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Abstract

The Capacitated Vehicle Routing Problem (CVRP) has been subject to intense research
efforts for more than sixty years. Yet, significant algorithmic improvements are still
being made. The most competitive heuristic solution algorithms of today utilize, and
often combine, strategies and elements from evolutionary algorithms, local search,
and ruin-and-recreate based large neighborhood search. In this paper we propose a
new hybrid metaheuristic for the CVRP, where the education phase of the hybrid
genetic search (HGS) algorithm proposed by (Vidal Hybrid Genetic Search for the
CVRP: Open-Source Implementation and SWAP* Neighborhood 2020) is extended by
applying large neighborhood search (LNS). By performing a series of computational
experiments, we attempt to answer the following research questions: 1) Is it possible
to gain performance by adding LNS as a component in the education phase of HGS?
2) How does the addition of LNS change the relative importance of the local search
neighborhoods of HGS? 3) What is the effect of devoting computational efforts to
the creation of an elite solution in the initial population of HGS? Through a set of
computational experiments we answer these research questions, while at the same
time obtaining a good configuration of global parameter settings for the proposed
heuristic. Testing the heuristic on benchmark instances from the literature with limited
computing time, it outperforms existing algorithms, both in terms of the final gap and
the primal integral.
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1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) was first introduced by Dantzig and
Ramser (1959) as the truck dispatching problem. Since then, the CVRP has been one
of the most studied problems in operations research and combinatorial optimization.
It consists of finding a set of vehicle routes, starting and ending at a depot, to deliver
goods to a set of geographically dispersed customers. A feasible solution requires each
customer to be visited by exactly one of the identical vehicles, and the total amount of
goods delivered by a vehicle cannot exceed its capacity. The objective is to design the
routes in such a way that the total distance traveled by the vehicles is minimized. For
a more formal description, and mathematical formulations, of the problem we refer to
Laporte (2009).

Since its introduction in 1959, numerous extensions and variants of the CVRP,
considering a wide range of real-world aspects, have been studied in the literature
(Laporte 2009). However, the CVRP still plays a central role due to its relative sim-
plicity, which makes it easier to test out new ideas for both exact and heuristic solution
methods, allowing for algorithmic improvements that can later be applied to more
complex problem variants. Therefore, the focus of this paper is to improve the heuris-
tic solution methods for the CVRP. For further introduction to richer vehicle routing
problems we refer to the taxonomy by Eksioglu et al. (2009), the survey by Vidal et al.
(2013), or the book by Toth and Vigo (2014).

The CVRP and all its extensions are known to be NP-hard (Lenstra and Kan 1981), a
complexity that is severely limiting the size of the problems that can be solved to proven
optimality. The state-of-the-art exact solution methods are the branch-and-cut-and-
price algorithms by Pecin et al. (2017) and Pessoa et al. (2020), which combines cut and
column generation with several additional mechanisms. In general, the exact methods
are able to solve most instances of up to 275 customers, although the computational
time required is often several days, making the methods impractical in many settings.
As a consequence, a considerable part of the literature consists of heuristic solution
methods, where the most successful ones are metaheuristics.

The term “metaheuristic” was first coined by Glover (1986), and it has since been
used to describe heuristics with additional strategies enabling search past any encoun-
tered local optima. A huge number of metaheuristics have been proposed for the
CVRP, and they are usually classified into three main types that are neither disjoint nor
exhaustive: neighborhood-centered searches, population-based methods, and hybrid
metaheuristics (Laporte et al. 2014). Neighborhood-centered metaheuristics utilize a
local search procedure, local improvement heuristics, and strategies for escaping local
optima, to improve a single incumbent solution. Population-based methods maintain
a set of solutions throughout the search process, where in each iteration, information
from multiple solutions may be used to create new ones. Hybrid metaheuristics com-
bine multiple approaches. The current state-of-the-art metaheuristics for the CVRP
include: Hybrid Iterated Local Search (HILS) (Subramanian et al. 2013), Knowledge
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Guided Local Search (KGLS) (Arnold and Sorensen 2019), Slack Induction by String
Removals (SISR) (Christiaens and Vanden Berghe 2020), and Hybrid Genetic Search
(HGS) (Vidal et al. 2012; Vidal 2020).

HILS is a hybrid metaheuristic that combines the neighborhood-centered Iterated
Local Search (ILS) (Baxter 1981) with an exact algorithm for solving the set parti-
tioning problem. ILS escapes local optima by perturbing the solution to achieve a new
starting point for the local improvement heuristic. One iteration of HILS first uses ILS
to find alocally optimal solution where some of the solution’s routes are added to aroute
pool, before the exact algorithm finds the optimal partition of routes from the pool.
Voudouris and Tsang (2003) proposed the Guided Local Search (GLS) metaheuristic,
which penalizes “bad” features of the solution, for instance edges, effectively changing
the objective function. KGLS builds upon GLS using knowledge obtained through data
mining to find the most important features of optimal or near-optimal solutions, and
this information determines which edges to penalize. SISR, proposed in Christiaens
and Vanden Berghe (2020), is based on a local search heuristic guided by Simulated
Annealing (Kirkpatrick et al. 1983), in addition to a mechanism for minimizing the
vehicle fleet. Instead of using classical neighborhoods for the VRP, it performs large
neighborhood search (LNS) defined by ruin-and-recreate (R&R) operators. Finally,
HGS is a population-based method extending the genetic algorithm proposed by Prins
(2004). It maintains a diverse population of individual solutions. In each iteration,
these individuals are recombined and the resulting offspring are “educated” with a
local search heuristic. Vidal et al. (2012) presented a version of HGS called Hybrid
Genetic Search with Advanced Diversity Control (HGSADC), and an improved ver-
sion specialized for the CVRP, namely HGS-CVRP, was proposed in Vidal (2020).
This paper focuses on the latter and refer to it as HGS.

Several improvements have been made on metaheuristics for the CVRP during
recent years, although most of the improvements have not come from new metaheuris-
tic concepts, but rather from more efficient and focused local improvement heuristics.
HGS achieved a significant performance improvement by means of an additional
neighborhood in the local search, as reported by Vidal (2020). Similarly, the special
R&R operators proposed in Christiaens and Vanden Berghe (2020) arguably consti-
tute the most important factor for the success of the SISR metaheuristic. However,
introducing more neighborhoods to a local search does not guarantee improvement, as
itis only beneficial if the neighborhoods are complementary. The intersection between
neighborhoods should be small or empty so that each neighborhood tends to find dif-
ferent solutions. Additionally, the size of the neighborhoods must be relatively small
such that the computational complexity of exploring them is manageable. These chal-
lenges may be summarized in the fundamental balance between intensification and
diversification, which is vital for a metaheuristic to be successful (Glover 1989).

The overall goal of this paper is to investigate whether combining HGS and LNS is
a way to create a competitive solution method for the CVRP. To this end, we formulate
the following research questions:

1. Isit possible to gain performance by adding LNS as a component in the education
phase of HGS?
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2. How does the addition of LNS change the relative importance of the local search
neighborhoods of HGS?

