
Data-Informed Scenario Generation for Statistically
Stable Energy Storage Sizing in Isolated Power Systems

? ,??

Spyridon Chapalogloua,∗, Damiano Varagnolob, Francesco Marrac, Elisabetta
Tedeschia,d

aDepartment of Electric Power Engineering, Norwegian University of Science and
Technology, O.S. Bragstads Plass 2 E, 7034 Trondheim, Norway

bDepartment of Engineering Cybernetics, Norwegian University of Science and Technology,
O.S. Bragstads Plass 2 E, 7034 Trondheim, Norway

cEquinor R&T Electrical Technology department, Arkitekt Ebbels 10, 7005, Trondheim,
Norway

dDepartment of Industrial Engineering, University of Trento, Via Sommarive, 9, 38123
Povo, Italy

Abstract

We consider the problem of how to generate uncertainty scenarios to be used

in energy storage sizing problems in isolated power systems. More precisely,

we consider storage sizing formulations where both loads and generation are

stochastic, where no closed form analytical expression is available, and where

the presence of multiple discrete random variables makes the sizing problem

mixed integer and with combinatorial search spaces. We thus propose and char-

acterize a data-driven scenarios selection strategy that mitigates the computa-

tional issues associated with these types of storage sizing problem formulations

while guaranteeing statically stable optimal solutions. Specifically, the approach

works by first learning the distribution of the uncertainties of the loads and gen-

eration starting from field data, and then generating, through the learned distri-
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bution, an optimal set of uncertainty scenarios that are subsequently used in a

two-stage stochastic programming reformulation of the original sizing problem.

The workflow does not impose arbitrary structures to the correlation among the

uncertainties, nor does it lump these in a single parameter; thus, it is suitable for

systems with any load characteristics. Moreover, the approach ensures to reach

a solution that is statistically close to the one that would be computed if the

original problem was solvable and not computationally intractable. As a case

study, we analyze the problem of designing an energy storage system for a wind

powered oil and gas platform to minimize the expected daily system operational

costs. Numerical simulations showed that the proposed methodology leads to

higher quality solutions compared with other scenario selection strategies. This

reveals realistic estimations of the expected benefits, while also highlighting the

risk-management limitations, when solving the risk-constrained version of the

problem.
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Figure 1: Graphical abstract
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1. Introduction

Modern power systems are characterized by high levels of uncertainty and

operational complexity. This stems from the interaction of intermittent en-
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ergy production from Renewable Energy Sources (RESs) with electricity con-

sumption patterns. Under this perspective, and to achieve a more reliable,

cost-effective and environmentally friendly operation, Energy Storage Systems

(ESSs) are recognized as an essential component of future grids [1, 2] and are

especially valuable for non-interconnected systems. However, determining the

optimal size of an ESS when considering the expected future system operational

patterns is not a trivial task [3, 4, 5]. This is because the problem should account

not only for costs and other important limiting factors, but also for the fact that

the uncertainties (especially load requirements and generation) are statistically

distributed, and their distribution cannot be learned perfectly.

A potential strategy to deal with the presence of such uncertainties is to

employ stochastic optimization formulations [6, 7]. When integrating uncer-

tainty into the storage sizing problem by assuming parametric distributions

[8, 6], there exist inherent limitations on how well the available data can be de-

scribed and generalized. On the contrary, data-based methods have shown the

ability to better generalize and replicate more complex patterns found in his-

torical datasets [9]. Energy storage sizing problems that consider the expected

daily system operation are often formulated as two-stage Mixed-Integer Lin-

ear Programming (MILP) problems where day-ahead unit commitment and/or

economic dispatch are determined over a scenario set that includes uncertainty

realizations [10, 9, 11]. These approaches are indeed inherently less conservative

than worst-case alternatives [12]. However, they often lead to problem formula-

tions that are computationally intractable [13] because the cost to be optimized

should consider all the scenarios that have been observed in the past. In other

words, assuming for example we have a dataset comprising years of measured

loads and disturbances. Here, such formulations would naturally embed all

the scenarios, leading to a computationally intractable combinatorial problem.

However, in cases where the resulting problems are linear, (LP) [14] such issues

do not exist and one is not typically constrained by computational tractability.

To mitigate this issue, one potential approach is reducing the number of

scenarios to be considered in the stochastic optimization formulation [11, 15].
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However, the algorithm for selecting such alternative subsets of scenarios should

lead to a final sizing solution that has low sensitivity to the considered subset.

Otherwise, the quality of the final solution is intuitively of less value since it

is arbitrated by the scenarios selection algorithm and not by the dataset itself

(see also [16] for a more formal discussion of this point). For that reason, to

guarantee the reliability of the final sizing, the scenarios selector should not

only properly generate/select such scenarios, but also keep a sufficient number

of them to minimize the inevitable information loss due to the scenarios sampling

procedure [15, 17].

In the literature, one may thus find various ways of selecting scenarios sub-

sets, e.g., [18, 19, 20, 21, 22, 23, 24, 25, 9, 11]. Highlighting the main categories

that most of these methods fall, we have scenario generation by: random sam-

pling of historical data, optimal scenario reduction, moments matching, and

clustering to representative patterns [25, 9, 11]. As another example, [17] pro-

posed the scenario map method as an alternative scenario reduction technique

that considers RES and load uncertainty through the system net load. However,

net load data do not capture the whole uncertainty space since they represent

a conditional slice of it, especially when the underlying individual uncertain

profiles present high variance (such as in isolated industrial power systems with

wind power). In addition, specific correlation values between RES and load

were imposed in [26, 27, 28] and Cholesky decomposition was then used to

model dependent profiles, as commonly done in several studies. To the best of

our knowledge, all available literature reports that when dealing simultaneously

with both RES and load uncertainties, these factors are either lumped together

in a single parameter before using some scenarios reduction method (namely the

net-load as in [29, 30]), or the proposed approach imposes some specific struc-

ture to the correlation among the uncertainties. However, the validity of such

assumptions is debatable, as they depend on the specific power system appli-

cation. Those assumptions typically rely on conclusions from specific analyses

[31] which i) targeted large interconnected power systems (implying that such

scenarios selection strategies are not suitable for the specific case of isolated
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power systems with non-standard load patterns) and ii) are not guaranteed to

be time-invariant. In fact [32] showed that, for wind energy, the observed cor-

relation levels are much lower than the ones observed between load and solar

energy, due to its less consistent and predictable behavior.

