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Abstract
 A closed form analytical solution for both the quasi-static or dynamic strain hardening cylindrical cavity-expansion (CCE) 
problems requires the plastic region to be incompressible. This is due to the fact that in both cases a hydrostatic stress state 
must be explicitly included in the strain hardening function, making an analytical solution intractable. Additionally, for the 
dynamic problem the elastic region must be compressible to avoid a logarithmic singularity at infinity. An alterative for the 
dynamic analytical formulation is to use the finite element method (FEM). With the FEM weak formulation, solutions for 
the radial stress at the cavity surface and the elastic–plastic interface interface velocity as functions of the cavity-expansion 
velocity can be obtained when both the strain hardening plastic and elastic regions are elastically compressible. In this study, 
a comparison is made using results from both analytical (strong formulations), and FE simulations for both strain hardening 
and perfectly plastic dynamic CCE problems. It is concluded that with increasing cavity-expansion velocities, the elastically 
compressible strain hardening FEM solution is less resistive than the corresponding closed form analytical solution with 
an incompressible plastic region. Additionally, it is shown that the elastic–plastic interface velocity asymptotes at the bulk 
wave speed for completely elastically compressible solutions. Furthermore, the completely elastically compressible solutions 
remain valid for cavity-expansion velocities beyond the critical cavity-expansion velocity associated with the closed-form 
analytical strain hardening solution.

Keywords  Cylindrical cavity-expansion (CCE) problems · Ductile hole growth · Analytical solutions · Explicit transient 
dynamic finite element solutions

Introduction

Spherical cavity-expansion (SCE) and cylindrical cavity 
expansion (CCE) approximations have been developed and 
successfully employed for deep penetration and ductile hole 
growth perforation problems respectively (see Johnsen et al. 
[1]). Bishop et al. [2] developed equations for the quasi-
static SCE and CCE problems, where they assumed the 

plastic region of the solid materials to have linear harden-
ing with no volume change (incompressible), and the elastic 
region to follow Hooke’s law with Young’s modulus E, and 
Poisson’s ratio � . These solutions were used to estimate the 
forces acting on conical-nose punches pushed quasi-stati-
cally into metal targets. When linear strain hardening was 
employed, the plastic region must be considered incompress-
ible for both the SCE and CCE problems. The reason for this 
was because if elastic compressibility is considered in the 
plastic region with strain hardening, hydrostatic stress terms 
appear explicitly in the strain hardening term. Therefore, 
closed-form analytical solutions were not possible with an 
elastically compressible linear hardening plastic region, and 
numerical formulations are required to obtain solutions.

In Crozier and Hunter [3], a similarity transformation 
method (this method requires the problem to be self-similar 
with no length scales) was employed with analytical expres-
sions for the coupled nonlinear conservation of mass and 
momentum equations. In that study, a plane strain solution 
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for the radial stress �r acting at the cavity surface for the 
dynamic CCE problem was obtained, where the solid mate-
rial was assumed to be elastically compressible and perfectly 
plastic. Comparable similarity transformation methods have 
previously been employed with elastically compressible per-
fectly plastic SCE problems in [4] and [5]; however, the 
CCE problem is significantly more complex, and must be 
solved in cylindrical and not spherical coordinates. For the 
CCE similarity transformation solutions, it is assumed that 
a cylindrical cavity is expanded from a zero initial radius at 
a constant expansion velocity V in a homogeneous isotropic 
plane strain material of infinite extent such that no length 
scales are associated with the problem. Additionally, it has 
been shown in [3] that a fully incompressible CCE solution 
is generally not attainable due to the logarithmic singularity 
associated with the integration of the conservation of linear 
momentum inertia term in the elastic region at infinity.

Using the similarity transformation method similar to that 
proposed in [3], Forrestal et al. [6] obtained a closed form 
dynamic plane strain CCE solution for the radial stress �r 
acting at the cavity surface along with the elastic–plastic 
interface velocity for homogeneous and isotropic power-
law strain hardening materials. This CCE solution was then 
employed with Newton’s second law giving the CCE approx-
imation used to obtain ballistic limit and residual velocities 
for ductile hole growth perforation of aluminum plates by 
conical-nose projectiles. However, due to the logarithmic 
singularity at infinity associated with the incompressible 
elastic region solution, the elastic region had to be assumed 
compressible [3]. Additionally, the power-law strain hard-
ening material requires the plastic region to be modeled as 
incompressible due to the hydrostatic stress term required in 
the strain hardening constitutive model. The problems asso-
ciated with fully elastically compressible quasi-static strain 
hardening SCE and CCE solutions are discussed by Hill [7], 
and for the dynamic SCE solution by Hopkins [8]. In both of 
these studies, elastically compressible strain hardening solu-
tions were never obtained. Eventually though, the dynamic 
elastically compressible strain hardening SCE probem was 
solved by Luk et al. [9] using a small arc process with a pre-
dictor corrector ordinary differential equation (ODE) solver. 
An additional problem that is also associated with the CCE 
solution obtained in [6] is that it eventually reaches a criti-
cal expansion velocity, at which point the solution becomes 
complex and physically unrealistic.

