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Dominant superconducting correlations in a Luttinger liquid induced by spin fluctuations
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We study spin-fluctuation mediated divergent superconducting fluctuations in a Luttinger liquid proximity-
coupled to a spin chain. Our study provides insight into how spin fluctuations can induce superconductivity in a
strongly correlated non-Fermi liquid with repulsive electronic interactions only. The electrons in the system are
governed by the Extended Hubbard Hamiltonian and are coupled to a chain of localized spins modeled by the
spin- 1

2 XX Hamiltonian. Using a multichannel Luttinger liquid approach, we determine the phase diagram of
the metal chain. We find that spin-polarized triplet superconducting correlations persist for repulsive electronic
interactions for sufficiently large interchain couplings.
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Introduction. During the last decade, experimental
progress in nanoengineering has allowed for unprecedented
control over structures with pronounced physical properties
in the quantum domain [1–4]. Many of the nanostructures
are interesting in their own right, as several long-standing
predictions have been probed directly [5–7]. However, with
the ability to use nanostructures as fundamental building
blocks, one can also construct complex heterostructure where
the emergent physics is richer than the sum of its constituent
parts. The advent of a significant array of experimentally
realizable low-dimensional structures, motivates renewed
efforts on the theoretical side to determine new avenues to be
pursued.

One such avenue is low-dimensional hybrid structures
involving gapless fermionic surface states, magnetic insula-
tors, and superconductors. These systems have received much
attention already both theoretically [8–11] and experimen-
tally [12–14], especially over the last decade, following the
discovery of metallic surface states in topological insula-
tors [15–17]. In search of Majorana fermions, suggested as
fundamental building blocks in topological quantum com-
puters, one-dimensional hybrid structures in particular have
been the subject of intense investigations [18–27]. For two-
dimensional systems, heterostructures of this type have been
investigated in the context of obtaining spin-polarized su-
percurrents with potential applications to superconducting
spintronics [28,29]. Furthermore, planar interfaces consist-
ing of, on the one hand, metals or metallic surface states
of topological insulators, and ferromagnetic or antiferromag-
netic insulators, on the other hand, have been studied in the
context of magnon-mediated unconventional superconductors
[30–36].

In many studies on low-dimensional hybrid systems, the
metallic states are mostly modeled using a well-defined
single-particle physics picture for the electrons that are prox-
imity coupled to other states in the heterostructure. On the
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other hand, it is well known that in one-dimensional sys-
tems, any amount of two-body scattering suffices to destroy
the one-to-one correspondence between the interacting and
noninteracting low-energy excitations. The resulting fixed
point, the Luttinger liquid [37,38], is one where low-energy
fermionic excitations of the on-interacting case are replaced
by well-defined bosons [39], describing collective density
fluctuations in the spin and charge sectors. In the context of
magnon-mediated unconventional superconductivity in low-
dimensional heterostructures, it is thus of some interest to
consider the fate of the superconducting state when it no
longer arises out of a Fermi liquid. Similar issues need to
be considered in the context of high-Tc superconductivity in
cuprate oxides [40,41]. In this paper, we therefore revisit the
question of if and how superconductivity arises when a one-
dimensional interacting fermion chain with gapless fermions
interacts with a one-dimensional chain of localized spins. We
employ simple lattice models for both components of the hy-
brid structure, and treat them using a multichannel Luttinger
liquid approach [42–47].