As mentioned although it is possible to generate high quality profiles for

individual uncertain parameters (i.e., RES or load individually), most of the

state-of-the-art stochastic optimization formulations for the sizing problem do

not effectively explore the whole space of combined uncertainties and often do

not investigate how big this exploration should be to ensure that the final com-

puted size is statistically close to what one would get by solving the original

problem, including all possible scenarios from the available datasets. As such,

to the best of our knowledge, there is currently no literature that addresses,

in a general way, how to select and combine RES and load profiles (and their

associated uncertainties) over each other from a dataset that is too large to be

used in its entirety, which is typical for two-stage MILP sizing formulations.

Contributions

This paper proposes a methodology for performing this selection that con-

siders different rearrangements of profiles from the reduced subsets (samples)

as conditional draws (instances) of the total uncertainty space (population).

Therefore, the proposed approach intuitively aims to perform more accurate

modelling/exploration of the combined uncertainty space than the approaches

existing in the literature. This will make the sizing solution statistically closer

to what would be computed (if we had the computational capability) with the

whole dataset.

In summary, we propose an integrated methodology that can be applied to

energy storage sizing problems under stochastic optimization frameworks, and

that generates subsets of scenarios that intrinsically consider the relationship

between the optimization problem and the input data. The novelty of the ap-

proach is that it generates minimum-cardinality subsets that implicitly account

for the effect of coupling load and RES uncertainties through opportune sta-
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tistical evaluations of the solutions to the original optimization problem. In

addition, the entire methodology is purely data-driven, and it avoids any strong

assumptions on the individual uncertainties and their coupling. The proposed

methodology is compared against other scenario subset generation methods,

demonstrating its superiority to achieve preferable statistical properties for the

obtained optimization solutions. As a test case study, we address the sizing of

a techno-economically feasible ESS for an isolated offshore oil and gas (O&G)

platform, that includes onsite power generation from Gas Turbines (GTs) and

integrates wind power.

The remainder of the paper is organized as follows: section 2 formulates

the optimization problem, section 3 describes the proposed scenario generation

methodology, and section 4 presents the numerical results and an investigation

of which effects the worst-case scenarios included in the reduced subset have on

the solutions. Finally, section 5 presents an overall summary and concluding

remarks.

2. Formulating the BESS sizing problem using risk-aversion consid-

erations

This section formulates the BESS sizing problem as a stochastic optimiza-

tion problem (SP) that integrates considerations on risks by introducing a risk-

aversion user-defined parameter. The following subsections introduce the quan-

tities needed to arrive at the formulation that is summarized at the end of the

section.

2.1. Objective function and cost modelling

Let in general x be the first-stage decision variables expressing the BESS size

in terms of power and capacity rating with cost c , y the second-stage optimal

decision about how to operate a plant with cost q , and ξ̃ the stochastic process

variables introducing uncertainty into the parameters of the problem. Note that

we explicitly consider two types of uncertainty: ξ̃` to model randomness in the
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platform’s load, and ξ̃w to model randomness in the wind speed at the specified

offshore location. Notation-wide, we let ξ̃ =
[
ξ̃` ξ̃w

]T
. Given this notation,

the BESS SP sizing can be initially phrased as

SP: min
x
{E[f(x; ξ̃)]}

where, f(x; ξ̃) = cTx+ min
y
{qTy}

s.t. Ax+By +Cξ̃ ≤ 0.

(1)

Note this formulation includes all the randomness related to the stochastic pro-

cess variables, leading to coupled constraints through data matrices A,B,C.

This problem can be formulated as a Mixed-Integer Linear Program by deriv-

ing the deterministic equivalent of (1) and discretizing the continuous stochastic

process ξ̃ over a set Ω containing all the possible realizations of the uncertain

parameters (scenarios). The discretized process is denoted as ξ̂. Through this,

thus, we can derive the Mixed-Integer Linear Program

SP: min
x,y(ω)

{cTx+
∑
ω ∈ Ω

πω q
T (ω)y(ω)} where,

qTy(ω) =
∑

g ∈ NG

∑
t ∈ T

CGTP
g
GT,t,ω + ConGTu

g
t,ω + CstartGT zgt,ω

s.t. A(ω)x+B(ω)y(ω) +H(ω)ξ̂(ω) ≤ 0, ∀ ω ∈ Ω .

(2)

Note then that the structure of (2) is such that the first stage investment cost

for the BESS decision (i.e., cTx) can be divided into distinct capacity-related

(CB,E) and power-related (CB,P ) components. Moreover, the investment is

amortized into a daily basis through Capital Recovery Factor (CRF) as

cTx =
r · (1 + r)p

(1 + r)p − 1
[CB,P CB,E ]

PB
EB

 (3)

where r is the daily interest rate (derivable from an annual interest rate), p is

the recouping period (p = 365L), L is the investment lifetime, and PB and EB

are the BESS power rating and capacity, respectively. The second stage decision

qT (ω)y(ω) relates to the operation of the platform’s GTs for each scenario ω

(whose occurrence probability is assumed to be πω). The second stage control

7



variables y(ω) and corresponding costs qT (ω) are given as

y(ω) =
[
PB,ω P

g
GT,ω u

g
ω z

g
ω PD,ω

]T
∀ ω ∈ Ω

qT (ω) =
[
0 CGT Con

GT Cstart
GT 0

]
∀ ω ∈ Ω where,

CGT =

{(
CNG
ρ

+ µCCO2

)
αg + CO&M

}
t∈T

Con
GT =

{(
CNG
ρ

+ µCCO2

)
βg

}
t∈T

,

Cstart
GT =

{
CstartGT

}
t∈T

(4)

where PB,ω and PD,ω are the BESS and (controllable) dump power vectors

respectively; P g
GT,ω, ugω, zgω, are the GT power, ON/OFF status and startup

indicator variables for each generator g and all time periods T respectively; µ

is the ideal combustion coefficient of natural gas (NG) to CO2; CNG is the

fuel (NG) sale value per normal cubic meter; ρ is the NG density at standard

temperature and pressure conditions; CCO2
is the CO2 tax per kg of released

CO2; CO&M is the estimated operation and maintenance (O&M) costs per

generated kWh; CstartGT is the estimated startup cost of a generator per event;

and αg and βg are the estimated regression parameters of the fitted model to

data explaining fuel consumption (ṁf ) as a function of the GT loading (PGT ),

approximated with the commonly used affine map ṁf = αg · PGT + βg.

