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SUMMARY

High secretion of the metabolites citrate and spermine is a unique hallmark for
normal prostate epithelial cells, and is reduced in aggressive prostate cancer. How-
ever, the identity of the genes controlling this biological process ismostly unknown.
In this study, we have created a gene signature of 150 genes connected to citrate
and spermine secretion in the prostate. We have computationally integrated meta-
bolicmeasurementswithmultiple transcriptomics datasets from the public domain,
including 3826 tissue samples from prostate and prostate cancer. The accuracy of
the signature is validatedby its unique enrichment in prostate samples and prostate
epithelial tissue compartments. The signature highlights genesAZGP1,ANPEP and
metallothioneinswithzinc-bindingpropertiesnotpreviously studied in theprostate,
and the expression of these genes are reduced in more aggressive cancer lesions.
However, the absence of signature enrichment in common prostate model systems
can make it challenging to study these genes mechanistically.

INTRODUCTION

A unique hallmark for normal prostate epithelial cells is their ability to secrete large amounts of the metab-

olite citrate. While cells from other human organs convert citrate to isocitrate for oxidation and energy

production in the TCA cycle, citrate conversion in the prostate epithelium is partly blocked, leading to

accumulation of citrate (Costello and Franklin, 2000). It has been reported that citrate/isocitrate ratios in

the prostate are 40/1, compared to 10/1 in other normal organs (Costello et al., 2000). In the prostate,

excess citrate is secreted out of the cell into the prostate lumen of the prostatic glands, where it is a major

constituent of the prostatic fluid and essential for normal prostate organ function.

Almost all types of prostate cancer originate from prostate epithelial cells, and nearly all prostate cancer

cells lose their ability to secrete citrate during the development of malignant phenotypes (Costello and

Franklin, 2000). A reduced level of citrate has therefore been suggested as a biomarker, both for cancer

detection and for identification of cancers with more aggressive phenotypes (Braadland et al., 2018; Cost-

ello et al., 1999; Giskeodegard et al., 2013). Even with these demonstrations of importance for normal pros-

tate function and prostate cancer progression, the research in this field has been markedly neglected, and

thus the molecular mechanisms controlling these functions remain mostly unknown. Nevertheless, a few

dedicated research groups have managed to gain some insights: First, high mitochondrial levels of zinc

in the prostate block citrate conversion, and the regulation of zinc transporter genes in particular ZIP1

(SLC39A1), have been suggested to play a role in regulating prostate zinc levels (Costello and Franklin,

2016; Kolenko et al., 2013). Second, the metabolite aspartate is a possible source of increased citrate in

prostate cells (Costello et al., 1988; Franklin and Costello, 1984). Aspartate is a precursor for oxaloacetate,

which again is a precursor of citrate synthesis and works as a carrier of the carbon groups oxidized stepwise

in the mitochondria during the TCA cycle. Increased levels of aspartate could thus lead to increased levels

of citrate when the citrate/isocitrate conversion is blocked. Third, metabolites synthesized in the polyamine

pathway are regulated differently in the prostate (Bettuzzi et al., 2000; Rhodes et al., 2002; Tessem et al.,

2016). Some interest has been directed to the polyamine spermine because of its extremely high correla-

tion with citrate (Lynch and Nicholson, 1997). Spermine and citrate have opposite polarity, and it has been

speculated as to whether they may form a complex which is secreted into the prostate lumen (Cheng et al.,

2001; Lynch and Nicholson, 1997).
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These presented mechanisms, though intriguing, represent only small steps on the way to a widened

perspective of this unique prostate function which is not completely understood. This includes the genes

and proteins involved, as well as the connections between them. Most mechanisms suggested so far have

been studied in cell-lines and animal models, which are not able to fully capture the complex interplay

within human prostate tissue. However, a large amount of genome-wide –omics data on prostate tissue,

as well as their model systems, has accumulated since the introduction of the genomic era more than 20

years ago. These data resources have yet to be fully exploited for research on citrate and spermine secre-

tion in the prostate. In this study we address this hallmark property of the prostate by performing extensive

bioinformatic analysis on data resources from the public domain. We do this by first creating and a robust

gene signature representing citrate and spermine secretion in the prostate. We then explore and validate

this gene signature in multiple datasets, cohorts and public resources. In total we analyzed 31 datasets

(Aryee et al., 2013; Aytes et al., 2014; Berglund et al., 2018; Bertilsson et al., 2012; Blattner et al., 2017;

Cai et al., 2013; Chandran et al., 2007; Erho et al., 2013; Ghandi et al., 2019; Hsu et al., 2010; Jia et al.,

2011; Klijn et al., 2015; Kuner et al., 2013; Lizio et al., 2019; Lizio et al., 2015; Mortensen et al., 2015; Penney

et al., 2015; Poisson et al., 2012; Prensner et al., 2011; Richards et al., 2019; Ross-Adams et al., 2015; Sboner

et al., 2010; Sogaard et al., 2018; Taylor et al., 2010; Tomlins et al., 2007; Wang et al., 2010; Yu et al., 2004;

Zhang et al., 2017a, see also Key resources table) with 18,020 samples, of which 3826 were prostate samples

including normal/normal-adjacent (epithelium and stroma) tissue, high/low-grade cancer tissue, metasta-

tic samples and model systems. Our study identifies genes strongly associated with citrate and spermine

secretion in the prostate and explores their behavior during cancer progression and in model systems. Our

results validate previously suggested mechanisms, but also discover new central genes and mechanisms

related to citrate and spermine with potential importance for this unique and intriguing prostate hallmark.
RESULTS

All datasets used in this study are listed in Key resources table. It includes dataset ID and abbreviation used

in the main text, sample description, dataset accession and references.
Metabolite concentrations between citrate and spermine are highly correlated across tissue

samples

Our research group has previously generated a dataset with 129 normal and cancer tissue samples from the

prostate, where concentrations from 23 metabolites and the expression of 14,161 unique genes were

measured on the exact same samples (Bertilsson, dataset ID 1). Similar to a previous report (Tessem

et al., 2016), we observed a strong correlation (r = 0.95) between concentrations of the metabolites citrate

and spermine across the samples (Figures 1A and 1B). To simplify calculations, we will use the average cit-

rate-spermine concentration profile for calculations throughout the rest of this study (Figure 1C).
A gene signature associated with the citrate-spermine concentrations is validated in 12

datasets of prostate cancer and normal samples

We identified genes associated with citrate-spermine levels in the prostate by calculating the Pearson

correlations between the citrate-spermine concentration profile and each of the 14,161 unique genes

measured in Bertilsson (dataset ID 1). The correlation analyses were performed on the 95 cancer samples

in the dataset. We selected the 150 genes with the highest positive correlation to citrate-spermine concen-

tration, which we termed the initial gene module. We further assessed the integrity of this gene module by

creating a Correlation Module Score (CMS, see STARMethods) where a high CMSmeans that strong intra-

correlation is present between the genes in the module, resulting in a high module integrity. On the

contrary, a low CMS indicates that there is low correlation between the genes in the module, and that

the module integrity is lost. Moreover, if the gene module has a significantly high CMS in a dataset, it in-

dicates that the biological process(es) which this module represents is functionally active for the samples in

this dataset. For the gene modules studied here the biological process would be citrate-spermine

secretion.

To test for significance, we generated 100 randomCMSs by shuffling the citrate-sperminemetabolite levels

between the respective samples in Bertilsson (dataset ID 1). The resulting CMS was statistically significant

when compared to CMSs from random gene modules (CMS = 0.34, p = 0.007, lognormal distribution)

(Figure 2A).
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Figure 1. Correlations between metabolites citrate and spermine

(A) Correlations between all 23 metabolite measurements across 129 prostate normal and cancer samples from the

Bertilsson dataset (Dataset ID 1). The correlation is particularly strong for metabolites citrate and spermine.

(B) Correlations between citrate and spermine across 129 prostate normal and cancer samples from Bertilsson. The

correlation is high also when extreme values are excluded (highlighted inside the green boundary).

(C) Similarity between the citrate, spermine and the average citrate-spermine metabolite profiles across 129 prostate

normal and cancer samples from Bertilsson.
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We then validated whether the integrity of the initial gene module was significantly preserved in gene

expression data from 11 additional datasets (dataset ID 2–12), including a total of 2638 tissue samples

from normal prostate and prostate cancer (see Key resources table). We calculated and compared the

CMSs for the initial module, as well as the 100 random modules in all 11 datasets. The CMS from the initial

gene module was significant in all 11 cancer datasets, and 7 out of 8 datasets with normal samples

(lognormal test) (Figure 2B, Tables S1 and S2). We thus defined the initial module as our initial gene signa-

ture associated with citrate-spermine concentrations in the prostate. We used this initial citrate-spermine

gene signature (abbreviated to the CS gene signature) as a starting point for further refinement.

We also performed the above procedure using the 40 normal samples in Bertilsson, however the resulting

gene module was not significant (CMS = 0.37, p = 0.14, lognormal distribution), and could not be validated

in any of the additional datasets (Figure S1, Tables S3 and S4). The reason for this is probably because of an

insufficient number of normal samples in Bertilsson to perform a robust correlation analysis.

Refinement across 12 datasets produces a citrate-spermine gene signature with improved

integrity

Corresponding gene expression andmetabolite measurements are available only for Bertilsson (dataset ID

1). We thus implemented a bioinformatics strategy to identify a refined CS gene signature with improved

integrity across all 12 datasets (2794 samples). We used the initial CS signature from Bertilsson as a starting

point, and then used results from cancer samples across the other 11 datasets to nominate better gene can-

didates to replace genes from the initial CS signature (see STAR Methods). When evaluating the new top

150 candidate genes, we found that 74 of the 150 genes in the initial CS signature had been replaced by

new genes to improve integrity across all datasets (Figure 2C). Of note, the refined CS signature improved

CMS for in both cancer and normal samples in all 11 additional datasets. This consistent improvement in

normal samples (including normal samples from Bertilsson) affirms the relevance of the signature because

these samples were not used to generate or refine the CS signature. In addition, only a marginal reduction

in CMSwas observed for the cancer samples in Bertilsson (Figure 2D). We thus conclude that the refined CS
iScience 25, 104451, June 17, 2022 3
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Figure 2. Integrity of initial and refined citrate – spermine (CS) gene signatures

(A) CMS (Correlation Module Scores) for the 150 genes most positively correlated with the CS metabolite profile for

cancer samples in the Bertilsson dataset (Dataset ID 1). The CMS for was statistically significant when compared to CMSs

using random metabolite profiles (lognorm test) (B) CMS for the initial cancer CS gene module from Bertilsson (red dots)

evaluated in prostate cancer (red circles) and normal (blue circles) samples from 11 additional datasets. The CMS was

statistically significant in all datasets (lognorm test, Tables S1 and S2).

(C) Fraction of new genes in the refined CS gene signature that replaced genes in the initial CS gene signature. The genes

is sorted by importance (rank) on the bottom axis. Of the 150 top ranked genes in the initial CS signature, 74 were

replaced in the refined CS signature.

(D) Increase in CMS after refinement of the initial CS signature for prostate normal and cancer samples in 11 datasets. The

CMS increased in the normal samples, even though the normal samples were not used to create or refine the signature.