In Warren [10], both power-law strain hardening and 
power-law strain rate effects were included in the total strain 
constitutive model for the incompressible plastic region. 
However, since strain rate effects introduce a length scale, 
a similarity transformation solution for the incompressible 
plastic region was not possible. However, because the plas-
tic region was assumed incompressible, the conservation of 
mass equation is uncoupled from the conservation of linear 

momentum equation, and is directly integrated. Results 
from the conservation of mass integration were then used 
to directly integrate the conservation of linear momentum 
equation giving the radial stress at the cavity surface �r(a) 
along with the elastic–plastic interface velocity c. For the 
compressible elastic region, material density was assumed 
constant, and the convective acceleration and velocity terms 
were assumed negligible along with strain rate effects. 
Results from [10] illustrate that strain rate effects increase 
the magnitude of the radial stress at the cavity surface, and 
if neglected, the solution reduces to that obtained in [6].

Numerous studies published in open literature [1, 11–14] 
have utilized the dynamic homogeneous and isotropic plane 
strain CCE solution with strain hardening as derived in [6] 
using the required assumptions for the plastic and elastic 
regions. The CCE solution obtained in [6] is employed with 
Newton’s second law in the cylindrical radial direction giv-
ing the CCE approximation for ductile hole growth perfora-
tion of ductile targets by assorted projectiles. The goal of 
the CCE approximation is to estimate values for the ballistic 
limit, and residual velocities for ductile targets struck by 
projectiles with various geometries and material properties. 
In [1], the associated target penetration and/or perforation 
was modeled using rigid projectiles, and strain hardening or 
perfectly plastic constitutive models for the target materi-
als. In Børvik et al. [11] and [12], the CCE approximation 
was employed to study the perforation of AA5083-H116 
aluminum alloy plates struck by conical and ogive-nose 
long steel rods and APM2 bullets. The same strain hard-
ening model in the present study was also used with the 
CCE approximation ductile hole growth perforation in [11] 
and [12]. Similar studies using 7075-T651 and 6082-T651 
aluminum alloy plates struck by APM2 bullets were also 
modeled using the CCE approximation in [11], and results 
are given in references [13, 14].

In [15], SCE simulations using a two-dimensional 
axisymmetric explicit transient dynamic FEM was employed 
using an incremental geomaterial constitutive model that 
could not be used with analytical formulations. These sim-
ulations required using a very small initial spherical cav-
ity expanded over a wide range of expansion velocities V 
applied to the surface nodes of the initial spherical cavity. 
Warren et al. [15] observed that the radial stress at the cavity 
surface was initially less than that which would be obtained 
from a similarity transformation analytical formulation with 
a zero initial radius. However, with the FEM formulation in 
[15] the radial stress at the cavity surface quickly converges 
approximately to the desired self-similar result that would be 
obtained from a elastically compressible similarity transfor-
mation formulation (which is not possible with the proposed 
incremental geomaterial constitutive model) for all expan-
sion velocities considered.
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The main objective of the present study is to ascertain 
the effect of assuming an incompressible strain hardening 
plastic region, and a compressible elastic region for ana-
lytical solutions for dynamic CCE problems. The quantifi-
cation of these assumptions is achieved by comparing simi-
larity transformation analytical results and FE simulations 
for the radial stress �r(a) at the cavity surface of cylindrical 
cavities being opened from a zero or an extremely small 
cylindrical cavity radius at constant expansion veloci-
ties V. It is shown that the FE simulations that start with 
an extremely small cylindrical cavity radius converge to 
values for the radial stress �r(a) independent of the cav-
ity radius a as with the analytical results obtained using 
a similarity transformation. Furthermore, since the bulk 
wave speed is independent of strain hardening, the elas-
tic–plastic interface velocity c is also independent of the 
cavity radius a and of strain hardening; thus it is shown 
that the elastic–plastic wave speed c from the strain hard-
ening FE simulations and perfectly plastic FE simulations 
asymptote the bulk wave speed obtained from the elas-
tically compressible perfectly plastic material numerical 
solution based on an analytical formulation using a similar-
ity transformation as done in [16].

Results from this study illustrate the effect of assuming 
an incompressible power-law hardening plastic region, 
and a compressible linear elastic region on the closed 
form analytical dynamic CCE solutions. These solutions 
are commonly employed with the CCE approximation to 
determine the ballistic limit and residual velocities for 
ductile hole growth perforation problems. In addition, 
these results also provide a quantitative measure of the 
error introduced by assuming an incompressible plastic 
region for strain hardening target materials.