Microscopic model. To model the fermion chain, we use
the extended Hubbard (EHB) Hamiltonian, HEHB, which has
been extensively studied in one dimension [48–53]. In terms
of annihilation and creation operators c†

iσ and ciσ for electrons
on site i with spin σ , HEHB can be expressed as

HEHB = − t
∑
i,σ

c†
iσ ci+1,σ − μ

∑
i

ni

+ U
∑

i

ni↑ni↓ + V
∑

i

nini+1, (1)

where niσ = c†
iσ ciσ , ni = ni↑ + ni↓, t is the hopping amplitude

between adjacent sites, μ is the chemical potential, U is the
onsite interaction, and V is the interaction between electrons
situated on adjacent sites. The quantum spin operators Si =
(Sx

i , Sy
i , Sz

i ), satisfying the commutation relation [Sα
i , Sβ

i ] =
ih̄εαβγ Sγ

i , are used to describe the spin chain, modeled by the
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spin- 1
2 XX Hamiltonian, HFMI

HFMI = −Jxy

∑
i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)
, (2)

where Jxy is the ferromagnetic exchange coupling. The in-
terchain coupling, denoted Hint , is parametrized by J̄ , and is
given by

Hint = −2J̄
∑

i

(c†
i↑, c†

i↓)τ(ci↑, ci↓)T · Si, (3)

inspired by [35], where τ is a vector of the Pauli matrices, act-
ing on the electron spin degree of freedom. The Hamiltonian
for the entire system is H = HEHB + HFMI + Hint and thus
describes a one-dimensional Kondo lattice with additional
electron-electron and spin-spin interactions. Similar systems
have been considered within the Luttinger liquid framework
[54–57] and can be realized by coupling helical edge states
in topological insulators to spin impurities. Note that because
Jz is zero, H is not SU (2) symmetric. For convenience, we
employ natural units h̄ = 1 and use t as the unit of energy in
H .

For our purposes, the most suitable approach to the prob-
lem is to employ the Jordan-Wigner transformation [58], as
it allows a unified treatment of both chains. By introducing
S±

i = (Sx
i ± iSy

i ), and the spinless fermion operators d†
i , di,

the well-known mappings S±
i = d (†)

i e±iπ
∑i−1

n=1 d†
n dn and Sz

i =
d†

i di − 1
2 are established. By extracting the cubic terms from

Hint = H c
int + H ′

int, the string operator vanishes when inserting
the fermion operators into H ′

int and HFMI

HFMI = −Jxy

∑
i

d†
i di+1, (4)

H ′
int = −2J̄

∑
i

(c†
i↑ci↑ − c†

i↓ci↓)

(
d†

i di − 1

2

)
. (5)

From Eq. (5), it follows that J̄ acts as both the strength of
the chain coupling and as an effective magnetic field in the z
direction felt only by the metal chain. The latter is accounted
for by introducing a spin dependency in the chemical potential
μσ = μ − σ J̄ . Equation (4) shows that Jxy plays the role of a
hopping parameter in the spin chain. H c

int will be discussed
further in the next section.

All three species of fermions have the same kinetic struc-
ture. Their dispersion relations are εl (k) = −2tl cos(k) − μl ,
with l being the species index l = (↑,↓, S). From this,
one finds the Fermi momentum and Fermi velocity, kl

F =
arccos(−μl/(2tl )) and vl

F = 2tl sin(kl
F), respectively. The spin

chain has vS
F = 2Jxy and kS

F = π/2, physically corresponding
to the absence of any net magnetization in the z direction
arising due to terms in HFMI. kσ

F is dependent on μσ , such that
μ determines kF in the absence of any chain coupling, while J̄
controls the extent of the spin splitting.

Continuum limit field theory. To describe the low-energy
physics of our system, we use bosonization [59]. The low-
energy excitations are described by linearizing the spectrum of
the noninteracting case around the two Fermi points ±kl

F. An-
nihilation operators can then be written as cil = ∑

s ψsl (x =
ia) where ψsl (x) destroys a fermion of species l on the branch
s = ±. By extending the linearized spectrum to ±∞, using

a soft cutoff, and taking the continuum limit, the following
operator identity holds [39]

ψsl (x) = lim
α→0

Usl√
2πα

eir(kl
F−π/L)xe−i(sφl (x)−θl (x)). (6)

Here, Usl is a Klein factor which has the effect of ensuring
correct fermionic anticommutation relations and moreover of
raising or lowering the number of fermions in the system
[59], α is a cutoff ensuring finite bandwidth, and φ and θ are
bosonic fields. The details of the construction of φ and θ and
their explicit representation can be found in several reviews
on abelian bosonization [60–62], and will not be repeated
here. Due to the relations ∇φ(x) = −π (nR(x) + nL(x)) and
∇θ (x) = −π (nR(x) − nL(x)), φ and θ can be interpreted as
density and current fields, respectively.