Cohort ID 4, 5 and 8 did not include normal samples. See also Figure S1 and Tables S1–S4.
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signature (referred to as the CS signature from now) represents a more robust signature with improved

integrity compared to the initial CS signature.
The citrate-spermine signature displays unique enrichment in prostate samples and negative

correlation to stromal tissue compartments

Having established a CS signature of 150 genes associated with citrate and spermine secretion in the pre-

vious sections, we expanded our validation to additional datasets and sample types. For this analysis we

used single samples Gene Set Enrichment Analysis (ssGSEA) (Markert et al., 2011), which is a method

used to assess whether a specific gene signature is enriched or depleted in a single sample. Because citrate

and spermine secretion is a highly specific function associated with prostate epithelium, higher ssGSEA

scores in tissue samples from prostate compared to samples from other tissue types would confirm its func-

tional relevance. Further, because prostate cancer samples are a heterogeneous tissue mixture of normal
4 iScience 25, 104451, June 17, 2022
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Figure 3. Validation of citrate – spermine (CS) gene signature

(A) CS signature ssGSEA scores for 11,093 cancer and normal samples in 33 tumor types from the TCGA-complete

dataset. We have used standard TCGA cancer type abbreviations [https://gdc.cancer.gov/resources-tcga-users/tcga-

code-tables/tcga-study-abbreviations] where PRAD is the abbreviation for prostate cancer.

(B) CS signature ssGSEA scores for 53 averaged human normal tissue profiles from the GTex dataset.

(C) CS ssGSEA signature scores for 1829 human cell-line and tissue samples, including one prostate adult tissue sample,

from the FANTOM dataset.

(D) Correlations between CS signature and stroma signature ssGSEA scores for cancer and normal samples in prostate

cancer tissue datasets 1–12. The negative correlations in the normal samples are stronger due to less confounding from

cancer tissue. Data from Mortensen (dataset ID 9) contains laser dissected prostate normal epithelium and cancer, which

probably lack significant amounts of stroma.

(E) CS signature ssGSEA scores on spatial transcriptomics data from tissue slice 3.2 in Berglund (dataset ID 20). The

colorbar indicates enrichment of the ssGSEA score in each pixel. The corresponding pathological tissue image can be

found for image 3.2 in Supplementary Information –Figure S1B from Berglund et al. (Berglund et al., 2018), and

comparison shows a strong overlap of high and low CS signature scores with epithelial/lumen and stroma tissue

compartments, respectively. Results from all 12 images in Berglund are shown in Figure S2.
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prostate epithelium, cancer and stroma, ssGSEA scores should be inversely proportional to the content of

stroma tissue in the samples because stromal cells are unable to secrete citrate or spermine.

We first compared ssGSEA scores for cancer and normal samples in the prostate specific TCGA dataset

(dataset ID 5) to all cancer and normal samples profiled in the TCGA-complete resource (11,093 samples

from 33 cancer types, dataset ID 21). We observed strongly elevated ssGSEA scores for both prostate can-

cer and normal samples compared to cancer and normal tissues from other tissues (Figure 3A). We also

tested the CS signature on average expression profiles for 53 normal tissues from theGTEx portal (dataset
iScience 25, 104451, June 17, 2022 5

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations


ll
OPEN ACCESS

iScience
Article
ID 22) (Figure 3B) and 1829 CAGE expression profiles from cell-lines and tissues in the FANTOM Con-

sortium (dataset ID 23) (Figure 3C) where one tissue profile was from adult normal prostate. In both data-

sets, normal prostate tissue showed the highest ssGSEA scores.

We next correlated the CS signature ssGSEA scores to a previously identified gene signature for stroma

content in prostate tissue (Rye et al., 2018) in datasets 1–12. We observed a strong reverse correlation

between CS and stroma signatures for normal samples in all datasets (Figure 3D) (with an exception

for Mortensen (dataset ID 9) which contained laser dissected epithelium/cancer with minimal amounts

of stroma). The correlation was weaker in cancer samples. This is expected because prostate cancers

vary in their ability to secrete citrate and spermine. The negative association between CS signature

and stroma was also confirmed using spatial transcriptomics data from Berglund (dataset ID 20), where

pixels with high and low ssGSEA scores overlaid regions with epithelium/lumen and stroma respectively

(Figures 3E and S2).

In summary, the CS signature shows strong associations with expected properties of the prostate epithe-

lium, which strengthens the biologically validity of the genes in the signature.
The citrate-spermine gene signature is gradually lost from normal samples through low

grade, high grade and metastatic lesions

Having established the relevance of the CS signature to prostate citrate and spermine secretion, we next

investigated how this signature associates with the various stages of prostate cancer aggressiveness. Low

citrate concentrations have previously been associated with high-grade prostate cancer (Giskeodegard

et al., 2013). We identified nine datasets (1779 prostate cancer samples) where cancer samples had been

classified as either high-grade or low-grade, or assigned a Gleason score - the standard form of prostate

cancer grading. We found significant changes in CS signature ssGSEA scores between high- and low-grade

cancers in all eight datasets where samples where Gleason score 4 + 3 was classified as high-grade (613

high and 737 low-grade samples), and six out of eight datasets where samples with Gleason score 4 + 3

was classified as low-grade (578 high- and 1258 low-grade samples) (Figure 4A, Table 1). The reduction

in CS signature scores was not due to increased tumor fraction in high-grade samples (shown in Table 1.

These results support the previous findings and suggest that the changes previously observed for citrate

at metabolite level are accompanied by changes in gene expression. A further significant reduction in

CS signature scores were observed in metastatic compared to cancer and normal samples in 8 datasets

(157 metastatic samples) (Figure 4B and Table 2). Note that the lower CS-signature scores in normal sam-

ples compared to cancer samples is due to the high level of stromal tissue in normal prostate samples

(Franklin and Costello, 1984; Rye et al., 2018) (Figure S3). Overall, our results indicate that the genes asso-

ciated with citrate and spermine secretion is upregulated in the normal epithelium, and then gradually

downregulated with tumor progression from early low-grade lesions, through high-grade cancers and

finally metastatic tumors. This trajectory is nicely illustrated by the results from Tomlins (dataset ID 18) (Fig-

ure 4C), where laser dissection has been used to purify stroma, normal epithelium, Prostate Intreapeithelial

Neoplasia (PIN, an early pre-cancerous prostate lesion) cancer and metastatic tissues. In line with this

trajectory, the PIN lesions show an average CS signature score level between the levels of normal epithe-

lium and cancer. Though the ability of cells to secret citrate and spermine seems to be lost in metastatic

samples, metastatic tissue from prostate cancer still contains traces of the CS gene profile compared to

metastatic tissue originating from other organs (Hsu, dataset ID 19) (Figure 4D).
Citrate-spermine signature genes are enriched for genes with zinc-binding, mitochondrial

and secretory functions

Gene Ontology analysis anchored the genes in the CS gene signature to the citrate secretory pathways

from mitochondria towards the cell exterior via the ER and golgi. The analysis also highlighted several

genes related to zinc-binding, in particular several metallothionines, and a role of branched chain fatty

acid catabolism in upholding the normal prostate secretory function.

When examining gene functions on gene-by-gene basis using the NCBI-gene resource [https://www.ncbi.

nlm.nih.gov/gene] (Table S5) we found that several genes in the CS signature were related to zinc-binding.

Among these, six were Metallothioneins (MT1G, MT1M, MT1F, MT1X, MT1E and MT2A), one zinc-trans-

porter (SLC39A10) and the two genes AZGP1 (alpha-2-glycoprotein 1, zinc-binding) and ANPEP (alanyl
6 iScience 25, 104451, June 17, 2022

https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/gene


A C

B D

Figure 4. Citrate – spermine (CS) signature, tumor grade and metastasis

(A) CS signature ssGSEA scores for high-grade (Gleason higher or equal to 4 + 3) and low-grade (Gleason less than or

equal to 3 + 4) cancers in 9 datasets. The samples compared correspond to the HG1 and LG1 groups in Table 1. The scores

were centered in each cohort before plotting to visualize similarities between datasets better. See also Table S7B.

(B) CS signature ssGSEA scores for metastatic, cancer and normal samples in 7 datasets. The scores were centered and

normalized to range 0-1 before plotting to visualize similarities between datasets better. The low scores in normal

samples is due to the higher content of stroma in normal samples (see Figure S3).

(C) CS signature ssGSEA scores from five laser dissected prostate and prostate cancer tissue types from Tomlins (datasets

Id 18). The GSEA scores illustrate the loss in CS secretion from normal epithelium through PIN, Cancer and finally

Metastasis. The CS signature scores from metastatic samples are comparable to the non-secreting stroma tissue.

(D) CS signature ssGSEA scores in 96 metastatic samples (9 from prostate and 87 from other organs) from the Hsu (dataset

ID 19). Metastatic samples from prostate origin are more enriched for the CS signature than metastatic samples

originating from other sites.
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aminopeptidase, membrane), the latter containing a consensus sequence known from zinc-binding

metalloproteinases.

We then used DAVID (Huang da et al., 2009a; b) and Enrichr (Chen et al., 2013; Kuleshov et al., 2016) to

perform Gene Ontology (GO) analysis on the CS signature (Figures S4 and S5). For both GO tools the

most significant terms were related to zinc/metal-ion binding and branched chain amino acid (Leucine,

Isoleucine and Valine) degradation. When inspecting the CS signature genes at NCBI, we noticed that

many genes did not have any associated functional description, while at the same time having high pros-

tate specific expression. A potential challenge for our GO analysis is that the prostate specific function of

many of the genes in our CS signature is not known. We therefore applied GAPGOM, an alternative GO

analysis tool where each gene is associated with functions based on consensus ontology terms for genes

it is correlated with (Ehsani and Drablos, 2018) (STAR Methods and Table S6). This analysis revealed strong

gene ontology terms related to mitochondria, ER (endoplasmic reticulum), golgi, lysosome and exosome

cellular components, which would fit well with a secretory path of citrate. When we performed Principal

Component Analysis (PCA) to group genes according to their GO terms (see STARMethods), the six metal-

lothioneins formed a distinct cluster related strongly to zinc/metal-ion binding (Figure 5A and Table S6). In

addition, themetallothioneins also showed strong associations with the mitochondrial respiratory complex

and electron transport chain.

We also performed network analysis on the 150 genes in the CS signature (Figure S6), where the genes

(ALOX15B, RAB27A, ENDOD1, SLC45A3, NCAPD3, EHHADH, ACAD8, AFF3, NANS and YIPF1) were identi-

fied as the top 10 hubs in the network. These hub-genes were all ranked among the top 20 in the CS-signature

and had significant GO terms associated with branched chain fatty acid catabolism/degradation. Finally, we
iScience 25, 104451, June 17, 2022 7



Table 1. p-values from differential CS signature ssGSEA score analysis between high grade (HG) and low grade (LG) cancer samples in 9 datasets

Dataset ID

Dataset

abbreviation

Number of

HG1 samples

Number of

LG1 samples

Number of

HG2 samples

Number of

LG2 samples

p-value

HG1 vs LG1

p-value HG2

vs LG2

Correlation to

tumor content

1 Bertilsson 56 60 36 80 4.7e-10 3.6e-5 �0.13

2 Chen 15 50 11 54 0.0040 0.0011 0.14

3 Taylor 36 94 15 115 0.015 0.010 NA

4 Sboner 119 162 81 200 3.7e-7 1.7e-4 �0.30

5 Erho NA NA 211 334 NA 0.060 NA

6 TCGA 296 200 200 296 2.5e-10 5.3e-13 �0.04

7 CMBR 30 82 9 103 0.014 0.09 0.11

8 STCK 34 57 15 76 0.021 0.007 NA

12 Kuner 27 32 NA NA 0.021 NA NA

Two comparisons aremade: First HG1 vs LG1, where HG1 is classified as samples with Gleason score 4 + 3 or higher, and LG1 as samples with Gleason score 3 + 4

or lower. Second HG2 vs LG2, where HG2 is classified as samples with Gleason score 8 or higher, and LG2 as samples with Gleason score 7 or lower. The cor-

relation of CS signature GSEA score to tumor content is also includedwhen available, and show, in general, that decreasedCS scores in high-grade samples is not

due to increased tumor content in these samples.
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compared CS signature ssGSEA scores with cell-types specific gene signatures from a single-cell RNA-Seq

study on normal prostate tissue (Henry et al., 2018). TheCS signature scores showedhigh correlationwith pros-

tate luminal cells (the cells mainly responsible for secretion), but not basal cells, and a negative correlation to

stromal fibroblasts and smooth muscle cells (Figure 5B). Moreover, the luminal gene signature also included

several of the metallothionein genes, corroborating the potential importance of these genes.