Analytical Power‑Law Strain Hardening CCE 
Solution

For the solution of this problem, a homogeneous, isotropic, 
strain hardening, and cylindrically symmetric cavity is 
expanded from a zero initial radius to a radius a at a constant 
expansion velocity V in a medium of infinite extent as illus-
trated in Fig. 1. This expansion produces both plastic and 
elastic response regions. The assumed incompressible plastic 
region is bounded by the radii r = a and r = b, where r is the 
radial Eulerian coordinate, b = ct is the elastic–plastic inter-
face position, t is time, and c is the elastic–plastic interface 
velocity. Additionally, the linear elastic region is assumed 
to be compressible, and is bounded by r = b and r = d, where 
d = cdt with cd being the elastic dilatational wave speed. 
From [6], the equations for momentum and mass conserva-
tion in Eulerian coordinates with cylindrical symmetry for 
both response regions are given as

where �r and �� are the radial and circumferential compo-
nents of the true Cauchy stress measured positive in com-
pression, �o and � are material densities in the undeformed 
and deformed configurations, u and � are particle displace-
ment and velocity in the radial direction with outward 
motion measured positive, and are related by the material 
time derivative of the radial particle displacement which 
can be expressed as

Furthermore, due to proportional (radial) loading con-
ditions with the proposed CCE problem, total strains are 
employed which eliminates the need for an incremental 
stress–strain formulation.

Incompressible Plastic Region

In the incompressible plastic region a ≤ r ≤ b , the true 
logarithmic strain–displacement relations for radial and 
circumferential strains are given by
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Fig. 1   Response regions for the cylindrical cavity-expansion problem
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respectively. For an incompressible material, � = �o , and in 
cylindrical coordinates under plane strain conditions, �z = 0 
giving �r = −��.

We fit the homogeneous isotropic linear elastic (using 
Hooke’s law) and power-law strain hardening equations 
to a universal experimental uniaxial stress–strain curve 
given by

where � and � are the uniaxial true Cauchy stress and true 
strain respectively, E is Young’s modulus, Y is the quasi-
static yield strength, and n is the strain hardening exponent.

For an incompressible material under plane strain con-
ditions, we assume �z =

(
�r + ��

)/
2 as discussed in [6]. 

From this assumption, the equivalent strain � and the von 
Mises stress � are related to the true principal radial strain 
and true principal Cauchy stress difference by

Substuting Eqs. (5a, 5b) into (4b) gives the principal 
stress difference

and at the elastic–plastic interface, there is no strain harden-
ing; therefore, �r − �� = 2Y

�√
3 . Due to the self-similarity 

of the problem, we implement a similarity transformation in 
the plastic region as done in [6] with the dimensionless simi-
larity transformation variable

along with the additional dimensionless variables

where c is the elastic–plastic interface velocity, S is the 
dimensionless radial stress, U is the dimensionless particle 
velocity, u is the dimensionless particle displacement, and 
γ is the dimensionless cavity-expansion velocity. Eliminat-
ing �� from Eq. (1a) with Eqs. (3a) and (6), and using Eq. 
(7a–e) transforms the partial differential equation (PDE) for 
conservation of linear momentum in Eq. (1a) to the ODE
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,

where � ≤ � ≤ 1 . Next, Eqs. (7a–e) transforms conserva-
tion of mass in Eq. (1b), and the material time derivative 
in Eq. (2) to

At the cavity surface, the boundary condition is

Solving Eq. (9a) subject to the boundary condition in 
Eq. (10) gives the solution

Substituting Eqs. (11) into (9b) gives

Next, substituting Eqs. (11) and (12) into Eq. (8) gives the 
dimensionless radial stress as

where S(1) , and c are obtained from the solution of Eq. (1a) 
in the compressible linear elastic region.

Compressible Linear Elastic Region

In the compressible linear elastic region b ≤ r ≤ d , the solu-
tion for the dimensionless radial stress is obtained using the 
method in [6]. For this problem, the material is assumed 
to obey Hooke’s law. Additionally, plane strain and small 
strains are assumed where �z = 0 and
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Using Hooke’s law, stress–strain relations are obtained as

where � and � are the Lamé elastic constants, and are 
defined in terms of Young’s modulus E and Poisson’s ratio 
� by

Substituting Eqs. (15a, 15b, 15c) and (16a, 16b) into 
(1a), and neglecting the convective acceleration and 
velocity terms, along with assuming the material has a 
negligible change in material density (� ≈ �o) gives

Using the dilatational wave speed given by 
c2
d
=
(
� + 2�

)/
�o in Eq. (17) gives the PDE for conserva-

tion of linear momentum in terms of the displacement u, 
radial coordinate r, and time t as

From self-similarity, the PDE given by Eq. (18) is also 
solved using a similarity transformation with the transfor-
mation variable in Eq. (7a), the dimensionless variables in 
Eqs. (7b–e), and also the ratio

Using Eqs. (7a–e) and (19) in Eq. (18) transforms the PDE 
equation for linear momentum to the second order ODE

Applying reduction of order as done in [1], with boundary 
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gives the dimensionless radial stress S, particle velocity U, 
and displacement u in the linear elastic region 1 ≤ � ≤ 1∕� 
as

and at the elastic–plastic interface � = 1,

Response Equations

With the assumption of a constant material density �o in 
both the plastic and elastic regions, the radial stress, par-
ticle velocity, and particle displacement are continuous 
across the elastic–plastic interface through the Rankine-
Hugoniot jump conditions for mass and momentum con-
servation as discussed in [3].

