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Abstract: Bringing together a Riemannian geometry account of visual space with a complementary
account of human movement synergies we present a neurally-feasible computational formulation
of visuomotor task performance. This cohesive geometric theory addresses inherent nonlinear
complications underlying the match between a visual goal and an optimal action to achieve that
goal: (i) the warped geometry of visual space causes the position, size, outline, curvature, velocity
and acceleration of images to change with changes in the place and orientation of the head, (ii) the
relationship between head place and body posture is ill-defined, and (iii) mass-inertia loads on
muscles vary with body configuration and affect the planning of minimum-effort movement. We
describe a partitioned visuospatial memory consisting of the warped posture-and-place-encoded
images of the environment, including images of visible body parts. We depict synergies as low-
dimensional submanifolds embedded in the warped posture-and-place manifold of the body. A
task-appropriate synergy corresponds to a submanifold containing those postures and places that
match the posture-and-place-encoded visual images that encompass the required visual goal. We
set out a reinforcement learning process that tunes an error-reducing association memory network
to minimize any mismatch, thereby coupling visual goals with compatible movement synergies. A
simulation of a two-degrees-of-freedom arm illustrates that, despite warping of both visual space
and posture space, there exists a smooth one-to-one and onto invertible mapping between vision
and proprioception.

Keywords: Riemannian geometry; computational model; nonlinear dynamics; visual space; stereop-
sis; visually-guided movement; posture-and-place-encoded memory; movement synergies; behav-
ioral goals; reinforcement learning

1. Introduction

While there is much evidence that natural behaviour is organized into a chain of
multisensory goals and that a series of small discrete movements are planned and strung
together into a continuous sequence to achieve those goals, we do not yet have a formal
mathematical theory of the underlying neural computational processing involved. Our
aim in this paper is to develop such a mathematical theory based on the example of skilled
visuomotor task performance.

Sprague and colleagues proposed in 2007 that complex behaviour can be broken
down into modules, or subtasks, and that specific visual information is required to plan
and perform the action needed for each subtask [1]. We agree, but the complexity of the
sensory and motor processes involved in planning and sequencing such actions is daunting.
Many of the issues have been known and argued about for decades but an overarching
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computational theory is still lacking. In 1993 in his editorial introduction to a collected
work on multisensory control of movement Berthoz articulated a number of shared views
about what is necessary for its understanding [2]. These can be summarized as follows:
that each percept important in movement is based on a configuration of (multimodal)
sensory cues; that perception and movement have to be studied within the 3D space of the
environment of living organisms; that reference frames, coordinate transformations and
relations between spatial and temporal coding must be addressed; and that the problem
of reduction of degrees of freedom and redundant mapping between coordinate systems
must be incorporated. He went on to remark on the move from the older view of error-
detection between motor command and sensory feedback to one in which the brain actively
preselects expected sensory states and detects errors between ‘internal models’ of both the
mechanical properties of the body and of physical space. He observed that this feedforward
conceptualization must agree with the fact that movement is not continuously controlled
but that discrete intermittent processes are involved. All these points remain salient for
any theory attempting to describe the processes involved in the planning and execution of
actions to achieve behavioural goals.

More recently, in her major review of how vision and action play out during natural
behaviour, Hayhoe likewise raised topics that have to be addressed in a mathematical
theory of vision and action [3]. These include: the brain’s internal reward circuitry; the
mathematics of reinforcement learning; optimal feedback control; the role of uncertainty;
the role of memory; visual search; Bayesian weighting of memory; self motion and the
parsing of optical flow; and the need for prediction. The mathematical theory presented
here concerning the selection and sequencing of minimum-effort, multi-joint, coordinated
movements compatible with visual goals has been developed with awareness of the many
issues outlined above. Likewise it has been developed cognizant of other theoretical models
that seek to understand how the many biomechanical and muscular degrees of freedom
(DOFs) of the human body are coordinated to achieve a specific goal. These include the
uncontrolled manifold hypothesis, Donders’ law, the minimum-jerk model, the minimum-
work model, the minimum torque-change model and stochastic optimal control. A review
of these models can be found in [4].

