fig. 12. Expected cost of response actions with prediction horizons for medium collision.  
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• The prediction performances are the same for the different types of 
icebergs.  

• The prior collision probability pacc is the same for all types of 
icebergs.  

• Termination time tt is unknown.  
• Action costs are constant.  
• The collision cost is dependent on the collision severity.  
• The collision severity can be estimated with a satisfactory accuracy 

and is considered as known when an iceberg is detected far away and 
far earlier than the time to consider whether a response action is 
required. The collision severity is usually determined by the kinetic 
energy of the iceberg, which in turn is determined by the mass and 
velocity of the iceberg on the point of contact. However, the mass of 
the iceberg will not change much for 12 h because the deterioration 
rate is very small in cold region. The same applies to velocity. So, it is 
reasonable to assume the kinetic energy that the iceberg carries on 
the point of contact is the same as when it was observed. 

Assumed prior collision probability, costs for different collision se
verities and response actions are presented in Table 3. The assumptions 
are made based on the authors’ judgment, therefore may not be accu
rate. For the preliminary analysis, relative costs (unitless) are used 
instead of the absolute costs of actions and accidents. This will not in
fluence the results. 

Assumptions about the prediction performance and action failure 
probability relative to time are shown in Fig. 10. The longest prediction 
horizon considered is 12 h. The minimum prediction horizon considered 
is 1 hour because the minimal time required for disconnecting is around 
40–50 min [45]; and the minimal time required for towing is 4 h. Eqs. 
(21) and (22) represent TPRtr and FPRtr respectively, based on as
sumptions. Eq. (23) expresses the ptr ,towing. The assumption about ptr ,towing 

is made based on judgement in combination with industrial data from 
Rudkin, Young [1] and Randell, Freeman [43]. Disconnecting is a costly 
but reliable response action and therefore has a lower failure probability 
than towing [45]. Eq. (24) expresses the assumed ptr , disconnecting. 

TPRtr = 0.3 + 0.6log12(13 − tr), 1 ≤ tr ≤ 12 (21)  

FPRtr = 0.2 − 0.15log12(13 − tr), 1 ≤ tr ≤ 12 (22)  

ptr ,towing= {

1 − log10(9), if tr ≥ 12
1 − log10(tr − 3), if 4 ≤ tr < 12

1, if tr < 4
(23) 

Fig. 13. Expected cost of response actions with prediction horizons for severe collision.  

Table 4 
Optimal prediction horison and action.  

Collision severity Optimal prediction horizon and action Cost 

Light Towing the iceberg based on 8.5 hours’ prediction 0.67 
Medium Being precautionary and towing as early as possible 2.4 
Severe Being precautionary and towing as early as possible 19.3  

Fig. 14. Prediction effectiveness measured by the ratio between min (be precautionary, ignore the risk) and expected cost.  
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ptr , disconnecting= {
0.1 ∗ (1 − log1312), if tr > 12

0.1 ∗ (1 − log13tr), if 1 ≤ tr < 12 (24)  

4.1.2. Results from the preliminary analysis 
In this section, we describe the cost picture for 3 collision scenarios in 

a rank of severity/consequence: light, medium, severe collision. The cost 
pictures in relation to prediction horizon t for those 3 collision severities 
are shown in Fig. 11, Fig. 12 and Fig. 13 respectively. In each figure, the 
expected cost of imperfect prediction with two types of response action, 
the expected cost of ignoring risk, and the expected cost of being pre
cautionary (lines with square markers) are presented. The expected cost 
of ignoring risk is shown by the dark blue line with double cross 
markers. The orange lines are for the towing action, while the blue lines 
are for the disconnecting action. By comparing the expected cost of 
ignoring risk, being precautionary and trusting imperfect prediction for 
the two actions, the optimal response time can be found, which is 
highlighted by a green dot in each figure. 

If the assumptions match the real situation, the decision-maker can 
respond according to the calculated results by selecting the right severity 
level. Table 4 summarizes the optimal prediction horizon and action 
including its cost for each collision scenario. For light collision scenario, 
the best option is towing the iceberg based on 8.5 hours’ prediction. For 
a medium collision scenario, the expected collision cost is 30, which is 
between towing cost (1) and disconnecting cost (50). The best option is 
being precautionary and towing the iceberg away as early as possible if 
there is more than 7.5 h available. The suboptimal option is dis
connecting based on imperfect prediction with 1.5 h prediction horizon. 
For severe collision, the best action at the best time is towing the iceberg 

anyway whenever detected if there is more than 10.5 h available. If 
there is less than 10.5 h available, the decision maker should be pre
cautionary and initiate the disconnecting action. Postponing response 
and waiting for a better prediction is more costly than being precau
tionary in Fig. 13. 