The elastic-plastic interface velocity c is obtained using 
Eqs. (12) and (23b) at � = 1 in terms of the cavity-expansion 
velocity V from
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Substituting Eqs. (23a) in (13) gives the dimensionless 
radial stress in the plastic region as

As discussed in [10], the second term �2 in the inertial 
component of Eq. (25) accounts for the error in neglect-
ing the convective acceleration and velocity terms in 
Eq. (18) for the elastic region, and is therefore neglected. 
The value of ∝ as a function of expansion velocity V is 
obtained from Eqs. (19) and (24) as

At the cavity surface � = � , and the dimensionless radial 
stress is

In Eq. (27), the integral in the quasi-static strength term 
of the solution is improper due to the weak logarithmic sin-
gularity in the integrand at x = 0; however, it is an integrable 
singularity, and can be easily evaluated using an open inte-
gration algorithm as discussed in Press et al. [17].

Analytical Elastically Compressible Perfectly 
Plastic CCE Solution

In this section, we consider the same problem as in Sect. “Ana-
lytical Power-Law Strain Hardening CCE Solution”; however, 
now we consider the plastic region to be elastically compressible 
perfectly plastic. By assuming the plastic region to be elastically 
compressible perfectly plastic, the elastic–plastic interface veloc-
ity c is the same as that obtained from the FEM simulations of 
the elastically compressible power-law hardening problem 
described Section  “FEM CCE Problem Formulations”. 
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Additionally, using Hooke’s law in the elastic region causes the 
elastic–plastic interface velocity to saturate, and asymptotes 
along the value of the bulk wave speed cp =

√
K
/
�o , where the 

bulk modulus K = E∕[3(1 − 2�)].
For this CCE problem, we employ Eq. (1a) for conserva-

tion of linear momentum. However, with elastic compress-
ibility, � ≠ �o in the plastic region, and the analysis is simpli-
fied using mass conservation as a function of time as done in 
[16] with the elastically compressible perfectly plastic SCE 
problem. Therefore, in Eulerian coordinates for the CCE 
problem, mass conservation is given by

Additionally, for the elastically compressible perfectly 
plastic region

where p is the pressure, and � is the elastic volumetric strain. 
Furthermore, following Hill [7], we assume plane strain con-
ditions such that �z = 0 . The axial stress is also reasonably 
assumed in the plastic region to be equal to the average of 
the radial and circumferential stresses �z =

(
�r + ��

)/
2 , but 

equal to zero in the elastic region as discussed in [7]. For the 
plastic region, Eqs. (1a), (28), and (29a–c) are combined to 
eliminate �� and ρ giving

To obtain a solution, a similarity transformation is 
employed in both the elastically compressible perfectly 
plastic and elastic regions. This provides a coupled set of 
nonlinear ODEs for the plastic region that uses bound-
ary conditions obtained from the linear elastic region in 
Sect. “Analytical Power-Law Strain Hardening CCE Solu-
tion” at the elastic plastic interface ( � = 1 ). In the plastic 
region, the similarity transformation variable from Eq. (7a) 
is employed along with the dimensionless variables given 
by Eqs. (7c–e) with the additional dimensionless variables
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where cp =
√

K
/
�o is the bulk wave speed giving the cou-

pled set of first order non-linear ODE’s

For numerical evaluation, we put Eqs. (32a,b) in a form 
suitable for using the Runge–Kutta ODEINT routine from 
[17], and the equations are given by

with this numerical integration procedure, a value of 
� = c

/
cp is selected, where 0 ≤ � ≤ 1 . The integration pro-

ceeds through the plastic region � ≤ � ≤ 1 using the bound-
ary conditions from Eqs. (23a,b) at � = 1 . When � = � , the 
value of the cavity-expansion velocity is V = �c is obtained 
corresponding to the initially specified value of � = c

/
cp.

FEM CCE Problem Formulations

In this section, we obtain results using the explicit tran-
sient dynamic FE computer program ABAQUS/Explicit 
[18]. Dynamic plane strain CCE simulations were obtained 
over a range of cavity-expansion velocities for elastically 
compressible strain hardening and perfectly plastic infi-
nitely extended response regions. For plane strain prob-
lems, the thickness of the body is eliminated making the 
problem two-dimensional. Therefore, 4-node isopara-
metric quadrilateral uniform strain reduced integration 
elements (CPE4R elements in [18]) with a lumped mass 
matrix were used in this study to construct the discrete 
explicit Lagrangian FE CCE problem formulations that 
is solved using the commercial ABAQUS/Explicit [18] 
software. With these explicit FE simulations, an explicit 
central difference time integration scheme as described 
in [18] is employed to integrate the equations of motion 
through time. This time integration algorithm is only con-
ditionally stable; therefore, a time increment Δt less than 
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the Courant stability limit of the problem must be used. A 
conservative estimate is obtained from the approximation

where Le,i and c̃d,i are the characteristic element dimension 
of element i, and its effective dilatational wave speed of 
which both are calculated internally. The parameter � is a 
user defined scale factor, and in this study, it was taken to be 
0.01 to maintain numerical stability during the simulations.