For repulsive U , using renormalization-group theory one
finds that the backscattering term is irrelevant. The low-energy
physics of the model in the presence of a magnetic field
is then described by the Tomonaga-Luttinger (TL) model
[63]. For U < 0, the backscattering term is a priori relevant
and gaps the spin sector. In the presence of a sufficiently
strong magnetic field, backscattering is however suppressed.
This readmits a TL representation [64]. The absence of large
momentum transfers can be attributed to the Fermi momen-
tum mismatch between opposite-spin electrons δkF = k↓

F − k↑
F

with J̄ acting as an effective magnetic field. The same will
hold for the system we consider, especially since we will focus
on the parameter regime where J̄ , and thus also δkF, is large.
Furthermore, we use bosonic fields φS and θS associated to
the spin chain to represent S±

i [62]. It then follows that the
terms in H c

int are a product of two complex exponentials. The
first is a linear combination of slowly varying fields, while
the other is ei(δkF+nkS

F )x with n = 0, 2. Since δkF > 0, the latter
exponential oscillates rapidly. Thus, when integrating over the
length of the system, the cubic terms average to zero and may
be neglected.

By the preceding argument, it follows that only terms
quadratic in the fields remain in interactions between differ-
ent fermion species, as they have different Fermi momenta.
The same-spin interactions between nearest neighbors require
more care. In the weak-coupling regime they take the form
[65]

V
∑

i

ni+1,λni,λ =
∫

dx
1

π2
V

(
1 − cos

(
2kλ

Fa
))

(∇φλ(x))2,

(7)
where λ =↑,↓. In general we will avoid half-filling, and any
accidental Umklapp scattering in the metal chain arising if
either spin band is at half-filling is neglected. Because Jz = 0,
there is no Umklapp scattering in the spin chain either, yield-
ing a purely quadratic theory describing a TL liquid.

We next introduce in standard fashion bosonic fields
associated with the charge and spin densities in the TL liq-
uid originating with HEHB, niρ = (ni↑ + ni↓)/

√
2 and niσ =

(ni↑ − ni↓)/
√

2, respectively. This will also accentuate the
magnetic nature of the interchain coupling in Eq. (5). Em-
ploying the bases φ = (φρ, φσ , φS)T describing densities in
the three channels (ρ, σ, S) and θ = (θρ, θσ , θS)T describing
currents in the same three channels, one obtains from Eq. (7)
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the following expression for H :

H = 1

2π

∫
dx∂x(φT θT)

(
Vφ 0
0 Vθ

)
∂x

(
φ

θ

)
. (8)

The symmetric matrices Vφ and Vθ contain all microscopic
details of the model. Vθ is

Vθ =
⎛
⎝ v̄F δvF 0

δvF v̄F 0
0 0 vS

F

⎞
⎠, (9)

where v̄F ≡ (v↑
F + v

↓
F )/2 and δvF ≡ (v↑

F − v
↓
F )/2. The expres-

sion for Vφ is more complicated:

Vφ =

⎛
⎜⎝

v̄F + Uρ/π δvF + δV/π 0

δvF + δV/π v̄F − Uσ /π 2
√

2J̄
π

0 2
√

2J̄
π

vS
F

⎞
⎟⎠, (10)

with

Uρ = U + 4V − V ( cos(2k↑
F a) + cos(2k↓

F a)) (11a)

Uσ = U + V ( cos(2k↑
F a) + cos(2k↓

F a)) (11b)

δV = V ( cos(2k↓
F a) − cos(2k↑

F a)). (11c)

From Eqs. (9) and (10), the influence of the intrachain cou-
pling is seen to be twofold. Firstly, the effective magnetic
field J̄ destroys the spin-charge separation normally present
in the EHB model, since the coupling between the electron
spin and charge channels is nonzero. Secondly, J̄ also acts as
an interchannel coupling between the electron spin channel
and the channel describing the spin chain.

