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Abstract— In this paper, we propose an accelerated ver-
sion of Simultaneous Perturbation Stochastic Approximation
(Accelerated SPSA). This algorithm belongs to the class of
methods used in derivative-free optimization and has proven
efficacy in the problems including significant non-statistical
uncertainties. We focus on analysis of Accelerated SPSA in a
non-stationary setting and consider the presence of unknown-
but-bounded disturbances. Research on these problems covers
many directions. However, in large-scale systems, efficiency
still remains a concern. It gave rise to the research where
acceleration represents an objective in the algorithm’s design.
This problem motivated us to extend our previous research
on SPSA in the direction of acceleration. We show that the
proposed new accelerated version converges faster than the
initial one. The validation of the algorithm is preformed in a
target tracking problem.

I. INTRODUCTION

Derivatives of a cost function are often not available
in many modern optimization problems arising in signal
processing, machine learning, control, and other fields. There
are two possible reasons for that. First, the function may
be represented by a black-box or simulation oracle as in
reinforcement learning [1]. Second, it may be difficult or
impractical to evaluate the gradient and/or higher order
derivatives due to significant uncertainties in measurements.
The described cases have increased the interest in the de-
velopment of methods that doesn’t rely on derivatives, i.e.
derivative-free, or zeroth-order, optimization [2].

Most real-world problems include different kinds of un-
certainties, e.g., noisy measurements, external disturbances
or attacks. A key class of methods for derivative-free opti-
mization under uncertainties is stochastic approximation [3],
[4]. The first versions of derivative-free stochastic approx-
imation based algorithms require substantial computational
effort per iteration, which makes them undesirable for large-
scale applications. In [5], the author proposed Simultaneous
perturbation stochastic approximation (SPSA). The important
feature of SPSA is the underlying gradient approximation
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that requires only two loss function measurements and does
not depend on the number of parameters being optimized.
The other approaches to stochastic optimization include
direct-search and model based methods [6]. Usually such
algorithms are applicable to problems involving only zero
mean noise. Whereas in [7], it has been shown that SPSA
converges in the presence of arbitrary unknown-but-bounded
noise.

A fundamental assumption in stochastic approximation
which has been widely adopted is that the cost function does
not change throughout the time horizon. At the other hand,
non-stationary systems frequently appear in practice [8].
Research on non-stationary problems covers many directions
including unconstrained first-order optimization [9], stochas-
tic [7], [10] and online convex optimization [11]. However,
in large-scale problems, efficiency still remains a concern.
It gave rise to the research directions where acceleration
represents an objective in the algorithm’s design.

In [12], the authors cover the recent advances on accelera-
tion techniques used in convex optimization. One of the tools
used to accelerate the convergence of optimization methods
is momentum. Momentum-based methods were first formally
studied by Polyak [13], and found their application in many
practical problems. Despite the clear intuition behind the
momentum methods, the proposed analysis doesn’t apply
for all general convex cost functions. A different approach
based on algebraic arguments was proposed by Nesterov.
He developed the method of estimate sequences to verify
the momentum-based accelerated methods [14]. In [15], we
analyzed a modified accelerated stochastic gradient method
proposed for non-stationary optimization problem and built
our analysis based on bounded estimate sequences.

In this paper, we continue this line of work and propose
Accelerated SPSA for tracking under unknown-but-bounded
noise. Overall, the contributions are as follows:

• we propose a new version of SPSA method equipped
by the acceleration scheme presented in [15]. The
proposed method belongs to the class of zeroth-order
methods and requires additional analysis in comparison
to the previous work. We obtained a bound on gradient
estimates and modified the acceleration scheme based
on the new results;

• previously, we considered noisy gradient measurements
with the assumption that the noise has zero-mean and a
known variance. In this work, we relax the assumption
regarding the noise appearing in the measurements of
zeroth-order oracle;

• finally, we validate the new method in a target tracking



problem and show the improvement in the convergence.
The paper is organized as follows. The preliminary in-

formation is given in Section II. A formal problem setting
of a time-varying mean-risk optimization and an example
illustrating this problem are given in Section III. The main
result including assumptions, the proposed accelerated SPSA
algorithm for tracking, and its convergence properties are
presented in Section IV. In Section V, the efficiency of
the proposed algorithm is illustrated through the numerical
simulation. Section VI concludes the paper.

