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A B S T R A C T

The development of local electricity markets (LEMs) and energy communities is accelerating the shift from
consumerism to prosumerism. However, there is no concrete understanding of how electricity sharing in LEMs
should be organized, a local wholesale market within or centralized sharing? This paper explores trading
algorithms that can represent a competitive market and bidding conditions within a LEM. That is, how well
trading algorithms can represent the wholesale market of an energy community?; What is a fair LEM reference
price to create bidding simulations? How do the system characteristics affect the outcome of the trading
algorithms? We address these questions by analyzing a community (residential buildings) in Steinkjer (Norway)
and London (UK), including PV systems and wind turbines. We first determine bids and offers based on different
bidding simulations and develop a market reference price. Afterward, we applied the trading algorithms Peer-
to-Peer (P2P) and Multi-unit-Double-Auction (MUDA) for local electricity trading. We compared the results
in selected KPIs such as self-sufficiency, traded energy, and curtailment. We find that P2P provides a more
economically efficient trading algorithm than MUDA as it generally enables more trading and thus lowers grid
imports. However, there are concerns that P2P brings disadvantages such as unfair trading.
1. Introduction

Decentralized energy resources (DERs) have recently experienced
a significant growth in deployment and adoption due to declining
technology costs. As a result, DERs are now more affordable and be-
coming increasingly popular for residential buildings. This has created
the opportunity to develop building-to-building energy sharing systems
to efficiently use on-site wind and solar power. Local electricity markets
(LEMs) concepts have provided new mechanisms and ideas to facili-
tate energy trading [1]. LEMs provide a platform for prosumers and
consumers to trade electricity. This can reduce the peak grid imports,
improve DERs utilization, and lower distribution and transmission
costs [2]. For example, Lüth et al. [3] analyzed LEM benefits for end-
users by estimating savings up to 31% on their electricity bill when
co-optimizing local electricity trading, compared to a case with no
trading. Zheng et al. [4] in another study demonstrate that Peer-to-
Peer (P2P) energy and storage sharing can reduce the net costs by
34.5%. In addition to the financial benefits, LEMs can bring community
engagement and play a role in the energy transition [5,6].

To further explore the potential of LEMs, it is important to reflect
on how to organize LEMs, how the internal market should function,
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and how the price will potentially be settled between diverse players
with different selling and buying price willingness. In the literature,
a majority of research on LEMs focuses on centralized optimization
and primarily considers power flow analyses or context specific stud-
ies. However, understanding how an internal wholesale market will
determine local prices and the related trading algorithms remains a
challenge [7]. To this end, this paper investigates if certain trading
algorithms provide market-based results that are comparable to the
community model (perfect market with centralized optimal decisions)
but taking into consideration bidding options that incentivizes compe-
tition (fairer prices). Particularly, the paper focuses on these research
questions:

• How fair and realistic trading algorithms are in representing
an energy community that aims to maximize self-consumption
(market based)? How do the trading algorithms compared to a
‘perfect market’?

• How to create different bidding simulations strategies of market
participants (consumers and prosumers) around a LEM reference
price?
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• What is the effect of the case study characteristics (e.g., country
and number of participants) on the trading algorithm outcome?

To address these questions, we developed two models. The first one
s a reference model that uses centralized optimization. The second
s a competitive trading model, which is used to investigate the per-
ormance of different trading algorithms, namely Peer-to-Peer (P2P)
nd Multi Unit Double Auction (MUDA). We also developed different
idding simulations to include bidding preferences in the competitive
arket. These are based on a developed reference price index tailored

or LEMs. Then, we analyzed and compared the trading algorithms for
wo different cases with diverse characteristics. The two cases are used
o examine how the algorithms work in different markets and contexts.
hat is, we implemented the analysis to realistic cases of residential
uildings in Norway and the United Kingdom.

The structure of the rest of the paper is as follows: Section 2 presents
elated literature and outline research contributions. Next, the model
ormulations and bidding simulations are in Section 3, while the case
tudies and data used are described in Section 4. Section 5 presents
esults and the main findings. Section 6 summarizes main conclusions
f the paper.

. Related literature

Mengelkamp and Weinhardt [8] define a LEM as ‘‘a geographically
istinct and socially close community of residential prosumers and
onsumers that have access to a joint market platform for trading lo-
ally produced electricity among each other’’. Within LEMs, prosumers
an take an active role in electricity trading and potentially reduce
rid problems raised by utilizing distributed generation resources and
enefit the system operators [1,9].

.1. Local electricity market clearing

An important design element of LEMs is how the trading should be
rganized. This includes how sellers and buyers will set the market-
learing within the LEM. The literature tends to focus on two main
pproaches: (i) a cooperative approach where the goal is to maximize
ocial welfare, and (ii) a non-cooperative approach where the goal is
o create an efficient market that stimulates competition.

For the cooperative approach, previous literature looks at LEMs
nd their effect on the grid. Here, the market-clearing is usually done
sing a centralized optimization model. The objective function is to
aximize social welfare, usually through the minimization of system

osts. Consequently, this method will give the optimal result, seen from
community perspective. For example, Lüth et al. [3] investigates the

ole of battery storage in a LEM for a cooperative community model
hile [10] applies it to an industrial site. Dynge et al. [11] incorporates
power flow analysis to look at the grid impacts of cooperative trading.

n [12], solar units, fuel-cell, and hydrogen storage are operated col-
aboratively to minimize the community’s total cost. The cooperative
pproach is ideal for the buildings owned by organizations such as
niversities that can collaborate to obtain financial benefits [13].

However, it is unrealistic to assume both buyers (consumers) and
ellers (prosumers) aim to lower the community energy cost. Individu-
ls often seek to maximize their own profit. Hence, the representation
f competitive markets is also an important research area. Sousa et al.
14] suggest three types of design options for competitive markets:
ooled market trading, fully decentralized markets with only bilat-
ral trading, and hybrid markets where a market agent gathers and
acilitates bilateral trading. For both the pooled and hybrid market,
uctions or other market clearing mechanisms that consider bids and
ffers are needed to clear the market [15]. For example, k-double
uctions (k-DA) are widely applied in the LEMs literature [15]. In
ouble auction mechanisms, there are two ways of establishing trading
rices: uniform or discriminatory pricing. In uniform pricing, we have
1427
one market-clearing price that applies for all winning participants. As
for discriminatory pricing, also known as ‘‘pay-as-bid’’ pricing, each
trade has one price, and there is no single market-clearing price. For
both there is a price coefficient, k, that determines the balance in
clearing price [16].