3. What is the effect of devoting computational efforts to the creation of an elite
solution in the initial population of HGS?

To answer these questions, we design a metaheuristic called Hybrid Genetic Search
with Ruin-and-Recreate (HGSRR) and a sequence of computational experiments.
HGSRR combines elements from the latest version of HGS (Vidal 2020) and the
recently proposed SISR metaheuristic by Christiaens and Vanden Berghe (2020) that
is based on LNS.

The remainder of this paper is structured as follows. Section 2 describes the pro-
posed hybrid metaheuristic and its components. The sequence of experiments and the
final benchmark test comparing the hybrid metaheuristic against the state-of-the-art
are presented in Section 3. Finally, in Section 4, concluding remarks are presented in
addition to suggestions for future research.

2 Hybrid genetic search with ruin-and-recreate

In short, HGSRR is a genetic algorithm that iterates a cycle consisting of seven com-
ponents divided into three main phases: Recombination, Education, and Population
Management. Six of the components are the same as in the original HGS, while the
seventh is responsible for search in the R&R-based neighborhood from SISR. Fig. 1
shows a flowchart of the hybrid method.

The Recombination phase is made up of two components that are responsible for
the recombination of individuals. Component (1) selects two parent solutions from
the population, whereas component (2) performs crossover of the selected parents in
order to recombine them into an offspring solution.

The Education phase is responsible for improving the offspring solution. Because
the solutions in the recombination phase are represented as giant tours, a split algorithm
is applied to the offspring solution in component (3). A giant tour contains all customers
on a single tour without considering the capacity constraint, and to restore feasibility,
the split algorithm is used to divide the giant tour into feasible routes in an optimal way.
Component (4) then runs a local search on the solution until a local optimum is found,
and component (5) continues to search in the R&R-based neighborhood, attempting
to further improve the solution. It should be noted that even though component (3)
creates feasible vehicle routes with respect to capacity, exceeding the capacity during
the Education phase is permitted in exchange of a penalty, potentially leading to
infeasible solutions. The penalty is dynamically adjusted based on a target fraction
of éREF feasible individuals in the population. In addition, if the solution remains
infeasible after the Education phase, there is a 50% probability for the phase to restart
with a ten times higher penalty coefficient.

Once the offspring solution is educated, the final Population Management phase
starts. It includes two components, where component (6) first evaluates the educated
offspring and calculates its fitness relative to the population, before component (7)
determines if the offspring is among the individuals transferred to the next generation.
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Fig. 1 Flowchart of the complete HGSRR metaheuristic. The genetic cycle consists of seven components
and three phases

The three phases are then repeated and the genetic cycle continues until either the
predetermined time limit 774X is reached, or N'7 iterations are performed without
improvement. In the former case, the algorithm is terminated, while in the latter case,
the algorithm is restarted.

To initialize the population, the method starts by generating ! individuals, where
each individual is a random giant tour before the tour is split and the individual is
educated, as in the genetic cycle. However, in contrast to the original HGS, a single
individual goes through elite education that includes an intensified version of the R&R
search in component (5). The purpose of the elite education is to quickly find a high
quality solution, thus improving the convergence of the hybrid method. Unlike the
local search in component (4), the search based on the R&R operators of the SISR
metaheuristic may accept worsening moves, allowing it to escape local optima, and
thus it can be used to continue improvement of a given solution.

The HGSRR with its elite education can be seen as a combination between the
population-based HGS and the neighborhood-centered SISR. If no time is spent on
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Parents Offspring

Fig. 2 Tllustration of the ordered crossover operator. Two parents, represented on the left, are combined to
form the offspring solution to the right. The dashed lines is the crossover region

elite education, the HGSRR is the same as an extended version of HGS, and otherwise,
if the elite education takes up all the time, the HGSRR 1is similar to the SISR meta-
heuristic without the fleet minimization mechanism. The balance between the two is
explored in this paper, and results from the experiments are presented in Section 3.
A short description of each component used in the HGSRR is given in the following
subsections.

2.1 Parent selection

A tournament-based selection scheme is used to select a parent, where k > 2 indi-
viduals are randomly selected from the population. Out of these k individuals, the
one with the best fitness is selected as the tournament winner. In HGSRR, £ = 2 is
used, as higher values of k increase the likelihood of the best solutions being selected,
implying a higher selection pressure, leading to less diversity. Since we use binary
crossover, two parent solutions are required, and therefore, the tournament selection
is performed twice.

2.2 Crossover

An ordered crossover operator (Oliver et al. 1987), where the offspring solution inherits
parts of the order from each of the two parent solutions, is used to recombine the two
parents using their giant tour representation. Fig. 2 illustrates the ordered crossover
operator. A random crossover region is selected, in which the customers within the
region are copied from the giant tour of the first parent. Starting outside the crossover
region, the remaining customers are copied in order from the giant tour of the second
parent, possibly wrapping around.

2.3 Split

Because individuals are represented as a giant tour in the crossover, a dynamic
programming algorithm called Split, is used to optimally divide the giant tour into
segments defining feasible vehicle routes. This approach was first presented and used
by Prins (2004).

A giant tour can be represented as a directed acyclic graph (DAG), and the process
of splitting the giant tour can be seen as finding the shortest path in the DAG, illustrated
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1 5

Fig.3 Illustration of the split algorithm. On the left is the DAG created from the giant tour, where the blue
arcs represent the shortest path. The corresponding vehicle routing solution is illustrated to the right

in Fig. 3. In the example, the giant tour consists of five customers in order, where the
arcs represent feasible routes and the arc cost corresponds to the length of the route.
We see that there is an arc from the depot to the second node, but not to the third. This
implies that a route with the first two customers is feasible, and the absence of an arc
to the third customer means that a route with the first three customers would violate
the capacity constraint. The optimal split is given by the set of arcs making up the
shortest path in the graph, and it can be found in O (1n?) using Bellman’s algorithm,
as shown by Prins (2004). However, like in the HGS by Vidal (2020), the specific
implementation relies on a linear-time split algorithm exploiting dominance rules, as
described in Vidal (2016).

2.4 Local search

A local search is performed to improve the offspring solution, in which ten com-
plementary neighborhoods are explored in order using a first-improvement strategy.
Le., the local search cycles through the different types of neighborhoods in order and
immediately applies the encountered moves if they improve the solution. These neigh-
borhoods are the same as those used in the latest version of HGS by Vidal (2020). Nine
of the neighborhoods were first presented in Prins (2004) and they are denoted (M1 -
MD9). The neighborhoods include relocation of one or two vertices, swap of one or two
vertices, in addition to the intra-route 2-opt, and two versions of the inter-route 2-opt*
neighborhoods. These neighborhoods are defined by the moves for all pairs of distinct
vertices, and consequently, the neighborhoods can generally be explored in O (n?).
However, a move is only considered if it involves a pair of vertices that are geograph-
ically close, and the granularity parameter I" is used to restrict the neighborhoods,
allowing for an exhaustive exploration in O (I'n).