II. PRELIMINARIES
Let (Ω,F , P ) be the underlying probability space cor-

responding to sample space Ω, set of all events F , and
probability measure P . E denotes mathematical expectation.
Let Ft−1 be the σ-algebra of all probabilistic events which
happened before time instant t = 1, 2, . . ., EFt−1

denotes
the conditional mathematical expectation with respect to the
σ-algebra Ft−1.

III. PROBLEM STATEMENT
A. Non-stationary Mean-Risk Optimization

Consider a mean-risk optimization problem:

min
θ

{F (θ) = EFt−1f(θ, ξt)}, (1)

where θ ∈ Rd is a decision vector, ξt is uncertainty that be-
longs to set Ξ. Subsequently, we replace the notation f(θ, ξt)
by fξt(·) emphasising that ξt is uncontrollable sequence. The
problem (1) arises in many practical applications as well as
in machine learning. The sources of uncertainty include but
not limited to: estimation errors, i.e., optimization based on
measured/estimated data; prediction errors, i.e., part of data
doesn’t exist at the moment of optimization (e.g. future de-
mand/prices); implementation errors, i.e., discretization and
model approximation errors. The uncertainty is represented
by a non-controllable deterministic sequence (e.g., Ξ = N
and ξt = t) or random sequence. In the latter case we assume
that a probability distribution of ξt exists and may be known
or unknown.

In this work, we consider zeroth-order optimization, where
we have only noisy measurements of function to be opti-
mized. In contrast to a majority of existing research, we
don’t have any statistical assumptions on this noise. We
also assume that parameter θ cannot be directly measured.
Hence, we introduce a sequence of measurement points
x1,x2, . . . chosen according to an observation plan. The val-
ues y1, y2, . . . of the functions fξt(·) are observable at every
time instant t = 1, 2, . . . with additive external unknown-but-
bounded noise vt

yt = fξt(xt) + vt. (2)

We also assume that minimizer θ of F (θ) may vary over
time. Formally, the non-stationary mean-risk optimization
problem is as follows: estimate the time-varying minimum
point θt of function

Ft(θ) = EFt−1
fξt(θ) → min

θt
. (3)

In the next subsection, we present an example illustrating
the considered problem statement.

B. Example

Given a network consisting of n = 3 planar sensors
identified by i ∈ N = {1, 2, 3}. The state of sensor i is
si ∈ R2. We assume that the states are known and doesn’t
depend on time, i.e. the sensors are stationary. In the sensing
range of the sensors, there are m = 6 moving planar targets
identified by l ∈ M = {1, 2, . . . , 6}. The goal of each
sensor i is to estimate the states of all targets rlt ∈ R2 at
time instant t.

Let θt = col(r1t , . . . , r
6
t ) ∈ R12 be the common state

vector of all targets, θ̂t = col(r̂1t , . . . , r̂
6
t ) be a common

vector of estimates. Each target l ∈ M changes the position
according to the following dynamics:

rlt = rlt−1 + ζlt−1, l ∈ M, (4)

where ζlt−1 are random vectors uniformly distributed in a
ball. We assume that at time instant t sensor i is able to
measure the squared distance ρi,lt = ρ(si, rlt) = ∥rlt − si∥2
to some moving target rlt.

Suppose sensor i estimates the state of target l at time
instant t. The sensor is able to collect the distances to the
same target measured by its neighbors j ∈ N i. Denote by

ρ̄i,jt (l) = ρ(si, rl)− ρ(sj , rl), ∀j ∈ N i
t (5)

a residual between a measurement of sensor i and its
neighbor j for target l.