A central assumption to model competitive markets with auctions is
the representation of bids and offers. There are two main approaches:
non-strategic and strategic bidding. The non-strategic bidding approach
entails randomized bids without any specific strategy, which does not
necessarily implies a good representation of market behavior [17].
Strategic bidding is more realistic in a competitive market but requires
game-theoretic approaches [2].

Current literature that looks at competitive markets usually includes
bidding strategies or provides comparisons of no-strategy and strategic
approaches. For example, Lin et al. [16] investigates two bidding
strategies: the best-offer and the market-power. The first does not
consider the market situation in terms of market supply or surplus
energy, and participants compete for the best price. In the second
strategy, participants have knowledge about market conditions, such as
historical PV aor demand, and bid accordingly. Mengelkamp et al. [17]
also compares two agent behaviors: a no-strategy versus an intelligent
bidding approach. In the DA literature, Lin et al. [16] compares discrim-
inatory and uniform k-DA and concludes that the first provides better
market decisions. Mengelkamp et al. [17] also considers uniform k-DA
but compares it to another trading mechanism known as Peer-to-Peer
trading. More trading algorithms, such as Generalized Second-Price
and Vickrey-Clark-Groves, have been applied to LEMs in [7]. In this
study, after an initial market clearing, the bidding prices are gradu-
ally changed for both sides, sellers and buyers, to extend the trade
opportunities. The work in [18] proposes a mechanism based on the
Continuous Double Auction that can manage the congestion within the
grid by pricing the electricity flow.

The P2P trading algorithm is based on sealed bids and offers that
are matched if the buying price is higher than the selling price. There
is no single market-clearing price but rather discriminatory prices for
each trade that occurs. The algorithm is similar to discriminatory k-DA,
but instead of sorting the bids and offers, they are paired randomly.
Consequently, P2P might have a higher number of trades than k-DA
as there is a possibility for advantageous matching. The randomness
might also reduce market power and unfair competition. However,
because of discriminatory pricing, peers might pay different prices for
the same product at the same time-step [17]. Mengelkamp et al. [17]
based on the early work of Blouin and Serrano [19] concluded that
the P2P with intelligent bidding is the most efficient. Research in [20]
presents a First-Come, First-Served based market model with discrete
fixed-sized time slots throughout the day. The matching process of the
orders existing in the order book is similar to P2P mechanism.

Regarding double auction mechanisms, these are evaluated based on
four characteristics: individual rationality (IR), budget balance (BB), in-
centive compatibility (IC), and economic efficiency (EE) [16]. A trading
algorithm is IR if participants do not derive negative utility from their
participation. Moreover, BB implies the balance of money input and
output. Furthermore, IC is given when participants have an incentive
to bid their true value. Finally, the algorithm must maximize the aggre-
gated utility of the participants to be EE [16]. However, Myerson and
Satterthwaite [21] showed that a DA is not economically efficient if a
mechanism is IR, BB, and IC. Nevertheless, many researchers have tried
to create auction mechanisms with the highest possible efficiency. For
instance, McAfee [22] proposed a mechanism that achieves an approxi-
mate optimization of a single-unit auction. Moreover, a commonly used
DA mechanism is the Walrasian mechanism [23]. Unfortunately, this
mechanism is not IC leading to incentives for misreporting valuations
and therefore manipulating the price. Finally, Segal-Halevi et al. [24]
suggested a multi-unit double auction mechanism (MUDA) that is IR,
BB, and IC. It approximately optimizes the economic efficiency in
sufficiently large markets. The MUDA algorithm was first applied to
data from a stock exchange. The algorithm has never been applied to
a LEM before, to the best of our knowledge, this is the first attempt to

investigate the applicability of the algorithm in this context.
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Fig. 1. Graphical illustration of the community configuration for local trading.

2.2. Contributions

As identified in the reviewed papers, there are research gaps on how
to represent a wholesale market within LEMs that incentivizes trading
(market based). This paper provides the following contributions:

• The comparison of the trading algorithms (MUDA and P2P), and
centralized optimization . Although trading algorithms have been
studied in the literature, the research on MUDA is new in the
context of LEMs. P2P trading has been studied in the literature,
but this is the first attempt to compare it to MUDA.

• The paper presents a new method for creating different bidding
simulations for prosumers and consumers based on a reference
price. We propose a new calculation of a reference price as a
starting point for the bidding simulations. A similar approach was
pursued by [16], but instead of using market prices from previous
hours, we consider the current share of renewables in the LEM
and an external grid price.

• We provide real-life examples of applying non-cooperative trad-
ing algorithms in Norway and the UK. Most studies on LEMs used
centralized optimization with perfect competition. Therefore, this
work contributes by applying trading algorithms on new settings
and under a larger scale (200 households).

• An important finding of this paper is that the P2P algorithm leads
to efficient results that are close to centralized optimization. In
contrast, MUDA works less efficiently in this case, but might be
not favored due to the relatively small number of participants.

• The models, codes, and data of this study are made open-source
and easily accessible for replicability.

3. Methodology

Two models were developed to simulate trading within a LEM: a
reference model, and a competitive model. The objective is to compare
and evaluate the P2P and MUDA trading algorithms to the reference
case. The latter uses centralized optimization, which gives the ‘‘perfect’’
solution from a system perspective. This represents a non-competitive
system where a community manager handles all trades through a
centralized hub. In contrast, the competitive model represents a market
where participants place bids and offers in a trading hub (see Fig. 1).
Social welfare is highest for the community model, but it does not
account for the individuals’ interests.