This FE formulation requires a small pre-existing 
cylindrical cavity to be expanded at a constant expan-
sion velocity V in a material medium of infinite extent 
to eliminate any possible wave reflections. Therefore, to 
satisfy the infinite medium requirement, 32 infinite 4-node 
plane strain elements (CIPE4 elements in [18]), shown 
in Fig. 2, were used to represent the outer boundary of 
the cylindrical cavity mesh. Furthermore, from symme-
try, only a quarter of the CCE problems were required 
for the simulations. As with the SCE simulations in [15], 
the numerical solutions of this CCE problem converge 
to accurate approximate self-similar radial stress values 
at the cavity surface. Therefore, these weak formulation 
results are approximately equivalent to the corresponding 
strong formulation results obtained from the exact same 
problems using an elastically compressible analytic formu-
lation (if it were attainable). From these numerical simula-
tions, radial stress values at the cavity surface �r(a) along 
with elastic–plastic interface velocities c are obtained as 
functions of expansion velocities V for dynamic elastically 
compressible strain hardening and perfectly plastic CCE 
problems in a plane strain medium of infinite extent.

Constitutive Model

The constitutive equation for the plastic region assumes 
von Mises (J2) plasticity with an associated flow rule as 
described in [18]. Therefore, there is no volumetric plastic 
strain, and in addition, the material considered in this study 
has a large bulk modulus K, so the total volume strain is 
small. The linear elasticity associated with the simulations is 
defined with the volumetric (dilatational) and shear (devia-
toric) components of stress and strain through Hooke’s law, 
and the pressure-volumetric strain relation is given by

where �ii and �ii are the first invariants of the true Cauchy 
stress and true strain tensors, respectively. The true devia-
toric strain and stress tensors are given by

(34)Δt = 𝜁 min

(
Le,i

c̃d,i

)

,

(35)p = −
1

3
�ii = −K�ii,
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where �ij is the Kronecker delta, and �ij and �ij are the true 
strain and Cauchy stress tensors respectively. The incremen-
tal strain rate additive decomposition of the total strain rate 
and its integrated form using the standard definition of coro-
tational measures are given by

 respectively, where �el
ij

 and �pl
ij

 are the elastic and plastic 
components of the true strain tensor �ij . For elastic–plastic 
constitutive models, the objective corotational Jaumann 
stress rate is used with the Kirchhoff stress �ij = J�ij , 
where J = det ||FkK

|| is the determinant of the deformation 
gradient FkK . The Kirchhoff stress �ij is work conjugate to 
the strain measure whose rate is the rate of deformation 
tensor Dij , and is widely used with numerical algorithms 
for metal plasticity constitutive models. The objective 
corotational Jaumann stress rate in terms of the Kirchhoff 
stress tensor is

where Wij is the spin tensor obtained by decomposing the 
velocity gradient tensor Lij into its symmetric and skew-
symmetric parts such that Lij = Dij +Wij.

(36a,b)
eij = �ij −

1

3
�kk�ij

sij = �ij −
1

3
�kk�ij,

(37a,b)
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+ d�

pl

ij

�ij = �el
ij
+ �
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ij

(38)
d∇J�ij

dt
=

τij

dt
−Wik�kj + �ikWkj,

Plastic flow is introduced through a J2 von Mises plas-
tic power-law isotropic hardening plasticity constitutive 
model, and a perfectly plastic constitutive model. For 
the power-law hardening, the functional form given by 
Eq. (4b) is not available in ABAQUS/Explicit [18]; there-
fore, we utilize the J2 plasticity tabulated data constitutive 
model where the yield surface is defined as

where f  is the plastic potential, � is the von Mises equivalent 
stress, and H

(
ep
)
 is the strain hardening as a function of the 

equivalent true deviatoric plastic strain ep (or as a constant 
in the case of a perfectly plastic material). The tabulated 
data is used to define the plastic potential in Eq. (39) which 
provides the associated flow rule for the incremental plastic 
strain as

Finite Element Formulations

The axisymmetric geometry for the CCE simulations is 
discretized using the finite element mesh illustrated in 
Fig. 2. The mesh consists of 16,928 four node two-dimen-
sional isoparametric elements with a total of 17,490 nodes. 
The horizontal and vertical axes shown in Fig. 2 are lines 
of symmetry, and infinite elements are employed on the 
outer boundary. As done with the SCE simulations in [15], 
a constant radial velocity boundary condition is applied to 

(39)f = � − H
(
ep
)
= 0,

(40)de
pl

ij
=

3

2

sij

�
dep.

Fig. 2   Two-dimensional plane 
strain finite element mesh of 
an expanding cylindrical cavity 
(where R is in mm)
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the nodes of a small preexisting cylindrical cavity surface 
with an initial radius of R = 0.1 mm as shown in Fig. 2. 
The cavity surface is accelerated from rest to V during 
the first 2 µs using a fifth order polynomial ramp function 
to smoothen the increase in velocity. Inertia effects aris-
ing from the acceleration cause a small local peak stress 
when the acceleration ceases. Using for instance a linear 
ramp function would increase the local peak, but the solu-
tion will always converge to the same steady state stress 
level. Additionally, for all simulations the outer boundary 
of infinite elements had an initial radius of R = 100 mm, 
and default values of hourglass control and artificial bulk 
viscosity were used as described in [18]. A series of CCE 
simulations were done over a range of expansion velocities 
V giving the radial stress at the cavity surface �r(a) as a 
function of time. The simulations were terminated when 
the radial stress at the cavity surface attained a constant 
value which provides the approximate self-similar solu-
tion that would be obtained from an analytic formulation 
of the dynamic elastically compressible strain hardening 
CCE solution.