In this case, using the square difference formula we get
the equations

ρ̄i,jt (l) = (sj − si)T(2rl − sj − si), j ∈ N i
t .

This allows us to derive Ci,lrlt = Di,l, rlt = [Ci,l]−1Di,l,
where j1, . . . , jd̄ ∈ N i

t and

Ci,l = 2

(sj1 − si)T

· · ·
(sjd̄ − si)T

 , Di,l =

ρ̄i,j1t (l) + ∥sj1∥2 − ∥si∥2
· · ·

ρ̄
i,jd̄
t (l) + ∥sjd̄∥2 − ∥si∥2

 .

Each sensor sends the final measurements to a fusion
center, which solves the non-stationary optimization problem
based on observations:

yi,lt = ∥r̂lt − [Ci,l]−1Di,l∥2 + vi,lt , (6)

where vi,lt is the unknown-but-bounded noise.
The target tracking problem described above is similar to

one published in [16]. The difference is that in this paper we
have a hybrid system instead of a distributed one, i.e., we
use both the distributed and centralized steps.

IV. MAIN RESULT

In this section, we present the main result of this paper.
First, we formulate the assumptions regarding functions
Ft(x), fξt(x). Then, we describe a new accelerated version
of SPSA that we propose in this paper.



Assumption 1: The function Ft(·) is strongly convex, it
has minimum point θt and

∀x ∈ Rd ⟨EFt−1∇fξt(x),x− θt⟩ ≥ µ∥x− θt∥2.

Assumption 2. ∀ξ ∈ Ξ, the gradient ∇fξ(x) satisfies the
Lipschitz condition: ∀x1,x2 ∈ Rd

∥∇fξ(x1)−∇fξ(x2)∥ ≤ L∥x1 − x2∥

with constant L > 0.
Assumption 3. For every n ≥ 0 and ∀x ∈ Rd, a, b > 0,

the drift and the gradient are bounded

a) EFn−1 |fξn(x)− fξn+1(x)| ≤ aEFn−1∥∇fξn(x)∥+ b,

b) EFt−1∥∇fξt(x)−∇fξt−1(x)∥ ≤ c,

c) E∥∇fξt(θt)∥2 ≤ δ2f .

Assumptions 1 and 2 are common in the optimization field.
Assumption 3 is used in non-stationary problems.

A. Accelerated SPSA for Tracking

Let ∆n ∈ Rd, n = 1, 2, . . . be independent random
variable, i.e., simultaneous test perturbation, drawn from
Bernoulli distribution. Each component of the vector inde-
pendently takes value ± 1√

d
with probability 1

2 .
Remark: we divide the iterative process into blocks and n

shows the number of a current block. For example, if n = 1,
algorithm (7) provides calculations for time instances t =
2n − 1 and t = 2n whereas the variables with subscript n
are calculated just once and used at the both time instances.

We choose initial estimate θ̂0 ∈ Rd, and parameters γ0 >
0, h > 0, β > 0, η ∈ (0, µ), α0 ∈ (0, 1). We also define
z0 = θ̂0 and H = h − h2L

2

[
( a
2β + 1)2 + ϵ2

2

]
, where ϵ > 0.

At each n, we find αn by solving the equation

α2
n = 2(

2βH

a
− ϵ

2
)((1− αn)γn + αn(µ− η))

and γn = (1− αn−1)γn−1 + αn−1(µ− η).

We consider the algorithm with two observations of
functions fξt(·) for constructing sequences of measurement
points {xt} and estimates {θ̂t} at n ≥ 1:



x̃2n−2 = 1
γn−1+αn(µ−η)

(
αnγn−1z2n−2 + γnθ̂2n−2

)
,

x2n = x̃2n−2 + β∆n, x2n−1 = x̃2n−2 − β∆n,

x̃2n−1 = x̃2n−2, θ̂2n−1 = θ̂2n−2,

g2n = ∆n
y2n−y2n−1

2β ,

θ̂2n = x̃2n−1 − hg2n,

z2n = γ−1
n

[
(1− αn)γn−1z2n−2+

αn(µ− η)x̃2n−1 − αng2n)
]
.