The LEM configuration is the same for both models and consists
of consumers and prosumers connected through a trading hub. The
prosumers have renewable generation (e.g. solar PV) and trade elec-
tricity with other peers. Consumers can buy from the prosumers. In
both models, we assume that there are no network constraints or losses
within the LEM or in the grid connection. Also, prosumers are mainly
incentivized to sell surplus electricity to consumers instead of feed-in
1428

to the grid. That is, self-consumption is prioritized before local trading,
and local trading is prioritized before buying from the grid, meaning
the local price is assumed to be lower than the grid price.Any left over
surplus is injected to the grid or curtailed.

3.1. Centralized model

The model presented in this section is based on ‘‘flexi-user’’-model
from [3]. The objective is to minimize the total cost for the community.
However, Lüth et al. [3] only minimizes system costs, while we aim
to also look at the amount of energy traded locally. Therefore, to
avoid multiple optimal solutions, we have included a penalty term, 𝑃𝑝,
to the objective function related to the total sold (exported) energy,
𝑋(𝑡,ℎ). This minimizes unnecessary trading while still giving the optimal
results in terms of grid import as long as the penalty is appropriately
small. Lastly, since all local trades are kept within the market, we do not
consider the local trading prices (as they zero out in the summation).
The objective function is in Eq. (1).

𝑚𝑖𝑛
∑

ℎ

∑

𝑡
[𝑃 (𝑡)
𝐺 ⋅ 𝐺(𝑡,ℎ)] + 𝑃𝑝 ⋅

∑

ℎ

∑

𝑡
[𝑋(𝑡,ℎ)] (1)

The objective function is subject to several constraints, including
the energy balance between supply and demand for each house. This
restriction is given in Eq. (2). Here, the supply consist of local renew-
able production 𝑟𝑒𝑠(𝑡,ℎ), grid import 𝐺(𝑡,ℎ) and purchased (imported)
electricity 𝐼 (𝑡,ℎ). The demand consist of the consumed (𝑑𝑒𝑚(𝑡,ℎ)) and sold
electricity (𝑋(𝑡,ℎ)).

𝑟𝑒𝑠(𝑡,ℎ) + 𝐺(𝑡,ℎ) + 𝐼 (𝑡,ℎ) ≥ 𝑑𝑒𝑚(𝑡,ℎ) +𝑋(𝑡,ℎ) ∀𝑡 ∈ 𝑇 , ∀ℎ ∈ 𝐻 (2)

Moreover, the flow of sold electricity for each participant in the
market is defined in Eq. (3). Here, the total export for house ℎ is defined
as the sum of exported electricity of house ℎ to its peers 𝑝. There is also
a restriction that only allows houses that generate renewable electricity
in any given time-step to export electricity in that same time-step. This
restriction is defined in Eq. (4).

𝑋(𝑡,ℎ) =
∑

𝑝≠ℎ
𝑋(𝑡,ℎ→𝑝)
𝑃 (3)

𝑋(𝑡,ℎ) = 0 ∀(𝑡, ℎ)|𝑟𝑒𝑠(𝑡,ℎ) = 0 (4)

The purchased electricity of house ℎ from its peers 𝑝 in time-step
𝑡 is calculated from the export of each peer, including a loss factor 𝜓 ,
as given in Eq. (5). Furthermore, the total imported energy for each
house in each time-step is then the sum of imported energy, as given
in Eq. (6).

𝐼 (𝑡,ℎ←𝑝)𝑝 = 𝜓 ⋅𝑋(𝑡,𝑝→ℎ)
𝑝 ∀𝑝 ≠ ℎ (5)

𝐼 (𝑡,ℎ) =
∑

𝑝≠ℎ
𝐼 (𝑡,ℎ←𝑝)𝑝 (6)

Lastly, as the prosumers do not prioritize feed-in to the grid, the
total quantity sold by all houses must equal the total quantity purchased
by all houses for each time-step. We must also account for losses by
including the loss factor 𝜓 . This trading balance is given by Eq. (7).
∑

ℎ
𝜓 ⋅𝑋(𝑡,ℎ) =

∑

ℎ
𝐼 (𝑡,ℎ) ∀𝑡 ∈ 𝑇 (7)

In this model, loss factor is set to 11 to provide a fair comparison
with the competitive model that does not account for losses. Table 7 in
Appendix provides an overview of the variables, parameters, sets, and

scalars notations.

1 The loss factor is only included to avoid arbitrage, and excessive energy
trading between participants in the centralized model and is therefore be set
close to 1 (i.e., 0.9999).
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Fig. 2. Illustration of the MUDA algorithm.

3.2. Trading algorithms - P2P and MUDA

MUDA and P2P algorithms simulate competitive behavior (trading)
in the LEM. The fundamentals and descriptions of these algorithms are
available in the PyMarket documentation [25]. As in the centralized
optimization model, we assume a prioritization of self-consumption
over trading. That is, prosumers consume their own electricity before
placing an offer to the trading hub and selling their surplus energy. In
case of a power deficit, consumers submit a bid to buy electricity. Then,
the trading algorithms is implemented to clear the market for the whole
period, one time-step at a time.

The bids and offers required for the algorithms to work are estab-
lished in two steps. First, we derived a reference price reflecting what
participants will likely pay, based on the current situation of the LEMs’
local generation. Second, we conducted bidding simulations in which
bids and offers are randomly generated around the reference price.

3.2.1. Multiple-unit double auction (MUDA) trading algorithm
Segal-Halevi et al. [24] introduced the MUDA algorithm aiming

to create an economically efficient (EE) trading algorithm that is at
the same time individually rational (IR), budget balanced (BB), and
incentive compatible (IC).

The algorithm first creates two sub-markets, a left, and a right
sub-market. The bids and offers are then divided between two sub-
markets with a probability of 0.5. After that, the market equilibrium
price is calculated on each sub-market with an aggregated demand and
supply curve. Subsequently, each sub-market trades with the market
equilibrium price of the other sub-market. For successful matching, the
bid must be higher (or equal) and the offer must be lower (or equal)
than the market equilibrium price.