In particular our proposal deals with two complications little mentioned in previous
work. First, these movements have to be planned and executed so as to achieve visual goals
that are perceived in nonlinear ‘warped’ visual space. The theory must therefore incorpo-
rate the geometry of this space as an integral part of the generation of a visually-guided
action. Second comes the complication that the human body moving in a gravitational field
in sensory and mechanical interaction with its environment is an example of a changing,
uncertain, multi-degrees-of-freedom, redundant, nonlinear, dynamical system with limited
central processing resources. Nonlinear differential equations describing such stochastic
systems are poorly understood and their properties are still an area of active research in
the field of mathematics. Our solution to both problems involves a geometric approach
that has been rarely applied as yet in perception-action science (see [5] Section 2.2 for a
review of theoretical and experimental applications of the geometric approach). We hold
that the fields of differential geometry and Riemannian geometry in particular provide the most
suitable mathematical framework for describing the nonlinear computational processes
underlying the perception-action decisions required to achieve behavioural goals.

In this paper we combine our previous separate applications of Riemannian geometry
to action [5] and to vision [6] to develop a Riemannian geometry theory of computational
processes required in the planning and execution of minimum-effort visually-guided move-
ment synergies to achieve specified visual goals. In so doing we construct a somatosensory-
hippocampal-visual map of the body and describe its instantiation in visuospatial memory.
In other words, we are proposing a means by which the visual system links perception
to action. To our knowledge this is the first attempt to establish a workable theoretical
account of the visuomotor integration of posture, place and vision that we know to exist
both neurophysiologically and behaviourally.
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Meanwhile, we also know that those working in these fields, even if mathematically
and computationally knowledgeable, will not necessarily be familiar with Riemannian
geometry. Therefore, in Section 2 we provide an overview that seeks to explain, using
minimal mathematics, why this geometry is so pertinent to vision science and to visuomotor
science in particular. For those wishing to venture further we include a tutorial appendix
on the major concepts of this remarkable geometric tool. We also direct the reader to our
two previous papers [5,6] where the separate applications of Riemannian geometry to
synergy formation and to perceived visual space are given in full detail.

The following outline provides a road map of the ensuing sections of this paper:
Section 2: Why Riemannian geometry? A descriptive overview provides intuitive

illustrations of the theory and of the relevance of Riemannian geometry.
Section 3: Background. We summarize our previous two papers [5,6] concerning

application of Riemannian geometry to analysis of action and vision. This includes a more
detailed approach to the Riemannian geometry used in the theory.

Section 4: Here we take the previous place-encoded theory of visuospatial memory [6]
in which visual images of the environment as seen from different places in the environment
are stored in corresponding partitions of visuospatial memory and extend it to a posture-and-
place-encoded theory in which visual images of one’s own body seen in different postures are
added to the visuospatial partitioning. The result is a geometric (fibre-bundle) structure of
partitioned visuospatial memory that stores these place-and-posture-encoded visual images
to provide a 3D representation of the environment and of the body in that environment as
seen from any place and in any posture.

Section 5: We describe the Riemannian geometry of minimum-effort movement syner-
gies (i.e., minimum-effort multi-joint coordinations) for visual tasks with N ≤ 10 control
degrees of freedom (CDOFs). This geometric account of the process of spatial response
planning (i.e., selecting an appropriate movement synergy compatible with a perceptual
goal) is accompanied by a brief description of temporal response planning (i.e., planning
sequences of goal-directed movement trajectories within the selected movement synergy).

Section 6: Here we present the Riemannian geometry of proprioception-to-vision
and vision-to-proprioception maps taking into account redundancy between the many
elemental movements of the body sensed proprioceptively and the three dimensions of
visual space. We include a Matlab/Simulink simulation of a two-DOF arm moving in
the horizontal plane to illustrate that, despite nonlinearities and redundancies and the
nonlinear warping of both posture space and visual space, minimum-effort movements
of the two-DOF arm can be mapped in a one-to-one, onto and invertible fashion into 3D
visual space.

Section 7: We address the Riemannian geometry involved in the selection of task-
related movement synergies and describe a model-based reinforcement learning mech-
anism that uses an error-reducing association memory network to associate specified visual
goals with compatible low-dimensional minimum-effort movement synergies.

Section 8: We recap the main points of the integrated Riemannian geometry theory
and discuss each in relation to other work extant in the literature. In particular we re-
late Riemannian geometry to work on motor synergies, optical flow, and dissociation of
perception and action in illusions.