To complete the formulation of the optimization problem, we then proceed

with describing its constraints.

2.2. Energy system operation constraints

The daily system operation can be explicitly considered in the optimization

problem (2) by constraining the feasible solution space. From a methodological

perspective, these constraints can be derived from modelling the operation of

each sub-component, for a given scenario tree Ω, as shown in the following.

The Gas Turbine operation is represented through the following set of equa-

tions, where

ugt,ωγP
g

GT ≤ P
g
GT,t,ω ≤ u

g
t,ωP

g

GT ,

∀ t ∈ T, g ∈ NG, ω ∈ Ω
(5)
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is the box constraint for the GT power, P
g

GT is the maximum operation capacity

of each GT, and γ is the allowed minimum technical operational ratio. To model

the realistic case of an offshore O&G platform, we consider the presence of four

identical GTs with the same maximum rating and the same technical minimum

γ set to be 20%. The GT power ramping constraint was described as∣∣∣P gGT,t,ω − P gGT,t−1,ω

∣∣∣ ≤ R, ∀ t ∈ T, g ∈ NG, ω ∈ Ω (6)

where R is the allowed ramping rate of the GT. Recalling that this study con-

siders an hourly discretization of the time series, we set R as PGT for all four

generators. The minimum required time to start-up a GT after a shut down is

modeled as

ugGT,t−1,ω − u
g
GT,t,ω ≤ 1− ugGT,k,ω,

∀ t ∈ T, g ∈ NG, ω ∈ Ω,

k = {t+ 1, . . . ,min(t+ Toff − 1, T )}

(7)

where Toff is the minimum GT off-time after a shutdown (here set to 4 hours,

to the best of our knowledge a value representing typical field setups). The

startup events of the GTs are modelled as

ugGT,t,ω − u
g
GT,t−1,ω ≤ z

g
GT,t,ω,

∀ t ∈ T, g ∈ NG, ω ∈ Ω
(8)

The BESS inter-temporal and cycling constraints are instead modeled as

EB,t,ω = EB,0 +

t∑
k=1

PB,k,ω, ∀ t ∈ T, ω ∈ Ω (9)

0 ≤ EB,t,ω ≤ EB , |PB,t,ω| ≤ PB ∀ t ∈ T, ω ∈ Ω (10)

∑
t∈T

PB,t,ω = 0, ∀ ω ∈ Ω (11)

where EB,t,ω is the remaining energy capacity of the BESS at any instant t,

for every scenario ω. Moreover, EB,0,ω = 0 shall be considered as the initial

capacity of the BESS for every scenario ω. The wind power generation is then
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modeled after the basic power curve of the reference case wind turbines, i.e., as

W
(
ξ̂wt (ω)

)
=



0, ξ̂wt (ω) ≤ wci

NwP
n
w

(
ξ̂wt (ω)
wn

)3

, wci ≤ ξ̂wt (ω) ≤ wn

NwP
n
w , wn ≤ ξ̂wt (ω) < wco

0, wco ≤ ξ̂wt (ω)

∀ t ∈ T, ω ∈ Ω

(12)

where wci is the cut-in wind speed; wn is the nominal wind speed; wco is the

cut-off wind speed; Pnw is the nominal power of each wind turbine; and Nw is

the number of wind turbines in the considered wind farm. Finally, the sub-

components interaction is modelled through the power balance equation as∑
g ∈ NG

P gGT,t,ω + PB,t,ω − PD,t,ω = ξ̂`t (ω)−W
(
ξ̂wt (ω)

)
∀ t ∈ T, ω ∈ Ω

(13)

2.3. Risk-management formulation

So far, the formulation of problem (1) allows for minimizing the cost under

a specific probabilistic disturbance model. However, it does not inherently con-

sider the effects of extreme disturbances. To account for these, we follow the

common strategy, e.g., see [33], of penalizing these extreme realizations using

the Conditional Value-at-Risk (CVaR) risk measure [34, 10, 26, 35]. In prac-

tice, this means that CVaR represents the expected value of the cost for the

1 − α percentage of worst scenarios. In other words, given an α-quantile, the

random cost variable f
(
x; ξ̃

)
from SP (1), and a decision x, the CV aR can be

calculated after [34] as

CV aRα(x) = Eξ̃
[
f(x)

∣∣f(x) ≥ V aRα(x)
]
. (14)
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Note that, as soon as the distribution of the random variable is known, eq. (14)

can be efficiently computed by solving the linear program [34], i.e.,

CV aRα(x) = min
ζ, s(ω)∈R≥0

{
ζ +

1

1− α
·
∑
ω∈Ω

πωs(ω)

}

s.t. f(x; ξ̂(ω))− ζ ≤ s(ω) ∀ ω ∈ Ω .

(15)

where s(ω) are scenario-dependent slack variables and ζ is a helper variable

indicating the lowest value of the worst-cases costs. The structure of (15) implies

that at the optimal point it holds that ζ∗ = V aRα(x). Finally, the optimization

problem (2) can integrate risk by introducing a risk-aversion control parameter

β, and by reformulating the original problem as

min
x,y(ω),ζ,s(ω)

F
(
x; ξ̂

)
, s.t. eq. (12)− (13) and (15) (16)

where F
(
x; ξ̂

)
= (1− β)

(
cTx+

∑
ω ∈ Ω πω q

T (ω)y(ω)
)

+ β
(
ζ + 1

1−α ·
∑
ω∈Ω πωs(ω)

)
.

We note once again that this formulation includes all the scenarios that may

have been recorded from historical data. This means that for large datasets,

this MILP is computationally unsolvable; consequently, an approach like the one

proposed in this paper is needed that selects which scenarios should be included

in the formulation in a statistically meaningful way.

3. Methodology

Our goal is to select a number of opportune scenarios that assist in solving

a reduced version of eq. (16) such that the solution of the reduced problem is

statistically close to the solution of the original (computationally intractable)

one. From an intuitive perspective, this requires selecting scenarios that are

distributed within the uncertainty space in a way that captures the statistical

properties of the potential scenarios that the plant may encounter. Thus, this

section proposes an algorithm that serves this selection purpose.
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3.1. Accounting for Time Dependencies

To obtain accurate representations of uncertainties, we consider that the

generated scenarios must reproduce the cyclostationarity of the historical field

data. To infer these, one may consider a dataset {ξp}i=1:N composed of one-

year long hourly i) aggregated load (p = `) time-series from an existing offshore

platform (load at 50 MW power range) and ii) wind speed (p = w) time-series

for the same location.