With the assumption that the response action failure probability is 
dependent on time available, and the prediction performance with 
different prediction horizon presented by Fig. 10, the decision cost of 
towing based on imperfect prediction matches the trade-off phenome
non, as illustrated by Fig. 2. Cost decreases with the increased prediction 
accuracy by using shorter prediction horizon in the beginning but in
creases if even shorter prediction horizon is used. This is because the 
increased failure probability of the towing action overweighs the benefit 
from improved predictability in the right part of the tradeoff curve. For 
disconnecting, the decision cost of disconnecting matches the left part of 
the trade-off curve because the failure probability of disconnecting does 
not increase as fast as the predictability. 

It is better to be precautionary than to trust an imperfect prediction if 
the ratio of accidental cost and action cost is very high when considering 
the three collision scenarios. If the ratio between accident cost and ac
tion cost is small, it is better to ignore the risk than trust imperfect 
prediction. Applying and trust imperfect prediction is mainly useful for 
the case when accident cost and response cost are within a medium 
range, where the imperfect prediction to a large degree can provide 
added value (prediction effectiveness >1), as shown in Fig. 14. 

The prediction performance requirement should vary for different 
accidental scenarios and response actions. Fig. 15 shows the boundary 
line of TPR and FPR which is calculated according to Eq. (16). For the 

Fig. 15. Boundaries of TPR and FPR to enable positive VoP.  

Fig. 16. Threshold of accident consequence and probability for towing action.  
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case with accident cost 10 and disconnecting cost 50, there is no valid 
FPR & TPR which enable disconnecting response because disconnecting 
has a higher cost. The left region above each line is the feasible region of 
TPR and FPR for each specific severity scenario and response action (the 
ratio of accident cost to response action cost) with respect to 0 and 0.25 
failure probability. For a high ratio between accident cost and response 
action cost, there is a high requirement towards TPR (true positive rate). 
This is because a failure to predict a severe accident will lead to a huge 
loss. On the other hand, for a low cost ratio, there is a high requirement 
towards FPR (false positive rate). Each false positive prediction (false 
alarm) will lead to big loss because of the wasted action. When the cost 
ratios are 6 and 10, FPR requirement become stricter when the failure 

Fig. 17. Maximum response cost with/without considering predictability (the dot marks the maximum response investment).  

Table 5 
Optimal prediction horizon for optimal action with relation to collision cost.  

Collision cost 
region 

Response action (optimal time) 

(0, 3.4) Ignoring the risk 
[3.4, 12.2) Towing based on the optimal prediction horizon (8.5 h) 
[12.2, 18.1) Towing based on the optimal prediction horizon (9 h) 
[18.1, 11,493) Being precautionary and towing as early as possible when the 

iceberg is observed 
[11,493, +∞) Being precautionary and disconnect as early as possible  

Fig. 18. Optimal response time of towing in relation to accident probability of light collision (collision cost is 10).  

Fig. 19. Expected cost and towing action failure probability (the points with dot markers are the best responding time; the lines with markers are failure probability 
and the lines in the same color without markers are the corresponding expected cost). 
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probability increases. When the cost ratios are 80 and 300, TPR 
requirement becomes less strict when the response failure probability 
increases. 

When prediction is not involved, taking action is the rational deci
sion only if the cost ratio between accident and action is equivalent to or 
larger than 10 with assumed 10% chance of collision and 0% response 
failure probability. However, the cost ratio can be decreased when 
prediction is involved. With the assumed prediction performance, the 
accident cost threshold to disconnect the FPSO decreases to 84 (ratio 
=1.68) in the lowest (reduction factor of 4). For towing action, the ac
cident cost threshold decreases to 3.4 in the lowest (reduction factor of 
6.7). Fig. 16 presents the risk thresholds of towing action for ignoring 
risk and being precautionary when partial predictability is considered 
and when partial predictability is not considered. The thresholds of 
probability and accident consequence for ignoring risk is reduced while 
the thresholds for being precautionary is raised if partial predictability is 
considered. 