MUDA does not prevent an imbalance between supply and demand
in each sub-market. The algorithm can lead to greater demand or
supply (long side) in the sub-markets. While the short side can trade
all bids or offers, bids or offers from the long side remain. There are
different variations of MUDA on how to deal with the excess on the
long side. In this paper, we use ‘‘Vickrey’’ MUDA. Here, the bids or
offers with the highest profit are selected first (highest bids or lowest
offers). In the next step, the selected traders have to pay a trading fee.
The trading fee is determined by the potential profits of the traders who
are pushed out of the market.

With MUDA, participants cannot manipulate the price through
strategic reporting since bids and offers are traded at an exogenously
determined market price. Consequently, they only have an incentive to
1429
Fig. 3. Illustration of the P2P algorithm.

submit their true value, and therefore, the trading algorithm fulfills
the IC requirement. Moreover, the agents do not lose through their
participation, so the algorithm is IR. Furthermore, the ‘‘Vickrey’’-MUDA
is weakly budget balanced as the market-maker can make profits
through trading fees but never losses. Finally, MUDA approximately
optimizes the economic efficiency in sufficiently large markets [24].
However, it has not been applied to local electricity trading so far.
Fig. 2 presents a simplified illustration of the MUDA algorithm.

3.2.2. Peer-to-peer (P2P) trading algorithm
The P2P algorithm is based on the work by Blouin and Serrano [19]

and has previously been implemented for LEMs by Mengelkamp et al.
[17]. Similarly to MUDA, the P2P trading algorithm works by peers
submitting bids and offers into a central trading hub. These bids are
then randomly paired and matched if the bidding price is higher than
the offer price.

The trading price for each match is determined by Eq. (8), and thus
depends on the price coefficient, 𝑘. If 𝑘 = 1 all profit goes to seller, if
𝑘 = 0 all profit goes to buyer. For this paper, we use a price coefficient
of 0.5.

𝑝(𝑡)𝑝2𝑝 = 𝑝(𝑡)𝑏 ⋅ 𝑘 + (1 − 𝑘) ⋅ 𝑝(𝑡)𝑠 𝑘 ∈ [0, 1] (8)

Since all bids might not be matched in the first run, the algorithm
does several iterations, as illustrated in Fig. 3. This means that if a
peer’s bid or offer is not matched in the first iteration, or not all
quantity is traded, they will participate in the next iteration. These
iterations will go on until all unmatched participants either trade all
their quantity or no available pairs are left in the trading hub.

An important characteristic of this algorithm, and possibly a draw-
back, is the price and quantity variations. Since all peers submit differ-
ent bids and offers, trades have different prices according to (8) instead
of one market price. Therefore, peers can end up with largely different
prices for the same quantities in the same time-step. This means the
algorithm can be perceived as unfair to some participants. However,
the P2P trading algorithm does not provide incentives to manipulate
bids and offers. Buyers try to bid as low as possible, but they must not
bid too low to find a trading partner. Sellers try to drive the price up,
but they need an even higher buying price. So their offer should also
not be too high.

3.2.3. Reference price
The reference price reflects the situation of the local market in terms

of renewable electricity availability, demand, and wholesale prices.
Assuming that participants have a high level of information about the
market, the reference price therefore also reflects the price a participant
is willing to bid.
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Fig. 4. Distribution of random bids and offers for the skewed normal distribution.

The reference price should change according to the availability of
enewable energy. In times of high availability and thus high supply,
he reference price should decrease. If, in contrast, renewable gener-
tion is scarce, the reference price should increase and converge to
he wholesale market price. However, the reference price should never
xceed the grid price, as rational consumers would always choose the
heapest option.

The proposed Eq. (9) follows the described principles. In addition, a
ower bound 𝑃𝑙𝑜𝑤 is added in Eq. (10) to avoid low offering prices that
ight not be realistic.

(𝑡)
𝑟𝑒𝑓 = (1 −

∑

ℎ 𝑟𝑒𝑠
(𝑡,ℎ)

∑

ℎ 𝑑𝑒𝑚(𝑡,ℎ)
) ⋅ 𝑃 (𝑡)

𝐺 (9)

𝑃 (𝑡)
𝑟𝑒𝑓 ≥ 𝑃𝑙𝑜𝑤 (10)

3.2.4. Bidding simulations
We performed a bidding simulation mimicking the participants’

bidding and offering based on skewed normal distribution to add a level
of randomness to the reference price. The skewed normal distribution
aims to represent a strategic bidding behavior of the participants. We
assume that participants want to stay in the market because they can
reduce their electricity costs by trading locally compared to buying
from the main grid. For both trading algorithms, higher bids and
lower offers can potentially increase the number of successful trades.
Therefore, we assume that buyers tend to bid slightly higher than the
reference price and sellers slightly lower.

We generate two sets of random numbers according to Eq. (11),
one for bids (with positive 𝜆) and one for offers (with negative 𝜆). 𝑇0
and 𝑇1 are independent random numbers following a standard normal
distribution. 𝜆, 𝜎, and 𝜇 are the parameters of the skewed normal
distribution. If 𝜆 is set to zero, the resulting random numbers follow
a normal distribution with the mean of 𝜇 and standard deviation of
𝜎. Consequently, 𝜆 is the parameter determining the skewness of the
distribution, as well as the expected value of the generated numbers,
as shown in (12).

𝑆(𝑡) = 𝜇 + 𝜎 ⋅ ( 𝜆
√

1 + 𝜆2
⋅ |(𝑇0)| + 𝑇1 ⋅

√

1 − ( 𝜆
√

1 + 𝜆2
)2) (11)

𝐸[𝑌 ] = 𝜇 +
√

2
𝜋
𝜎 𝜆
√

1 + 𝜆2
(12)

The 𝜇 and 𝜎 are set to the reference price (𝑃 (𝑡)
𝑟𝑒𝑓 ) and 15% of the

reference price, respectively. The 𝜆 that should not be unrealistically
large but still reflect the effect of higher bids and lower offers is set to
0.25. Finally, Fig. 4 illustrates the skewed normal distribution for 1000
randomly generated bids and offers with the selected parameters.

4. Case studies and data

To analyze the MUDA and P2P trading algorithms and determine
their efficiency, we examined a case from Norway and the UK. The
cases differ in the number of houses, the distribution of renewable
1430

energy generation among the houses, and the solar radiation. Note that
Table 1
Steinkjer case — Distribution of renewable generation units among the 54 households
in the community.