The tenth and final neighborhood is defined by the SWAP* move proposed by
Vidal (2020). Following the same notation as Prins (2004) and Vidal et al. (2012),
this is denoted M10. It is defined for pairs of routes with overlapping circle sectors.
For a pair of routes, one customer from each route is swapped, however, instead of
inserting the customer in place of the other, the customers are optimally relocated into
the opposite route. Despite generally containing O (n*) moves, the neighborhood can
be explored in sub-quadratic time. For further details on the last neighborhood, the
reader is referred to Vidal (2020).
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2.5 R&R search

The R&R search distinguishes HGSRR from the original HGS by Vidal (2020). Its
purpose is to further improve the offspring solutions after the local search. It searches
in the large neighborhood defined by the new R&R operators proposed in Christiaens
and Vanden Berghe (2020). A single R&R move from a solution s results in the solution
s*, and is performed by first removing a set of customers, before the customers are
inserted back into the solution.

The removal operator is called Adjacent String Removal, and it attempts to induce
two important types of slack into the solution. A sufficient number of customers must
be removed from each route to induce capacity slack in the route, as other customers
that are more suitable to be served by the route cannot be feasibly added unless the
needed capacity is freed up. The second type of slack is the spatial slack, given by
the reachable area of the vehicle operating the route. Even though the distance driven
by a vehicle is unlimited in the CVRP, it can be seen as a resource like the capacity,
but instead of being a constraint, it is minimized by the objective function. Removing
customers from a route induces spatial slack by increasing the reachable area of the
route such that other customers can be visited without exceeding the original distance.
To induce both types of slack, the operator starts with a randomly chosen customer
from which it removes strings of adjacent customers that are geographically close
across multiple routes. The selection of the adjacent strings are controlled by two
parameters where ¢ is the average number of customers to remove and LM4% is the
maximum length for a single string of customers.

The recreate operator is based on the greedy insertion approach and is called Greedy
Insertion with Blinks. It inserts the removed customers sequentially, and the order of
the sequence is determined by sorting the removed customers in one of four ways:
Random, Demand, Close, and Far. The first is random order, while the second starts
by inserting the removed customer with the largest demand. The last two ways sort
the customers based on their distance to the depot, starting with the customer either
closest or farthest away. Instead of always inserting the customer in the position with
lowest additional cost, the operator searches through all feasible insertion points but
may “blink”, i.e., disregard a given point, with a probability of 8. The effect is that an
insertion point with rank r according to cost has probability p(r) = (1 — )" ~D of
being chosen. The blinking may come across as counter-intuitive, as not inserting a
customer into the best position may result in a worse solution. However, the blinking
introduces some randomness to the operator, reducing the greediness compared to only
choosing the best position, and Christiaens and Vanden Berghe (2020) experienced
that the probabilistic blink element improved the overall performance of the SISR
metaheuristic. For further details on the two operators, we refer to the original paper
by Christiaens and Vanden Berghe (2020).

Like in the SISR metaheuristic, a simulated annealing algorithm with an exponential
cooling schedule is used to control the search such that the probability for accepting a
move to a new solution s* is dependent on the current temperature 7 and the difference
in the objective values Az = z(s) — z(s*). Let 7 be the temperature variable, 7 the
initial temperature, and 7; the final temperature. The number of moves N R in the
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R&R search is a linear function of the instance size n determined by the parameter y:
NR = |yn]. The cooling factor ¢ follows from N &, 7, and Tric= (Tf/’]f))l/NR.

A pseudocode of the R&R component is presented in Algorithm 1. First, the input
solution is saved as the best solution found during the R&R search, s? (line 1). The
temperature 7 is set to the starting temperature 7y (line 2). For every iteration in
the algorithm, solution s* is determined by applying the R&R operators from SISR
(lines 3 and 4). If the move is accepted in line (5), the current solution s is updated
in line (6). Additionally, if the new solution is the best found during the search, 5B
is updated (lines 7 and 8). The last step in one iteration of the search is to reduce the
temperature by multiplying it with the cooling factor in line (9). Finally, in line (10),
the best solution found during the R&R search is returned.

Algorithm 1: R&R Search

Input: s < Offspring solution after local search
158 <5
2T <1
3 for N R iterations do

4 | s™ < Ruin-and-Recreate(s)

5 | if z(s*) < z(s) — 7T In(U (0, 1)) then
6 5 < s*

7 if z(s*) < z(s?) then

8 | 5B s

9 | T «cT

10 return s

2.6 Fitness calculation

The individual’s fitness is used to measure its quality relative to the other individuals
in the population. To balance the diversification and intensification of the search, the
fitness combines two measures: the objective value of the solution and the individual’s
contribution to the population diversity. The latter is calculated as the average normal-
ized Hamming distance to the other individuals in the population. Additionally, since
the solutions may become infeasible after the education phase due to the relaxation
of the capacity constraint, two subpopulations are maintained, i.e., one for feasible
and one for infeasible solutions. Each individual p € P in the subpopulation is given

ranks rpo BJ and rll,) IV corresponding to the two measures, respectively. A slightly

smaller weight is given to the diversity contribution to ensure that the N * individuals
in the subpopulation with the best objective values always survive. The formula for
the fitness is shown Equation (1).

_ _OBJ _N_E DIV
fy =g+ (1= 15 ) 7 (M)
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2.7 Survivor selection

A generational model is used to manage the subpopulations, in which u is defined as
the minimum population size, and X is the generation size. Therefore, both subpopu-
lations manage between p and u + A individuals each. After an offspring is educated,
its fitness is calculated and it is inserted into the respective subpopulation based on
feasibility. All the individuals in the subpopulation are kept unless the size of the
subpopulation exceeds the upper limit of u + A individuals. Once the upper limit is
reached, individuals are removed from the subpopulation based on two criteria. First,
any clones are removed, and second, if all individuals are unique, the individual with
the worst fitness is chosen for removal. Since the diversity contribution of an indi-
vidual is only defined relative to the subpopulation, the fitness of all the individuals
in the subpopulation must be recalculated every time the subpopulation changes. The
process of removing individuals from the subpopulation and updating the survivors’
fitness is repeated until the size of the subpopulation is back at .

3 Computational experiments

To answer the research questions posed in the introduction and obtain well perform-
ing parameter values for the HGSRR metaheuristic, we design a sequence of six
experiments. The R&R Search Experiment investigates the effect of adding LNS
to the education phase of HGS, and determines what parameter values yield good
performance. In the Neighborhood Selection Experiment, fifteen configurations of
local search and LNS neighborhoods are tested to determine whether a reduced set of
operators may be used without substantial loss of performance. The Elite Education
Experiment determines the effect of devoting computational efforts to the creation of
an elite solution in the initial population, and finds parameter values that aim to strike
a good balance between the efforts devoted to elite education and the remaining search
components. The Diversity Control Experiment investigates whether the introduction
of an elite solution in the initial population necessitates stronger diversity control. The
HGSRR metaheuristic configured through the above four experiments is compared to
high performing competitors in a Benchmark Test. Finally, in the Best Known Solu-
tions Experiment HGSRR is run for 16 hours with the aim of finding new best known
solutions.