(7)

Remark: If the constants appearing in Assumptions 1-3
are unknown, we can set them to their worst case values.

B. Convergence Analysis

In this section, we provide a convergence analysis of the
proposed algorithm. Let us formulate the rest of assumptions,
i.e., on noise and random parameters.

Assumption 4. For n = 1, 2, . . . , the successive differences
ṽn = v2n − v2n−1 of noise are bounded: |ṽn| ≤ cv < ∞, or
E(ṽn)2 ≤ c2v if sequence {ṽn} is random.

Assumption 5: For any n = 1, 2, . . . ,
a) ∆n and ξ2n−1, ξ2n (if they are random) do not depend
on σ-algebra F2n−2.
b) If ξ2n−1, ξ2n, ṽn are random, then random vectors ∆n

and elements ξ2n−1, ξ2n, ṽ
i
n are independent.

c) ∥∆n∥2 ≤ c2∆. In our case, ∆n takes values ± 1√
d

with
probability 1

2 , so we have c∆ = 1.
The following theorem shows an upper bound of the

estimation error.
Theorem 1. Let {An} and {Zn} be the sequences in R

defined as

A0 = 0, An+1 = (1− αn)[(1− λn)a+An],

Z0 = 0, Zn+1 = (1− λn+1)(b+ ac) +An+1c.

If Assumptions 1–5 are hold, algorithm (7) generates a
sequence of estimates {θ̂n}∞n=0 such that

EFn−1
fξn(θ̂n)− fξn(θn) ≤

λn(ϕ0(θ0)− fξn(θ̂n) + Φ) +Dn,

where

D0 = 0, Dn+1 = (1− αn)Dn + (1− αn)Zn+

αn(1− αn)γn(µ− η − 3)

2γn+1
∥z2n−2 − x̃2n−2∥2 + d̃.

and ϕ0(x) = f0(θ̂0) +
γ0

2 ∥x − θ̂0∥2, Φ = γ0c
2

2µ2 , λ0 = 1,
λt → 0, γ0 > 0.

Proof: The proof is moved to Appendix. The constants are
defined in the proof.

V. SIMULATION

In this section, we present a numerical experiment, which
illustrates the performance of the suggested algorithm (7).
Based on the example presented in Section III-B, we define
a distributed network of 3 sensors tracking 6 moving targets.
In this case, each sensor may have two or less active
communication channels for the information exchange. Each
sensor also choose a random target that it tracks at the current
time instant.

We’ve set the following parameters of algorithm (7):
h = 0.08, β = 0.1, η = 0.95, αx = 0.1, γ0 = 2.0,
L = 2, µ = 2, a = 2, b = 2, c = 1. The targets start their
motion at a position randomly chosen from interval [0; 100].
Dynamics of the targets defined in (4). We’ve defined ζlt
as a random vector uniformly distributed on the ball of
radius equal to 0.2 for targets with odd identifiers and 0.6
for targets with even identifiers. This means that the targets
are heterogeneous and behave differently. The sensors are
stationary and their coordinates are random values uniformly



distributed in interval [100; 120]. We consider random type
of noise, i.e. uniformly distributed random variable falling
within the interval [−1; 1].

Let us consider for every target l and sensor i at each time
instant t the covariance matrix of residuals

∑̃i,l

t ∈ Rd×d

which is represented as a part of the common covariance
matrix. In the simulation, the new algorithm is compared
with the previous one from [7]. Figure 1 shows the typical
behaviour of the averaged diagonal entries of the covariance
matrix. Both presented algorithms have the same initial
parameters, random values of targets and noises at each itera-
tion. The only difference is the algorithm itself. It is well seen
that the new algorithm converges faster than the previous
one: while new algorithm is converged approximately by step
100, the old one converges approximately by step 500.