To investigate whether the target genes changed with cancer development, we performed a differential

expression analysis between high- and low-grade cancer samples for all 9 datasets from Figure 4A. In

particular, the zinc-binding genes (all six metallothioneins, AZGP1 and ANPEP) showed consistent down-

regulation in high-grade cancer (Table S7). We also observed consistent downregulation in 9 of the 10

network HUB genes. This supports a role for these genes during cancer progression. We did not observe

downregulation of the zinc-transporter SLC39A10.
The citrate-spermine signature is depleted in prostate model systems

To reveal detailed function of the genes highlighted in the previous section will need further wetlab exper-

iments. We therefore wanted to identify suitable model-systems where the possible role of these genes

and their mechanisms could be further studied. Unfortunately, we found the identification of model sys-

tems to be a challenge.

We tested the CS signature on publicly available gene expression datasets from various model systems for

prostate cancer using ssGSEA. In the Prensner (dataset ID 10), 58 expression profiles from cell-lines were

analyzed together with tissue and metastatic samples, including the four most common prostate cancer

cell-lines PC3, DU145, LNCaP, VCaP, and the normal prostate cell lines RWPE and PrEC. This unique collec-

tion of sample types makes the Prensner dataset an excellent reference for comparisons.

CS signature ssGSEA scores from the Prensner cell-lines were consistently at the low end, compared to

both tissue and metastatic samples (Figure 6A), indicating that cell-lines derived from prostate do not

secrete citrate and spermine. This observation was confirmed in Taylor (dataset ID 3), which also contained

four cell-line samples (Figure S7). When comparing different cell-lines, androgen responsive cell-lines

(LNCaP and VCaP) generally have higher CS signature ssGSEA scores then androgen resistant (DU145

and PC3) cell-lines (Figure 6B). The overall highest CS scoring cell-line is MDA-Pca-2b (an androgen

responsive cancer cell-line). Interestingly, normal prostate cell-lines (RWPE and PrEC) do not score higher

than the cancer cell-lines. The relative differences in CS ssGSEA scores between the different cell-lines

were highly stable, which was confirmed when assessing additional cell-line samples in CCLE (Cancer

Cell Line Encyclopedia, dataset ID 24) (Figure 6C), Søgaard (Dataset ID 26) andE-MTAB-2706 (dataset ID

25) (Figures S8 and S9, respectively). In addition, results from cohort CCLE and E-MTAB-2706 reveal that
8 iScience 25, 104451, June 17, 2022



Table 2. p-values from comparing CS signature ssGSEA scores from metastatic prostate cancer samples to cancer and normal samples and in 8

datasets

Dataset ID

Dataset

abbreviation

Number ofmetastatic

samples

Number of cancer

samples

Number of normal

samples

p-value

metastatic

vs cancer

p-value

metastatic

vs normal

3 Taylor 19 131 29 7.4e-15 2.8e-7

10 Prensner 12 78 38 3.4e-11 2.9e-10

13 Aryee 18 NA 21 NA 0.024

14 Chandran 25 65 81 8.8e-6 6.9e-6

15 Cai 29 22 NA 5.8e-13 NA

16 Poisson 13 12 16 1.5e-4 0.09

17 Monzon 21 10 NA 7.4e-11 NA

18 Tomlins 20 32 27 0.007 1.2e-10
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androgen resistant prostate cancer cell-lines (DU145 and PC3) do not separate from cell-lines of other can-

cer origin in terms of CS signature GSEA scores (Figures 6C and S8).

To enable the comparison of ssGSEA scores between datasets, we implemented a method to adapt

ssGSEA scores from different datasets to the Prensner dataset (see STAR Methods). To demonstrate the

utility of this implementation, we first adapted the CS ssGSEA scores from Taylor to Prensner because

both datasets included tissue samples (normal and cancer), metastatic samples as well as cell-lines. The

CS ssGSEA scores where highly concordant down to the level of different cell-types between the two co-

horts after adaptation (Figure S10). We then used the adaptation strategy to compare datasets from orga-

noids and mouse models (dataset IDs 27–31) to the Prensner dataset to investigate whether they would

resemble tissue or cell-lines. None of the model-systems analyzed seemed to produce CS ssGSEA scores

at levels similar to prostate epithelial tissue or low-grade primary cancer tissue. Instead their CS scoring

range typically compare to the cell-lines from Prensner (Figure 6D). Overall, these results call attention

to the research challenge for current prostate model systems to recapitulate the function of normal pros-

tate epithelium in terms of citrate and spermine secretion.
DISCUSSION

Expanding the view of zinc-binding proteins and zinc-transporters in the prostate

Six metallothioneins were identified as part of the CS gene signature in this study and constituted a func-

tionally distinct cluster particularly associated with zinc-binding. Metallothioneins are low molecular

weight, metal binding proteins localized to the Golgi, and have different expression in normal prostate

and prostate cancer (Garrett et al., 2000; Si and Lang, 2018). In addition, expression levels can change in

response to zinc-stimuli in prostate cell-lines (Lin et al., 2009). It has also been speculated that metallothio-

neins can affect mitochondrial function because they are small enough to enter the mitochondrial

membrane bilayer carrying zinc (Franklin et al., 2005). This suggestion fits with the GO associations of met-

allothioneins to mitochondria, respiratory complex and the electron transport chain. Otherwise, the other

potential zinc-binding genes discovered in this study have not been studied previously in the context of

citrate accumulation and secretion in the prostate.

The zinc-transporter SLC39A1 (ZIP1) was not a part of the CS-signature, though this gene has previously

been shown to be important for zinc-homeostasis in prostate cells. There could be several reasons for

this discrepancy. First, this study only measures genes at the transcript level, while it is possible that

SLC39A1 is regulated at the protein level (Costello and Franklin, 2016). However, expression levels from

genes displayed in NCBI-gene resource demonstrate that SLC39A1 is not prostate specific, but expressed

in most tissues. Though SLC39A1 has the ability to transport zinc within prostate tissue, it may not be the

main determinant of prostate specific zinc regulation in vivo. In this context is should also be noted that

none of the metallothioneins displayed prostate specific expression in the NCBI-gene database. Of the

zinc transporters, most prostate specific expression is observed for SLC39A2, SLC39A6, SLC39A7 and

SLC39A10, where SLC39A10 was part of the CS signature. SLC39A6 and SLC39A7 (though not part of

the signature) were also positively correlated with citrate in our analysis whereas SCL39A1 and SLC39A2
iScience 25, 104451, June 17, 2022 9
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Figure 5. Genes and ontologies

(A) Principal Component Analysis (PCA) for Gene Ontology terms associated with CS signature genes. The GO terms are

based on a consensus analysis over datasets 1–12 (see STAR Methods). The only observable cluster is formed by the six

Metallothioneins from the CS signature.

(B) Correlation of ssGSEA signature with four gene signatures from distinct cell types in a single cell sequencing dataset

(basal and luminal from the prostate epithelium, fibroblasts and smooth muscle cells from stroma) (Henry et al., 2018) in 9

datasets with normal prostate samples. The CS gene signature correlates with luminal epithelial cells (the cell-type mainly

responsible for secreting citrate and spermine) whereas the correlation to stroma tissue types is negative. Dataset 9 is

from laser dissected epithelium, which lack stroma tissue. See also Figure S4–S6 and Tables S5–S7.
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showed no correlation. Of the potential zinc-binders, AZGP1 demonstrate the most prostate-biased

expression, but the function of this gene is unknown. In contrast to ANPEP,AZGP1, the six metallothioneins

and the network HUB genes, only one of the zinc-transporters (SLC39A1 - upregulated) showed any consis-

tent differential expression between high- and low-grade cancer samples. Overall, more targeted research

experiments are needed to identify the genes that control zinc-levels in the prostate, and how they perform

their function.

Previous studies have shown that prostate epithelial cells can utilize glucose and aspartate as the carbon

sources for citrate production. The gene GOT2 (glutamic-oxaloacetic transaminase 2, also named mAAT-

mitochondrial aspartate aminotransferase in previous reports) was shown to be responsible for the conver-

sion of aspartate to oxaloacetate and citrate in the mitochondria. GOT2 was a part of the CS signature, in

addition to SMS (spermine synthase), and both GOT2 and SMS showed high tissue-expression in prostate

according to NCBI-Gene. For these two genes our results fit with previous mechanistic knowledge (Cost-

ello et al., 1988; Juang et al., 1995).

Very little is known about the role of branched chain amino acid catabolism for normal prostate function. All

of the three amino acids leucine, isoleucine and valine are upregulated in prostate cancer (Tessem et al.,

2016), indicating their relevance for cancer transformation, and this fits with our finding that the degrada-

tion of these amino acids is important to maintain normal prostate function. Branched chain amino acids

can possibly work as precursors for citrate production (Zhang et al., 2017b), and leucine can act as a sensor

for mTOR-pathway activation (Ananieva and Wilkinson, 2018), which is generally regarded as an important

pathway in prostate cancer development (Edlind and Hsieh, 2014).
Expression of citrate-spermine signature genes are with prostate cancer progression

There has been a discussion on whether the reduced citrate levels observed in prostate cancer are merely a

result of a reduction in luminal glands leading to reduced amounts of prostatic fluid (Tayari et al., 2017). How-

ever, our results clearly indicate that changes in citrate and spermine levels are accompaniedby changes at the
10 iScience 25, 104451, June 17, 2022



A C

DB

Figure 6. Model systems

(A) CS signature ssGSEA scores for all sample types in Prensner (dataset ID 10), including 58 prostate normal and cancer

cell-line samples. Cell-line samples, in general, have very low CS signatures scores.

(B) Average CS signature ssGSEA scores for different cell-types in Prensner. The ssGSEA scores were highly reproducable

within samples from the same cell-type. Androgen responsive cell-types (MDA-Pca-2b, LNCaP and VCaP) have somewhat

higher ssGSEA scores than androgen resistant cell-types (DU145 and PC3). Prostate normal cell-types are similar to

cancer cell-types. Number of samples of each cell-type are: MDA-Pca-2b (1), DU145(10), PC3(2), LNCaP(7), VCaP(10),

RWPE(9), PrEC(4).

(C) CS signature ssGSEA scores in 1019 cancer cell-types fromCCLE (dataset ID 24). Androgen responsive prostate cancer

cell-types score higher than cancer cell-types from other cancers whereas androgen resistant cell-lines score similar to

cell-types from other cancers.