3.1 Experimental setup

The computational experiments are conducted on the X dataset by Uchoa et al. (2017)
with 100 instances, where the number of customers vary between 100 and 1000. They
cover a wide range of characteristics such as route length, customer and depot posi-
tioning, and demand distribution. The web page CVRPLIB (2021) contains instance
definitions and best known solutions for the X dataset and other standard CVRP
benchmarks. The first four experiments are run on a subset including 15 of the 100
benchmark instances. The selected instances are chosen such that they cover a wide
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range of different characteristics. The Benchmark Test is run on all 100 X-instances,
whereas the Best Known Solutions Experiment is run on all X instances for which a
proven optimal solution has not been found, plus a benchmark of ten very large CVRP
instances due to Arnold et al. (2019).

HGSRR was implemented using version 1.49.0 of the Rust programming language,
and it was compiled with the Rust compiler. The implementation uses the same param-
eter values as in the original papers by Vidal (2020) and Christiaens and Vanden Berghe
(2020), unless explicitly stated otherwise. A complete list of the parameters and their
corresponding values is found in Appendix A.

The experimental setup is close to a replication of the experimental setup in Vidal
(2020), such that the HGSRR results can be compared directly against the results
presented there. However, to account for differences in computing power, the time
limit for each problem instance is adjusted relative to the processors’ single-threaded
ratings. The original time limit 774X is %n seconds, corresponding to four minutes
of runtime per 100 customers. All the tests are single-threaded and they are performed
on a2.3GHz Intel E5-2670v3 processor, which according to PassMark Software (2021)
is 23% slower than the processor used in the setup of Vidal (2020). Consequently, the
time limit is extended by 23% in our setup.

For each run, the best solution value, z(#;), is recorded after t; € T percentages of
the time limit.

T ={1%,2%, 5%, 10%, 15%, 20%, 30%, 50%, 75%, 100%}

The results of the experiments and the benchmark test conducted in this paper are
then presented as convergence profiles. In the first four experiments, one convergence
profile corresponds to a specific configuration of HGSRR', while in the Benchmark
Test presented in Section 3.6, the convergence profiles correspond to different methods.
Furthermore, all the results are reported as the average of ten independent runs to
increase statistical significance.

Since there is usually a trade-off between the solution quality and the CPU time,
one method or configuration can, in general, only be considered better than another if
it finds better solutions in a shorter amount of time. Therefore, we define two metrics
from the convergence profiles, and these are used to determine which method or
configuration is preferable. The first metric is called the final gap, denoted g%'. It is
defined as the gap between the solution after 100% of the time limit, denoted z/, and
the best known solution (BKS) for the instance. The gap to the BKS after a given
percentage of the time limit is defined in Equation (2). To get an accurate comparison
between the HGSRR and the other metaheuristics in the benchmark test, the BKSs
used are the same as the ones presented in Vidal (2020), even though better solutions
have later been found for some of the instances.

N _ _BKS
g(rl->=Z“’)ZB—KZS @)

1 Below we will refer to several HGSRR configurations as HGS extensions, when not all HGSRR compo-
nents are included.
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The final gap is dependent on the predefined time limit and only represents the
performance at a single point during the runtime, therefore, we also report the average
gap, denoted g4V ¢, which is based on the primal integral defined by Berthold (2013).
The primal integral is a calculation of the area under the curve of the convergence
profile, and since the time is normalized, the primal integral is the same as the average
gap relative to the BKS. It can be seen as the average of the best solution gaps if the
runs were randomly stopped at any given time up until the time limit. To approximate
the primal integral, let z4VC be defined as the average solution value, as shown in
Equation (3), where #y) = 0. The average gap is then calculated as the gap between the
average solution value and the BKS using Equation (2).

17|

VO = 2w — 1) 3)
i=1

To assure that the results of the experiments presented are statistical significant,
we have used a one-tailed Wilcoxon signed-rank test (Wilcoxon 1945). In the test we
evaluate two hypotheses, the null-hypothesis Hy, and the alternative hypothesis Hj,
defined as follows:

Ho : 2(X5") = z2(X)
Hl :Z(XBC‘SI) > Z(X)

where z denotes the solution value, which can be either z©* or z4Y . Each parameter
configuration or method is denoted X, and we define X B¢! = argmin{z(X)},i.e.,itis
the configuration with the lowest z-value for the given experiment. With a significance
level o of 2.5%, the tested hypotheses with p-values lower than « are rejected.

Failing to reject Hy means the performance of the two configurations in the exper-
iment are statistically indistinguishable. However, if Hj is rejected, we continue to
test Hy, and rejecting it as well implies that X 8¢5’ performed better than X. These
hypotheses are tested on the experimental results presented in this paper, and the
configurations that are not significantly worse than X 2¢ for a given experiment are
highlighted in bold in Tables 1 to 5.

3.2 R&R search experiment

The goal of the R&R Search Experiment is to test whether R&R search performed
after local search education can improve the original HGS. Recall from Section 2.5
that the R&R search is controlled by three parameters: y that determines the number
of R&R moves, the start temperature 7y, and the final temperature 7. Together the
two temperature parameters and the number of moves define the cooling schedule.
We fix the final temperature, 7y = 1, as this ensures a very low probability for
accepting deteriorating moves in the final part of the search. That leaves the former
two parameters, and the experiment is therefore designed to test different combinations
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Fig. 4 Convergence profiles from the R&R Search Experiment that tests different combinations of the y
and 7y parameters, shown on a logarithmic scale

of y and 7. Note that the experiment is not designed to find the precise combination
of parameters performing the best, but rather to find the correct order of magnitude.
The following parameter value combinations are tested: y € {0, 0.1, 1.0, 10.0} and
Ty € {1, 10, 50, 100}.

Figure 4 shows the results from the R&R Search Experiment. Each curve in the
figure is the convergence profile of the extended HGS metaheuristic for a specific
combination of y and 7. Notice that in the case of y = 0, the R&R search is not run
at all, and the method is the same as the original HGS. By looking at subfigures (c) and
(d) with higher start temperatures, the results indicate that the method performs worse
as y increases. Even though an exponential cooling schedule is used, the combina-
tion of high start temperature and larger y-values make the method spend too much
time accepting deteriorating moves, and it becomes increasingly difficult to find an
improved solution. On the other hand, if the start temperature is lower, as shown in
subfigures (a) and (b), the results indicate that most of the combinations of parameters
work somewhat better than the original HGS.

Table 1 summarizes the metrics for the best parameter combinations found in the
R&R Search Experiment, and compares them to our reimplementation of the original
HGS. The results show that there is no statistically significant difference between any
combination of y € {1.0, 10.0}, and 7y € {1, 10}. This indicates that the HGSRR
is relatively robust with respect to the values of the y and 7y parameters. Further,
the results show that dedicating some computing time towards R&R search leads to
statistically significant better solutions than the original HGS. Even though there is
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Fig.5 Statistics on the computing time spent on each component of the extended HGS metaheuristic

no statistically significant difference between results for the four parameter configura-
tions, we have selected to proceed with the setting that gives the lowest g©" and g4V ¢
which is y = 1.0 and 7y = 10.