At the same time, it is rational if more investment is required for the 
response actions with the assumed prediction performance, and 
response failure probability, as shown in Fig. 17. In Fig. 17, the 
maximum rational response investment is marked by dot. For light 
collision with a cost of 10, the maximum response investment is 0.95 
which is lower than the towing action cost. Therefore, it is rational to 
ignore the risk when predictability is not considered. However, when 
partial predictability is considered, the maximum response investment 
increases to 3 which is higher than the towing cost. Then it is irre
sponsible to ignore the risk. The same occurs to disconnecting. For 
medium collision severity, it is better not to take disconnecting action 
when predictability is not considered since the maximum response in
vestment is 30 and below the disconnecting cost 50. However, it worth 
to invest up to 180 for disconnecting when considering the predict
ability. The calculation provides rationale to judge whether the invest
ment for accident prevention is reasonable or not. 

4.2. Varying assumptions 

Based on the results in 4.1.2, we can conclude that the solution 
provided by the VoP model is useful to find the optimal decision time 
point/prediction horizon for the planned response action. At the same 
time, the results show that the optimal decision time point is conditional 
on a number of factors, such as the ratio of accident cost to response cost, 
response failure probability, prediction performance, and accident 
probability. It is useful to know how the results change with different 
input data. 

As the case study results, the optimal response time varies when it 
comes to different collision cost. Table 5 shows collision cost region and 
their optimal prediction horizons for the optimal action. It is rational to 
ignore the risk if when the collision cost is lower than 3.4 times of the 

towing cost. Otherwise, if the collision cost is equivalent or higher than 
18.1 times the towing cost, it is rational to be precautionary and take 
action as early as possible rather than use prediction. In the middle 
range, waiting for time with better prediction available gives better 
output. This means that the prediction will not always provide addi
tional value and be useful. The higher the accident cost, the earlier 
response the action should be taken, and a more reliable response action 
should be chosen. 

The prior accident probability also has an impact on the response 
time. Fig. 18 shows the optimal response time in relation to accident 
probability of light collision given towing as the response action. It is 
better to ignore the risk and not respond if the probability is below and 
equal to 0.025 (the optimal response time is 0). Further, it is better to be 
precautionary and respond as early as possible when the accident 
probability is above and equal to 0.173 (the optimal response time is 
12). The prediction horizon should be longer which means that response 
decision should be made earlier if there is a higher accident probability 
when the accident probability is between the two boundary values. 
However, the optimal response time does not change dramatically and is 
anyway between 8 and 9 h under the current assumptions. The result 
here is only valid when the prediction performance is not impacted by 
the accident probability. Whether accident occur or not is skewed and 
not evenly distributed and this has an impact on the prediction perfor
mance; it is harder to obtain the same prediction performance for a small 
probability event; the FPR will increase to achieve the same TPR. 

It is originally assumed that towing failure probability is close to the 
average performance of towing. However, whether towing can be suc
cessful is also dependent on ocean conditions such as wave condition, 
visibility and iceberg size. Fig. 19 shows the costs with five additional 
towing failure probability-time functions for the light collision severity 
scenario. New optimal response time is obtained which is marked by the 
large dot on each curve. The optimal response time is sensitive to the 
increase in action failure probability with decreased time available. 

So far, there is no data available about prediction performance of any 
collision prediction model. There is considerable uncertainty about the 
future prediction performance. It would be necessary to see the impact 
of different prediction performance on the optimal response time and 
cost to obtain some indication of the uncertainty. Fig. 20 and Fig. 21 
show the optimal response time and it’s cost in relation to prediction 
performance. Basically, there will be a lower cost and at the same time it 
is better to respond earlier if the prediction is improved; TPR and FPR do 
not have the same degree of impact on the cost and response time. 

In the preliminary analysis, only one response (one prediction & one 
action) is considered meaning no further action will be taken when the 
chosen action fails. In the case of an approaching iceberg, we may still be 
able to disconnect the FPSO if towing fails. Therefore, the expected 
collision cost may not be as high as only considering a single action 
available. The same applies to the false negative (wrongly predicting “no 

a b

Fig. 20. Optimal prediction horizons for varied prediction performances (1 is the originally assumed).  
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accident”). It is interesting to see the result if a “series of responses” 
(multiple predictions and actions) strategy is taken. A second prediction 
can be implemented with a new optimal prediction horizon, assuming 
that whether the first implemented action is successful or not can be 
observed after it has been implemented for 2 h. Table 6 summarizes the 
new optimal responses when consider multiple prediction and actions. 