(D) CS Signature ssGSEA scores in four datasets with prostate and prostate cancer derived organoids and model systems

(dataset IDs 27–30) and one dataset with prostate tumors from mouse models (Aytes, dataset ID 31). The ssGSEA scores

were adapted and normalized to CS signature GSEA scores from Prensner. All model systems have consistently low GSEA

scores, similar to prostate cancer cell-lines. In total 64 model system samples and 384 mouse tumor samples were

analyzed. Dataset descriptions: 27: 2D and 3D cultures derived from prostate cancer cell-line LNCaP (9 samples) and

normal cell-line RWPE (9 samples), in total 18 samples. 28: Organoids from primary prostate epithelial cells in mono and

co-culture with stromal cells (7 samples), stromal cells in co-culture (4 samples) and macrodissected tumor tissue (2

samples), in total 13 samples. 29: Cells from benign prostatic bulk (3 + 3 samples), basal (3 + 3 samples) and luminal (3 + 3

samples) tissue cultured in two different media, in total 18 samples. 30: Mouse prostate organoids with WT (6 samples)

and mutated (6 samples) gene SPOP, in total 12 samples. 31: Prostate tumor tissue from mouse models with different

genetic modifications, in total 384 samples. See also Figures S7–S10.

ll
OPEN ACCESS

iScience
Article
gene expression level, and this study supports the hypothesis that changes in genes responsible for citrate and

spermine secretion are important for the cell transformations leading to cancer. Further research into these

mechanisms can lead to new discoveries and treatment targets in the management of prostate cancer.
The challenge of finding a model system for normal prostate

We could not find CS signature enrichment comparable to tissue samples in any of the cell-lines andmodel

systems we investigated. Androgen responsive cell-lines seem to maintain some traces of prostate specific

functions compared to other model systems, but their CS signature enrichments are far below that of in vivo

tissue and indicate that most parts of the prostate-lineage specificity is lost. Thus, these observations ques-

tion the relevance of these model systems for studying normal prostate function and transitions from

normal cells to prostate cancer cells. The secretory function can possibly be triggered by proper stimuli

like dihydrotestosterone (DHT), testosterone or prolactin (Costello et al., 1995; Franklin et al., 1995; Liu

et al., 1997). For example, LNCaP (but not PC3) cells were able to secrete citrate when stimulated by

DHT (Franklin et al., 1995). However, it was also observed that the rate of citrate consumption by the

TCA cycle increased proportionally in the same experiment (Franklin et al., 1995). Because these
iScience 25, 104451, June 17, 2022 11
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experiments were performed before the era of transcriptomics, it would be interesting to repeat these ex-

periments with accompanying transcriptomics analysis to identify the genes that change during such

stimuli.
Signature refinement produces more robust gene signatures with improved integrity

In this manuscript, we have argued that improved gene signature integrity (assessed by CMS) can be

achieved by integrating data from multiple prostate cancer datasets. The aim was to remove noise and

produce better and more robust gene signatures in terms of biological interpretation. We found several

evidences that more robust signatures were achieved by integration of datasets. First, we observed that

the refined signature improved CMS scores compared to the initial signature in independent normal pros-

tate samples (Figure 2D). Second, when we used the initial gene signature for ssGSEA in the Hsu dataset,

we observed no clear separation between prostate and other metastatic samples (Figures 4D and S11).

Third, in the FANTOM dataset, the one Prostate Adult Tissue sample were only ranked as the highest

scoring sample after signature refinement, but not when the initial signature was used (Figures 3D and S12).

The refinement procedure generated an improved CS signature ssGSEA scores which was particularly pro-

nounced for prostate samples. We also tested the effect of refinement ion gene expression data from other

tissue types in the TCGA-complete dataset (33 cancer and 22 normal tissue types). Other cancer types

showed both elevated and decreased GSEA scores after refinement, and elevations were consistently

lower than in prostate samples (Figure S13).

The best CS signature ssGSEA score improvement after refinement were also observed particularly for

the metabolites citrate and spermine. For this test, we redid the procedure to create initial and refined

signatures for all metabolites and lipids in the metabolite data from Bertilsson (23 metabolites and 17

lipid signals). We then calculated ssGSEA scores in all cancer and normal tissue types in the TCGA-com-

plete dataset for each metabolite/lipid signature (Figures S14–S17). The most elevated ssGSEA scores

were for citrate and spermine in prostate compared to other tissue types, whereas other metabolites

showed both elevated and decreased ssGSEA score for other tissue types compared to prostate. This

observation was similar for both cancer and normal tissue samples. Thus, the effect of refinement was

highest for citrate and spermine specifically in the prostate. Interestingly, we noted that other metabo-

lites/lipid signatures were elevated in prostate, particularly putrescine (a precursor for spermine in the

polyamine pathway) a few lipid signals and glucose, indicating prostate specific regulation of other me-

tabolites than just citrate and spermine. These observations were confirmed in the FANTOM dataset (da-

taset ID 23) (Figure S18).

In summary, we conclude that the identification followed by refinement procedure used in this study

created a robust and unbiased gene signature biologically relevant for in vivo spermine and citrate secre-

tion in the prostate. In a wider perspective, the module approach may represent a general strategy to find

robust genesets related to other –omics data (for example metabolomics, proteomics or lipidomics), as

long as these-omics data are accompanied with gene expression data.
Conclusion

The genes and mechanisms governing normal prostate function, in particular the ability to accumulate and

secrete large amounts of citrate and spermine, are mostly unknown. We have used bioinformatics on an

extensive collection on prostate datasets to discover genes relevant for secretion of citrate and spermine

in the prostate. Based on this we have created a 150 gene signature which can be used to assess the degree

of citrate and spermine secretion in a single sample. The bioinformatics approach enabled us to validate

and explore the gene signature in a large number of contexts based on public data, including normal

versus cancer enrichment, spatial colocalization on tissue, tumor grade, metastasis and different model

systems. The employed approach is generalizable to other types of data when measured together with

gene expression. The signature showed an inverse association to cancer progression from normal through

low and high grade tometastasis. The genes in the signature were enriched for zinc-binding, mitochondrial

function, respiratory complex, secretion through the ER –golgi - lysosome – exosome pathway and

branched chain amino acid catabolism, pointing to both known and unexplored mechanisms for normal

prostate function. The lack of suitable model systems is a challenge and need to be established to further

study these findings.
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Limitations of the study

Because this is a purely computational study, the conclusions are based on correlative and associative

methods, which do not directly give information on causality. To verify that these association represent

relevant prostate cancer biology we have 1) Ensured that the correlations and association are highly

robust, and can be verified in 31 datasets with samples related to prostate and prostate cancer. 2) That

the results are functionally meaningful according to what is known about the prostate biology and cit-

rate/spermine secretion. When this is established, we further conclude that new targets and mechanisms

highlighted in the same framework are also likely robust and functionally meaningful. The actual causality

is difficult to pinpoint at this stage, and would need further laboratory experiments with relevant model

systems.

In this study we have compared datasets from different sources in the same analysis. Such comparisonsmay

not be able to remove all individual biases in the datasets. However, similar trends observed repeatedly

across several datasets will minimize the effect of individual biases. We also demonstrate that ssGSEA

results are highly comparable across tissue types and model system when comparing the datasets from

Taylor (dataset ID 3) and Prensner (dataset ID 10) (Figure S10).
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Module refinement procedure

B Correlation Module Score (CMS)

B Refinement procedure - Stage 1

B Refinement procedure - Stage 2

B Refinement procedure - Stage 3

B Single sample Gene Set Enrichment Analysis (ssGSEA)

B Adapted and normalized ssGSEA

B GO analysis with GAPGOM

B Network analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104451.
ACKNOWLEDGMENTS

This work is supported by the Liaison Committee between the Central Norway Regional Health Authority

(RHA) and the Norwegian University of Science and Technology (NTNU) to [MBR]; the Norwegian Cancer

Society to [TFB] and [MBT] and the European Research Council (ERC) under the European Union’s Horizon

2020 research and innovation program (grant agreement No 758306) to [MBT]. The technique for fresh

frozen tissue biobanking and cylinder extraction for reference E-MTAB-1041 was developed by Biobank1,

St. Olavs Hospital, Trondheim, Norway. Fundingsupport for MPC Transcriptome sequencing to identify

non-coding RNAs in prostate cancer was provided through the NIH Prostate SPORE P50CA69568, R01

R01CA132874, the Early Detection Research Network (U01 CA111275), the Department of Defense grant

W81XWH-11-1-0331 and the National Center for Functional Genomics (W81XWH-11-1-0520). The results

shown here are in part based upon data generated by the TCGA Research Network: http://

cancergenome.nih.gov/. The Geno-type-Tissue Expression (GTEx) Project was supported by the Common

Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA,

NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from the

GTEx Portal on 11/23/2017.
iScience 25, 104451, June 17, 2022 13

https://doi.org/10.1016/j.isci.2022.104451
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/


ll
OPEN ACCESS

iScience
Article
AUTHOR CONTRIBUTIONS

MBR, MBT, and HB conceived the idea and developed the concept. MBR, MBT, and HB performed data

curation. MBR developed methods and performed overall analysis. FD and CM developed and performed

the GAPGOM analysis. MH performed network analysis. MBR, MBT, and TFB acquired funding. MBR, MBT,

SB, FD and TFB performed supervision and provided intellectual input. MBR, MBT, SB, HB, FD, and TFB

prepared the original draft. MBR prepared figures. All authors wrote and reviewed the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 4, 2022

Revised: April 12, 2022

Accepted: May 17, 2022

Published: June 17, 2022
REFERENCES

Ananieva, E.A., and Wilkinson, A.C. (2018).
Branched-chain amino acid metabolism in
cancer. Curr. Opin. Clin. Nutr. Metab. Care 21,
64–70. https://doi.org/10.1097/MCO.
0000000000000430.

Aryee, M.J., Liu, W.N., Engelmann, J.C., Nuhn, P.,
Gurel, M., Haffner, M.C., Esopi, D., Irizarry, R.A.,
Getzenberg, R.H., Nelson, W.G., et al. (2013).
DNA methylation alterations exhibit
intraindividual stability and interindividual
heterogeneity in prostate cancer metastases. Sci.
Transl. Med. 5, 169ra10. https://doi.org/10.1126/
scitranslmed.3005211.

Aytes, A., Mitrofanova, A., Lefebvre, C., Alvarez,
M.J., Castillo-Martin, M., Zheng, T., Eastham,
J.A., Gopalan, A., Pienta, K.J., Shen, M.M., et al.
(2014). Cross-species regulatory network analysis
identifies a synergistic interaction between
FOXM1 and CENPF that drives prostate cancer
malignancy. Cancer Cell 25, 638–651. https://doi.
org/10.1016/j.ccr.2014.03.017.

Barabasi, A.L., and Oltvai, Z.N. (2004). Network
biology: understanding the cell’s functional
organization. Nat. Rev. Genet. 5, 101–113.
https://doi.org/10.1038/nrg1272.

Berglund, E., Maaskola, J., Schultz, N., Friedrich,
S., Marklund, M., Bergenstrahle, J., Tarish, F.,
Tanoglidi, A., Vickovic, S., Larsson, L., et al. (2018).
Spatial maps of prostate cancer transcriptomes
reveal an unexplored landscape of
heterogeneity. Nat. Commun. 9, 2419. https://
doi.org/10.1038/s41467-018-04724-5.

Bertilsson, H., Tessem, M.B., Flatberg, A., Viset,
T., Gribbestad, I., Angelsen, A., and Halgunset, J.
(2012). Changes in gene transcription underlying
the aberrant citrate and choline metabolism in
human prostate cancer samples. Clin. Cancer
Res. 18, 3261–3269. https://doi.org/10.1158/
1078-0432.Ccr-11-2929.

Bettuzzi, S., Davalli, P., Astancolle, S., Carani, C.,
Madeo, B., Tampieri, A., and Corti, A. (2000).
Tumor progression is accompanied by significant
changes in the levels of expression of polyamine
metabolism regulatory genes and clusterin
(sulfated glycoprotein 2) in human prostate
cancer specimens. Cancer Res. 60, 28–34.
14 iScience 25, 104451, June 17, 2022
Blattner, M., Liu, D.L., Robinson, B.D., Huang, D.,
Poliakov, A., Gao, D., Nataraj, S., Deonarine, L.D.,
Augello, M.A., Sailer, V., et al. (2017). SPOP
mutation drives prostate tumorigenesis in vivo
through coordinate regulation of PI3K/mTOR
and AR signaling. Cancer Cell 31, 436–451.
https://doi.org/10.1016/j.ccell.2017.02.004.