Multichannel Luttinger liquids and correlation functions.
From the relation [φl (x1), ∂xθm(x2)] = iδlmδ(x1 − x2)/π and
Eq. (8), the action of the system is obtained:

S[φ, θ] = 1

2π

∫
dxdτ (φT θT)

×
[(

0 I3

I3 0

)
i∂τ +

(
Vφ 0
0 Vθ

)
∂x

]
∂x

(
φ

θ

)
, (12)

where τ is imaginary time, I is the identity matrix, and
the differential operators inside the square bracket act to the
left.

Equation (12) describes the action of a multichannel
Luttinger liquid. Such systems are often considered when
introducing disorder to systems consisting of coupled quan-
tum wires [42,43]. We emphasize that our system differs
from these, in that we employ the multichannel Luttinger
liquid formalism to one-dimensional systems consisting of
both electrons and localized magnetic moments. In the setting
of coupled quantum wires, a method for mapping the case
of interchannel interactions, back to the well known case
of diagonal interaction matrices has been devised [44–46].
Introducing the matrix M with the properties MTVφM =
M−1VθM−T = u, where u is a diagonal matrix congruent to
both Vφ and Vθ . Introducing the transformed fields, φ̃ = M−1φ

and θ̃ = MTθ, the first term in Eq. (12) is left invariant, while

the second term is diagonalized:

S[φ̃, θ̃] = 1

2π

∫
dxdτ (φ̃

T
θ̃

T)

×
[(

0 I3

I3 0

)
i∂τ +

(
u 0
0 u

)
∂x

]
∂x

(
φ̃

θ̃

)
. (13)

M is constructed using the procedure presented in Ref. [47].
Similar approaches are used in Refs. [66,67] for the two-
channel case. The entries in u are the velocities of the three
types of collective excitations in the system. Since the relation
between (φ, θ) and (φ̃, θ̃) is known, calculating correlation
functions is effectuated by a change of basis and using
Eq. (13). To this end, we introduce the symmetric Luttinger
matrix K = MMT, which will play a role corresponding to
the Luttinger parameter for the single-channel case, i.e., the
entries are determined by the parameters of the model.

By using Eq. (13), it is straightforward to calculate corre-
lation functions in the form

I =
〈

exp

(
i
∑

i

AT
i φ(ri) + BT

i θ(ri)

)〉
. (14)

We refer to the Supplemental Material for details [68]. Here,
we have introduced the shorthand notation r = (x, τ ), and
the vector components Al

i and Bl
i are associated to φl (ri )

and θl (ri ), respectively. Assuming that τi = τ ∀ i, the cor-
relation function I in Eq. (14) is computed using the same
techniques as in the single-channel case outlined in Ref. [62].
It is found that I is only nonzero when

∑
l Mlm

∑
i Al

i = 0 and∑
l M−T

lm

∑
i Bl

i = 0. For A and B fulfilling this criterion, the
expression for I is

I =
(

α2

x2 + α2

)− 1
4

∑
l,l′

∑
i< j (A

l
i A

l′
j Kll′+Bl

i B
l′
j K−1

ll′ )

. (15)

The nonuniversal power-law decay, where the exponent is
dependent on the microscopic details contained in K , is a
hallmark of correlation functions in Luttinger liquids, and will
be used to determine the phase diagram of the electrons in the
system.