Comparing with single prediction and action, taking a series of responses 
can make a large cost reduction for severe collision and the optimal 
response time changes also. 

With the assumed data, for a light collision, making a single pre
diction with 8.5 hours’ prediction horizon and towing based on the 
predicted results is the best option. For medium and severe collision 
scenario, it is optimal to take “strategy 5′′ described in Section 2.3, 
which is to initiate the towing action immediately and take prediction 
for the disconnecting and take a second prediction if the first prediction 
predicts “no accident” to compensate for errors in the first prediction. 
However, the prediction horizons for the disconnecting actions are not 
the same. For medium collision, a 3 hours’ prediction horizon should be 
used and take the disconnecting action if the prediction predicts 
“collision”. The expected cost of this strategy is 1.6 and less than the 
precautionary approach with an expected cost of 3.3. When a severe 
collision is expected, the best option is to use 5.5 hours’ prediction ho
rizon and to determine whether to take the disconnecting action. The 
expected cost of this strategy is 2.7 and less than the precautionary 
approach with an expected cost of 3.5. 

When the collision cost is as high as 106, it is beneficial to consider a 
combination of two responses comparing with a single response with 
towing as the response action. If the collision cost is higher than 7078, 
being precautionary and take the series of actions as early as possible 
without any prediction is the best. The towing cost is 1/10 of the light 
collision cost, 1/300 of the medium collision cost, 1/4000 of the severe 
collision cost. The towing action is very cheap, so prediction is not 

Fig. 21. Cost distribution and optimal prediction horizon in relation to prediction performance (the large dot markers indicate the optimal prediction horizon and 1 
is the originally assumed prediction performance). 

Table 6 
Optimal response strategy and the expected costs.  

Collision 
severity 

Optimal 
strategy 

Optimal prediction horizons 
and the sequence of actions 

Cost Lowest cost 
with single 
response 

Light Single 
prediction 

Towing based on 8.5 hours’ 
prediction horizon. 

0.67 – 

Medium Strategy 5 Towing first, disconnecting 
based on 3 hours’ prediction 
horizon. Take a second 
prediction with 1 hour’ 
prediction horizon if the first 
prediction predicts “no 
collision”. 

1.6 2.4 

Severe Strategy 5 Towing first, disconnecting 
based on 5.5 hours’ 
prediction horizon. Take a 
second prediction with 1 
hour’ prediction horizon if 
the first prediction predicts 
“no collision”. 

2.7 19.3  
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necessary to determine whether to tow for medium and severe collision. 
When a series of responses are planned, towing without prediction and 
only predict for the expensive disconnecting action and have a second 
prediction to compensate for wrong predictions. Prediction will be 
beneficial for the first towing action if the cost of the towing action is as 
high as 9. 

Taking a series of responses can reduce the expected cost to a large 
degree when the accident consequence is severe, and the expected cost is 
much lower than a single response. For accident with severe conse
quences, expected cost of taking a series of actions without any pre
diction is much lower than the minimized cost when prediction is 
involved for a single action, which means that a low expected cost can be 
achieved by introducing a series of actions. Applying prediction and 
optimizing response time can reduce the cost even further. However, the 
expected cost will be higher as shown by Fig. 22 if the status (failure or 
success) of towing is not observable. Fig. 22 compares the cost pictures 
when the status of response action towing is observable and not 
observable for medium collision severity scenario. Comparison shows 
the importance of information related to the status of response action 
and cost reduction from the status information. 

5. Implications and discussions 

5.1. Implications for iceberg management 

Considering an iceberg which is detected early and will cause a light 
collision, it is optimal to postpone the response and determine whether 
to tow the iceberg or not based on prediction made under 8–9 h pre
diction horizon. For a more severe collision, a series of responses would 
keep a low residual risk; towing should be initiated early. If the towing 
action fails, the decision whether to disconnect should be made based on 
3–5 h prediction. To mitigate errors in the previous prediction, the last 
hour prediction can be made to determine whether disconnecting should 
be conducted if the previous prediction predicts “no collision”. If the 
observed iceberg is very large, the consequence of collision is extreme 
and disconnecting the FPSO immediately is the best option. 