Fig. 1. Typical behaviour of the averaged entries of the covariance matrix.
The blue line indicates the algorithm from [7], the red one shows the
proposed new accelerated version.

VI. CONCLUSIONS

In this paper, we’ve proposed the Accelerated SPSA algo-
rithm. The convergence analysis of this algorithm was carried
out in non-stationary setting. We’ve obtained a bound on the
variance of gradient estimates and modified the acceleration
scheme based on the new results. We’ve also relaxed the
assumption regarding the noise appearing in the measure-
ments of zeroth-order oracle. Finally, we’ve validated the
new method in the target tracking problem and showed the
improvement in the convergence.

APPENDIX

In [14], Nesterov introduced a framework of estimate
sequence for the development and analysis of accelerated
methods. In our previous work [15], we extended it to
nonstationary optimization setup. Here, we use the proposed
definition of bounded estimate sequence and some lemmas
to analyze Accelerated SPSA method.

Let F̄n−1 = σ{Fn−1, v2n−1, v2n, ξ2n−1, ξ2n,∆n}
be the σ-algebra of probabilistic events generated

by Fn−1, v2n−1, v2n, ξ2n−1, ξ2n,∆n and F̃n−1 =
σ{Fn−1, v2n−1, v2n, ξ2n−1, ξ2n} such that

Fn−1 ⊂ F̃n−1 ⊂ F̄n−1 ⊂ Fn.

Definition 1 (Bounded Estimate Sequence) [15]
Let ϕ0(x) be a deterministic function and ϕt(x) be a

random function depending on Ft−1 for all t ≥ 1, and λt ≥ 0
for all t ≥ 0. The sequence {(λt, ϕt(x))}∞t=0 is called a
bounded estimate sequence of function fξt(x) if λt → 0
and there exist a sequence {At}∞t=0, At ∈ R, and a constant
Φ < ∞, and for any x ∈ Rd and for all t ≥ 0 we have

EFt−1
ϕt(x) ≤ EFt−1

[(1− λt)fξt(x)+ (8)

At∥∇fξt(x)∥+ λt(ϕ̃0,t(x) + Φ)],

where ϕ̃0,t(x) = ϕ0(x) − ϕ0(θt) + ϕ0(θ0), EF−1ϕ0(x) =
ϕ0(x).

Here we assume {λt}∞t=0 is a deterministic sequence and
it doesn’t depend on Ft−1.

The next Lemma shows how to build the bounded estimate
sequences for tracking under unknown-but-bounded noise.

Lemma 1 (Constructing a Bounded Estimate Sequence)
Assume that

1) {xn}∞n=0 is an arbitrary sequence in Rd,
2) ϕ0(x) is defined as ϕ0(x) = ϕ∗

0 +
γ0

2 ∥x− x0∥2,
3) coefficients {αn}∞n=0 satisfy condition αn ∈ [αx, 1),
4) η = ϵ2(2Lβ+c)

2 , and ϵ > 0 ensures η ∈ (0, µ),
5) {An}∞n=0, {Zn}∞n=0 are sequences in R defined as

A0 = 0, An+1 = (1− αn)[(1− λn)a+An],

Z0 = 0, Zn+1 = (1− λn+1)(b+ ac) +An+1c,

6) we choose Φ = γ0c
2

2µ2 and λ0 = 1.