The first step of inferring the probability functions from such historical field

data is to infer the structure of the marginal distributions, before inferring the

joint ones. Importantly, in our proposed methodology we make no assumptions

on the parametric structure of the marginals of the physical variables (p =

{`, w}), and rather infer it through a Kernel Density Estimation (KDE) method

[33, 36], i.e., independently compute non-parametric smooth representations of

the time-dependent marginal empirical distributions of load and wind speed as

F̂ ph,t(ξ̃
p
t ) =

1

Nhp

N∑
i=1

1√
2π
e
− (ξ̃t−ξ

p
i )2

2h2p ∀ t ∈ T. (17)

To capture the statistical dependency of the load or wind process along its

temporal dimension, we then propose to use a copula-based approach, i.e., ex-

press the joint distribution of the load or wind vector as an opportune combina-

tion of the marginals at the various times t and a copula function for p = {`, w},

so that the joint distribution becomes, consistent with Sklar’s theorem,

F p
(
ξ̃p
)

= Cp
(
F ph,1

(
ξ̃p1

)
, · · · , F ph,T

(
ξ̃pT

))
. (18)

Assuming then a Gaussian copula for Cp, known to have the potential of

adequately modelling temporal dependencies [22], leads to the possibility of

using Maximum Likelihood inference to estimate such temporal correlations.

We then propose to leverage copula-based approaches to generate indepen-

dent profiles from F p. Specifically, considering that upt = F̂ ph,t ∼ unif [0, 1],

plus using Monte-Carlo sampling and probability inverse transforms (PIT), we

propose the generation steps to be:
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i. a sampling as z ∼ N (0, ρ̂pML),

ii. a unit cube transformation as ũpt = Φ (zt) , ∀ t ∈ T ,

iii. an inverse transformation as ξ̃pt = F̂ p
−1

h,t (ũpt ), ∀ t ∈ T .

Here, Φ is the cumulative distribution function of a standard normal and N is

a multivariate normal.

Figure 2: Random load profiles sampling after learning the temporal correlation structure from

the dataset and qualitative validation of the capability to reproduce the dataset properties

(case for p = `).

Following the proposed procedure, one can generate sample sets Ω containing

representative profiles ξ̃p(ω) where ω = 1 . . . |Ω|. For p = w, the profiles can

be directly transformed to wind power through eq. (12). After sampling 100

random profiles from F ` and comparing them with the initial dataset (fig. 2), it is

possible to observe that the sampled data reproduce the qualitative properties of

the original dataset. Thus, the estimated F p can be well approximated through

a random sampling approach to generate, arbitrarily, many synthetic profiles.
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3.2. Selecting the Scenarios for the considered BESS SP

As indicated above, our goal is to construct scenarios ξ̃ ∈ Ω by combining

generated profiles ξ̃p(ω) in a way that characterizes the system’s uncertainty as

well as possible, given a fixed number of scenarios to be included in the sizing

Stochastic Problem. To achieve this, the first step is to introduce mathematical

tools to assess the usefulness of a given scenario for characterizing the system’s

uncertainty (section 3.2.1). The second step is to understand how many scenar-

ios are needed to achieve sufficiently good characterization (section 3.2.2).

3.2.1. Ranking the scenarios

Assume Ω to be populated with a number of sampled profiles, and assume

our goal to be selecting a subset Ωs of them. Before delving into details, the

overarching structure of our proposed approach is: i) rank the samples within

Ω based on how representative they are of their kind (p = {`, w}), ii) use these

ranking scores to map the sampled profiles into a low-dimensional space, iii)

discretize this space in some statistically optimal way, iv) use the scenarios

ξ̂ ∈ Ωs from this discretization and solve a computationally tractable version of

eq. (16). This whole procedure is illustrated graphically in fig. 3.

We propose starting by ranking the profiles ξ̃p ∈ Ω using a Kantorovich

distance, i.e., using

Dp
K =

∑
ω ∈ Ω\Ωk

πω min
ω,ωk

vp(ω, ωk), where,

vp(ω, ωk) = ||ξ̃p(ω)− ξ̃p(ωk)|| =
T∑
t=1

|ξ̃pt (ω)− ξ̃pt (ωk)|
(19)

where Ωk is the dynamically updated set including the k most representative

profiles (note that when k =
∣∣Ω∣∣, then Ωk will be an ordered version of Ω).

The usage of a Kantorovich distance is due to its simplicity in providing good

and quick heuristic solutions to the optimal transportation problem for scenario

reduction algorithms (i.e. Fast Forward Selection (FSS)) [18, 9].

Note now that the rank value of a profile ranked kth out of
∣∣Ω∣∣ can be ex-

pressed as the scalar t
(
ξ̃p(ωk)

)
=

∣∣Ω∣∣−k∣∣Ω∣∣−1
, p = {`, w} where t(ωk) → 1 for

14



profiles that can be thought as “more representative/typical” and t(ωk) → 0

for profiles profiles that capture non-casual/non-typical events. In this way, a

mapping is enforced, which not only preserves information spanning the whole

support of the distribution of each individual random variable (load, wind), but

also indicates different possible profile combinations that could actually hap-

pen, despite not being observed before. In other words, this mapping expresses

a generalized combinatorial space, showing possible ways that “typical” profiles

from one uncertain parameter (i.e., load) can happen together with “typical”

profiles from the other (i.e., wind) and similarly for “non-casual/non-typical”

ones. We note that having the capability of coupling different uncertainties

without imposing a particular structure on their covariances is one of the moti-

vations behind this work, since this capability is, to the best of our knowledge,

an important component that has not been addressed in the literature until

now.

3.2.2. A Clustering Approach for Selecting the Scenarios

Finally, to optimally select the scenarios that i) will extend the whole un-

certainty space and ii) are the minimum (optimal) amount needed, we propose

the following procedure.