2. Why Riemannian Geometry?

The planning and execution of minimum-effort coordinated multi-joint movements to
achieve specified visual outcomes involve nonlinear dynamical computational processes
that are complicated to say the least. In this section, using minimal mathematics, we
provide an intuitive overview of our application of Riemannian theory to the selection of
movement synergies (i.e., multi-joint coordinated movements) compatible with specified
visual goals.
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2.1. The Relevance of Riemannian Geometry in Visual Science

For centuries artists, philosophers and scientists have speculated about the geometry
of 3D visual space. There has long been a wealth of formal experimental evidence demon-
strating that what we perceive is a warped version of the geometry of the actual physical
world [7–20]. However the results of these experiments are inconsistent, leading to the con-
clusion that the geometry of perceived space is task dependent, varying according to many
contextual factors that affect spatial judgement [21–32]. This inconsistency has led some to
question or even abandon the concept of visual space [33,34]. Others have argued that there
really is only one sensory visual space but that it has a cognitive overlay in which observers
supplement perception with their knowledge of how distance affects size [18,35–40]. We
agree. We hold that the variation in geometries of visual space measured experimentally
can be attributed to top-down cognitive mechanisms of depth perception perturbing an
underlying Riemannian space, a visual space given by the invariant geometry derivable
mathematically from the relationship between the size of an image on the retina and the
Euclidean distance between the nodal point of the eye and the object in the environment.
Therein lies a basis for distinguishing the sensory and cognitive components in geometries
of visual space measured experimentally [41].

It is well established that the size of overlapping retinal hyperfields on the retina
increase from small in the fovea to large in the periphery [42] while the hypercolumns in
the primary visual cortex (V1) to which the retinal hyperfields connect in a retinotopic
fashion do not overlap and are all the same size. Consequently, a much larger area of
V1 is involved in processing foveal images than in processing peripheral images. The
resulting warping of areas of cortical representation defined by topological maps between
the retina and the visual cortex is well known. Less well recognized is the warping of
visual images defined by topological maps between objects in the 3D environment and
their representation in the visual cortex created by the size-distance relationship of images
projected onto the retinas. This gives rise to a warped geometry of 3D visual space that is
attributable solely to the anatomy and physiology of the eye. It is thus invariant. In 2018
we derived this geometry mathematically from the size-distance relationship and labeled
it “Riemannian”. As outlined in Appendix A a Riemannian manifold is a topological space
endowed with a specified set of geometric properties including size, shape and curvature.
It is not unreasonable therefore to use the terms “manifold” and “space” interchangeably
as we have done in this paper but strictly speaking warped (curved) spaces with measures
of size are Riemannian manifolds. Just as Riemannian geometry describes for physicists the
intrinsic warping of space-time [43] it similarly describes for visual scientists the intrinsic
warping of 3D visual space.

The following illustration may be helpful to someone new to this geometry. Consider
a marble rolling on a flat surface. The marble rolls in a straight line. Now consider a surface
curved like a bowl. The marble now follows a curved pathway driven by the curvature of
the surface. Analogously, think of an object moving at constant speed along a straight line
in flat Euclidean 3D space. In warped (i.e., curved) 3D visual space the object appears to
follow an accelerating curved pathway because of the intrinsic curvature of 3D visual space.
An object approaching at constant speed not only appears to loom in size but it also appears
to accelerate as it approaches. Conversely, suppose an object moving in flat 3D Euclidean
space appears to be moving in a straight line at constant speed. For this to happen the
object has to actually follow an accelerating curved pathway in flat 3D Euclidean space
in order to compensate for the intrinsically warped geometry of visual space introduced
by the anatomy and physiology of the eye. Clearly this warping of visual space has to be
taken into account when planning visuomotor tasks, for example, catching a ball.

Another analogy may be useful. Imagine the inside surface of a bowl covered with
stick-on stamps of equal size. Now imagine viewing the bowl from above but with the
curvature of the bowl ignored so that it appears as a flat disc. The stamp at the middle of the
disc will appear the largest but moving out towards the periphery the stamps will appear
to shrink in size with distance from the centre because of the curvature of the bowl. A
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similar shrinking in size occurs for the images of objects in 3D visual space as their distance
from the egocentre increases because of the curvature of visual space introduced by the
eye. In Section 3.1 we provide more detailed description of the warping of 3D visual space
caused by the size-distance relationship of images projected onto the retinas. Meanwhile
suffice it to say that Riemannian geometry provides the theoretical tools needed to compute
the apparent size and the apparent position, velocity, acceleration and curvature at every
point along every pathway, curved or not, in flat 3D Euclidean space.