Comparison of Analytical Model Predictions 
with FE Results

As previously discussed, the objective of this study is to 
compare values of radial stress at the cavity surface �r(a) 
and elastic–plastic interface velocities c as functions of the 
radial expansion velocity V obtained analytically (strong 

formulations) and from FE simulations (weak formula-
tions). Therefore, results developed in Sects. “Analytical 
Power-Law Strain Hardening CCE Solution” and “Analyti-
cal Elastically Compressible Perfectly Plastic CCE Solu-
tion” for incompressible power-law strain hardening and 
elastically compressible perfectly plastic CCE problems are 
compared with the FE elastically compressible strain hard-
ening and perfectly plastic simulated results as described in 
Sect. FEM CCE Problem Formulations. A comparison of the 
analytic and FE cavity-expansion radial stress �r(a) values 
and elastic plastic interface velocity c results for the elasti-
cally compressible perfectly plastic CCE problem illustrates 
the accuracy of the ABAQUS/Explicit [18] simulations. 
Additionally, the results with comparisons including strain 
hardening provides an estimate of the error associated with 
neglecting elastic strains in the plastic region. As discussed 
in references [1, 3, 9–12], using CCE solutions with the CCE 
approximation has been extensively used for ductile hole 
growth perforation problems.

The material properties used for the comparisons in 
this study are for 6061-T6511 aluminum alloy obtained 
from large strain compression data given in [10]. For this 
aluminum alloy, the material properties E = 68.9  GPa, 
Y = 276 MPa, ρ0 = 2710.0 kg/m3, v = 1/3, and n = 0.072 are 
used for both analytical solutions and FEM simulations.

The radial stress at the cavity surface as a function of time 
for the elastically compressible power-law strain hardening 
aluminum alloy for cavity-expansion velocities V ranging 
from 25 to 1000 m/s were obtained from 17 FE simulations. 
The results from all velocities are shown in Fig. 3. For the 

Table 1   Radial stress and 
elastic–plastic interface velocity 
as a function of expansion 
velocity from FE results

Expansion 
velocity
m/s

Power-law hardening Perfectly plastic

Radial stress
MPa

Elastic–plastic interface 
velocity
m/s

Radial stress
MPa

Elastic–plastic 
interface velocity
m/s

25 1021.8 346.9 878.6 346.9
50 1082.4 599.1 925.0 606.1
100 1165.6 1126.4 1001.2 1126.4
150 1265.5 1623.2 1099.4 1633.6
200 1390.0 2094.0 1223.5 2094.0
250 1539.3 2551.2 1373.0 2551.2
300 1712.5 2975.7 1546.7 2990.0
350 1907.0 3362.9 1741.9 3378.1
400 2122.0 3738.4 1957.8 3719.9
450 2356.7 4072.0 2193.5 4051.8
480 2507.0 4191.4 2344.5 4170.6
500 2611.1 4271.5 2449.2 4250.3
600 3176.2 4531.2 3016.8 4488.6
700 3810.5 4641.4 3652.4 4602.1
800 4507.7 4779.7 4352.1 4696.1
900 5264.9 4851.5 5113.1 4788.1
1000 6076.5 4854.2 5930.4 4804.9
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17 cavity-expansion velocities considered, all radial stresses 
from the FE simulations converge to the self-similar values 
in approximately 5 μs. The same approach was also utilized 
for the elastically compressible perfectly plastic simulations 
with similar results. The self-similar constant radial stress 
values are given in Table 1 for each of the 17 cavity-expan-
sion velocities associated with both FE constitutive models. 
In Fig. 4, the radial stress at the cavity surface from FE simu-
lations is given as a function of cavity-expansion velocity V 
for both elastically compressible power law strain hardening 
and perfectly plastic yield criteria along with the analyti-
cal elastically compressible perfectly plastic solution from 

Sect. “Analytical Elastically Compressible Perfectly Plastic 
CCE Solution”. In this figure, it is observed that the radial 
stress at the cavity surface for power-law strain hardening is 
approximately 1% greater than the perfectly plastic values at 
all cavity-expansion velocities considered. In addition, at the 
lower cavity-expansion velocities the elastically compress-
ible analytical perfectly plastic solution correlates best with 
the elastically compressible perfectly plastic FE solution, 
while at higher cavity-expansion velocities it correlates bet-
ter with the elastically compressible power-law hardening 
FE solution. It is hypothesized that the reason for this may 
be due to numerous possible numerical errors associated 

Fig. 3   Simulated radial stress versus time for all 17 cavity expansion velocities V for the elastically compressible power-law strain hardening 
CCE simulations

Fig. 4   Radial stress at the cavity surface as a function of cavity-
expansion velocity for power-law strain hardening and perfectly plas-
tic elastically compressible FEM simulations and the analytic per-
fectly plastic elastically compressible solution with v = 1/3

Fig. 5   Radial stress at the cavity surface as a function of cavity-
expansion velocity using Eq.  (27) with an incompressible plastic 
region, the FEM elastically compressible power-law hardening solu-
tion with v = 1/3, and the non-linear least-squares fit to the FEM elas-
tically compressible power-law hardening data given by Eq. (41)
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with the FE weak formulation. However, as observed for 
this 6061-T6511 aluminum alloy, the fully elastically com-
pressible radial stress values at the cavity wall for all the 
cavity-expansion values considered are very close, and the 
power-law hardening does not appear to introduce a sig-
nificant effect with the final solutions as observed with the 
simulated results with and without power-law hardening.