From the mechanism described in section 3.1, the multivariate data points

(ξ̃`, ξ̃w) representing a sampled scenario, are mapped into a unique 2-dimensional

space (fig. 4), which contains coupled information for p = {`, w}. We can then

sample this space by clustering the data in K groups and considering the cen-

troids of these groups. Assuming that field data is homogeneous (something

that empirically is known to hold for wind and load profiles, e.g., fig. 4, given

their practical statistical independence), the ξ̂ ∈ Ωs can be determined from

any clustering algorithm. In the following considerations we use k-means, even
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Figure 3: A graphical summary of the proposed procedure for generating the reduced scenario

subset Ωs from the sample space Ω. The starting point is sampling the joint distributions F p,

then joining the load (square) and wind (triangle) realizations together to form scenarios ξ̃.

These multi-dimensional vectors are then reduced to 2-dimensional points that are furthermore

grouped in
∣∣Ωs

∣∣ clusters. The centroids of such clusters are then used as representatives of

each such cluster, and thus used to populate the reduced subset of scenarios ξ̂ ∈ Ωs. Note

that here the distributions F p have been visualized just for the first two dimensions out of 24

if some other algorithms (e.g., DB-SCAN) may be used. Thus, our setup is

min
r,µ

∣∣Ω∣∣∑
i=1

K∑
k=1

rik ||xi − µk| |22,

s.t., xi =
(
ti

(
ξ̃`(ω)

)
, ti

(
ξ̃w(ω)

)) (20)

where rik ∈ {0, 1}. Solving eq. (20) returns a set of clusters and the associated

16



centroids µk (marked as black crosses in fig. 4). This enables selecting the data

points that are closest to these centroids as scenarios ξ̂ ∈ Ωs that may be

used to formulate the optimization problem eq. (16). This approach enables

the coupling of the various uncertainties present in the setup, as well as the

ability to find scenarios that statistically cover the whole combinatory space

(note that the probability of the various ξ̂ can be computed based on the mass

of its corresponding cluster).

The approach then needs to be completed by defining a data-driven way for

selecting the number of clusters K such that the solution of problem eq. (15)

statistically depends on Ω as little as possible (given a tolerance level of choice).

For this, we propose applying bootstrapping techniques to assess the sample

statistics of the estimated parameter, namely the problem’s objective value for

varying K [16]. To summarize, we propose performing tests on the stability of

the sizing results based on the following considerations: 1) the stochastic process

ξ̃ ∈ Ω is approximated by M randomly drawn sample spaces ξ̃m ∈ Ωm, from

which the reduced subspaces ξ̂m ∈ Ωm,s can be derived as described earlier and

illustrated in fig. 3 and |Ωm,s| = |Ωs| = K. 2) the optimal number K∗ =
∣∣Ω∗s∣∣

is such that F (x∗m; Ωm,s) ≈ F (x∗n; Ωn,s) ∀ m,n ∈ 1 . . .M , where F
(
x; ξ̂

)
from

eq. (16). This means that by choosing
∣∣Ωs∣∣ =

∣∣Ω∗s∣∣ we diminish the sensitivity

of the solution of the optimization problem on the subsets Ωs.

In order to estimate Ω∗s, numerical simulations can then be performed, for

example, to obtain the results in fig. 5a and 5b. To assess the statistical de-

pendence of the final sizing solutions on the scenarios selection algorithm, we

propose to monitor the statistical properties (range Rg, interquartile range IQR

and sample standard deviation s) of the M scenario trees that were created for

each
∣∣Ωs∣∣. In our considered field case, results indicate that

∣∣Ω∗s∣∣ = 50. At this

point, one has all the components to code the resulting MILP problem, that in

our field case was modeled in Matlab R2020a and solved with Gurobi 9.0.3 in

a 28 physical core multi-node cluster with Intel(R) Xeon(R) CPU E5-2690 v4

@ 2.60 Hz, 25 GB RAM.
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Figure 4: Snapshot of the iterative procedure for deciding
∣∣Ω∗

s

∣∣. Randomly sampled profiles

(load and wind) are represented as points on the 2-dimensional rank space and clustered in∣∣Ωs

∣∣ groups, the centroids of which will populate Ωs. Different colors correspond to different

clusters (like a Voronoi diagram).
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(a) Dispersion of the objective values for increasing scenario set cardinality.

(b) Convergence of the statistical indices, indicating the proper scenario set

cardinality.

Figure 5: Statistical stability tests for the optimization problem objective and convergence

plots for determining
∣∣Ω∗

s

∣∣ through the proposed iterative procedure.
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4. Results

4.1. Analysing the quality of the solution and associated expected benefits

One of our aims was to demonstrate the effectiveness of the proposed strategy

and its advantage over logically simpler alternatives. To do so, we considered

the risk-neutral problem (β = 0 in (16)) and performed numerical tests where

several scenario subsets were produced by different typically used strategies

[25, 9, 11]. These compared in terms of the stability requirement expressed

in section 3.2.2. For a fair comparison
∣∣Ωs∣∣ =

∣∣Ω∗s∣∣ was set for all methods.

We specify that scenario reduction and selection was a necessary process, since

using the whole available dataset to solve eq. (16) is computationally intractable.

Thus, one needs to create a criterion for selecting scenarios that is statistically

more meaningful than just random selection. That said, the following strategies

were compared with the one proposed in this paper:

i. Data: under this näıve but straightforward strategy, we performed a ran-

dom selection of combinations of load and wind profiles as observed in the

available dataset. Thus, scenarios were composed of profiles combinations

that were uniquely defined by the available historical dataset. As such, we

represented uncertainty by conditional draws where a load pattern implies

a unique wind pattern.

ii. Random: this is a generalization of the Data method, where load and wind

profiles are allowed to be randomly permuted so that different combina-

tions of load and wind are explored. Again, we used the available datasets

(load and wind) but here, different profile combinations can emerge.

iii. FFS : this method applies a commonly used optimal scenario reduction al-

gorithm (Fast Forward Selection). The historical profiles (load and wind)

found in their corresponding datasets were individually reduced to sets

of specified cardinality while redistributing the probability mass of the

discarded to the preserved ones, according to their distance. Then, differ-

ent random profile combinations were explored, considering their relative

probabilities.
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iv. H-cl : with this method, the individual profiles of each random variable

(load / wind) were again reduced but this time using an established clus-

tering algorithm: hierarchical clustering. The dominant patterns were dis-

tinguished from each variable and stand as representatives of their clusters,

the probabilities of which are weighted based on how many profiles are as-

signed to each group. Then those profiles were again randomly combined

to consider their relative probabilities to form scenarios.

v. SetCorr : this method was employed to demonstrate the effect of imposing

arbitrary correlation between the random variables load and wind, as has

been done in several studies [26, 27, 28, 31]. The estimated multivariate

probabilities of each variable were used to generate pairs of Monte-Carlo

samples (pairs of load and wind profiles) which were then ranked based

on the distance of their correlation (Pearson correlation coefficient) from

the nominal one. The nominal value was selected in accordance with

[26, 27, 28, 31] and was set equal to 0.28. Then, the first
∣∣Ω∗s∣∣ scenarios

(pairs of load and wind profiles) with correlations closest to the nominal

value were selected, weighted by the inverse of their distance from it.

vi. Proposed : this is the method proposed in this paper and described in

section 3.