2.2. The Relevance of Riemannian Geometry in Action Science

The human body has about 110 elemental movements that can be varied voluntarily
independently of each other one at a time. Each elemental movement can be sensed proprio-
ceptively. We define posture space (or proprioceptive space) to be the 110-dimensional space
spanned by the 110 elemental movements. We define the configuration space of the human
body to be a 116-dimensional space equal to the Cartesian product of the 110-dimensional
posture space, the 3-dimensional place space giving the position (or place) of the head in
the 3D environment measured with respect to an external (allocentric) reference frame
(X, Y, Z), and the 3-dimensional orientation space giving the three rotation angles of the
head relative to the external reference frame (X, Y, Z). A movement to achieve a perceptual
goal can be thought of as a trajectory in configuration space. This can involve not only a
change in posture of the body but also a change in the place and orientation of the head in
the environment.

Neglecting relatively small frictional forces there are two main changing loads on
functional muscles that determine the pattern of muscle activation required to produce
a specified movement trajectory in configuration space: (i) the gravitational loads on
functional muscles vary as a function of the configuration of the body taking the changing
distribution of support forces acting on the body into account and (ii) the mass-inertia loads
about each elemental movement vary as a function of the configuration of the body taking
mechanical interactions with support surfaces and objects in the environment into account.
It is well known (thanks to orbiting space station experiments) that the nervous system
can adapt to changes in gravity. Basically this involves the nervous system learning the
patterns of muscle activations needed to hold the body in every possible configuration. But
how does the nervous system handle the changing mass-inertia loads about each elemental
movement? Obviously it must learn the mass-inertia load about each elemental movement
in every possible configuration of the body. But this is not sufficient!

Consider the simple case of a two-DOF arm moving in the horizontal plane (we will set
out the equations for such an arm in Section 6). The mass-inertia load about the shoulder-
angle varies as a nonlinear function of the elbow-angle. The distance between the shoulder
and the centre of mass of the forearm changes with changes in elbow-angle. Consequently
the moment of inertia of the arm about the shoulder-angle (i.e., the distribution of mass
about the axis of rotation at the shoulder) varies as a function of elbow-angle. But if the
arm is rotated at the shoulder it generates centrifugal forces that cause the forearm to
fling outwards thereby changing the mass-inertia load at the shoulder. Thus movement
of a two-DOF arm involves a complicated, nonlinear, dynamical, mass-inertia interaction
between the two joint-angles.

This becomes considerably more complicated, one might even say impossibly com-
plicated, when all the 116-dimensions of the configuration space of the body (including
mechanical interactions between the body and the environment) are taken into account.
But this of course is exactly what the nervous system does. Even a simple one-DOF
movement such as abducting the arm at the shoulder requires generation of a synergy
of muscle activations distributed throughout the entire body to facilitate the abduction
movement and to compensate for the unwanted mass-inertia interactions with all the other
elemental movements of the body. These interactions change as the distribution of support
forces on the body change and they have to be predicted particularly when planning fast
ballistic movements.
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To make an energy efficient multi-joint coordinated movement to achieve a specified
visual goal the nervous system has to plan and execute a minimum-effort multi-joint
coordinated movement trajectory in the configuration space of the body to move between
a specified initial configuration and a specified final configuration in a specified time
compatible with the specified visual goal. How can such a trajectory be planned so easily
within a single reaction time interval given the complexity of the mass-inertia interactions
between the elemental movements of the body and the environment? The answer lies in
Riemannian geometry!

As explained in Appendix A, the mass-inertia matrix of the body corresponds to the
kinetic-energy Riemannian metric on the posture space of the body. According to the
theorems of Riemannian geometry and classical mechanics this changing kinetic-energy
metric can be represented by curvature of posture space (see A.16). The Riemannian
geometry theory of geodesics and parallel translation (A.17) applied to curved posture
space generates a natural, free motion, minimal muscular-effort trajectory in posture
space known as a geodesic trajectory that takes all the mass-inertial interactions between
elemental movements into account. What is more, a Riemannian geometry formulation
allows the computations to be broken down into a set of relatively simple distributed point-
calculations that can be performed simultaneously in parallel. Thus an understanding of
Riemannian geometry leads to a straightforward solution of a key problem of nonlinear
dynamics in action science.