Production unit Quantity

4 kW PV 15
6 kW PV 14
8 kW PV 2
10 kW PV 4
2.3 kW wind 10

in a real-life implementation, these algorithms should be implemented
very close to real-time. Solar surplus will be feed-in to the grid even
without the existence of a LEM, hence a settlement process will be
straightforward to do for the cases presented. Otherwise, research in
[26] describes settlement mechanisms to handle the deviation of actual
energy consumption or production from the auctions.

4.1. Steinkjer case

In the Steinkjer case, the trading algorithms are applied in a neigh-
borhood in Steinkjer, Norway. The data is based on Dynge et al. [11]
but has been adjusted, i.e. with newly added small wind turbines,
more PV systems, and battery storage were removed. This increases
the overall generation of renewable energy and contributes to a more
variable generation profile.

The load profiles are real consumption data collected from a smart
grid project in Steinkjer. The data set includes 54 households connected
through a distribution network connected to the main grid. The load
profiles has a time granularity of 15 min and was retrieved over a
period of 20 days from mid-June to early July. However, to match
the time granularity of renewable energy generation and grid prices
(hourly), the load profiles were aggregated into an hourly demand.
Furthermore, the average household consumption during this period
is comparatively high at 1147 kWh.

The grid price consists of the fluctuating wholesale market price
and the annually constant grid tariff. The wholesale market price was
retrieved from NordPool’s historical data [27]. Here, we have selected
20 days that are consistent with the consumption data but from 2019.
Furthermore, we have used the 2019 private household grid tariff from
the DSO in Steinkjer, which is 0.42 NOK/kWh [28].

Moreover, we extracted generation profiles for wind and PV from
renewables.ninja [29,30], which provides meteorological PV and wind
data from the NASA MERRA-2 database [31]. Here, we selected 20 days
in summer of 2019. In total, we have equipped 35 households with
PV systems of varying capacities and a panel tilt of 45◦. Additionally,
we have equipped ten households with wind turbines of the Siemens
SWT 2.3 82 model. Although the turbine model originally had a higher
capacity and hub height, the data is realistic at the house level as we
scaled down the capacity to 2.3 kW, see a similar approach in [32].
Table 1 summarizes distribution of renewable energy generation for the
54 households.

4.2. London case

The second case investigates the trading algorithm in a community
of 200 households in London, United Kingdom. The load profiles are
based on the consumption data from the low Carbon London project
that took place from 2011 to 2014 [33]. All data sets have a half-
hour time resolution and are taken from a 20 day period from mid
June to early July. The grid prices for the London case were created in
two steps. First, wholesale electricity prices were retrieved from [34].
Second, the network charges have to be taken into account to obtain
the actual grid prices. Therefore, similar to [35], wholesale prices were
scaled up to reach an average price of 15 pence/kWh.

The consumption data includes house types with different demand

patterns in terms of demographics, social factors, population, and
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Fig. 5. Reference price in the communities compared to grid price and renewable generation.
Table 2
London case — Distribution of renewable generation units among the 200 households
in the community.

Production unit Quantity

2 kW PV 15
4 kW PV 10
5 kW PV 5
2.3 kW wind 4

consumption behavior. This data set comprises 164 affluent and 78
comfortable houses.

Solar generation profiles were calculated based on solar irradia-
tion, and temperature data in London from 2013 [36,37] for different
capacities with an efficiency of 21% and a panel tilt of 35◦. Similar
to [35], many new profiles are generated by adding random vectors
to the original one to increase the diversity of the solar generation in
the community. Wind data was derived from wind speed data from
an area near London. The generation profile was then calculated by
fitting a curve to the power-to-wind-speed profile of a 2.3 kW turbine
(similar to [3]). Table 2 summarizes distribution of renewable energy
generation among the 200 households.

4.3. Bidding simulation and implementation

As described in Section 3.2.4, the application of the trading al-
gorithms requires bids and offers. For this purpose, we developed a
reference price according to Eq. (9) and then generated the bids and
offers randomly around the reference price using the skewed normal
bidding simulation. Fig. 5 illustrates the reference price for both cases
in the first week. As expected, the reference price depends strongly
on the share of renewable generation. This leads to high variations
of the reference price, both over time and in the two cases. In times
of low renewable generation, especially at night, the reference price
converges towards the grid price. But in times of high local generation,
the reference price is close to or equal to the lower bound. The chosen
lower bounds, 𝑃𝑙𝑜𝑤, are 10 NOK/kWh for the Steinkjer case and 0.25
GBP/kWh for the London case.

In the next step, we generated 1000 bids and offers based on
the reference price using the bidding simulations. Fig. 6 presents the
generated bids and offers for the first three days for both cases. The
Figure illustrates the desired effect of the bidding simulation, i.e., the
bids (blue dots) tend to be slightly higher than the offers (red dots).

5. Results and analysis

To analyze the algorithms MUDA and P2P, the centralized optimiza-
tion model is used as a reference approach as it provides optimal results
for local trading from a community perspective.

The trading algorithms are compared based on various Key Per-
formance Indicators (KPIs), see Table 3. The KPIs provide relevant
information to determine the efficiency of a particular trading algo-
rithm.
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5.1. Steinkjer case

In the Steinkjer case, many houses have PV systems to cover the
high demand, but the power generation per unit is small due to
relatively low solar radiation. In the following, we present the results
for centralized optimization, followed by the MUDA and P2P trading
algorithms.

5.1.1. Community model - Centralized optimization
The centralized optimization results in total system costs of 27 037

NOK, which is the cheapest solution for supplying households with
the electricity they demand. With the given generation of renewable
energy, the community can cover 36.1% of its consumption by itself.
Participants prioritize self-generated electricity over trading, but 2506
kWh is still traded locally between the households. It reduces the
dependency of the community members on the main grid, and as [38]
states, it can be considered a complementary approach towards energy
efficiency, sustainability, and net zero emissions by 2050. The rest, a
share of 63.9%, is also imported from the main grid. Since centralized
optimization represents the optimal solution, we can see that 2.7%
curtailment (or grid feed-in) of the generation is unavoidable.