Braadland, P.R., Giskeodegard, G., Sandsmark,
E., Bertilsson, H., Euceda, L.R., Hansen, A.F.,
Guldvik, I.J., Selnæs, K.M., Grytli, H.H., Katz, B.,
et al. (2018). Erratum: ex vivo metabolic
fingerprinting identifies biomarkers predictive of
prostate cancer recurrence following radical
prostatectomy. Br. J. Cancer 118, e11. https://doi.
org/10.1038/bjc.2017.470.

Cai, C.M.,Wang, H.Y., He, H.H., Chen, S., He, L.F.,
Ma, F., Mucci, L., Wang, Q.B., Fiore, C., et al.
(2013). ERG induces androgen receptor-
mediated regulation of SOX9 in prostate cancer.
J. Clin. Invest. 123, 1109–1122. https://doi.org/10.
1172/Jci66666.

Chandran, U.R., Ma, C.Q., Dhir, R., Bisceglia, M.,
Lyons-Weiler, M., Liang, W.J., Michalopoulos, G.,
Becich, M., and Monzon, F.A. (2007). Gene
expression profiles of prostate cancer reveal
involvement of multiple molecular pathways in
the metastatic process. BMC Cancer 7, 64.
https://doi.org/10.1186/1471-2407-7-64.

Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q.,Wang, Z.,
Meirelles, G.V., Clark, N.R., and Ma’ayan, A.
(2013). Enrichr: interactive and collaborative
HTML5 gene list enrichment analysis tool. BMC
Bioinf. 14, 128. https://doi.org/10.1186/1471-
2105-14-128.

Cheng, L.L., Wu, C., Smith, M.R., and Gonzalez,
R.G. (2001). Non-destructive quantitation of
spermine in human prostate tissue samples using
HRMAS 1H NMR spectroscopy at 9.4 T. FEBS
Lett. 494, 112–116. https://doi.org/10.1016/
s0014-5793(01)02329-8.

Costello, L.C., Akuffo, V., and Franklin, R.B. (1988).
Testosterone stimulates net citrate production
from aspartate by prostate epithelial cells. Horm.
Metab. Res. 20, 252–253. https://doi.org/10.
1055/s-2007-1010807.

Costello, L.C., and Franklin, R.B. (2000). The
intermediary metabolism of the prostate: a key to
understanding the pathogenesis and
progression of prostate malignancy. Oncology
59, 269–282. https://doi.org/10.1159/000012183.

Costello, L.C., and Franklin, R.B. (2016). A
comprehensive review of the role of zinc in
normal prostate function and metabolism; and its
implications in prostate cancer. Arch. Biochem.
Biophys. 611, 100–112. https://doi.org/10.1016/j.
abb.2016.04.014.

Costello, L.C., Franklin, R.B., and Narayan, P.
(1999). Citrate in the diagnosis of prostate cancer.
Prostate 38, 237–245. https://doi.org/10.1002/
(sici)1097-0045(19990215)38:3<237::aid-pros8>3.
0.co;2-o.

Costello, L.C., Liu, Y., and Franklin, R.B. (1995).
Testosterone stimulates the biosynthesis of
m-aconitase and citrate oxidation in prostate
epithelial cells. Mol. Cell. Endocrinol. 112, 45–51.
https://doi.org/10.1016/0303-7207(95)03582-r.

Costello, L.C., Liu, Y., Zou, J., and Franklin, R.B.
(2000). Mitochondrial aconitase gene expression
is regulated by testosterone and prolactin in
prostate epithelial cells. Prostate 42, 196–202.

Edlind, M.P., and Hsieh, A.C. (2014). PI3K-AKT-
mTOR signaling in prostate cancer progression
and androgen deprivation therapy resistance.
Asian J. Androl. 16, 378–386. https://doi.org/10.
4103/1008-682X.122876.

Ehsani, R., and Drablos, F. (2018). Measures of co-
expression for improved function prediction of
long non-coding RNAs. BMC Bioinf. 19, 533.
https://doi.org/10.1186/s12859-018-2546-y.

Erho, N., Crisan, A., Vergara, I.A., Mitra, A.P.,
Ghadessi, M., Buerki, C., Bergstralh, E.J.,
Kollmeyer, T., Fink, S., Haddad, Z., et al. (2013).
Discovery and validation of a prostate cancer
genomic classifier that predicts early metastasis
following radical prostatectomy. PLoS One 8,
e66855. https://doi.org/10.1371/journal.pone.
0066855.

Franklin, R.B., and Costello, L.C. (1984).
Glutamate dehydrogenase and a proposed
glutamate-aspartate pathway for citrate synthesis
in rat ventral prostate. J. Urol. 132, 1239–1243.
https://doi.org/10.1016/s0022-5347(17)50113-5.

https://doi.org/10.1097/MCO.0000000000000430
https://doi.org/10.1097/MCO.0000000000000430
https://doi.org/10.1126/scitranslmed.3005211
https://doi.org/10.1126/scitranslmed.3005211
https://doi.org/10.1016/j.ccr.2014.03.017
https://doi.org/10.1016/j.ccr.2014.03.017
https://doi.org/10.1038/nrg1272
https://doi.org/10.1038/s41467-018-04724-5
https://doi.org/10.1038/s41467-018-04724-5
https://doi.org/10.1158/1078-0432.Ccr-11-2929
https://doi.org/10.1158/1078-0432.Ccr-11-2929
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref7
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref7
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref7
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref7
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref7
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref7
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref7
https://doi.org/10.1016/j.ccell.2017.02.004
https://doi.org/10.1038/bjc.2017.470
https://doi.org/10.1038/bjc.2017.470
https://doi.org/10.1172/Jci66666
https://doi.org/10.1172/Jci66666
https://doi.org/10.1186/1471-2407-7-64
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1016/s0014-5793(01)02329-8
https://doi.org/10.1016/s0014-5793(01)02329-8
https://doi.org/10.1055/s-2007-1010807
https://doi.org/10.1055/s-2007-1010807
https://doi.org/10.1159/000012183
https://doi.org/10.1016/j.abb.2016.04.014
https://doi.org/10.1016/j.abb.2016.04.014
https://doi.org/10.1002/(sici)1097-0045(19990215)38:3&lt;237::aid-pros8&gt;3.0.co;2-o
https://doi.org/10.1002/(sici)1097-0045(19990215)38:3&lt;237::aid-pros8&gt;3.0.co;2-o
https://doi.org/10.1002/(sici)1097-0045(19990215)38:3&lt;237::aid-pros8&gt;3.0.co;2-o
https://doi.org/10.1016/0303-7207(95)03582-r
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref19
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref19
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref19
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref19
https://doi.org/10.4103/1008-682X.122876
https://doi.org/10.4103/1008-682X.122876
https://doi.org/10.1186/s12859-018-2546-y
https://doi.org/10.1371/journal.pone.0066855
https://doi.org/10.1371/journal.pone.0066855
https://doi.org/10.1016/s0022-5347(17)50113-5


ll
OPEN ACCESS

iScience
Article
Franklin, R.B., Juang, H.H., Zou, J., and Costello,
L.C. (1995). Regulation of citrate metabolism by
androgen in the LNCaP human prostate
carcinoma cell line. Endocrine 3, 603–607. https://
doi.org/10.1007/BF02953026.

Franklin, R.B., Milon, B., Feng, P., and Costello,
L.C. (2005). Zinc and zinc transporters in normal
prostate function and the pathogenesis of
prostate cancer. Front. Biosci. Landmark 10,
2230–2239. https://doi.org/10.2741/1692.

Garrett, S.H., Sens, M.A., Shukla, D., Flores, L.,
Somji, S., Todd, J.H., and Sens, D.A. (2000).
Metallothionein isoform 1 and 2 gene expression
in the human prostate: downregulation of MT-1X
in advanced prostate cancer. Prostate 43,
125–135. https://doi.org/10.1002/(sici)1097-
0045(20000501)43:2<125::aid-pros7>3.0.co;2-s.

Ghandi, M., Huang, F.W., Jane-Valbuena, J.,
Kryukov, G.V., Lo, C.C., McDonald, E.R.,
Barretina, J., Gelfand, E.T., Bielski, C.M., Li, H.,
et al. (2019). Next-generation characterization of
the cancer cell line Encyclopedia. Nature 569,
503–508. https://doi.org/10.1038/s41586-019-
1186-3.

Giskeodegard, G.F., Bertilsson, H., Selnæs, K.M.,
Wright, A.J., Bathen, T.F., Viset, T., Halgunset, J.,
Angelsen, A., Gribbestad, I.S., and Tessem, M.B.
(2013). Spermine and citrate as metabolic
biomarkers for assessing prostate cancer
aggressiveness. PLoS One 8, e62375. https://doi.
org/10.1371/journal.pone.0062375.

Henry, G.H., Malewska, A., Joseph, D.B., Malladi,
V.S., Lee, J., Torrealba, J., Mauck, R.J., Gahan,
J.C., Raj, G.V., Roehrborn, C.G., et al. (2018). A
cellular anatomy of the normal adult human
prostate and prostatic urethra. Cell Rep. 25,
3530–3542.e5. https://doi.org/10.1016/j.celrep.
2018.11.086.

Hsu, S.D., Kim, M.K., Foye, A., Silvestri, A., Lyerly,
H.K., Morse, M., Petricoin, E., and Febbo, P.G.
(2010). Use of gene expression signatures to
identify origin of primary and therapeutic
strategies for patients with advanced solid
tumors. J. Clin. Oncol. 28, 10504. https://doi.org/
10.1200/jco.2010.28.15_suppl.10504.

Huang, D.W., Sherman, B.T., and Lempicki, R.A.
(2009a). Bioinformatics enrichment tools: paths
toward the comprehensive functional analysis of
large gene lists. Nucleic Acids Res. 37, 1–13.
https://doi.org/10.1093/nar/gkn923.

Huang, D.W., Sherman, B.T., and Lempicki, R.A.
(2009b). Systematic and integrative analysis of
large gene lists using DAVID bioinformatics re-
sources. Nat. Protoc. 4, 44–57. https://doi.org/10.
1038/nprot.2008.211.

Jia, Z., Wang, Y., Sawyers, A., Yao, H.,
Rahmatpanah, F., Xia, X.Q., Xu, Q., Pio, R., Turan,
T., Koziol, J.A., et al. (2011). Diagnosis of prostate
cancer using differentially expressed genes in
stroma. Cancer Res. 71, 2476–2487. https://doi.
org/10.1158/0008-5472.CAN-10-2585.

Juang, H.H., Costello, L.C., and Franklin, R.B.
(1995). Androgen modulation of multiple
transcription start sites of the mitochondrial
aspartate aminotransferase gene in rat prostate.
J. Biol. Chem. 270, 12629–12634. https://doi.org/
10.1074/jbc.270.21.12629.
Klijn, C., Durinck, S., Stawiski, E.W., Haverty, P.M.,
Jiang, Z.S., Liu, H.B., Degenhardt, J., Mayba, O.,
Gnad, F., Liu, J.F., et al. (2015). A comprehensive
transcriptional portrait of human cancer cell lines.
Nat. Biotechnol. 33, 306–312. https://doi.org/10.
1038/nbt.3080.