The proportion of time spent on each of the components in the extended HGS
metaheuristic are illustrated in Fig. 5. The results show that the temperature parameters
affect the performance of the R&R search, but they are considered independent of
its time consumption. L.e., the time consumption is correlated with the number of
moves determined only by the y parameter and the problem size. Therefore, each
of the horizontal bars shows the distribution of time consumption for the different y
parameter values in the experiment. In the original HGS, corresponding to y = 0, the
local search is clearly the most computationally expensive component taking more
than 85% of the time, on average. For the best performing parameter combination, the
local search is still responsible for around 55%, while the R&R search takes around
35%. Out of the ten neighborhoods in the local search, the neighborhood defined by
move M10 is the most expensive to explore with around 8% of the total time. This
implies that with the best parameter configuration, the R&R-based neighborhood is
by far the most time-consuming neighborhood to explore.

3.3 Neighborhood selection experiment

The Neighborhood Selection Experiment explores whether adding the R&R com-
ponent allows us to remove some of the ten local search neighborhoods without
significant performance deterioration. As Arnold and Sorensen (2019) points out,
the use of several neighborhoods is only beneficial if they complement each other.
Le., the intersection between the neighborhoods should be small or empty so that each
neighborhood finds different solutions. By design, this is the case for the ten neigh-
borhoods used in the HGS local search. However, the R&R search component may
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in effect replace some of the local search neighborhoods. Thus, it might be beneficial
for the extended HGS to only use a subset of the ten neighborhoods in order to avoid
unnecessary computation.

Table 2 shows the metrics for different combinations of search neighborhoods
and the R&R component. The first row shows the results of the HGSRR with all
eleven neighborhoods enabled, using the best parameter configuration from the R&R
Search Experiment presented in Section 3.2. The next eleven rows present metrics
for configurations where one of the eleven neighborhoods is removed, ordered by
ascending average gap. The results give some indication on the relative importance of
each neighborhood, however, the relatively small differences in addition to the lack of
statistical significance make it difficult to draw any strong conclusions.

Separately removing the neighborhoods defined by moves M3, M2, M7, and M4
all improve performance, and these neighborhoods may therefore be considered less
important. In contrast, removing the neighborhoods defined by R&R, M8, or M10
seems to worsen performance the most, and thus one could argue that these neigh-
borhoods are more important. Since removing M3 yielded the best average gap, the
same approach is repeated in which one more neighborhood is removed at a time.
Unfortunately, no combination where removing M3 and one additional neighborhood
achieved a better average or final gap, although the best one of these is listed in Table
2 as Subset 1.

Subset 2 and Subset 3 are the results of attempting to remove even more neighbor-
hoods because a method with fewer neighborhoods requires less implementation and
may be considered less complex. Subset 2 is defined by simultaneously removing all
the neighborhoods that individually improved the average gap when being removed.
Subset 3, on the other hand, is defined by removing all the neighborhoods that, when
being the only one removed, did not increase the average gap by more than 0.1 per-
centage points compared to the full HGSRR. Despite none of the subsets achieving
the best average or final gap, it is noteworthy that Subset 3, which removes six of
the neighborhoods from the local search, still performs better than the original HGS
without R&R.

The convergence profiles for the relevant neighborhood combinations from Table
2 are shown in Fig. 6. Even though the R&R Search Experiment described in Section
3.2 indicates that the inclusion of the R&R-based neighborhood positively impacts
the method’s convergence, Fig. 6 shows that the convergence can be further improved
by removing a few neighborhoods. However, notice that it is no longer the case if too
many neighborhoods are removed, as in Subset 2 and Subset 3.

Although there are several combinations of neighborhoods that we cannot sta-
tistically distinguish, the best performing combination, excluding the neighborhood
defined by move M3, is used throughout the following experimental investigations.

3.4 Elite education experiment
Similar to the R&R Search Experiment, the Elite Education Experiment tests combina-

tions of parameters in the R&R search, although this time it is used for elite education.
Recall that elite education consists of the same education phase as previously, but
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Fig. 6 Convergence profiles for the most relevant combinations of neighborhoods in the extended HGS
metaheuristic, shown on a logarithmic scale. The different combinations are defined in Table 2

the R&R search is run for much longer in order to generate a single incumbent elite
solution before the rest of the population is initialized. The starting temperature is
denoted %E , and the parameter determining the number of R&R moves in the elite
education is denoted y % instead of y. Once again, the experiment is designed to
find parameter values that yield good performance, not necessarily optimal values
for our experimental setup. Thus the following parameter value combinations are
tested: y £ € {1, 1000, 10000, 100000, 200000} and TOE € {1, 10, 50, 100}. Note that
yE =1 corresponds to no elite education, as the same value is used for education of
the remaining individuals. L.e., y = 1 is used during regular education.

The convergence profiles are shown in Fig. 7. Starting with subfigure (a), in which
the starting temperature is the lowest, the results show little difference as long as the
yE parameter is relatively low. However, for the largest values, the convergence is
much slower. This is likely due to the increased time spent on the elite education,
leaving less time for the remaining components.

Subfigure (b) indicates that increasing the starting temperature to 10 finds somewhat
better solutions early on, but has little impact on the final solution gap. Moreover, it is
noteworthy that the solutions early on become better with a higher number of moves
and a longer cooling schedule obtained by increasing y£. The results indicate that
spending time on elite education of a single individual improves the convergence of
the method.

The same trend can be seen in subfigures (c) and (d) for values of ¥ £ up to 10,000.
However, a further increase in y £, in combination with the higher starting temper-
atures, seems to considerably delay the convergence. A higher starting temperature
implies a greater probability of accepting deteriorating moves early on, and thus, a
stronger exploration of the search space during the R&R search. Despite delaying the
convergence, the results indicate that the increased exploration from a higher starting
temperature and a larger number of R&R moves, tend to improve the final gap. Notice
that higher values for £ increase the time spent on elite education and thus reduces

@ Springer



670 M. Simensen et al.

—o— P =1 —A—4F=1000 —=—+F =10,000 ——~F =100,000 —*—~F =200,000

T T T T T T T T T T T T T T
4.00 - @7TF=1" (b) TE =10 | 4.00
2.00 |- 4 - -2.00
100 1.00
a
<
0.40 0.40
0.20 0.20
0.10 1 1 l 1 1 L L 1 1 l 1 1 L L 0.10
T T T T T | T T
(d) 7:E = 100 | 400
2.00
g 1.00
=¥
<!
0.40
0.20
| | 1 1 | 1 1 0.10
1 2 5 10 20 50 100
CPU time (%) CPU time (%)

Fig.7 Convergence profiles from different combinations of values for the yE and %E parameters for elite
education, shown on a logarithmic scale

Table 3 Metrics. for.rele\fant 7E yE oF gAVG

parameter combinations in the 0

Elite Education Experiment 50 10,000 0.1444 0.1953
50 100,000 0.1199 0.2864
50 200,000 0.1383 0.4344
100 10,000 0.1538 0.2209
100 100,000 0.1277 0.4240
100 200,000 0.1343 0.7082

the number of iterations of the genetic cycle that can be performed within the given
time limit.