Overall, prediction with good performance can reduce uncertainty 
and save unnecessary response actions, which eventually reduces the 
overall cost. If high prediction performance can be achieved for a longer 
prediction horizon, response decision can be made earlier, and cost can 
also be reduced. Prediction models should therefore be further 
improved. The decision can be postponed if there are ways to make the 
response action effective faster and more reliable. When a series of 

responses is considered, the information about response action status is 
critical and can reduce cost. 

The result in the preliminary analysis is strongly influenced by our 
input assumptions. In the analysis, we compared three scenarios of 
collision in a range of cost with the assumption that the action failure 
probability and action cost is independent of the accident severity (ac
cident cost). This assumption may not be reasonable in all situations. For 
larger icebergs, the towing action failure probability with the same 
amount of time available may be increased so that the response decision 
should be made earlier. A new failure probability function conditional 
on iceberg size and weather condition etc. can be used to calculate a 
more realistic response time. 

One assumption is that iceberg collision can happen in any future 
unknown time point with a probability. There is also a deterministic 
model made to estimate time to collide or time to closest point of 
approach (CPA). Therefore, the time length of interest can be reduced if 
the deterministic model is used in combination with the prediction 
model. A waiting period that does not require monitoring can be 
calculated. 

5.2. Implications for generic scenarios 

The method in this paper answers the question when a decision 
should be made, and it can be used further for automated decision- 
making such as in autonomous systems. It is not always beneficial to 
postpone response and wait for more information except when the cost 
ratio between accident and action is in a moderate range. Therefore, 
decision making is actually easy when it comes to severe consequences 
or small losses. Following the basic principles of “being precautionary” 
or “ignoring risk” is good enough. Optimization of when to respond is 
not necessary. The middle part is where the decision maker tends to 
hesitate and may miss the optimal chance so that calculating the optimal 
response time is helpful. Risk boundaries between respond now or later 
can be established accordingly. 

The prediction performance of different prediction horizons has an 
impact on the optimal response time. However, this impact is limited 
and dependent on how sensitive the prediction performance is over 
prediction horizon and how fast the response reliability decreases with 
time available. The response strategies will be in contradiction with each 
other for the two extreme cases 1) prediction performance does not in
crease for shorter prediction while failure probability increases fast, 2) 
prediction performance increases quickly while failure probability does 
not increase. For the first case, it is better to respond as early as possible 

Fig. 22. Expected cost when the statues of towing action is observable and is not observable for the medium severity collision (Note: optimal response time is marked 
by the green dot.). 
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if the risk from the threat exceeds the tolerance threshold. For the second 
case, it is better to postpone and respond late as long as there is enough 
time available for the response action. 

Partial predictability should be considered. When partial predict
ability is involved and provide a positive value, risk is reduced, the 
minimum accident cost (risk tolerance threshold) for taking the response 
action is also reduced, the maximum response investment is raised. 
During operation, it is reasonable and possible that some predictability 
about major accident can be obtained than the design phase. Therefore, 
it is rational if more resources are required for accident prevention 
during operation. The risk tolerance threshold should be lower during 
operation than the threshold used in the design phase for the same 
threat. As claimed by the ALARP principle, risk should be reduced to a 
level as low as reasonably practicable. At the same time, the threshold to 
be precautionary is raised. There are both pros and cons for the 
increased threshold for being precautionary. The pros are that unnec
essary action is avoided, and the saved resources can be used to create 
other values. The con is the lower down safeguards because reduced 
expected cost is not the same as increased safety. A careful verification 
and justification of the predictability is necessary. 

In addition, the cost function which models the trade-off can be 
extended to optimize other parameters instead of time, such as:  

• Distance, to calculate the optimal safe distance to take action (such 
as brake, give way) or not.  

• Degradation degree, to calculate the optimal degradation degree to 
conduct preventive repairs or replace components.  

• Information input (accuracy-processing load tradeoff, accuracy- 
noise tradeoff), to calculate the optimal information input to form 
a judgement and initiate an action.  

• Cutoff probability for risk monitoring. Many dynamic risk analyses 
are aimed at monitoring the accident probability and taking action 
when the probability increases to an unacceptable level. A cutoff 
probability needs to be defined to guarantee the best output (lowest 
cost). 

The VoP model can be used to elicit prediction accuracy re
quirements for model development. In model development, it is a 
challenge to tune and select the optimal model to use. We foresee that 
the developed VoP model can be used for model development and a 
measurement of prediction performance (weighted performance indi
cator). The best model is the one that provides highest value of infor
mation instead of the highest accuracy. Because the costs of false 
positive and false negative predictions are different and “no accident”/ 
“accident” distribution is skewed, optimizing accuracy does not neces
sary obtain the least cost. 