In Fig. 5, the radial stress at the cavity surface �r(a) as 
a function of cavity-expansion velocity V using Eq. (27) is 
compared with the results from FE simulations using the 
elastically compressible power-law strain hardening yield 
criteria along with the corresponding non-linear least-
squares fit to the 17 FE simulations as given by the quadratic 
equation

where �r(a) is given in MPa, and V  is in m/s. Here, it is 
observed that the radial stress from the FE simulations 
exhibits less resistance (lower radial stress values at the cav-
ity surface) than the analytic solution in Eq. (27) for values 
of V below the critical cavity-expansion velocity associ-
ated with Eq. (27). In Eq. (26), the critical cavity-expansion 
velocity occurs at approximately 488.4 m/s, at which point 
the elastic–plastic interface velocity c becomes equal to the 
dilatational wave speed. At this cavity-expansion velocity, 
Eq. (27) becomes complex based on material properties and 
is unphysical. Furthermore, the elastically compressible FE 
simulations provide physically realistic radial stress values 
�r(a) for cavity-expansion velocities V beyond the critical 

(41)�r(a) = 1020.0 + 1.2156V + 0.0039V2,

velocity from Eq. (27) up to the point where Hooke’s law 
is not applicable due to the fact it is not an equation of state 
(EOS) as discussed in [19].

Another factor that appears to contribute to the over 
prediction of the radial stress by Eq. (27) is the increased 
extent of the plastic region due to its assumed incompress-
ibility. From Eq. (24) with the incompressible plastic region, 
it is observed that the elastic–plastic interface velocity c 
increases linearly with the cavity expansion velocity up to 
the dilatational wave speed cd where ∝ = 1.0 as illustrated 
in Fig. 6. This indicates that the analytical solution from 
Eq. (24) has a larger plastic zone than that of both the elasti-
cally compressible power-law strain hardening and perfectly 
plastic FE simulations along with the elastically compress-
ible perfectly plastic analytic solution from Sect. “Analytical 
Elastically Compressible Perfectly Plastic CCE Solution”. 
Additionally, from the Rankine-Hugoniot jump conditions 
at the elastic–plastic interface � = 1 , the stresses and parti-
cle velocities are continuous and equal on both sides of the 
interface. Therefore, from Fig. 6 it is observed that all of the 
elastically compressible methods considered in this study 
have approximately the same elastic–plastic interface veloci-
ties, and are given in Table 1 for each of the 17 FE simula-
tions associated with both constitutive models. Additionally, 
from the use of Hooke’s law with all of the models in this 
study as opposed to an EOS capable of modeling a shock 
front in the material prevents shock fronts from forming as 
discussed in [19]. Therefore, all of the elastically compress-
ible CCE solutions asymptote along the bulk wave speed 
value given by cp from Eq. (31c). This result also implies 
that the closed form analytical power-law hardening solution 
that assumes an incompressible plastic region causes a larger 
bulk of material to strain harden in the plastic region with 
increasing expansion velocities and increases the resistance 
at the cavity surface as observed in Fig. 5. For lower expan-
sion velocities, it is observed that Eq. (27) exhibits resist-
ance values at the cavity surface close to that from the fully 
elastically compressible FE simulations. However, above an 
expansion velocity of approximately V = 200 m/s the expan-
sion resistance values start to diverge with Eq. (27) giving 
larger resistance values for the 6061-T6511 aluminum alloy 
material from [10] used in this study. Thus, the increasing 
difference in the elastic–plastic interface velocities c with 
increasing cavity-expansion velocities V by considering the 
plastic region to be elastically compressible provides some 
physical insight into the observed difference in the radial 
stress values at the cavity surface due to increasing cavity-
expansion velocities. These results hold for other materials 
as well. For comparison, the same methodology as laid out 
in this work was applied to four additional materials using 
data given in Table 2 of reference [1], the materials being 
Weldox 700E, Weldox 500E, AA6070-T6 and AA6060. The 
main results in terms of radial stresses and elastic–plastic 

Fig. 6   Elastic–plastic interface velocity c versus cavity-expansion 
velocity V for the closed form analytic power-law hardening solution 
with an incompressible plastic region, elastically compressible power-
law hardening and perfectly plastic FEM simulations, and the analytic 
elastically compressible perfectly plastic solution along with bulk and 
dilatational wave speeds
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interface velocities are given in Fig. 7 along with compari-
sons with analytical solutions to the dynamic power-law 
strain hardening CCE problem. 