Table 3 shows the metrics for relevant parameter combinations from the Elite Edu-
cation Experiment. We observe that a better final gap is achieved by increasing y £,
thus spending more time on the elite solution, although it cannot be increased too
much. The best final gap is achieved with TOE = 50 and yE = 100, 000, but increas-
ing ’ZBE to 100 does not make it statistically worse. Thus, the starting temperature may
not be that important for the final gap when the elite education is given more time.

However, the gains in the final gap by increasing y £ above 10,000 seem to come
at the expense of the average gap. The best average gap is achieved with Z)E =50
and y£ = 10, 000, where all other configurations are statistically worse. Both of the
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Fig. 8 Statistics on the computational time spent on each component of the HGSRR metaheuristic in the
Elite Education Experiment, for different values of yE

best performing combinations of parameters spend a significant amount of time on
the elite education.

The computational time devoted to each of the components in the HGSRR, including
the elite education, are shown in Fig. 8. The local search and the R&R search within the
genetic cycle are grouped together as Education, while Elite Education represents the
local search and R&R search on the single incumbent elite solution. In the experiment,
yE = 10,000 achieved the best average gap, and Fig. 8 shows that HGSRR with
this setting devotes around 5% of the total computing time to finding a single elite
solution. The best final gap was achieved with y£ = 100, 000, and in that case, the
elite education takes more than 40% of the total time spent. Even 5% is a significant
amount to spend on a single individual, as the search process may visit thousands or
even millions of unique individuals.

3.5 Diversity control experiment

Injecting a single, very good solution into the population of a genetic algorithm may
lead to the population losing diversity as the injected solution may become too domi-
nant. The loss of diversity decreases the genetic algorithm’s ability to explore different
parts of the search space, which is crucial for performance. Recall from Section 2.6
that the HGSRR, similar to the HGS, combines the diversity contribution of a solution
with its objective value in order to calculate the fitness. Hopefully, this mechanism
is enough to maintain diversity even though the population is initialized with an elite
individual. The Diversity Control Experiment is designed to check the importance of
the mechanism, and test different values for N ¥, the parameter controlling the diversity
contribution in the fitness function. We test the two y £ values that yield the best metrics
values in the Elite Education Experiment, in combination with N Ee11,2,4,6,8).

Convergence profiles for each of the two best performing y £ values from the
Elite Education Experiment are shown in Fig. 9. The results indicate that the choice
of NE plays a significant role in the performance of the method. Adjusting the N £
parameter is one way to control the balance between intensification and diversification.
Both subfigures show that the convergence profiles are almost overlapping during the
beginning of the runs, as the NZ parameter is irrelevant in the elite education phase.
However, rather early in the search process, the convergence profiles diverge. The
timing corresponds very well with the time spent on elite education, as presented in
Fig. 8.
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Fig. 9 Convergence profiles from the Diversity Control Experiment shown on a logarithmic scale. The
experiment tests different combinations of values for the yE and NE parameters

Table 4 Metrics from relevant E E E F AVG

parameter combinations in the To Y N g g

D1ver§1ty Control Experlment. 50 10.000 2 0.1555 0.2166

Combinations achieving either

the best final or average gap are 50 10,000 4 0.1444 0.1953

highlighted in bold 50 10,000 6 0.1677 0.2134
50 100,000 2 0.1245 0.2997
50 100,000 4 0.1199 0.2864
100 100,000 6 0.1321 0.3030

Table 4 presents the metrics of the best convergence profiles from the experiment.
Regardless of the value of y £, N = 4 yields the best performance. However, reducing
NE to2 with y£ = 100, 000 does not statistically worsen the final gap, which is likely
due to leaving less time for the genetic algorithm where the diversity is of importance.
As itis preferable with a single single parameter value, N = 4 is chosen, which is the
same as used in Vidal (2020). Although the results show that the parameter is important
for the performance, the injection of an initial elite individual into the population did
not change the best parameter value. Therefore, the results indicate that the HGSRR
metaheuristic does not require additional diversification to counteract the dominant
elite solution. Since the best value has been used in the previous experiments, the best
metrics are the same as shown in Table 3.

3.6 Benchmark test

This section presents the results of a complete benchmark test where the proposed
HGSRR metaheuristic is compared against state-of-the-art metaheuristics on the full
X dataset from Uchoa et al. (2017). Two different versions of HGSRR are included in
the benchmark test, and these correspond to the two best configurations found in the
Diversity Control Experiment. Let HGSRRI1 denote the configuration achieving the
best average gap (y £ = 10, 000), and HGSRR2 is the configuration with the best final
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Fig. 10 Convergence profiles for the different metaheuristics in the Benchmark Test are shown on a loga-
rithmic scale

gap (yE = 100, 000). The two versions are compared directly against the results from
four state-of-the-art metaheuristics presented in the benchmark test in Vidal (2020),
namely HILS by Subramanian et al. (2013), KGLS by Arnold and Sorensen (2019),
SISR by Christiaens and Vanden Berghe (2020), and HGS by Vidal (2020). A complete
list with the results on each of the problem instances is found in Appendix B.

The convergence profiles of the methods in the Benchmark Test are presented in
Fig. 10. Both versions of the HGSRR achieve a better final gap than the rest, although
the differences are relatively small in terms of absolute values. This is not unexpected,
given the hard competition. HGSRR1 achieved the best average gap in addition to
a slightly better final gap than the original HGS. Furthermore, the best final gap is
achieved by HGSRR2, but with a slower convergence, the method has a somewhat
Wworse average gap.

Even though the computing times of each solution method presented in this section
are adjusted based on the hardware used to produce them, other factors such as the
choice of programming language, compiler, and other implementation details may still
lead to an unfair comparison. To verify that we do not introduce an unfair advantage
to HGSRR, we have tested our implementation of HGS in Rust against the original
HGS implemented in C++. The results show that the two implementations have very
similar convergence profiles, although the Rust implementation performs consistently
and significantly worse, indicating that the real relative difference in performance in
favor of HGSRR may be bigger than presented in this paper. Detailed results from the
comparison of the two implementations of HGS may be found in Appendix C.

To get more information about the strengths and weaknesses of the different meth-
ods, their performance on various subsets of the instances is analyzed. Like in the
benchmark test by Vidal (2020), the following subsets are defined:

— (a) SMALL.: First 50 instances in the dataset with between 100 and 330 customers.
— (b) SHORT ROUTES: Instances of index i = 5k + 1 and i = 5k + 2 for k €
{0, ..., 19}. These 40 instances are designed to have fewer customers per route.