Kolenko, V., Teper, E., Kutikov, A., and Uzzo, R.
(2013). Zinc and zinc transporters in prostate
carcinogenesis. Nat. Rev. Urol. 10, 219–226.
https://doi.org/10.1038/nrurol.2013.43.

Kuleshov, M.V., Jones, M.R., Rouillard, A.D.,
Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S.,
Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al.
(2016). Enrichr: a comprehensive gene set
enrichment analysis web server 2016 update.
Nucleic Acids Res. 44, W90–W97. https://doi.org/
10.1093/nar/gkw377.

Kuner, R., Falth, M., Pressinotti, N.C., Brase, J.C.,
Puig, S.B., Metzger, J., Gade, S., Schafer, G.,
Bartsch, G., Steiner, E., et al. (2013). The maternal
embryonic leucine zipper kinase (MELK) is
upregulated in high-grade prostate cancer.
J. Mol. Med. 91, 237–248. https://doi.org/10.
1007/s00109-012-0949-1.

Lin, S.F., Wei, H., Maeder, D., Franklin, R.B., and
Feng, P. (2009). Profiling of zinc-altered gene
expression in human prostate normal vs. cancer
cells: a time course study. J. Nutr. Biochem. 20,
1000–1012. https://doi.org/10.1016/j.jnutbio.
2008.09.004.

Liu, Y., Franklin, R.B., and Costello, L.C. (1997).
Prolactin and testosterone regulation of
mitochondrial zinc in prostate epithelial cells.
Prostate 30, 26–32. https://doi.org/10.1002/(sici)
1097-0045(19970101)30:1<26::aid-pros4>3.0.
co;2-j.

Lizio, M., Abugessaisa, I., Noguchi, S., Kondo, A.,
Hasegawa, A., Hon, C.C., de Hoon, M., Severin,
J., Oki, S., Hayashizaki, Y., et al. (2019). Update of
the FANTOM web resource: expansion to pro-
vide additional transcriptome atlases. Nucleic
Acids Res. 47, D752–D758. https://doi.org/10.
1093/nar/gky1099.

Lizio, M., Harshbarger, J., Shimoji, H., Severin, J.,
Sahin, S., Abugessaisa, I., Hori, F., Ishikawa-Kato,
S., Arner, E., Baillie, J.K., et al. (2015). Gateways to
the FANTOM5 promoter level mammalian
expression atlas. Genome Biol. 16, 22. https://
doi.org/10.1186/s13059-014-0560-6.

Lynch, M.J., and Nicholson, J.K. (1997). Proton
MRS of human prostatic fluid: correlations
between citrate, spermine, and myo-inositol
levels and changes with disease. Prostate 30,
248–255. https://doi.org/10.1002/(sici)1097-
0045(19970301)30:4<248::aid-pros4>3.0.co;2-h.

Markert, E.K., Mizuno, H., Vazquez, A., and
Levine, A.J. (2011). Molecular classification of
prostate cancer using curated expression
signatures. Proc. Natl. Acad. Sci. U S A 108,
21276–21281. https://doi.org/10.1073/pnas.
1117029108.

Mortensen, M.M., Hoyer, S., Lynnerup, A.S.,
Orntoft, T.F., Sorensen, K.D., Borre, M., and
Dyrskjot, L. (2015). Expression profiling of
prostate cancer tissue delineates genes
associated with recurrence after prostatectomy.
Sci. Rep. 5, 16018. https://doi.org/10.1038/
srep16018.
Penney, K.L., Sinnott, J.A., Tyekucheva, S., Gerke,
T., Shui, I.M., Kraft, P., Sesso, H.D., Freedman,M.L.,
Loda, M., Mucci, L.A., and Stampfer, M.J. (2015).
Association of prostate cancer risk variants with
gene expression in normal and tumor tissue.
Cancer Epidemiol. Biomark. Prev. 24, 255–260.
https://doi.org/10.1158/1055-9965.Epi-14-0694-T.

Poisson, L.M., Sreekumar, A., Chinnaiyan, A.M.,
andGhosh, D. (2012). Pathway-directed weighted
testing procedures for the integrative analysis of
gene expression and metabolomic data.
Genomics 99, 265–274. https://doi.org/10.1016/j.
ygeno.2012.03.004.

Prensner, J.R., Iyer, M.K., Balbin, O.A.,
Dhanasekaran, S.M., Cao, Q., Brenner, J.C.,
Laxman, B., Asangani, I.A., Grasso, C.S.,
Kominsky, H.D., et al. (2011). Transcriptome
sequencing across a prostate cancer cohort
identifies PCAT-1, an unannotated lincRNA
implicated in disease progression. Nat.
Biotechnol. 29, 742–749. https://doi.org/10.1038/
nbt.1914.

Rhodes, D.R., Barrette, T.R., Rubin, M.A., Ghosh,
D., and Chinnaiyan, A.M. (2002). Meta-analysis of
microarrays: interstudy validation of gene
expression profiles reveals pathway
dysregulation in prostate cancer. Cancer Res. 62,
4427–4433.

Richards, Z., McCray, T., Marsili, J., Zenner, M.L.,
Manlucu, J.T., Garcia, J., Kajdacsy-Balla, A.,
Murray, M., Voisine, C., Murphy, A.B., et al. (2019).
Prostate stroma increases the viability and
maintains the branching phenotype of human
prostate organoids. iScience 12, 304–317. https://
doi.org/10.1016/j.isci.2019.01.028.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law,
C.W., Shi, W., and Smyth, G.K. (2015). Limma
powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic
Acids Res. 43, e47. https://doi.org/10.1093/nar/
gkv007.

Ross-Adams, H., Lamb, A.D., Dunning, M.J.,
Halim, S., Lindberg, J., Massie, C.M., Egevad,
L.A., Russell, R., Ramos-Montoya, A., Vowler, S.L.,
et al. (2015). Integration of copy number and
transcriptomics provides risk stratification in
prostate cancer: adiscovery and validation cohort
study. EBioMedicine 2, 1133–1144. https://doi.
org/10.1016/j.ebiom.2015.07.017.

Rye, M.B., Bertilsson, H., Andersen, M.K., Rise, K.,
Bathen, T.F., Drablos, F., and Tessem, M.B.
(2018). Cholesterol synthesis pathway genes in
prostate cancer are transcriptionally
downregulated when tissue confounding is
minimized. BMC Cancer 18, 478. https://doi.org/
10.1186/s12885-018-4373-y.

Sboner, A., Demichelis, F., Calza, S., Pawitan,
Y., Setlur, S.R., Hoshida, Y., Perner, S., Adami,
H.O., Fall, K., Mucci, L.A., et al. (2010).
Molecular sampling of prostate cancer: a
dilemma for predicting disease progression.
BMC Med. Genom. 3, 8. https://doi.org/10.
1186/1755-8794-3-8.

Si, M., and Lang, J. (2018). The roles of
metallothioneins in carcinogenesis. J. Hematol.
Oncol. 11, 107. https://doi.org/10.1186/s13045-
018-0645-x.

Sogaard, C.K., Moestue, S.A., Rye, M.B., Kim, J.,
Nepal, A., Liabakk, N.B., Bachke, S., Bathen, T.F.,
iScience 25, 104451, June 17, 2022 15

https://doi.org/10.1007/BF02953026
https://doi.org/10.1007/BF02953026
https://doi.org/10.2741/1692
https://doi.org/10.1002/(sici)1097-0045(20000501)43:2&lt;125::aid-pros7&gt;3.0.co;2-s
https://doi.org/10.1002/(sici)1097-0045(20000501)43:2&lt;125::aid-pros7&gt;3.0.co;2-s
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1371/journal.pone.0062375
https://doi.org/10.1371/journal.pone.0062375
https://doi.org/10.1016/j.celrep.2018.11.086
https://doi.org/10.1016/j.celrep.2018.11.086
https://doi.org/10.1200/jco.2010.28.15_suppl.10504
https://doi.org/10.1200/jco.2010.28.15_suppl.10504
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1158/0008-5472.CAN-10-2585
https://doi.org/10.1158/0008-5472.CAN-10-2585
https://doi.org/10.1074/jbc.270.21.12629
https://doi.org/10.1074/jbc.270.21.12629
https://doi.org/10.1038/nbt.3080
https://doi.org/10.1038/nbt.3080
https://doi.org/10.1038/nrurol.2013.43
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1007/s00109-012-0949-1
https://doi.org/10.1007/s00109-012-0949-1
https://doi.org/10.1016/j.jnutbio.2008.09.004
https://doi.org/10.1016/j.jnutbio.2008.09.004
https://doi.org/10.1002/(sici)1097-0045(19970101)30:1&lt;26::aid-pros4&gt;3.0.co;2-j
https://doi.org/10.1002/(sici)1097-0045(19970101)30:1&lt;26::aid-pros4&gt;3.0.co;2-j
https://doi.org/10.1002/(sici)1097-0045(19970101)30:1&lt;26::aid-pros4&gt;3.0.co;2-j
https://doi.org/10.1093/nar/gky1099
https://doi.org/10.1093/nar/gky1099
https://doi.org/10.1186/s13059-014-0560-6
https://doi.org/10.1186/s13059-014-0560-6
https://doi.org/10.1002/(sici)1097-0045(19970301)30:4&lt;248::aid-pros4&gt;3.0.co;2-h
https://doi.org/10.1002/(sici)1097-0045(19970301)30:4&lt;248::aid-pros4&gt;3.0.co;2-h
https://doi.org/10.1073/pnas.1117029108
https://doi.org/10.1073/pnas.1117029108
https://doi.org/10.1038/srep16018
https://doi.org/10.1038/srep16018
https://doi.org/10.1158/1055-9965.Epi-14-0694-T
https://doi.org/10.1016/j.ygeno.2012.03.004
https://doi.org/10.1016/j.ygeno.2012.03.004
https://doi.org/10.1038/nbt.1914
https://doi.org/10.1038/nbt.1914
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref49
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref49
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref49
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref49
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref49
http://refhub.elsevier.com/S2589-0042(22)00722-2/sref49
https://doi.org/10.1016/j.isci.2019.01.028
https://doi.org/10.1016/j.isci.2019.01.028
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1016/j.ebiom.2015.07.017
https://doi.org/10.1016/j.ebiom.2015.07.017
https://doi.org/10.1186/s12885-018-4373-y
https://doi.org/10.1186/s12885-018-4373-y
https://doi.org/10.1186/1755-8794-3-8
https://doi.org/10.1186/1755-8794-3-8
https://doi.org/10.1186/s13045-018-0645-x
https://doi.org/10.1186/s13045-018-0645-x


ll
OPEN ACCESS

iScience
Article
Otterlei, M., and Hill, D.K. (2018). APIM-peptide
targeting PCNA improves the efficacy of
docetaxel treatment in the TRAMP mouse model
of prostate cancer. Oncotarget 9, 11752–11766.
https://doi.org/10.18632/oncotarget.24357.

Tayari, N., Heerschap, A., Scheenen, T.W.J., and
Kobus, T. (2017). In vivo MR spectroscopic
imaging of the prostate, from application to
interpretation. Anal. Biochem. 529, 158–170.
https://doi.org/10.1016/j.ab.2017.02.001.

Taylor, B.S., Schultz, N., Hieronymus, H.,
Gopalan, A., Xiao, Y., Carver, B.S., Arora, V.K.,
Kaushik, P., Cerami, E., Reva, B., et al. (2010).
Integrative genomic profiling of human prostate
cancer. Cancer Cell 18, 11–22. https://doi.org/10.
1016/j.ccr.2010.05.026.