The results of the comparison are summarized in fig. 6 and table 1. fig. 6

shows that not only is the variation of the solutions gained with the proposed

strategy smaller, but the extreme values are also much closer. Those effects are

numerically expressed through the statistical indices defined in section 3.2.2 and

presented in table 1.

From the direct sampling methods Data, Random we observed the high de-

pendence of the optimal objective value to the specific subset used as input to

the optimization problem, highlighting the need for a better subset selection

methodology. As evident, random permutations may produce different results

meaning that the optimal value may be different when using different samples.

Similar effects are noticed from methods FFS, H-cl. In particular, FFS shows
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higher bias of the optimal values that may be related to the fact that scenario

reduction tends to prefer particular profiles that dominate the problem solution.

From H-cl we observed a different trend characterized by the higher variance of

the optimal values, meaning that the problem is very dependent on the way pro-

files are combined. Even though profiles can be fairly representative of their own

clusters, we observed that for the specified subset cardinality, no representative

combinations were identified by this methodology. From SetCorr we observed

once more the pattern of high variability of the optimal values making clear

that considering specific correlation between load and RES does not necessarily

imply stable sizing solutions. This is because there could be many different

profile combinations with the same correlation that lead to different optimal

objective values. Finally, we saw that from our method (Proposed) the subset

selection was performed in such a way that the dependency of the solution to

the input data was minimized. This is because of the optimal exploration of the

uncertainty space that was induced by considering all the different possible pat-

terns of load, wind and their combinations. In other words, using the proposed

methodology makes the optimization problem solution less sensitive (robust) to

the scenario subset selection.
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Figure 6: Comparison of optimization solution quality achieved by the proposed methodology

against alternative methods of defining reduced scenarios set (load and wind) for the calculated∣∣Ω∗
s

∣∣.

Table 1: Statistics of the stability tests comparison

Statistic
Method

Data Random FFS H-cl SetCorr Proposed

Rg 24,937 20,758 45,572 72,009 57,653 15,033

IQR 8,376 10,061 10,602 20,958 9,384 2,851

s 6,082 6,210 11,539 16,969 14,893 3,319

We also assessed the value of incorporating uncertainty as proposed in this

paper. Here, we calculated the value of stochastic solution (V SS), commonly

used in MILP formulations [10, 11]. For that, the expected (average) scenario

was first calculated from the generated Ω∗s set, then the deterministic problem

was solved and finally the first stage solution was used to solve the original

stochastic problem. It is noteworthy that with the optimal decision from the
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deterministic problem there was no BESS size that could diminish the expected

operational costs, i.e., x∗d = 0 (d stands for deterministic and s for stochastic).

Then the V SS was equal to

V SS = F (x∗d; Ω∗s)− F (x∗s; Ω∗s) = 1, 044 e / day (21)

which means that sizing the storage under the proposed stochastic framework

has the potential to reduce the daily operating costs in the reference O&G

platform by e1, 044. In summary, for the whole set Ω∗s we got the following

performance indices results:

F (x∗d; Ω∗s)− F (x∗s; Ω∗s)

F (x∗d; Ω∗s)
= 2.09%

E [VCO2
(x∗d; Ω∗s)]− E [VCO2

(x∗s; Ω∗s)]

E [VCO2 (x∗d; Ω∗s)]
= 3.64%

E [ED (x∗d; Ω∗s)]− E [ED (x∗s; Ω∗s)]

E [ED (x∗d; Ω∗s)]
= 6.89%

(22)

That is, we expect reduction not only in the daily operational costs (2.09%) but

also in daily VCO2
emissions (3.64%) and daily dumped energy ED (6.89%).

4.2. Analysing the effects on the management of the risk

To analyze the impact of extreme (worst-case) events captured by the pro-

posed scenario generation methodology within Ω∗s on the solution of (16), we

performed a comparative analysis by holding the same confidence level α = 0.8

and varying β ∈ [0, 1].

The results showed that, as the decision maker becomes more risk-averse,

the optimal BESS size is decreased, limiting the capability of the storage to be

operated such that it reduces the operational costs. A counter-benefit here is

that one gets better (reduced) CV aR values (table 2). However, this reduction

is considerably smaller than the variation of the optimal storage decision and

its impact on the expected cost. This is illustrated in fig. 7 where the CDF

of the cost values ∀ ω = 1 . . . |Ω∗s| are plotted for two extreme cases: β =
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0 (risk-neutral) and β = 1 (risk-averse). We observed that although the x∗

decision changes drastically (and this directly impacts the shape of the cost

distributions), they are very close (similar) after the given confidence level α is

reached and consequently the expectation of the cost for that region (CV aR)

essentially remains the same.