Then the pair of sequences {ϕn(·)}∞n=0 and {λn}∞n=0 defined
by the relations

λn+1 = (1− αn)λn,

ϕn+1(x) = (1− αn)(ϕn(x)− Zn)+ (9)

αn[r(xn) + ⟨gn,x− xn⟩+
µ− η

2
∥x− xn∥2],

r(xn) = fξn(xn)−
c2

2η
− a∥∇fξn(xn)∥ − b

are bounded estimate sequences.
Proof of Lemma 1:
Let f̃n = fξ2n(x2n)− fξ2n−1(x2n−1). For any u, ũ ∈ Rd,

using Taylor representation of fξt(xt) for t± = 2n− 1
2 ±

1
2 ,

we obtain

fξt± (u) = fξt± (ũ) + ⟨∇fξt± (ũ+ ρ±ξt±
(u− ũ)),u− ũ⟩,

(10)

where ρ±ξt±
∈ (0, 1).



Let u = xt± = x̃2n−2 ± β∆n and ũ = x̃2n−2. Based on
(10), we get the following representation of difference f̃n

f̃n = fξ2n(x2n)− fξ2n−1
(x2n−1) =

fξ2n(x̃2n−2)− fξ2n−1
(x̃2n−2)+

⟨∇fξ2n(x̃2n−2 + ρ+ξ2nβ∆n), β∆n⟩+
⟨∇fξ2n(x̃2n−2 − ρ−ξ2n−1

β∆n), β∆n⟩−
2⟨∇fξ2n(x̃2n−2), β∆n⟩+ 2⟨∇fξ2n(x̃2n−2), β∆n⟩−
⟨∇fξ2n−1(x̃2n−2), β∆n⟩+ ⟨∇fξ2n−1(x̃2n−2), β∆n⟩

and divide it into two parts

f̃n = f̃ (1)
n + f̃ (2)

n ,

f̃ (1)
n = ⟨∇fξ2n(x̃2n−2 + ρ+ξ2nβ∆n)−∇fξ2n(x̃2n−2), β∆n⟩+
⟨∇fξ2n−1

(x̃2n−2 − ρ−ξ2n−1
β∆n)−∇fξ2n−1

(x̃2n−2), β∆n⟩+
⟨∇fξ2n−1

(x̃2n−2)−∇fξ2n(x̃2n−2), β∆n⟩,
f̃ (2)
n = fξ2n(x̃2n−2)− fξ2n−1

(x̃2n−2)+

2⟨∇fξ2n(x̃2n−2), β∆n⟩.

Combining all terms, we get g2n:

g2n =
1

2β
(f̃ (1)

n + f̃ (2)
n + ṽn)∆n =

⟨∇fξ2n(x̃2n−2),∆n⟩∆n+

1

2β
(fξ2n(x̃2n−2)− fξ2n−1(x̃2n−2) + f̃ (1)

n + ṽn)∆n.

Next, consider the following product:

EFt−1⟨g2n, θ2n−2 − x̃2n−2⟩ ≤ (11)
EFt−1⟨⟨∇fξ2n(x̃2n−2),∆n⟩∆n, θ2n−2 − x̃2n−2⟩+

1

2β
EFt−1

⟨(fξ2n(x̃2n−2)− fξ2n−1
(x̃2n−2)+

ṽn)∆n, θ2n−2 − x̃2n−2⟩+

EFt−1
∥ 1

2β
f̃ (1)
n ∆n∥∥θ2n−2 − x̃2n−2∥.

Using Assumption 5, for the first and second terms of (11),
we have

. . . ≤ ⟨∇fξ2n(x̃2n−2), θ2n−2 − x̃2n−2⟩.

For the third term of (11), using Assumptions 2-5, we get

EFt−1∥
1

2β
f̃ (1)
n ∆n∥ ≤ 2Lβ + c

2
.

Then,

EFt−1
∥ 1

2β
f̃ (1)
n ∆n∥∥θ2n−2 − x̃2n−2∥ ≤

2Lβ + c

2
∥θ2n−2 − x̃2n−2∥ ≤

ϵ2(2Lβ + c)

4
∥θ2n−2 − x̃2n−2∥2 +

2Lβ + c

4ϵ2
,

where ∥a∥ ≤ ϵ2

2 ∥a∥
2 + 1

2ϵ2 , ϵ > 0.