Tessem, M.B., Bertilsson, H., Angelsen, A.,
Bathen, T.F., Drablos, F., and Rye, M.B. (2016). A
balanced tissue composition reveals new
16 iScience 25, 104451, June 17, 2022
metabolic and gene expression markers in
prostate cancer. PLoS One 11, e0153727. https://
doi.org/10.1371/journal.pone.0153727.

Tomlins, S.A., Mehra, R., Rhodes, D.R., Cao, X.H.,
Wang, L., Dhanasekaran, S.M., Kalyana-
Sundaram, S., Wei, J.T., Rubin, M.A., Pienta, K.J.,
et al. (2007). Integrative molecular concept
modeling of prostate cancer progression. Nat.
Genet. 39, 41–51. https://doi.org/10.1038/
ng1935.

Wang, Y., Xia, X.Q., Jia, Z., Sawyers, A., Yao, H.,
Wang-Rodriquez, J., Mercola, D., and
McClelland, M. (2010). In silico estimates of tissue
components in surgical samples based on
expression profiling data. Cancer Res. 70, 6448–
6455. https://doi.org/10.1158/0008-5472.CAN-
10-0021.

Yu, Y.P., Landsittel, D., Jing, L., Nelson, J., Ren,
B.G., Liu, L.J., McDonald, C., Thomas, R., Dhir,
R., Finkelstein, S., et al. (2004). Gene
expression alterations in prostate cancer
predicting tumor aggression and preceding
development of malignancy. J. Clin. Oncol. 22,
2790–2799. https://doi.org/10.1200/Jco.2004.
05.158.

Zhang, D.X., Lin, K., Lu, Y., Rycaj, K., Zhong, Y.,
Chao, H.P., Calhoun-Davis, T., Shen, J.J., and
Tang, D.G. (2017a). Developing a novel two-
dimensional culture system to enrich human
prostate luminal progenitors that can function as
a cell of origin for prostate cancer. Stem Cell
Transl. Med. 6, 748–760. https://doi.org/10.5966/
sctm.2016-0243.

Zhang, S., Zeng, X., Ren, M., Mao, X., and Qiao, S.
(2017b). Novel metabolic and physiological
functions of branched chain amino acids: a
review. J. Anim. Sci. Biotechnol. 8, 10. https://doi.
org/10.1186/s40104-016-0139-z.

https://doi.org/10.18632/oncotarget.24357
https://doi.org/10.1016/j.ab.2017.02.001
https://doi.org/10.1016/j.ccr.2010.05.026
https://doi.org/10.1016/j.ccr.2010.05.026
https://doi.org/10.1371/journal.pone.0153727
https://doi.org/10.1371/journal.pone.0153727
https://doi.org/10.1038/ng1935
https://doi.org/10.1038/ng1935
https://doi.org/10.1158/0008-5472.CAN-10-0021
https://doi.org/10.1158/0008-5472.CAN-10-0021
https://doi.org/10.1200/Jco.2004.05.<?show $132#?>158
https://doi.org/10.1200/Jco.2004.05.<?show $132#?>158
https://doi.org/10.5966/sctm.2016-0243
https://doi.org/10.5966/sctm.2016-0243
https://doi.org/10.1186/s40104-016-0139-z
https://doi.org/10.1186/s40104-016-0139-z


ll
OPEN ACCESS

iScience
Article
STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Dataset ID 1 –Bertilsson: 156 prostate tissue

samples (116 cancer and 40 normal) 129 of

these samples (95 cancer and 34 normal) with

concordant metabolite and gene expression

measurement

Bertilsson et al. (2012) Array Express: E-MTAB-1041

Dataset ID 2 –Wang: 136 prostate tissue

samples 65 cancer and 71 normal

Wang et al. (2010), Jia et al. (2011) Gene Expression Omnibus: GEO: GSE8218

Dataset ID 3 –Taylor: 160 prostate tissue

samples (131 cancer and 29 normal) 19

prostate metastatic samples 4 cell-line

samples (DU145, PC3, LNCaP, VCaP)

Taylor et al. (2010) Gene Expression Omnibus: GEO: GSE21034

Dataset ID 4 –Sboner: 281 prostate

cancer samples

Sboner et al. (2010) Gene Expression Omnibus: GEO: GSE16560

Dataset ID 5 –Erho: 545 prostate

cancer samples

Erho et al. (2013) Gene Expression Omnibus: GEO: GSE46691

Dataset ID 6 –TCGA-PRAD: 549 prostate tissue

samples (497 cancer and 52 normal)

https://www.cancer.gov/tcga https://portal.gdc.cancer.gov/repository

Dataset ID 7 - CMBR (Cambridge): 186

prostate tissue samples (112 cancer and 74

normal)

Ross-Adams et al. (2015) Gene Expression Omnibus: GEO: GSE70768

Dataset ID 8 - STCK (Stockholm): 94

prostate cancer samples

Ross-Adams et al. (2015) Gene Expression Omnibus: GEO: GSE70769

Dataset ID 9 –Mortensen: 50 prostate tissue

samples (36 cancer and 14 normal) Laser

dissected tissue

Mortensen et al. (2015) Gene Expression Omnibus: GEO: GSE46602

Dataset ID 10 –Prensner: 116 prostate tissue

samples (78 cancer and 38 normal) 12 prostate

metastatic samples 58 cell-line samples

Prensner et al. (2011) Gene Expression Omnibus: GEO: GSE31728

(Cell-lines) dbGap: phs000443.v1.p1 (tissue

and metastatic samples)

Dataset ID 11 –Penney: 424 prostate tissue

samples (264 cancer and 160 normal)

Penney et al. (2015) Gene Expression Omnibus: GEO: GSE62872

Dataset ID 12 –Kuner: 98 prostate tissue

samples (59 cancer and 39 normal)

Kuner et al. (2013) Gene Expression Omnibus: GEO: GSE32571

Dataset ID 13 –Aryee: 21 normal prostate

samples 18 prostate metastatic samples

Aryee et al. (2013) Gene Expression Omnibus: GEO: GSE38241

Dataset ID 14 –Chandran: 145 prostate tissue

samples (65 cancer and 81 normal) 25 prostate

metastatic samples

Chandran et al. (2007), Yu et al. (2004) Gene Expression Omnibus: GEO: GSE6919

Data from GPL8300 Plat-form

Dataset ID 15 –Cai: 29 prostate cancer samples

22 prostate metastatic samples

Cai et al. (2013) Gene Expression Omnibus: GEO: GSE32269

Dataset ID 16 –Poisson: 28 prostate tissue

samples (12 cancer and 16 normal) 13 prostate

metastatic samples

Poisson et al. (2012) Gene Expression Omnibus: GEO: GSE8511

Dataset ID 17 –Monzon: 10 prostate cancer

samples 21 prostate metastatic samples

Chandran et al. (2007) Gene Expression Omnibus: GEO: GSE6752
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Dataset ID 18 –Tomlins: 84 prostate tissue

samples (32 cancer, 13 PIN lesions, 27 normal

epithelium and 12 normal stroma) 20 prostate

metastatic samples Laser dissected tissue

Tomlins et al. (2007) Gene Expression Omnibus: GEO: GSE6099

Dataset ID 19 –Hsu: 96 metastatic samples

from various cancers (9 from prostate

metastasis)

Hsu et al. (2010) Gene Expression Omnibus: GEO: GSE18549

Dataset ID 20 –Berglund: Spatial

transcriptomics on 12 slices from prostate

cancer and normal tissue

Berglund et al. (2018) http://www.spatialtranscriptomicsresearch.

org/

Dataset ID 21 –TCGA-complete: 11,093

samples from 33 cancer types

https://www.cancer.gov/tcga https://portal.gdc.cancer.gov/repository

Dataset ID 22 –GTEx Median profiles for

53 normal tissue types

https://gtexportal.org/home/ https://gtexportal.org/home/datasets

Dataset ID 23 –FANTOM 1829 samples

from various human cell-lines and tissues

Lizio et al. (2019), Lizio et al. (2015) fantom.gsc.riken.jp/5/data/

Dataset ID 24 –CCLE:1019 cell-line samples

from various cancer types

Ghandi et al. (2019) https://portals.broadinstitute.org/ccle/data

RNA-Seq data

Dataset ID 25 –E-MTAB-2706: 622 cell-line

samples from various cancer types

Klijn et al. (2015) Array Express: E-MTAB-2706

Dataset ID 26 –Søgaard: 36 samples from 3

prostate cancer cell-lines: DU145, PC3 and

LNCaP

Sogaard et al. (2018) Array Express: E-MTAB-4858

Dataset ID 27 –Su: 18 samples: 2D and 3D

cultures (spheroids) derived from prostate

cancer cell-line LNCaP (9 samples), and

prostate normal cell-line RWPE (9 samples)

No article reference found Gene Expression Omnibus: GEO: GSE30304

Dataset ID 28 –Zachary: 13 samples:

Organoids from primary prostate epithelial

cells in mono and co-culture with stromal cells

(7 samples), stromal cells in co-culture (4

samples) and macrodissected tumor tissue

(2 samples)

Richards et al. (2019) Gene Expression Omnibus: GEO: GSE115052

Dataset ID 29 –Zhang: 18 samples: Cells from

benign prostatic bulk (3 + 3 samples), basal (3 +

3 samples) and luminal (3 + 3 samples) tissue

cultured in two different media

Zhang et al. (2017a) Gene Expression Omnibus: GEO: GSE74698

Dataset ID 30 –Blattner: 12 samples: Mouse

prostate organoids with WT (6 samples) and

mutated (6 samples) gene SPOP

Blattner et al. (2017) Gene Expression Omnibus: GEO: GSE94839

Dataset ID 31 –Aytes: 384 samples: Prostate

tumor tissue from mouse models with different

genetic modifications

Aytes et al. (2014) Gene Expression Omnibus: GEO: GSE53202

Software and algorithms

Python version 2.7 Python Software Foundation https://www.python.org

Limma 3.26.9 with edgeR 3.12.1 Bioconductor 3.1 R 3.2.2 https://bioconductor.org/packages/release/

bioc/html/limma.html

Code for gene signature refinement procedure This paper https://zenodo.org/record/6303619#.

YnuoQqam19A
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RESOURCE AVAILABILITY

Lead contact

The lead contact for this study is Morten Beck Rye: morten.rye@ntnu.no.

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data: This paper analyzes existing, publicly available data. These accession numbers for the datasets are

listed in the key resources table/supplemental information.

Code: Example code is available at Zenodo with accession https://zenodo.org/record/6303619#.

YnuoQqam19A.

Any additional information required to reanalyze the data reported in this paper is available from Morten

Beck Rye (morten.rye@ntnu.no– lead contact) upon request.
METHOD DETAILS

Module refinement procedure

A schematic representation of the procedure with stages 1-3 is shown in below figure. The procedure

makes use of the following abbreviations: M = Module, G = several genes, g = single gene, D = Dataset,

P = gene expression Profile, TB = Table, av = average, in = initial, rf = refined, c = candidate,m = missing,

cr = correlation, ic = intra-correlation, CMS = Correlation Module Score (CMS), MGCR = Module Gene

Contribution Score (MGCR).
A B

Module refinement procedure and Correlation Module Score (CMS)

(A) Flowchart of the module refinement procedure. Each stage 1-3 are explained in the main text.