— (¢) LARGE: Last 50 instances in the dataset with between 335 and 1000 customers.
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Fig. 11 Convergence profiles for the different metaheuristics in the Benchmark Test for the four different
subsets of instances are shown on a logarithmic scale

Table5 Metrics for the methods in the Benchmark Test, where the values in bold are not statistically worse
than the best performing method on the respective subset

Instances Metric ~ HILS KGLS SISR HGS HGSRRI  HGSRR2
Small gF 03633 03702  0.1685  0.0231  0.0330 0.0398
gAve 0.4365 04206  0.6149  0.0497  0.0607 0.1030
Short Routes  gF 0.4495 05776 0.1546  0.1029  0.0994 0.0867
gAve 0.5718 0.6263 0.7303 0.1585 0.1364 0.1703
Large gF 0.9507  0.6957 02189  0.1937  0.1738 0.1527
gAve 1.1127  0.7816 13591 03011  0.2354 0.3416
Long Routes  gF 0.9331 05153 02354 01301  0.1186 0.1127
gAve 1.0626  0.6104 1.1599  0.2199 0.1739 0.2819
All gF 0.6570  0.5329  0.1937  0.1084  0.1034 0.0962
gAve 0.7746  0.6011 09870  0.1754  0.1480 0.2221

— (d) LONG ROUTES: Instances of index i = 5k + 3 and i = 5k + 4 for k €
{0, ..., 19}. These 40 instances are designed to have a higher number of customers
per route.

The convergence profiles of the methods in the benchmark on the different subsets
are shown in Fig. 11, while the metrics are shown in Table 5. By inspecting the
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different subfigures and the summarized metrics, the same observation as previously
can be seen. In general, HGSRR1 performed significantly better in terms of average
gap, meanwhile the significantly best final gap was achieved by HGSRR2. However,
this is not the case for the subset with the smallest problem instances, where the original
HGS achieves the significantly best final and average gaps. It is only the final gaps on
the instances with long routes that are not statistically different, where HGS and the
two versions of HGSRR are indistinguishable within the given confidence level used
in the statistical tests.

Most of the BKSs are proven to be optimal for the smallest instances, and the solu-
tions achieved by the best metaheuristics are either the same as the BKSs, or very
close. It can be argued that heavier intensification may help identify good solutions
faster, although to find the optimal or close to the optimal solution, a strong diver-
sification is required. Recall the trade-off between intensification and diversification.
Since the original HGS does not include R&R search or elite education, the genetic
algorithm can run more genetic cycles, or alternatively, achieve more restarts of the
algorithm. As a result, the HGS is considered heavier weighted towards diversification
compared to both versions of the HGSRR. Higher degree of diversification seems to
be an advantage on the smaller instances, but in contrast, it may be a drawback on the
larger instances in which even the best metaheuristics are still relatively far away from
the best known solutions.

Despite both versions of the HGSRR performing slightly worse on the smaller
instances, their performance on the other subsets is noteworthy. Especially their per-
formance on the larger instances should be highlighted, as the final gap of the HGSRR2
is more than 0.04 percentage points better than the HGS, and the average gap of
the HGSRRI1 is more than 0.06 percentage points better than the HGS. The signifi-
cant improvements by the two HGSRR versions on both of the metrics on the larger
instances in terms of absolute values are the strongest contributor to their overall
performance. On the complete X dataset, HGSRR2 reduces the final gap by 0.0122
percentage points, and HGSRR1 reduces the average gap by 0.0274 percentage points.
Although the improvements are small in absolute numbers, they correspond to a rel-
ative reduction in the final and average gaps of 11.25% and 15.62%, respectively.

Since the difference in performance seems to be related to the size of the problems,
and the final gaps are correlated with the problem size, it is interesting to take a closer
look at the distributions of the final gaps.

Fig. 12 shows the distributions of final gaps for each of the metaheuristics illustrated
as boxplots, and the same five quartiles from the distributions are summarized in Table
6. As the solutions are closer to the BKSs on the smaller problem instances, both the
25" percentile and the median are best for HGS that performs better on the smallest
instances. At the same time, the 75" percentile and the maximum are significantly
lower for both versions of the HGSRR. The spread of the final gaps is clearly the
lowest for HGSRR2. I.e., it has the lowest difference in the worst and the best final
gaps across all the instances. A lower spread in the final gaps may indicate a more
robust method in terms of lower variance in the final gaps on problem instances from
the same distribution. Note that nothing can be said about the variance across multiple
runs on the same problem instance, only about the expected variance across multiple
instances from the same distribution as the benchmark instances.
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Fig. 12 The distributions of the final gaps for each of the metaheuristics in the Benchmark Test are repre-

sented by the five quartiles and shown as boxplots

Table 6 The distribution of the final gaps for each of the metaheuristics in the Benchmark Test. The
distributions are represented by the five quartiles with the best ones marked in bold.

HILS KGLS SISR HGS HGSRR1 HGSRR2
Qo: Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
01: 25" Percentile 0.1799 0.2845 0.0735 0.0000 0.0020 0.0080
0>: Median 0.5304 0.5474 0.1734 0.0491 0.0561 0.0693
03: 75'" Percentile 1.0031 0.7671 0.2577 0.1851 0.1770 0.1454
Q4: Maximum* 2.1595 1.2366 0.4508 0.4416 0.3934 0.3564
* The maximum excluding outliers.
Table 7 Best known solutions improved by HGSRR
Dataset Instance Size BKS Improved BKS
Uchoa et al. (2017) X-n384-k52 383 65938 65928
Uchoa et al. (2017) X-n641-k35 640 63684 63682

3.7 Best known solutions experiment

In a final experiment we run the HGSRR for an extended time limit of 16 hours in an
attempt to improve the best known solutions, which can be found on the CVRPLIB
(2021) website. The experiment is conducted on the 48 instances in the X dataset for
which a proven optimal solution has not yet been found. The parameter configura-
tion remains the same as in the previous experiments, except for the y £ controlling
the scope of the elite education. Because larger y £ resulted in better final gap in the
Benchmark Test, the parameter value is further increased to 1,000,000 given the pro-
longed runtime. The experiment resulted in two new improved solutions, as listed in

Table 7. An overview of the currently used solutions
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4 Conclusions

The Capacitated Vehicle Routing Problem is a central problem in combinatorial opti-
mization. Due to its combination of industrial relevance and scientific interest, the
CVRP has been subject to intense research efforts for more than sixty years. Still,
there is strong competition regarding efficient solution algorithms, and substantial
improvements are being made.

Among the most competitive heuristics for the CVRP of today are Hybrid Genetic
Search (HGS) by Vidal (2020), and Slack Induction by String Removals (SISR) by
Christiaens and Vanden Berghe (2020). HGS may be characterized as a memetic
algorithm where a population of solutions is evolved, new solutions are created through
recombination, and the solutions are improved by local search. In contrast, SISR
is a trajectory-based metaheuristic where a single solution is iteratively improved
through large neighborhood search (LNS) with ruin and recreate (R&R) operators and
acceptance is governed by simulated annealing.

To meet our goal of investigating combinations of HGS and LNS for the CVRP,
we formulated three research questions. To answer them, we developed a novel meta-
heuristic and conducted a sequence of six computational experiments. Our proposed
metaheuristic is called Hybrid Genetic Search with Ruin and Recreate (HGSRR). It
combines HGS and SISR in two different ways: First, the R&R based LNS of SISR
complements the local search operators of HGS in the improvement of solutions in
each generation of the population, also called education. Second, SISR is used to
create an elite solution in the initial population.