2.3. The Geometry of an Integrated Somatosensory-Hippocampal-Visual Memory

To account for central processing underlying the planning and execution of visually-
guided movement it is necessary to integrate somatosensory, hippocampal and visual
information (i.e., posture, place and vision). In this paper we describe a plausible structure
for an integrated somatosensory-hippocampal-visual memory able to combine visual in-
formation about the environment and the body in that environment with proprioceptive
information about the posture of the body and hippocampal information about the place
and orientation of the head. We take it as given that posture of the body is encoded by
temporospatial patterns of neural activity in the somatosensory cortex (i.e., in propriocep-
tive space) and that cells in the hippocampal formation provide an exquisitely detailed
representation of the person’s current place and heading in the local environment [44].

The present proposal is conceptually an extension of our previously proposed place-
encoded visuospatial memory structure [6]. There, as here, we use the constructs of
differential geometry to delineate how the partitions of such a memory are instated and
accessed. A key concept in our scheme of early visual processing is that of an image-point
vector and its association with an image point. We propose that during a fixed-gaze interval
the image falling on each retinal hyperfield is encoded by a vector of numbers correspond-
ing to the levels of activity induced in a cluster of ocular dominance columns within a
cortical hypercolumn [6]. We call this vector of numbers an image-point vector. During the
same fixed-gaze interval depth-perception mechanisms based on stereopsis, retinal-image
disparity and focus control determine the cyclopean coordinates (r, θ, ϕ) for the point in
the environment that projects its surrounding image onto a retinal hyperfield. These are
the only depth-perception mechanisms that give an absolute estimate of depth based solely
on afferent information without intervention by top-down cognitive mechanisms of depth
perception. Euclidean distance from the egocentre is denoted by r while the angles (θ, ϕ)
give the direction in the 3D environment relative to an external (i.e., allocentric) reference
frame (X, Y, Z). Notice that each point (r, θ, ϕ) is encoded as a mixture of egocentric and al-
locentric coordinates. We call the cyclopean coordinates (r, θ, ϕ) for each retinal-hyperfield
image during each fixed-gaze interval its image point.

For the visual system to construct a representation of the entire 3D environment from
a sequence of fixed-gaze points (i.e., visual scanning) the encoded image-point vectors and
their associated image points acquired during each fixed-gaze interval have to be captured
into visuospatial memory before the activity encoded in the cortical hypercolumns is lost
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and replaced with an encoding of the retinal-hyperfield images for the next gaze point. Via
visual scanning the memory accumulates the information from a sequence of gaze points,
ultimately providing a representation of the entire 3D environment as seen from every
place and posture.

2.4. The Street View Analogy

The Street-View feature of Google maps [45] provides a useful analogy for obtaining
an intuitive understanding of our proposed structure of the integrated somatosensory-
hippocampal-visual memory. To acquire its massive database Google’s Street View deploys
a roving car with rotating roof camera to capture images associated with a known place (just
like visual scanning enables the capture of image-point vectors with associated image points
at each posture and place in our proposal). In the street-view application specification
of a street name and house number (or the equivalent geo-coordinates) retrieves from a
cloud submemory all the images associated with that place on the map. Each of these is
associated with an angle of the camera rotating in a horizontal plane at that place on the
map. Thus specifying the angle retrieves a particular view of the surroundings. An effect
of depth is obtained by zooming in or out of the retrieved image. Each street-view image
is stored efficiently in the submemory using a highly compressed format that removes
redundancy from the image, thus minimizing the total amount of memory required.

In our proposal retinal-hyperfield images for multiple gaze points are superimposed
and accumulated in each submemory partition thereby constructing an image of the
environment and of the body in that environment as seen from that posture-and-place.
Neural activity in the somatosensory cortex and hippocampal region of the brain encode
the posture of the body and the place and orientation of the head in the environment,
respectively. This posture-and-place-encoding is analogous to the geo-coordinates in Street
View. It retrieves from a submemory (i.e., a partition of visuospatial memory) all the
encoded retinal-hyperfield images associated with that posture and place (i.e., as seen from
that posture and that place through visual scanning analogous to the rotating camera in
Street View). In other words it retrieves from a submemory an image of the environment
and of the body in that environment as seen from that posture and place.

By analogy with the horizontal angle of the camera that took the street-view image,
each of the posture-and-place-encoded retinal-hyperfield images (i.e., image-point vectors)
in the visuospatial submemory is associated with a cyclopean vector (r, θ, ϕ) (i.e., image
point) corresponding to the point in the 3D environment that projects to that retinal
hyperfield during that fixed-gaze interval with the head at that place and the body in
that posture, orientation of the head having been absorbed into the cyclopean coordinates
(r, θ, ϕ).