(B) Example of a correlation table used to calculate the CorrelationModule Score (CMS). This genemodule has four genes

(G1-G4) and a CMS of 0.32. See also Figures S11–S18 for performance of the module refinement procedure.
Correlation Module Score (CMS)

To assess how well the correlations between genes in a module (or geneset) is preserved for all (or a subset

of) samples in a particular dataset, we created the Correlation Module Score (abbreviated CMS). The CMS

for a module in a dataset is calculated by first creating a table of intra-correlations between expression pro-

files for all genes in the module for that dataset (Figure). Here the expression profile for a gene is the vector

consisting of gene expression values overall samples in that dataset. For a 150-genemodule, this will create
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a table with 150*150 = 22,500 correlation values (a table for a hypothetical 4-gene module is shown in

Figure). The CMS is then calculated as the average overall correlations included the table (but excluding

self-correlations). A high CMS represents a high integrity of the gene module in the dataset, indicating

the preservation of strong correlations between the module-genes in the datasets. Likewise, a low CMS

would indicate weak relations between the genes in the module, and the loss of gene module integrity.

We further assume if a gene module has a high CMS in a dataset, it would indicate that the biological pro-

cess the module represents is important or active for samples in this dataset. In this study the datasets are

patient cohorts with normal and cancer tissue samples from the prostate.

Refinement procedure - Stage 1

The purpose of Stage 1 in the module refinement procedure is to find the contribution of each gene in the

initial CSmodule from Bertilsson to the overall CMS for themodule. To represent this contribution we intro-

duce the Module Gene Contribution Score (MGCS), which is the average overall correlations between that

gene and each of the other genes in themodule (or, the overall contribution of that gene to the overall CMS

for the module). In figure this will be the average of the rows (excluding the diagonal), where each average

value represent the MGCS score for a gene. A high MGCS score will indicate that the expression profile of

the gene fits better with expression profile of other genes in the module, while a low MGCS score indicates

a gene expression profile that deviates from other genes in the module.

Procedure:

For each dataset D (dataset ID 1–12 with normal and cancer tissue samples from the prostate):

Find the genes from the initial CS module, in-M-G, present in the dataset D, in-M-G-D.

Calculate the intra-correlation table, ic-TB-D, for the initial CS module gene profiles, in-M-G-P-D, in

dataset D.

Calculate the corresponding CMS score, CMS-D, from the intra-correlation table, ic-TB-D, in dataset D.

Calculate the MGCS score for each initial CS gene in-g in CMS-D, in-g-MGSC-D.

For missing initial CS module genes, m-in-M-G-D, in dataset D: Set the in-g-MGSC-D to a dataset specific

missing gene constant equal to the CMS-D multiplied by 0.5.

Store the in-g-MGCS-D for each initial CS module gene in each dataset D in an Initial MGSC table, in-

MGCS-TB for comparison in Stage 3.

Store MGSC for missing genes in each cohort, m-MGSC, for Stage 2.

Refinement procedure - Stage 2

The purpose of Stage 2 is to calculate, for all candidate genes c-g present in any one of the 12 datasetsD, a

score which describes how well each candidate gene expression profile fit with the expression profiles of

genes in the initial CS module. This is done by comparing each candidate gene expression profile c-g-P-D

to the average expression profile, in-M-G-P-D-av, of the genes in the initial CS module for each dataset D.

We regard any gene present in any of the 12 datasets D as candidate genes.

Procedure:

Define candidate genes, c-G, by the union of all genes present in any dataset D.

For each dataset D:

Find the genes from the initial CS module, in-M-G, present in dataset D.

Calculate the average expression profile, in-M-G-P-D-av, over expression profiles for all initial module

genes in-M-G-P-D in dataset D.
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For each gene g present in dataset D:

Calculate the correlation between the expression profile of gene g and the average profile in-M-G-P-D-av

for dataset D.

For genes not present in this dataset, the correlation is set to the cohort specific missing gene constant in

m-MGSC from Stage 1.

Store all correlations in a table, cr-TB, for evaluation in Stage 3.
Refinement procedure - Stage 3

The purpose of Stage 3 is to identify the genes that correlates best with genes in the initial CS module over-

all 12 datasets, but that were not a part of the initial CSmodule to begin with.We combine the 150 best new

candidate genes with the initial 150 CS module genes from Stage 1, and sort the resulting 300 genes ac-

cording to their MGSC score. The top 150 genes are selected for the refined CS module. Thus, new candi-

date genes will replace initial genes if they have higher MGSC scores. The final output is a refined CS mod-

ule, where the robustness of gene correlations across all 12 prostate cancer datasets are taken into

consideration in the selection of genes for the module. This refined module is defined as the CS gene

signature.

Procedure:

Exclude initial CS module genes in-M-G from the correlation table cr-TB from Stage 2.

Calculate the average correlation, c-g-cr-av, for each of the remaining candidate genes overall 12 datasets

in cr-TB.

Sort genes in correlation table cr-TB by average correlation c-gr-cr-av.

Select 150 candidate genes, c-g-150, with the highest average correlation, c-gr-cr-av.

For each dataset D:

For each of the top 150 candidate genes, c-g-150:

Calculate the average correlation of gene c-g-150 to all genes from the initial CS module, in-M-G-D, and

use the average correlation as the candidate gene MGSC, c-g-MGSC-D. This is a measure of the fit for the

candidate gene, c-g-150, to the initial CS module in dataset D.

For candidate genes not present in datasetD, the MGSC is set to the cohort specific missing gene constant

in m-MGSC from Stage 1.

Combine the candidate MGSC table c-g-MGSC-D with the initial MGSC table in-g-MGSC-D from Stage 1.

The combined table, comb-TB, will contain 300 genes, 150 from the initial CS module and 150 new

candidates.

Calculate the average MGSC score, g-MGSC-av, for each gene overall 12 datasets for the combined table

comb-TB.

Sort genes by average MGSC score, g-MGSC-av.

Select the 150 genes with the highest average MGSC score, g-MGSC-av, as genes for the refined CS mod-

ule, rf-G-M.

Example Code for the refinement procedure is available at Zenodo with accession https://zenodo.org/

record/6303619#.YnuoQqam19A.
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Single sample Gene Set Enrichment Analysis (ssGSEA)

Single sample Gene Set Enrichment Analysis (ssGSEA) was performed by sorting the genes in each sample

according to their expression level in descending order. Then a ssGSEA score was calculated for each sam-

ple implementing a previously published algorithm (Markert et al., 2011). We did not perform centering

and normalization of the expression values for ssGSEA in this study. This is because citrate and spermine

secretion, as well as the content of stroma tissue in the sample, are dominating biological features of these

samples where differences should be visible at absolute expression level. However, we observed good cor-

relations (0.86–0.97) for ssGSEA scores based on normalized and absolute expression values. A few of the

datasets were only presented with centered expression values in the public resource, and for these we used

centered values for ssGSEA. For the spatial transcriptomics data from Berglund (dataset ID 20), we did use

centered and normalized expression for ssGSEA in each pixel. This was necessary due to many pixels with a

high number of unexpressed genes, and/or very few genes with abundant expression.
Adapted and normalized ssGSEA

The magnitude of GSEA scores depend on both the size of the gene set used, and the number of total

genes in the ranked list input to the GSEA calculations. To be able to compare ssGSEA scores from Pre-

nsner to other datasets, we adapted the ssGSEA by only using the genes shared between the datasets

in each comparison. In this way, both the number and identity of genes, as well as the size of the geneset

will be identical for both datasets. For the comparison of several datasets in Figure 4D, we also normalized

the GSEA scores in Prensner to 0–1 scale for each comparison. The adapted and normalized score calcu-

lated in each comparison were highly correlated (average 0.99), and had a small standard deviation of the

mean (0.004), and we conclude that they are comparable between the datasets.
GO analysis with GAPGOM

The GO analysis was based on gene annotation generated with the GAPGOM tool (Ehsani and Drablos,

2018) [PMID: 30567492, GAPGOM in Bioconductor]. GAPGOM will predict gene annotation for a target

gene by identification of well-annotated genes showing correlated expression pattern with the target

gene across several experiments, and then estimate a predicted annotation for the target gene as a

consensus over the co-expressed genes, based on the hypothesis that co-expressed genes may be

involved in similar or related processes. This prediction of annotation terms may facilitate a richer func-

tional annotation of genes, in particular for genes where there is a lack of experimental annotation data.

Since GAPGOM only allows us to do annotation prediction one gene at a time, GAPGOM was used in

conjunction with Snakemake [https://snakemake.readthedocs.io/en/stable/project_info/citations.html]

to create a software pipeline. This pipeline was used to predict GO term annotation for all 150 genes in

the CS-signature on each of dataset 1–12. Since GO annotation consists of three different ontologies

(MF, BP, CC), each prediction is done separately for each. This then outputs a list for each gene in each

dataset for each GO ontology, in total 1800 lists. Each list contains one or multiple GO-term predictions,

with the following information for each prediction; GO-ID, Ontology, p-value, FDR/q-value (Bonferoni

normalized p-value), The description of the GO term, and the used correlation method for the prediction.

For each list, only GO terms with a q-value > 0.05 were selected. This generated a total of 21,080 GO terms

for all lists, where 5354 GO terms were unique. A table was created with the number of genes as rows and

the number of unique GO-terms as columns. For each gene and GO-term, we summed –log10 q-values

from all datasets, producing an overall score for each GO-term and gene. We made three tables, one

for all 150 genes, one for the six Metallothioneins, and one for the 10 network Hub-genes.
Network analysis

Correlation-based networks of the CS signature genes for each dataset are created as follows: The 150

genes are represented as nodes in the network and the pairwise Pearson correlation between genes rep-

resents the interactions between nodes. To reduce the complexity and highlight the most powerful inter-

actions, only the 20 strongest outgoing links (in absolute Pearson correlation) from each node are kept. In

this way, the most central nodes will have 20 outgoing links and up to 130 ingoing links from other nodes,

while some of the non-central nodes will only have 20 links. By calculating the node-degree (number of links

to other nodes) for each node, genes with high node-degree reflects central genes for driving the biolog-

ical processes (Barabasi and Oltvai, 2004). This network construction is performed on cancer samples for all
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12 datasets, and the 10 genes with the highest mean degree across the datasets are considered as the top

10 hub genes.
QUANTIFICATION AND STATISTICAL ANALYSIS

Figures 1A and 1B: Correlation coefficients was calculated using Pearson correlation. Figure 1C: The citrate

and spermine concentration profiles was both normalized to sum = 1 before averaging. Figure 2: Definition

and calculation of CMS is described in Method details. p-values for Statistical significance of CMS was

calculated using the lognormal distribution in python 2.7 – scipy.stats.lognorm. Correlation between

metabolite profile and gene profiles were calculated using Pearson correlation. Ranking of genes by impor-

tance is described in Method details. Figures 3A, 3B, 3C, and 3E: Calculation of ssGSEA scores is described

in Method details. Figure 3D: Correlation coefficients are calculated using Pearson correlation. Figure 4:

Calculation of ssGSEA scores is described in Method details. Figure 4A: ssGSEA scores were centered

around zero for each dataset for improved visual comparison. Figure 4B: ssGSEA scores were scaled to

values between 0 (lowest) and 1 (highest) in each dataset for improved visual comparison. The boxplots

were created using matplotlib.pyplot.boxplot with default settings and layout. Figure 5A: Correlation co-

efficients was calculated using Pearson correlation. Calculation of ssGSEA scores is described in Method

details. Figure 6: Calculation of ssGSEA scores and Adapted/Normalized ssGSEA scores is described in

Method details. The boxplots were created using matplotlib.pyplot.boxplot with default settings and

layout. Tables 1 and 2: p-values was calculated using the limma package in R. Correlation to tumor content

in Table 1 was calculated using Pearson correlation. Differential expression analysis between high- and low-

grade cancer samples (dataset ID 1–8 and 12, Table S7) was performed in R using limma for microarray data,

and limma-voom for RNA-Seq data (Ritchie et al., 2015).
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