Fig. 7 shows the grid import, self-consumption, and curtailment
of the community in the first week. During the day, there are high
shares of self-consumption, while at night, the electricity grid almost
exclusively covers the electricity demand. An exception appears in day
three when there was a lower renewable energy generation.

Since the optimization aims to cover the demand of all households
as cheaply as possible, and there are no local trading losses, all the local
production will be shared among the households in the community.
As there is no storage in the system, there will be curtailment if the
renewable generation exceeds demand at any time-step. This is the
case on the fourth, fifth and sixth day in Fig. 7. Moreover, the figure
illustrates the optimal traded energy in the first week. Peaks in the
energy traded occur during the day when the local generation, and
thus self-consumption, is high. At these times, the prosumers’ electricity
generation exceeds their demand, so they share their surplus with other
peers. Furthermore, no energy trading takes place on the third day.
This is because the prosumers’ own generation does not exceed their
demand, hence they cannot offer surplus energy for trading.

5.1.2. Competitive model - Trading algorithms
Here we compare and analyze the MUDA and P2P trading algo-

rithms. Table 4 presents the KPIs. The results of the P2P algorithm are
relatively close to the solution of centralized optimization. The KPIs of
the MUDA algorithm, in contrast, have a significantly greater gap to
the centralized optimization. The traded energy using MUDA is lower
compared to using P2P. This results in higher curtailment with MUDA
as less electricity is distributed between the households. Consequently,
MUDA gives a lower self-consumption, and more electricity is imported
from the main grid. Also, a higher grid import results in higher system

costs with MUDA.
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Fig. 6. Sample from the first 72 h of calculated bids and offers from the skewed normal distribution.
Table 3
Definition of KPIs used in this paper.

KPI Definitions

Total system cost Sum of grid import times the wholesale market price for each time-step.
Grid import Sum of all electricity imported from the grid.
Self-consumption Sum of community demand minus sum of grid import.
Curtailment or grid feed-in Sum of renewable generation minus the sum of self-consumption. This is curtail or feed into the grid
Energy traded Sum of the energy traded among the peers.
Fig. 7. Steinkjer case — Grid import, energy traded, self-consumption, curtailment (or grid feed-in) and demand for the first seven days of the centralized model.
Table 4
Steinkjer case — Comparison of KPIs for centralized, MUDA and P2P for the skewed
normal bidding simulation.

KPI Centralized MUDA P2P

System cost [NOK] 27 037 28 091 27 229
Grid import [kWh] (%) 39 553 (63.9) 41 073 (66.3) 39 829 (64.3)
Self-consumption [kWh] (%) 22 388 (36.1) 20 868 (33.7) 22 112 (35.7)
Curtailment [kWh] (%) 615 (2.7) 2135 (9.3) 891 (3.8)
Energy traded [kWh] 2506 986 2230

Figs. 8 and 9 examine the driving factors behind the KPIs in more
detail. They show the grid import, self-consumption, curtailment and
energy traded in relation to the community demand in the first week
using MUDA and P2P.

With centralized optimization, we can observe unavoidable curtail-
ment only on the fourth, fifth and sixth day. With MUDA, in contrast,
curtailment occurs every day except the third day when there is no
energy trading, as indicated in Fig. 8. Furthermore, we can observe that
grid import and curtailment occur at the same time-steps. This means
that MUDA fails to match a significant number of bids and offers. As a
1432
result, households have to import more expensive electricity from the
grid, and locally produced electricity has to be unnecessarily curtailed.

Fig. 9 shows that using the P2P algorithm results in more traded
energy than MUDA. Therefore, the community’s self-consumption is
significantly higher, and curtailment is reduced. However, we can still
observe that P2P does not match all bids and offers, resulting in more
curtailment than the centralized optimization. For example, on the
second day, there are grid imports and curtailment, which means that
available renewable electricity could not be used because the bids and
offers were not successfully matched.

Fig. 10 illustrates the average prices of the trades in each time-step
for both MUDA and P2P. Here, we can observe two different effects
caused by the different characteristics of the algorithms. First, the
average price of the MUDA algorithm is higher than the P2P average
price and the reference price in most time steps, especially when the
reference price is high. This is supported by the calculation of the aver-
age prices of all trades. For MUDA, the average price of all transactions
is 0.31 NOK/kWh. In contrast, the average price when using P2P is
0.23 NOK/kWh. However, it can also be seen that the average prices
of the MUDA algorithm never exceed the grid prices. Secondly, we can
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Fig. 8. Steinkjer case — Grid import, energy traded, self-consumption, curtailment (or grid feed in) and demand for the first seven days when using the MUDA algorithm.
Fig. 9. Steinkjer case — Grid import, energy traded, self-consumption, curtailment (or grid feed in) and demand for the first seven days when using the P2P algorithm.
Fig. 10. Steinkjer case — Average Prices for each time-step in addition to grid price and reference price for the first week of the simulation.
observe more fluctuating average prices for P2P, particularly at high
reference prices. In contrast, in times of high generation, the average
prices converge to the reference prices when using P2P.

5.2. London case

Compared to the Steinkjer case, this case contains a larger com-
munity (200 households) in London. Another important difference is
1433
the higher solar irradiance in London, leading to higher electricity
generation per installed PV capacity. The average electricity demand
per household is significantly lower in the UK and the time resolution
in the London case is half-hourly.

5.2.1. Community model - Centralized optimization
Compared to the Steinkjer case, we observe significant differences

in the results of the London case. A central difference is the higher
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Fig. 11. London case — Grid import, energy traded, self-consumption, curtailment (or grid feed-in) and demand for the first seven days of the centralized model.
traded energy in the London case. At 8193 kWh, the traded energy is
more than three times higher than in the Steinkjer case. This is be-
cause electricity generation of the prosumers is higher and the average
demand per household is lower. Consequently, there is more surplus
electricity that can be traded to other households in the community.
Accordingly, Fig. 11 reveals that high shares of self-consumption are
covered by traded energy. Furthermore, if the surplus electricity is
optimally distributed, curtailment can be kept at a low level of 4.3% of
the total electricity generated.