Due to the low dimensionality of the system, true long-
range order is precluded even at zero temperature, but
signature remnants of long-range orders can nonetheless be
investigated. Choosing an order parameter (OP) Oη(x, τ ),
with η denoting the type of order, the associated correlation
function Rη(x) = 〈Oη(x, 0)O†

η(0, 0)〉 ∝ x−νη may be studied,
where νη are nonuniversal exponents. The OP with the small-
est νη at zero temperature, corresponding to the most strongly
divergent susceptibility, will then identify the phase. The
phase diagram of the electrons in the metal chain is thus
determined by the interactions present in the system in that
they determine the various νη.

For repulsive interactions, it becomes favorable for the
electrons in the metal chain to enter either a charge density
wave (CDW) or a spin density wave (SDW) phase. For attrac-
tive interactions, the electrons pair up in either a singlet state
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FIG. 1. Phase diagrams in terms of the onsite interaction U and the interchain coupling J̄ . The colors indicate the order parameter which
decays the slowest; see main text for a description of the different order parameters. The Fermi velocity in the spin chain vS

F and the nearest-
neighbor interaction V vary in the three subfigures, while the Fermi momentum kFa = 0.45π is the same. The shaded area marks the region
where δkFa � 0.2, where the quadratic theory is invalid; see main text.

(SS), or a triplet state (TS). The different OPs are [62]

OCDW/SDWz (r) = ψ
†
R↑(r)ψL↑(r) ± ψ

†
R↓(r)ψL↓(r) (16a)

OSDWx/y (r) = ψ
†
R↑(r)ψL↓(r) ± ψ

†
R↓(r)ψL↑(r) (16b)

OTS↑/↓ (r) = ψ
†
R↑/↓(r)ψ†

L↑/↓(r) (16c)

OSS/TS0 (r) = ψ
†
R↑(r)ψ†

L↓(r) ± ψ
†
L↑(r)ψ†

R↓(r), (16d)

where the upper (lower) sign applies to the first (latter) OP
in each expression. Inserting the single-particle expression in
Eq. (6) into Eq. (16), and by using Eq. (15), the expressions
for Rη are found to be

RCDW/SDWz ∝ e2ik↑
F x

xK11+K22+K12
+ e2ik↓

F x

xK11+K22−K12
(17a)

RSDWx/y ∝ ei(k↑
F +k↓

F )x 1

xK11+K−1
22

(17b)

RTS↑/↓ ∝ 1

xK−1
11 +K−1

22 ±K−1
12

(17c)

RSS/TS0 ∝ eiδkF

xK−1
11 +K22

+ e−iδkF

xK−1
11 +K22

. (17d)

Note that although we are studying a three-channel system,
the above correlation function exponents are given exclusively
in terms of K11, K12, and K22. In general, the two OPs in each
expression Rη cannot be distinguished, with the polarized TS
being the exception as one can use the appropriate sign in
front of K12. This is easily understood for RSS/TS0 . With J̄ = 0,
V = 0, and U < 0 the system is gapped in the spin sector,
and the dominant phase is a SS. With an effective magnetic
field, the SS is converted into a FFLO state [69,70] with center
of mass momentum ±δkF [64,71,72]. In RCDW/SDWz one can
observe two distinct density waves, with wave numbers 2k↑

F

and 2k↓
F , each wave carrying net spin and charge. Finally, we

note that the density-density correlations have an additional
kF-independent term, which always exhibits Fermi liquid de-
cay with x−2, independent of the microscopic details.