Our experimental results show that devoting a substantial part of the computing time
in the education phase (around 35%) to the R&R large neighborhood search of SISR
yields the best results and improves both the average gap and the final gap, compared
to the original HGS and SISR methods. Further, our experiments clearly indicate that
adding SISR changes the relative importance of the local search operators employed
by HGS. In fact, the results show that removing the M3 neighborhood operator (i.e.,
relocation of a sequence of two customers) from the ten original operators of HGS
provides the best results of the 15 configurations investigated. SISR may even replace
six of the ten HGS operators and still exhibit performance improvement relative to the
original HGS.

Our results also show that it pays off to devote between 5% and 40% of the total
computational effort to create an elite solution for the initial population, both in terms
of convergence and the final gap. However, different configurations yield the best
results for these two performance metrics. Further, we observe that injecting an elite
solution in the initial population of HGS does not require additional diversity control
mechanisms.

The results of the Benchmark Test on the 100 X-instances by Uchoa et al. (2017)
show that HGSRR is highly competitive. We investigated two configurations of
HGSRR: HGSRRI that focuses on average gap performance, and HGSRR2 that is
the best configuration for the final gap metric. Both outcompete four state-of-the-art
metaheuristics regarding final gap, including HGS and SISR, on all but the smallest
X-instances. With a third configuration and a 16 hour time limit, HGSRR found new
best known solutions to two X instances with 383 and 640 customers, respectively.
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Hybrid genetic search and R&R based large neighborhood search are both among
the best solution methods for vehicle routing and many other combinatorial optimiza-
tion problems. Our investigations show that it is possible to design combinations of
the two that are competitive and in fact improve performance relative to each of them.
Our results should motivate further work in this direction.
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Appendix A: Parameters

The HGSRR metaheuristic is controlled by a set of several different parameters,
as defined throughout Section 2. Because the HGSRR combines two metaheuristics,
the parameters are divided into two tables. Table 8 shows all the parameters used
in the genetic algorithm based on the HGS by Vidal (2020), and Table 9 presents

Table8 Overview of the parameters used to control the genetic algorithm in HGSRR. The same parameters
and values are used in the HGS by Vidal (2020)

Parameter Value Description

n 25 Minimum population size

wl 100 Number of initial individuals

A 40 Generation size

r 20 Neighborhood granularity

gREF 0.2 Target proportion of feasible individuals

NC€ 5 Number of individuals in the diversity contribution

NE 4 Number of elite individuals

NIT 20,000 Number of iterations without improvement before restart

@ Springer


http://creativecommons.org/licenses/by/4.0/

Combining hybrid genetic search with ruin-and-recreate ... 679

Table 9 Overview of the parameters used to control the R&R-based search in the HGSRR. The first five

parameters and values are taken from the SISR metaheuristic proposed by Christiaens and Vanden Berghe
(2020)

Parameter Value Description

c 10 Average number of customers removed during ruin

LMAX 10 Maximum length of removed string

o 0.01 Used to determine number of preserved customers in Split String
procedure

B 0.01 Blink probability

Ty 1 Final temperature

To 10 Start temperature in the genetic cycle

'ZE)E 50 Start temperature in the elite education

1 Factor determining number of R&R moves in the genetic cycle
yE 10,000/100,000 Factor determining number of R&R moves in the elite education

the parameters used to control the R&R search based on the SISR metaheuristic by
Christiaens and Vanden Berghe (2020). The first four parameters in Table 9 are used to
control the R&R operators themselves, and for sake of completeness, they are included
in the Table despite not being defined in Section 2. For information about the first four
parameters, we refer to the original paper.

All the parameters and values are taken from the respective papers, except for the
four last parameters in Table 9. Parameter 7 takes another value than in Christiaens
and Vanden Berghe (2020), while %E , v, and yF are introduced in this paper.

Appendix B: Benchmark test results

This appendix presents all the results from the Benchmark Test presented in Section
3.6. The results are reported as the final solution value, denoted zF, and the average
solution value, denoted z4" €. For definitions of the values, see Section 3.1.

Recall that for all the problem instances, ten independent runs were performed with
each of the metaheuristics. Therefore, for each metaheuristic and problem instance,
the value from the best run is reported, in addition to the average value from the ten
runs. The best 7 and the average z/ from the ten runs can be found in Table 10, Table
11, and Table 12. Similarly, the best z4YG and the average z4VG from the ten runs
can be found in Table 13, Table 14, and Table 15.
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Appendix C: Implementation comparison

The Benchmark Test presented in Section 3.6 compares several metaheuristics
implemented in different programming languages, using different compilers, and
implemented by different programmers. Consequently, it is uncertain whether the rel-
ative difference in performance comes from methodological improvements, or simply
from details in the implementation environment. Therefore, to mitigate this uncer-
tainty, we compare our implementation of HGS in Rust against the original HGS in
C++.

The convergence profiles of the two implementations are presented in Fig. 13,
alongside HGSRR1 and HGSRR?2 for reference. Table 16 shows the metrics of the two
implementations, in addition to the corresponding p-values from the statistical tests
described in Section 3.1. The results show that the two implementations have very
similar convergence profiles, although the Rust implementation performs consistently
and significantly worse. As a result, the relative improvement in performance coming
from the additional components in HGSRR compared to HGS may be greater than
seen in the Benchmark Test presented in Section 3.6. On the other hand, if the Rust
implementation had performed significantly better than the original implementation,
further tests would have been necessary to determine what part of the increase in
performance, if any, that comes from the methodological improvement.

—#— HGS(Rust) —4—HGS(C++)  —— HGSRR1  —+— HGSRR2
T T T T T T T T T T
2.00 - B
1.00 |- .
S
g 040 e
[}
0.20 |- i
0.10 |- 3
| | | | | | | | | |
1 2 5 10 15 20 30 50 75 100
CPU time (%)

Fig. 13 Convergence profiles for the different metaheuristics in the Benchmark Test are shown on a loga-
rithmic scale
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Table 16 Metrics for the two implementations of HGS in a Benchmark Test

Instances Metric HGS(C++) HGS(Rust) Hy H;

Small gF 0.0231 0.0286 0.009879 0.995060
gAve 0.0497 0.0581 0.000028 0.999986

Short Routes gF 0.1029 0.1148 0.000604 0.999698
gAVe 0.1585 0.1810 0.000000 1.000000

Large gF 0.1937 0.2023 0.011685 0.994158
gAve 0.3011 0.3234 0.000000 1.000000

Long Routes gF 0.1301 0.1322 0.392317 0.803842
gAVe 0.2199 0.2301 0.009803 0.995099

All gF 0.1084 0.1155 0.000531 0.999734
gAve 0.1754 0.1908 0.000000 1.000000

The values in bold are not statistically worse than the best performing implementation on the respective
subset, in addition to the p-values of the rejected hypotheses
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