Moreover, Fig. 11 also shows similar effects as in the Steinkjer
case in terms of self-consumption and grid import. During the day,
we observe a high share of self-consumption due to the higher solar
irradiation. In contrast, at night, the electricity supply is mainly covered
by grid imports. The centralized optimization in the London case results
in a self-consumption of 34.7% and grid import of 65.3%, very similar
to the Steinkjer case. Finally, the system costs amount to 3844 GBP,
representing the cheapest solution for the community.

5.2.2. Competitive model - Trading algorithms
In this section we analyze the MUDA and P2P trading algorithm

for the London case. Table 5 shows the KPIs of the trading algorithm
compared to centralized optimization for the London case. Similar to
the Steinkjer case, the KPIs of P2P are much closer to centralized op-
timization relative to MUDA. Accordingly, the use of P2P also leads to
a relatively high self-consumption (32.3%) and thus a low grid import
(67.7%). Using MUDA, in contrast, leads to a significant decrease in
self-consumption (24.9%) and an increase in grid import (75.1%). As a
result, the system costs for MUDA (4423 GBP) are considerably higher
than for P2P (3981 GBP). However, with both trading algorithms, there
is a substantial increase in curtailment. When using P2P, 10.8% of the
generated electricity is curtailed, and with MUDA the curtailment in-
creases to 31.3%. This is most likely due to the different characteristics
of the London case, where more surplus energy is generated, and more
local trading is required to achieve the optimal solution. As a result,
we can see large quantities of traded energy but also more curtailment
due to unsuccessful trading attempts.

Looking at Figs. 12 and 13, we observe similar effects as in the
Steinkjer case. However, due to the characteristics of the London case
and the increased energy surplus, the impacts of the trading algorithms
are even stronger. Fig. 12 shows high grid imports and curtailment
occurring in the same time-steps when using MUDA. Simultaneously,
the self-consumption is significantly lower with MUDA compared to
centralized optimization. This means that a large amount of locally
generated electricity is curtailed unnecessarily, and costly electricity
1434

has to be supplied from the main grid.
Table 5
London case — Comparison of KPIs for centralized, MUDA and P2P for the skewed
normal bidding simulation.

KPI Centralized MUDA P2P

System cost [GBP] 3844 4423 3981
Grid import [kWh] (%) 25 063 (65.3) 28 817 (75.1) 25 970 (67.7)
Self-consumption [kWh] (%) 13 295 (34.7) 9542 (24.9) 12 389 (32.3)
Curtail/grid feed in [kWh] (%) 596 (4.3) 4350 (31.3) 1503 (10.8)
Energy traded [kWh] 8193 4439 7286

Fig. 13 displays that grid import and curtailment also occur in the
same time step when using P2P. However, this happens less frequently
and to a smaller extent. Consequently, self-consumption is significantly
higher with P2P when renewable generation is high, leading to almost
complete self-sufficiency in some time-steps.

Fig. 14 illustrates the average prices of trades in the first week
relative to the reference price and grid price. As in the Steinkjer
case, when MUDA is used, the average prices are mostly higher than
the reference prices and the P2P average prices, especially in time
steps with low renewable generation. Again, the average price for all
transactions when using MUDA is higher (0.050 GBP/kWh) than P2P
(0.049 GBP/kWh). Nevertheless, the average prices of MUDA and P2P
are much closer in the London case compared to the Steinkjer case.
Furthermore, we also observe the effect of fluctuating P2P average
prices.

5.3. Comparison of the trading algorithms

Overall, the results indicate a lower efficiency of MUDA compared
to P2P in terms of engaging local trading and avoiding curtailment.
The reason for this lies in the characteristics of the trading algorithms.
With MUDA, the successful matching of bids and offers depends on
the market equilibrium of the other sub-market. For example, if the
market price of the right sub-market is higher than a bid or lower than
an offer of the left sub-market, they cannot participate in the trading.
Another reason for unsuccessful matching with MUDA is that random
market splitting can lead to an uneven demand and supply side on each
sub-market. This can lead to residual bids or offers remaining on each
sub-market that are pushed out of trading.

Furthermore, in times of low renewable generation, there is a large
surplus of bids and only a few offers. Consequently, there are only a
few selected bids, which means that many other bids cannot be traded.
With ‘‘Vickrey’’-MUDA, this leads to an increase in trading fees and
higher prices for buyers. The trading fees can even drive the prices

for buyers above the grid prices. In this case, buyers would choose to
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Fig. 12. London case — Grid import, energy traded, self-consumption, curtailment (or grid feed in) and demand for the first seven days when using the MUDA algorithm.
Fig. 13. London case — Grid import, energy traded, self-consumption, curtailment (or grid feed-in) and demand for the first seven days when using the P2P algorithm.
Fig. 14. London case — Average Prices for each time-step in addition to grid price and reference price for the first week of the simulation.
uy electricity from the grid, and local generation would have to be
urtailed.

Compared to the result of MUDA, the use of P2P leads to signif-
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cantly more trading. The P2P algorithm allows multiple iterations
of random matching of bids and offers. Therefore, there is a higher
probability of a bid finding an offer to trade with. However, the results
show strong fluctuations in the average prices. This is because bids and
offers are traded at the price midway between them, and therefore the
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Table 6
Difference to centralized optimization in percentage.

KPIs Steinkjer London

Cent. MUDA P2P Cent. MUDA P2P

System cost 27 037 +3.9 +0.7 3845 +15.0 +3.6
Grid import 39 553 −6.8 −1.2 25 063 −28.2 −6.8
Self-consumption 22 388 +3.8 +0.7 13 295 +15.0 +3.6
Curtail/grid feed in 615 +247.4 +44.9 596 +630.0 +152.2
Energy traded 2506 −60.7 −11.0 8193 −45.8 −11.1

trading prices of simultaneous trades from different peers vary. These
average price fluctuations are smaller when renewable generation is
high and more bids and offers are submitted. It indicates that average
prices converge towards the reference price when the number of bids
and offers is higher. In times of low generation, the number of offers
is limited, and only a few trades determine the average prices leading
to stronger fluctuations in the average prices. Comparing the two cases
confirms this, as the effect is much stronger in the Steinkjer case, where
there are fewer households and, thus, fewer bids and offers.