The reasoning for this can be revealed from fig. 8, where the scenarios are

ranked based on their associated cost value and plotted as a contour depending

on the value of ξ̂p. Scenarios associated with low costs (ω → 1 after sorting) are

generally associated with a combination of low loads and high wind power pro-

files and vice-versa (i.e., for scenarios associated with high costs, ω → 50). This

indicates, in accordance with our expectations, that in cases of high demand

and low wind conditions, several GTs need to be operated anyway and what-

ever decision one makes on the BESS size, this cannot greatly reduce the daily

operational cost. Thus, provided that the dataset includes scenarios capable of

capturing this phenomenon, a risk-informed decision for the storage size is not

very meaningful, as worst cases cannot be avoided (faced) with any storage.
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Figure 7: Cumulative distribution of the daily costs for the risk-neutral (green) and risk-averse

(red) sizing problem for the optimal scenario subset. Even though risk management affects

the shape of the cost distribution changing the mean value, it does not significantly affects

the worst-cases tail.
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(a) Load profiles

(b) Wind power profiles

Figure 8: Optimally selected scenarios ξ̂ ∈ Ω∗
s from the proposed methodology, ranked based

on the corresponding induced cost.
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Table 2: Risk management study I: α = 0.8

Variable Units
No With BESS

BESS β = 0 β = 0.8 β = 0.95

EB MWh - 8.252 6.281 3.950

PB MW - 4.873 4.802 3.526

F e/day 49,844 48,718 48,801 49,053

E [VCO2 ] tn/day 247.21 238.59 239.09 241.21

E [ED] MWh/day 84.822 78.972 79.565 80.745

V aR e/day 94,892 93,691 93,555 94,925

CV aR e/day 112,738 112,545 112,505 112,463

4.3. Analysing the sensitivity of the results on the price of the battery

Finally, in order to address the impact of the sizing parameter values on

the decision x∗ and on the performance indices referred to section 4.1, we per-

formed a sensitivity analysis on CB,E while preserving the same CB,E/CB,P

ratio. Quantifying the effect of the BESS price is important, considering the

latest and constantly decreasing trend of the cost [37, 38, 39] and the fact that

the system of this case study will be implemented in the near future. fig. 9

shows the results from this analysis.
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(a) Cost

(b) Emissions and dumped energy

Figure 9: Sensitivity analysis on battery price CB,E [e/kWh].

As expected, increasing the battery price led to smaller size and in turn

higher expected daily operational costs. However, even for the highest battery
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price (that refers to the conservative future price estimations), the expected costs

were better than the no BESS case. The direct effect of the battery price-size de-

pendency was also evident in the daily expected emissions and curtailed energy.

Both the latter indices increased more drastically (almost exponentially) com-

pared to the operational costs, especially following a particular battery price.

Finally, below a specific battery price level we saw no significant change in the

size decision and therefore in the performance indices.

5. Conclusions and future works

Deciding the techno-economically optimal size of an energy storage for iso-

lated power systems gives rise to combinatorially hard optimization problems

when considering unit commitment decisions, load and renewable uncertain-

ties and their interactions without any arbitrary assumption. Considering all

available historical data to solve the uncertain optimization problem leads to

computational intractability issues, hence there is the need to reduce the number

of scenarios that are used in the optimization problem. However, the scenarios

selection algorithm should be such that the solution obtained is statistically as

close as possible to the one that would be computed if there were no compu-

tational issues. This can be of high significance because if the final decision is

highly dependent on the selected scenarios, then the confidence of the expected

benefits from the energy storage is low. To deal with this problem, this paper

proposes a data-informed methodology that designs and selects minimum sce-

narios subsets such that the solutions gained are of guaranteed statistical quality,

while optimally exploring the combinatorial space of different uncertainty out-

comes. The proposed methodology was benchmarked against alternative ways

of deriving reduced scenario sets and achieved more stable solutions for the same

problem complexity. Thus, it provided more realistic estimates of the expected

benefits of integrating an energy storage system into a wind powered O&G plat-

form, accounting for a reduction of −2.09% in daily operational costs, −3.64%

in daily produced emissions and −6.89% in daily curtailment. In addition, it
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was demonstrated that the subsets of scenarios that are generated with the pro-

posed methodology include instances of uncertainty that do not favor the use

of energy storage, proving that risk-constrained decisions may promote smaller

investments for the storage sizing problem in isolated O&G applications without

significant risk reductions.

As for future work, we envision two distinct directions. The first is towards

extending the method’s applicability for further practical problems by including

additional types of renewable energy sources (increasing the dimensionality of

the uncertainty space) and by applying the proposed methodology for sizing

energy storage for interconnected micro-grids where an additional uncertain

variable is the energy pricing profiles. There is then the need to verify if the

favorable properties we found for our test case hold true in other power systems

with different profile characteristics. The second direction is to find analytical

results on the properties of the methodology. The most important one is likely

finding results that couple the number of scenarios to be used in the programs

with the statistical stability of the sizing results. These theorems may indeed

be useful to decide the number of scenarios to be used without performing

time consuming stability simulations, but rather using theoretically grounded

formula.
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Cataláo, Multi-Flexibility Option Integration to Cope With Large-Scale

Integration of Renewables, IEEE Transactions on Sustainable Energy 11 (1)

(2020) 48–60, conference Name: IEEE Transactions on Sustainable Energy.

doi:10.1109/TSTE.2018.2883515.

36

http://dx.doi.org/10.1109/TPWRS.2018.2873774
http://ieeexplore.ieee.org/document/5275816/
http://ieeexplore.ieee.org/document/5275816/
http://dx.doi.org/10.1109/PES.2009.5275816
http://ieeexplore.ieee.org/document/5275816/
http://dx.doi.org/10.1109/TSTE.2014.2360702
http://ieeexplore.ieee.org/document/8260947/
http://ieeexplore.ieee.org/document/8260947/
http://dx.doi.org/10.1109/TPWRS.2018.2794541
http://ieeexplore.ieee.org/document/8260947/
https://linkinghub.elsevier.com/retrieve/pii/S0360544221016637
https://linkinghub.elsevier.com/retrieve/pii/S0360544221016637
https://linkinghub.elsevier.com/retrieve/pii/S0360544221016637
http://dx.doi.org/10.1016/j.energy.2021.121415
http://dx.doi.org/10.1016/j.energy.2021.121415
https://linkinghub.elsevier.com/retrieve/pii/S0360544221016637
http://dx.doi.org/10.1109/TSTE.2020.3012416
http://dx.doi.org/10.1109/TSTE.2018.2883515


[28] S. F. Santos, D. Z. Fitiwi, M. Shafie-Khah, A. W. Bizuayehu, C. M. P.

Cabrita, J. P. S. Catalão, New Multistage and Stochastic Mathemati-

cal Model for Maximizing RES Hosting Capacity—Part I: Problem For-

mulation, IEEE Transactions on Sustainable Energy 8 (1) (2017) 304–

319, conference Name: IEEE Transactions on Sustainable Energy. doi:

10.1109/TSTE.2016.2598400.