Let η = ϵ2(2Lβ+c)
2 . Assume that we can choose ϵ ensuring

η ∈ (0, µ). Given η preserves the bounds for c2

2η , where
2η ∈ (0, 2µ) and

c2

2η
=

c2

ϵ2(2Lβ + c)
, ϵ2(2Lβ + c) ∈ (0, 2µ).

Now, we can use the conditions of Lemma 1 [15] and
this completes the proof of Lemma 1. Next, we can obtain
a closed form recurrence for values ϕ∗

n.
Lemma 2 (Canonical Form)
Let ϕ0(x) = ϕ∗

0 + γ0

2 ∥x − z0∥2. Then the process (9)
preserves the canonical form of functions {ϕn(x)}:

ϕn(x) = ϕ∗
n +

γn
2
∥x− zn∥2, (12)

where sequences {γn}, {zn}, and {ϕ∗
n} are defined as

follows:

zn+1 = γ−1
n+1[(1− αn)γnzn+

αn(µ− η)xn − αngn(xn)],

γn+1 = (1− αn)γn + αn(µ− η),

ϕ∗
n+1 = (1− αn)(ϕ

∗
n − Zn)−

α2
n

2γn+1
∥gn∥2+

αn[r(xn) +
(1− αn)γn

γn+1

(
⟨gn, zn − xn⟩+

µ− η

2
∥zn − xn∥2

)
]

Proof of Lemma 2: Since we’ve obtained the same form
used in Lemma 1 [15], the proof follows Lemma 2 in [15].

Proof of Theorem 1: Our proof rely on Lemma 3 published
in [15].

Lemma 3 [15]. If {λn}, {ϕn(x)} form a bounded estimate
sequence for functions {fn(x)} and for some sequence
{θn}∞n=0 in Rq , {Dn}∞n=0 in R, Dn ≥ 0, Dn < D∞ < ∞
the following inequalities hold for all n ≥ 0:

Efn(θn) ≤ ϕ∗
n +Dn = min

x∈Rq
ϕn(x) +Dn, then (13)

Efn(θn)− f∗
n ≤ λn(ϕ0(θ0)− f∗ +Φ) +Dn →n→∞ D∞.

Let us choose ϕ0(x) = f0(θ̂0) +
γ0

2 ∥x − θ̂0∥2. Then
f0(θ̂0) = ϕ∗

0. Using Lemma 1, we have that {ϕn(·)}∞n=0

and {λn}∞n=0 generated by the process given in Lemma 2
form the bounded estimate sequence. We need to prove that
conditions of Lemma 3 apply.

Let us prove it by induction. By choice of ϕ0(·), con-
dition (13) is valid for n = 0. Assume that ϕ∗

2n−2 ≥
EFn−1fξ2n−2(θ̂2n−2)−D:

ϕ∗
2n ≥ E[(1− αn)(fξ2n−2

(θ̂2n−2)−D − Zn)−
α2
n

2γn+1
∥g2n∥2 + αn[r(x̃2n−2)+

(1− αn)γn
γn+1

(
⟨g2n, z2n−2 − x̃2n−2⟩+

µ− η

2
∥z2n−2 − x̃2n−2∥2

)
]].



Taking the conditional expectation over σ-algebra Fn−1,
by virtue of Assumptions 2-5, using triangle and Cauchy-
Schwarz inequality, we get

EFn−1
∥g2n∥2 ≤ ã2∥∇fξ2n−2

(x̃2n−2)∥2+
2ãb̃∥∇fξ2n−2

(x̃2n−2)∥+ b̃2,

where ã = a
2β + 1, b̃ = ac+b+c+2Lβ2+4cβ

2β .
Next, we obtain

EFn−1
⟨g2n, z2n−2 − x̃2n−2⟩ ≥

⟨fξ2n−2
(x̃2n−2), z2n−2 − x̃2n−2⟩−

(2Lβ + c)2 + 8c2

8
− 3

2
∥z2n−2 − x̃2n−2∥2.