When a prediction model is used in a monitoring matter, a question 
we can ask is what the prediction frequency should be? In general, low 
prediction frequency (long monitor interval) can be used when an ac
cident progresses slowly. In the case that the accident progresses faster, 
there should be a higher prediction frequency (shorter monitor interval). 
The VoP model perhaps can be used to optimize prediction frequency for 
accident monitoring also. If the resources required to obtain a prediction 
are high, this may be beneficial. 

5.3. Information dynamics and use of information for accident prevention 

New information does not necessary arrive by waiting. In addition, 
information does not necessarily enhance prediction performance. An 
important factor is how much predictability improves by waiting. 
Therefore, different possibilities and consequences should be included to 
determine whether waiting is beneficial in average. The method pro
posed calculates a statistical or Bayesian optimal response time which 

balances different possibilities. 
In this paper, we discussed the increased prediction accuracy by 

waiting. Information about potential accident severity, weather condi
tions, barrier status etc. which influence response efficiency, can be 
collected also. Therefore, we may also include the prediction model and 
its error matrixes of a series of prediction horizons for potential accident 
severity and response efficiency etc. in the optimization model to obtain 
a refined optimal response time and action. 

The value of information implicitly means the value of new infor
mation, but old information also plays a role in determining the value of 
new information. This implies that the time when information becomes 
available matters. In a real situation, we actively search for information 
and passively receive information from the environment. The under
standing of importance of information dynamics may contribute to the 
design of an artificial information environment. 

5.4. Limitations 

This article excludes the situations where a threat is observed too 
late, or the accident occurs simultaneously with detection. In those 
cases, optimizing the time to respond is irrelevant because it is already 
too late. For the relevant and applicable situations, the challenges to the 
proposed method come from 1) input availability, 2) input accuracy and 
3) assumptions. To calculate the optimal prediction horizon, time to 
decide, input data about the cost of accident, cost of action, action 
failure probability and prediction performance over time is required. 
Those inputs may not be easy to obtain. For example, we need infor
mation about the accidental scenario to know what action is suitable and 
resources we have to determine what action is feasible. The 
predictability-time function estimation needs a set of prediction error 
matrixes across all prediction horizons. For application, the function can 
be updated with new data from expert judgment, and/or experiments. 
Often, the cost of accident is difficult to estimate. However, the result 
will not change when the accident cost is extremely large (being pre
cautionary is the best) or small (ignore the risk is the best). Accuracy in 
cost estimation is only required in the middle range. 

In the article, we assumed that the prediction cost is negligible 
compared with accident cost and action cost. This may not be true in 
some cases, such as when it is expensive to obtain the inputs or expen
sive to construct a useful model. A prediction cost can be added to the 
calculation. In addition, accident cost and response costs are assumed to 
be known and constant. The model can be extended further considering 
costs as variants instead of as invariants. Varied prediction performance 
for each accident severity level can be included. 

6. Conclusion 

The observations made in this paper have wide application. For any 
risk control, response action must be taken ahead before accident oc
curs. When to respond, is a problem which needs to be answered for 
time-critical risk-control tasks. In this article, a Value of Prediction 
(VoP) model based on information value theory is proposed to calculate 
the optimal response time considering the trade-off between prediction 
performance and action failure probability over time. The optimal 
response time is dependent on the ratio between the accident cost and 
response action cost, accident probability, action failure probability, 
prediction performance and response strategy. An optimization of 
response strategy and time can maintain a low risk and high efficiency 
level. The results show that prediction does not always provide added 
value in accident prevention. When the accident consequence is 
extremely high, it is better to be precautionary and act as early as 
possible when the lowest failure probability is guaranteed, rather than 
trusting the prediction. When the consequence is comparable with the 
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cost of response action, then it is rational to ignore the risk. This con
firms common sense. Calculating optimal response time based on VoP is 
supportive for threat which pose a moderate risk. Other important im
plications of imperfect prediction are that it can push down the 
threshold of risk acceptance and raise up the threshold of being pre
cautionary and maximum response investment. Therefore, ignoring 
partial predictability is not proper. The VoP model can also be used to 
derive the prediction performance requirement for prediction model 
development. 
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