After analyzing the trading algorithms and investigating the un-
derlying characteristics, it should also be examined to what extent
their performance changes between the Steinkjer and London case.
The cases have some key differences, e.g., the number of households,
the distribution of renewable generation, and the average household
demand. These differences are expected to influence the results and the
performance of the trading algorithm.

To compare the performance of the trading algorithms between
the Steinkjer and London cases, we calculated the percentage gap to
centralized optimization for MUDA and P2P, as shown in Table 6. This
again shows that both trading algorithms perform less effectively in
the London case, as more energy has to be traded, which is described
in Section 5.2.

As further analysis, we calculated to which extent the performance
of the trading algorithm differs between the cases. To this end, we
divided the percentage gap of the system costs when using MUDA by
the percentage gap of the system costs when using P2P. This shows
us how much more efficient the P2P algorithm is for a given case
compared to MUDA. In the Steinkjer case, the difference from the
centralized optimization is 5.48 times higher for MUDA than for P2P.
In contrast, in the London case, the difference is considerably lower
at 4.24. This indicates that MUDA increases the performance in larger
markets with more participants.

6. Conclusion

This paper studied the market efficiency of two trading algorithms
in LEMs or energy communities. We looked at how to represent lo-
cal electricity trading in a LEM using the MUDA and P2P trading
algorithms. Based on real-case data from Norway and England, we
simulated trading in a LEM for both algorithms vis-a-vis to a reference
case (centralized optimization). The model for the reference case was
based on an optimization model that minimizes total cost [3].2 The two
rading algorithms take bids and offers from energy users and simulate
atching decisions to pair buyers (consumers) and sellers (prosumers),
ence resembling some market behavior. To construct the behavior of
ids and offers, we developed a community reference price from which
willing to sell or to buy price behavior follows a normal distribution.
owever, note that the main purpose of this analysis is on how trading
lgorithms represent the potential market behavior of a community by
howing the potential price formation in an internal wholesale market.
stimating and gaining insights on that gives a better understanding on
he creation of a LEM within an energy community.

2 For further information, please refer to https://github.com/
ocalEnergyMarkets/LocalCommunity.
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Results and analyses indicate that P2P has a better trading efficiency
compared to MUDA. This is reflected in less curtailment (or grid
feed-in) and more traded electricity when using P2P. However, P2P
is sometimes unfair as random pairing can lead to large difference
in trading prices for the same product. In addition, the ‘‘Vickrey’’-
MUDA results in higher average prices due to trading fees. In the
London case, the trading algorithms have lower efficiencies as more
electricity trading occurs. This implies that curtailment (or grid feed
in) increases when a higher energy surplus is up for trading. However,
when comparing the two cases, MUDA reduces the gap (compared to
the centralized optimization) in the London case, indicating that MUDA
works better with a larger number of participants. Yet, the Market
Allocation Efficiency, according to the definition of paper [26], is lower
for the MUDA algorithm than P2P. This is also the case in this paper
results.

In short, the P2P performs well in representing a wholesale market
behavior as there is much electricity trading and less curtailment.
MUDA seems fairer than P2P but has lower market efficiency. MUDA
performs well in larger communities if trading fees are adequately used.
The results indicate that trading fees in the ‘‘Vickrey’’ MUDA can lead
to higher prices that may even exceed the grid prices, resulting in fewer
matches of bids and offers. Therefore, further research should consider
other MUDA variants, such as the ‘‘Lottery’’ MUDA, where bids and
offers are randomly selected without trading fees, may be more suitable
for LEMs.

An important point for further research will be to consider flex-
ibility from the participants. Batteries, such as electric vehicles, can
allow for a more dynamic and strategic trading process. In addition,
demand response can be included to analyze the price responsiveness
of participants. Further research might also consider to coordinate
interests between the energy community and other actors (e.g. DSOs,
aggregators, etc.) [39].
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Table 7
Overview of sets, scalars, parameters and variables used in this paper.

Sets

𝑡 ∈ 𝑇 Hours 𝑡 in time horizon 𝑇
ℎ, 𝑝 ∈ 𝐻 Houses ℎ and peers 𝑝 in community 𝐻
𝑏, 𝑠 ∈ 𝐻 Buyers 𝑏 and sellers 𝑠 in community 𝐻

Scalars

𝑃𝑝 Export penalty term
𝜓 Loss factor for local trading
𝑃𝑙𝑜𝑤 Lower bound for reference price

Parameters

𝑑𝑒𝑚(𝑡,ℎ) Demand of house ℎ in time-step 𝑡
𝑟𝑒𝑠(𝑡,ℎ) Renewable energy production of house ℎ in time-step 𝑡
𝑝(𝑡)𝐺 Price of electricity from the grid in time-step 𝑡

𝑃 (𝑡)
𝑟𝑒𝑓 Reference price in time-step 𝑡

𝑆 (𝑡) Bids and offers from the skewed normal distribution in time-step 𝑡
𝑇0 Set of random number following a normal distribution
𝑇1 Set of random number following a normal distribution
𝜆 Skewness factor of normal distribution
𝜎 Standard deviation of normal distribution
𝜇 Mean value of normal distribution

Variables

𝐺(𝑡,ℎ) Grid consumption of house ℎ in time-step 𝑡
𝐼 (𝑡,ℎ) Total imported electricity of house ℎ in time-step 𝑡
𝐼 (𝑡,ℎ←𝑝)𝑝 Imported electricity of house ℎ from peer 𝑝 in time-step 𝑡

𝑋(𝑡,ℎ) Total exported electricity of house ℎ in time-step 𝑡

𝑋(𝑡,ℎ→𝑝)
𝑝 Exported electricity of house ℎ to peer 𝑝 in time-step 𝑡

𝑝(𝑡)𝑝2𝑝 Local p2p trading price for a given trade in time-step 𝑡

𝐸 Expected value
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