Results and discussion. Figure 1 presents three phase di-
agrams for our model. The dominant phase is found by
calculating K for every set of microscopic parameters. The
smallest νη is subsequently determined using Eq. (17). This
identifies the dominant divergence and the most favorable
phase. The colors of the figures are associated with different
OPs. No divergent χ indicates that the Fermi liquid decay
in the density correlations dominates. The unstable region
indicates that one of the velocities in u is imaginary. This
may be indicative of a phase transition [66,73], sometimes
referred to as a Wentzel-Bardeen (WB) singularity [74,75].
When J̄ becomes the dominant interaction, it is possible that
the WB singularity arises because the system becomes phase
separated, as both chains are separated into regions with equal
polarization, similar to the t − J model [76]. The lightly
shaded region marks the area where δkFa is not large enough
to safely discard large momentum transfer terms. We choose
the value δkFa = 0.2 to bound this region. Since changing
the sign of J̄ is equivalent to flipping the quantization axis,
all OPs insensitive to this operation are symmetric with J̄ ,
while spin-polarized OPs are mapped to their spin-flipped
counterpart.

In Figs. 1(a) and 1(b), V = 0, hence the system is similar
to the Hubbard models studied in Refs. [63,64], with an addi-
tional channel due to the spin chain, resulting in a richer phase
diagram. Despite having a different Fermi velocity in the spin
chain, the two systems exhibit the same qualitative traits for
attractive U , with the preferred state being the FFLO state.
However, once |J̄| becomes large enough, the polarized TS is
preferred, with the sign of J̄ determining the polarization of
the state. Note that this occurs in regions where the quadratic
theory is valid. This transition can be understood as competing
electron pairing mechanisms. An attractive U favors onsite
pairing with opposite spin, but this pairing is suboptimal when
including interchain interactions. For large J̄ , the optimal
placing of the electrons is such that they are always adjacent
to a localized spin with the same spin polarization, avoiding
double occupancy of a site.
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The competing interactions can be further understood by
considering the properties of the Luttinger matrix K . While
the explicit expression for K in terms of the underlying
microscopic parameters rapidly becomes intractable as the
number of channels increases, the two-channel case has been
studied in detail [46,66] and provides valuable insight into
the physics of the present three-channel case. An important
property for two-channel systems is that density (current)
interchannel interactions are found to enhance (suppress) the
diagonal elements in K [45]. In the present three-channel
case, the charge channel does not couple to the spin chain,
so to a first approximation, we may consider the electron
spin-charge block and the spin-spin block as two distinct
two-channel systems, and use the insight derived for the two-
channel case [67] on each system separately. We emphasize
that our results for Ki j are obtained using the full interaction
matrices Vθ and Vφ . The spin-charge block describes a metal
chain subject to a magnetic field, and the density and current
interchannel interactions neutralize each other. However, in
the spin-spin block, since V 23

θ = 0, the density interaction in
V 23

φ enhances K22 (and K33) in a manner which is not canceled.
For some value of J̄ , the increase of K22 causes the TS to
be favored over the FFLO state in Figs. 1(a) and 1(b) for
U < 0. The sign of K−1

12 determines the spin polarization of
the TS.

The size of the envelope enclosing the stable part of the
phase diagrams in Fig. 1 increases with vS

F. This can be at-
tributed to one of the velocities in u turning imaginary. The
imaginary velocity is associated with a component of φ̃ and
θ̃ mainly comprised of the spin chain fermions. So for large
J̄ , near the unstable region, the spin chain is dominated by
the interchain interaction, as expected when J̄ � Jxy. While
Jxy is typically orders of magnitudes lower than the hopping
parameter, the systems in Figs. 1(a) and 1(c) can be mapped to
more realistic ranges of parameter values. Due to the congru-
ence relation KVφK = Vθ , scaling all entries in the interaction
matrices by a multiplicative factor yields the same K and thus
the same phase diagram. Considering a narrow bandwidth
model or a sparsely populated system with small kF would
thus yield the same phase diagrams in Fig. 1, with more
realistic parameters.