[29] F. Pourahmadi, J. Kazempour, C. Ordoudis, P. Pinson, S. H. Hosseini, Dis-

tributionally Robust Chance-Constrained Generation Expansion Planning,

IEEE Transactions on Power Systems 35 (4) (2020) 2888–2903, conference

Name: IEEE Transactions on Power Systems. doi:10.1109/TPWRS.2019.

2958850.

[30] J. H. Yi, R. Cherkaoui, M. Paolone, Optimal Allocation of ESSs in Ac-

tive Distribution Networks to achieve their Dispatchability, IEEE Transac-

tions on Power Systems (2020) 1–1Conference Name: IEEE Transactions

on Power Systems. doi:10.1109/TPWRS.2020.3025991.

[31] G. Sinden, Characteristics of the UK wind resource: Long-term patterns

and relationship to electricity demand, Energy Policy 35 (1) (2007)

112–127. doi:10.1016/j.enpol.2005.10.003.

URL https://www.sciencedirect.com/science/article/pii/

S0301421505002752

[32] Z. Shu, P. Jirutitijaroen, Latin Hypercube Sampling Techniques for Power

Systems Reliability Analysis With Renewable Energy Sources, IEEE Trans-

actions on Power Systems 26 (4) (2011) 2066–2073, conference Name: IEEE

Transactions on Power Systems. doi:10.1109/TPWRS.2011.2113380.

[33] X. Xu, Z. Yan, M. Shahidehpour, Z. Li, M. Yan, X. Kong, Data-Driven

Risk-Averse Two-Stage Optimal Stochastic Scheduling of Energy and Re-

serve With Correlated Wind Power, IEEE Transactions on Sustainable

Energy 11 (1) (2020) 436–447, conference Name: IEEE Transactions on

Sustainable Energy. doi:10.1109/TSTE.2019.2894693.

37

http://dx.doi.org/10.1109/TSTE.2016.2598400
http://dx.doi.org/10.1109/TSTE.2016.2598400
http://dx.doi.org/10.1109/TPWRS.2019.2958850
http://dx.doi.org/10.1109/TPWRS.2019.2958850
http://dx.doi.org/10.1109/TPWRS.2020.3025991
https://www.sciencedirect.com/science/article/pii/S0301421505002752
https://www.sciencedirect.com/science/article/pii/S0301421505002752
http://dx.doi.org/10.1016/j.enpol.2005.10.003
https://www.sciencedirect.com/science/article/pii/S0301421505002752
https://www.sciencedirect.com/science/article/pii/S0301421505002752
http://dx.doi.org/10.1109/TPWRS.2011.2113380
http://dx.doi.org/10.1109/TSTE.2019.2894693


[34] R. T. Rockafellar, S. Uryasev, Optimization of conditional value-at-risk,

JOR 2 (3) (2000) 21–41. doi:10.21314/JOR.2000.038.

URL http://www.risk.net/journal-of-risk/technical-paper/2161159/

optimization-conditional-value-risk

[35] O. Sadeghian, A. Oshnoei, R. Khezri, S. Muyeen, Risk-constrained stochas-

tic optimal allocation of energy storage system in virtual power plants,

Journal of Energy Storage 31 (2020) 101732. doi:10.1016/j.est.2020.

101732.

URL https://linkinghub.elsevier.com/retrieve/pii/S2352152X20315693

[36] Z. Zhang, H. Qin, J. Li, Y. Liu, L. Yao, Y. Wang, C. Wang, S. Pei,

P. Li, J. Zhou, Operation rule extraction based on deep learning model

with attention mechanism for wind-solar-hydro hybrid system under mul-

tiple uncertainties, Renewable Energy 170 (2021) 92–106. doi:10.1016/

j.renene.2021.01.115.

URL https://linkinghub.elsevier.com/retrieve/pii/S0960148121001221

[37] M. Wilshire, Future trends in energy - Bloomberg New Energy Finance

(Aug. 2018).

[38] I. R. E. Agency, Electricity storage and renewables: Costs and markets to

2030, Tech. rep., IRENA, Abu Dhabi (Oct. 2017).

[39] Battery storage to drive the power system transition, Summary, ECOFYS

Germany GmbH (2018).

URL https://ec.europa.eu/energy/sites/ener/files/report- battery

storage to drive the power system transition.pdf

38

http://www.risk.net/journal-of-risk/technical-paper/2161159/optimization-conditional-value-risk
http://dx.doi.org/10.21314/JOR.2000.038
http://www.risk.net/journal-of-risk/technical-paper/2161159/optimization-conditional-value-risk
http://www.risk.net/journal-of-risk/technical-paper/2161159/optimization-conditional-value-risk
https://linkinghub.elsevier.com/retrieve/pii/S2352152X20315693
https://linkinghub.elsevier.com/retrieve/pii/S2352152X20315693
http://dx.doi.org/10.1016/j.est.2020.101732
http://dx.doi.org/10.1016/j.est.2020.101732
https://linkinghub.elsevier.com/retrieve/pii/S2352152X20315693
https://linkinghub.elsevier.com/retrieve/pii/S0960148121001221
https://linkinghub.elsevier.com/retrieve/pii/S0960148121001221
https://linkinghub.elsevier.com/retrieve/pii/S0960148121001221
http://dx.doi.org/10.1016/j.renene.2021.01.115
http://dx.doi.org/10.1016/j.renene.2021.01.115
https://linkinghub.elsevier.com/retrieve/pii/S0960148121001221
https://ec.europa.eu/energy/sites/ener/files/report-_battery_storage_to_drive_the_power_system_transition.pdf
https://ec.europa.eu/energy/sites/ener/files/report-_battery_storage_to_drive_the_power_system_transition.pdf
https://ec.europa.eu/energy/sites/ener/files/report-_battery_storage_to_drive_the_power_system_transition.pdf

	Introduction
	Formulating the BESS sizing problem using risk-aversion considerations
	Objective function and cost modelling
	Energy system operation constraints
	Risk-management formulation

	Methodology
	Accounting for Time Dependencies
	Selecting the Scenarios for the considered BESS SP
	Ranking the scenarios
	A Clustering Approach for Selecting the Scenarios


	Results
	Analysing the quality of the solution and associated expected benefits
	Analysing the effects on the management of the risk
	Analysing the sensitivity of the results on the price of the battery

	Conclusions and future works
	Appendix