Since fξ2n−2
(θ̂2n−2) ≥ fξ2n−2

(x̃2n−2) +

⟨∇fξ2n−2(x̃2n−2), θ̂2n−2 − x̃2n−2⟩, we have

ϕ∗
2n ≥ fξ2n−2(x̃2n−2)− (1− αn)(D + Zn)−

α2
nã

2

2γn+1
∥∇fξ2n−2(x̃2n−2)∥2−

α2
nãb̃+ αnγn+1a

γn+1
∥∇fξ2n−2

(x̃2n−2)∥+

4(ηα2
nb̃

2 + γn+1αnc
2 + 2γn+1ηαnb) + η((2Lβ + c)2 + 8c2)

8γn+1η
+

αn(1− αn)γn(µ− η − 3)

2γn+1
∥z2n−2 − x̃2n−2∥2+

⟨∇fξ2n−2(x̃2n−2),
αnγn
γn+1

(z2n−2 − x̃2n−2) + θ̂2n−2 − x̃2n−2⟩.

Further, we obtain x̃2n−2 solving the equation:

αnγn
γn+1

(z2n−2 − x̃2n−2) + θ̂2n−2 − x̃2n−2 = 0.

At the same time, Assumption 2 gives us

L

2
∥θ̂2n − x̃2n−2∥2 =

h2L

2
∥g2n∥2 ≥

fξ2n(θ̂2n)− fξ2n(x̃2n−2)− ⟨∇fξ2n(x̃2n−2), θ̂2n − x̃2n−2⟩.

Using Assumptions 3-5, we obtain

EFn−1fξ2n(θ̂2n) ≤ EFn−1 [fξ2n(x̃2n−2)−

h⟨∇fξ2n(x̃2n−2),g2n⟩+
h2L

2
∥g2n∥2] ≤

fξ2n(x̃2n−2)− h∥∇fξ2n(x̃2n−2)∥2 +
h(2Lβ + c)2

8
+

h2L

2

[
ã2 +

ϵ2

2

]
∥∇fξ2n(x̃2n−2)∥2+

h2Lϵ2(b+ cβ + 2Lβ2)2

4β2
+

2h2Lβ

ϵ2(b+ cβ + 2Lβ2)
.

Denote by H = h − h2L
2

[
ã2 + ϵ2

2

]
. Now, we need to

prove that ϕ∗
2n ≥ EFn−1fξ2n(θ̂2n)−D. Collecting the terms

we get:

αnD ≥ fξ2n(x̃2n−2)− fξ2n−2(x̃2n−2) + (1− αn)Zn+[
α2
nã

2

2γn+1
+

ϵ2

2
−H

]
∥∇fξ2n−2

(x̃2n−2)∥2+

αn(1− αn)γn(µ− η − 3)

2γn+1
∥z2n−2 − x̃2n−2∥2 + d̃,

where d̃ =
4(ηα2

nb̃
2+γn+1αnc

2+2γn+1ηαnb)+η((2Lβ+c)2+8c2)
8γn+1η

+
h2Lϵ22(b+cβ+2Lβ2)2

4β2 + 2h2Lβ
ϵ22(b+cβ+2Lβ2)

+ h(2Lβ+c)2

8 .
We find αn ∈ (0, 1) by solving the following equation:

α2
nã

2

2γn+1
+

ϵ2

2
−H = 0

and we require that ϵ ∈ (0,
√
2H). The inequality is proved

by the definition of D.
Finally, we obtain

Dn+1 = (1− αn)Dn + (1− αn)Zn+

αn(1− αn)γn(µ− η − 3)

2γn+1
∥z2n−2 − x̃2n−2∥2 + d̃.

Using Lemma 3 from [15], we conclude the proof.
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