The SDWxy correlations are dominant in the repulsive sec-
tor of Fig. 1(b), except for U � J̄ . This area of the phase
diagram is expanded as the envelope size increases with vS

F
in Fig. 1(a), where the TS state is dominant also for larger
values of J̄/U . To elucidate how this occurs, we go beyond
the analytical results for the two-channel case and plot the
various matrix elements of K as a function of J̄ in Fig. 2. Some
properties are independent of other parameters: The (off-
)diagonal elements of both K and K−1 are (anti-)symmetric
in J̄ , K (K−1) increases (decreases) with J̄ , and the spin
channel is more strongly dependent on J̄ than the charge
channel. Fig. 2(a), describing the U = 0.1 line in Fig. 1(a),
demonstrates these features, as augmenting K11, diminishing
K−1

11 , and increasing |K−1
11 | cause the TS states to decay slower

than the SDW state, even for U > 0.
Figure 1(c) outlines the phase diagram of the EHB model

with V = 0.1. Comparing with the system in Fig. 1(a), the
additional repulsive interaction shifts the phase diagram to
the left. For smaller values of |U |, V also induces two dis-

−1 0 1
J̄

0.950

0.975

1.000

1.025

1.050

K

(a) U = 0.10, V = 0.00

−1 0 1
J̄

(b) U = −0.10, V = 0.10

K11

K22

K−1
11

K−1
22

1+K12

1+K−1
12

FIG. 2. Elements of the Luttinger matrix K as a function of the
interchain coupling J̄ . The interaction strengths U and V are different
in the two plots, while the parameters vS

F = 0.5 and kFa/π = 0.45
are the same. Only the matrix relevant for the electron correlation
function exponents are considered.

tinct CDWs, with wave numbers 2k↑
F and 2k↓

F , each wave
comprised of spin up or down electrons, respectively. The
wave comprised of electrons with spin aligned opposite to
the effective magnetic field is preferred for small J̄ , while
the parallel case is favored for larger J̄ . This transition oc-
curs as one of the spin bands approaches half-filling. Since
Umklapp scattering is not accounted for in our model, further
work is needed to understand the CDW transition. Further-
more, the quantity deciding which CDW is preferred, K12,
is plotted in Fig. 2(b), and exhibits small oscillations for
J̄ < 0.5, revealing that there is no large distinction between
the two CDW decay rates. We also note that V > 0 intro-
duces a region without any divergent response functions for
intermediate values of J̄ , since most diagonal entries in both
K and K−1 are larger than one in Fig. 2(b). Lastly, we again
observe that the spin-polarized TS is dominant close to the
unstable region, well inside the repulsive region of the phase
diagram.

Outlook. Our results indicate that spin-polarized triplet
correlations in a metal chain coupled to a spin chain persist
despite including repulsive interactions between electrons.
This suggests that fluctuations in the spin chain provide a
mechanism for superconductivity, as has been observed in
similar planar interfaces [31,35]. Our findings correspond well
with the results found when coupling a metal chain to acous-
tical phonons. Strong electron-phonon coupling may induce
superconductivity [77], particularly near the unstable region
of the phase diagram. The spin fluctuations, however, change
the spin structure of the electronic pairing compared to the
phonon case, since they couple to the spin channel of the
electrons. In similar systems where helical edge states in topo-
logical insulators are coupled to spin impurities, it has been
found that the coupling may cause Anderson localization of
the edge states, suppressing transport [55,78]. However, the
backscattering that drives such systems into these insulating
phases is absent in the system under consideration here due
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to the emergent effective magnetic field, leaving only the
conventional insulating phases.

The system presented here is modeled using a TL descrip-
tion. There are several effects one could consider in future
work, which would require an RG treatment. Among them
are systematically accounting for Umklapp scattering, using a
SU(2) symmetric model, or removing the effective magnetic
field by placing the metal chain between two spin chains.
However, the emergent physics in our relatively simple, one-

dimensional system still offers obvious parallels to magnon-
mediated superconductivity in heterostructures of higher
dimensions. Our main point is that we have demonstrated
that spin-electron coupling provides a mechanism for driving
superconducting instabilities even in non-Fermi liquids.
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