Concluding Remarks

In this study, we analyzed the effect of an incompressible 
plastic region and a compressible elastic region on the 
analytical solutions of the dynamic homogenous isotropic 
power-law strain hardening CCE problem subjected to plane 
strain conditions with a cavity expanding from a zero ini-
tial radius in an infinite medium. To obtain a closed form 
analytical solution for this problem, the plastic region must 
be taken as elastic and plastically incompressible, other-
wise hydrostatic stress terms must be explicitly included in 
the elastically compressible strain hardening term, thereby 
making the problem intractable. Furthermore, for a dynamic 
solution, the elastic region must be taken as compressible to 
avoid a logarithmic singularity associated with the conserva-
tion of linear momentum inertia term in a medium of infinite 
extent as discussed in [3].

However, as an alternative to the analytical formulation of 
the elastically compressible dynamic strain hardening CCE 
problem, an explicit FE formulation was employed in this 
study to obtain solutions for the radial stress at the cavity 
surface �r(a) along with the elastic–plastic interface velocity 
c. Additionally, with the proposed FE formulation, Hooke’s 
law was also employed as discussed in [18] to describe the 
linear elastic behavior in both the plastic and elastic regions 
of the material. Therefore, with the FE formulations con-
sidered, all of the elastic deformation is associated with 

the hydrostatic and deviatoric elastic strains, and are not 
required for defining the von Mises power-law strain hard-
ening or perfectly plastic constitutive models. Thus, in this 
study, the FE formulation in ABAQUS Explicit [18] was 
employed to obtain solutions for the elastically compressible 
CCE problems that are either power-law strain hardening or 
perfectly plastic. Additionally, since solutions are obtainable 
for the analytical (strong form) elastically compressible per-
fectly plastic CCE problem, its results are used to provide an 
estimate for the accuracy of the FE simulations.

From Fig. 5, it is observed that the error in radial stress 
at the cavity surface associated with neglecting elastic com-
pressibility in the plastic region in the analytical model 
increases with increasing expansion velocities. Furthermore, 
it also appears that this error in the radial stress at the cavity 
surface with the closed form analytical model would con-
tinue to increase for expansion velocities beyond its critical 
velocity limit if it were attainable. Therefore, considering 
the plastic region to be elastically compressible causes the 
radial stress at the cavity surface to decrease, and the elas-
tic–plastic interface velocity c to saturate asymptotically to 
the bulk wave speed when Hooke’s law is used.

As observed in references [10–13], when target inertia 
is included with the analytic formulation, the ballistic limit 
velocity increases, and the residual velocities decrease. 
Additionally, in most cases using an analytical dynamic 
strain hardening model, the ballistic limit velocities are 
greater than the experimental values. Furthermore, the resid-
ual velocities are less than the experimental values; however, 
when target inertia is neglected in the analytical model, the 
ballistic limit velocities are less than both the experimental 

Fig. 7   Radial stresses vs. cavity expansion velocities up to 600  m/s 
(a), and elastic–plastic interface velocities (b) for four additional 
power-law strain hardening materials using material data given in 
Ref. [1]. The square markers in (a) indicate the FEM solutions, while 

the solid lines show the analytical solutions from Eq. (27). In (b), the 
solid lines are still the analytical solutions, this time as obtained by 
Eqs. (19) and (26) up to their respective bulk wave speeds, while the 
dashed lines show the FEM solutions
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ballistic limit velocities, and the residual velocities. There-
fore, results from this study imply that the target resistance 
is reduced by considering the plastic region to be elasti-
cally compressible as expected, and the target resistance 
decreases more with increasing cavity-expansion velocities. 
This result is also substantiated from the observation that the 
elastic–plastic interface velocity saturates and asymptotes 
along the material’s bulk wave speed cp when Hooke’s law 
is employed to define the linear elastic response as illustrated 
by both the FE solutions, and also the elastically compress-
ible perfectly plastic analytical CCE solution at increased 
cavity-expansion velocities. For these three CCE problems 
the elastic–plastic interface velocities are the same because 
they have the same yield stress at the elastic–plastic inter-
face. Therefore, one of the most important results from this 
study indicates that the CCE approximation accounting for 
target inertia gives higher values for ballistic limit velocities 
compared to the results from the FE simulations. Thus, using 
the FE simulations for the CCE approximations in references 
[10–13] will give results that are in better agreement with 
existing experimental results. Furthermore, from this study, 
the most significant result is that the proposed FE formula-
tion with strain hardening gives radial stress values at the 
cavity surface as a function of the cavity-expansion velocity 
V that do not have a physically unrealistic critical velocity 
value in which the closed form analytic solution becomes 
complex and physically unrealistic as illustrated in Fig. 5. 
In addition, a nonlinear least squares fit to the simulated 
FE radial stress values at the cavity surface as a function of 
cavity-expansion velocity provides a quadratic expression as 
given by Eq. (41) for the elastically compressible power-law 
hardening radial stress at the cavity surface that includes 
target inertia, and can be easily implemented with the CCE 
approximation for ductile hole growth perforation problems. 
This expression is expected to match experimental ductile 
hole growth perforation data better than the previous closed 
form analytical strain hardening formulation that requires 
the plastic region to be incompressible and the elastic region 
to be compressible. However, comparisons with experimen-
tal ballistic results are beyond the scope of the present study, 
but may be considered in the next phase of this research 
program.
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