Analogous to the efficient storage of each street-view image, each posture-and-place-
encoded retinal-hyperfield image at each image point (r, θ, ϕ) in the submemory is encoded
efficiently as a vector of real numbers (i.e., image-point vector) that removes redundancy
from the hyperfield image. For a detailed description of this encoding process based on
singular value decomposition see ([6] Section 2.7 and Appendix A). This representation of
encoded retinal-hyperfield images as image-point vectors associated with image points
on the surfaces of visible objects in the environment and on the visible surfaces of the
body facilitates the description of the posture-and-place-encoded visual memory as a
Riemannian structure. Our full Riemannian geometric account of this memory is given
in Section 4.3.

2.5. Constructing a 3D Representation via Riemannian Mapping

The place-and-posture-encoded images within each partition of visuospatial memory
are endowed with an estimate of depth obtained from stereopsis, retinal-image disparity
and focus control mechanisms of depth perception. But when 3D objects in the environment
(including the body) are viewed from a fixed posture and place with depth they appear
as 2D curved surfaces with boundary (or outline). This is not a 3D representation! Some
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have described it as a 2 1
2 D representation. Nevertheless, each of the many different

partitions of visuospatial memory contains a posture-and-place-encoded image of the
same 3D objects and the same body but seen from different places and with the body in
different postures. If a sufficiently large number of places and postures are encoded then
the totality of all the images in all the partitions of visuospatial memory contain all the
information needed to construct a 3D representation of the environment and of the body in
that environment. Using a special type of map defined in Riemannian geometry (viz., a
vector bundle morphism) between image points and image-point vectors in each and every
partition of visuospatial memory it is possible to remove occlusions and to construct a 3D
representation of the environment and of the body in that environment seen in the correct
perspective from any posture and place. We set this out mathematically in Section 4.3. The
point to be made here is that a visuospatial memory with Riemannian structure described
has the capability to provide a visualization of moving about within a learned internal
representation of the 3D environment. One only has to visualize moving, say from one’s
front door to one’s kitchen, to know that this capability exists.

2.6. Geodesic Trajectories and Reinforcement Learning

We return now to the Street-View analogy. In Street View one can steer the mouse
pointer along streets looking at different street-view images along the way. This can be
thought of as selecting a trajectory of street names, house numbers and horizontal camera
angles to reach a required image of a particular house or street corner or whatever. Planning
and executing such a mouse-pointer trajectory between a specified initial street-view image
and a specified final street-view image is mathematically a two-point boundary value
problem that is difficult to solve. Likewise to move between a specified initial posture, place
and visual image and a specified final visual image of the body in the environment (with
the hand grasping a glass for example) one would need to plan a minimum-effort trajectory
in posture-and-place space to reach the required end-point visual image. Remember, each
posture-and-place along the trajectory is associated with a visual image of the environment
and of the body in that environment as seen from that posture-and-place. Again, as with the
mouse-pointer trajectory, mathematically this is a high-dimensional, nonlinear, two-point
boundary value problem that is difficult to solve. Yet people quickly learn to do it by trial
and error, imitation, and perhaps some instruction from an expert. Our proposal is that
humans circumvent this difficult computational problem, just as they do in steering the
mouse in Google Street View and just as animals in general learn to make movements
that achieve desired sensory outcomes. Reinforcement learning is used to find the optimal
trajectory in posture-and-place space compatible with the specified initial and final visual
images. Incorporating the nonlinear warping both of visual space and of posture space
the Riemannian geometry theory of geodesic trajectories (A17) provides the mathematical
tools needed to describe reinforcement learning in this context. We give a full account of
this in Section 7.

2.7. Two Streams of Visual Processing

The structure of the posture-and-place-encoded memory described above leads ele-
gantly to the concept of two independent streams of visual processing. Encoded image
points (r, θ, ϕ) on the surface of the body change with a change in the posture of the body
but do not change as the place of the head (i.e., egocentre) in the environment is changed.
Conversely, encoded image points (r, θ, ϕ) for points on the surfaces of objects in the envi-
ronment (other than the body) change when the place of the egocentre is changed but do
not change when the posture of the body is changed.

Some confusion might arise here because rotation of the head about its axis and/or
atlas joints, sensed proprioceptively, produces a change in the orientation of the head. But
as mentioned earlier, the direction of heading is exquisitely encoded within hippocampal
regions of the brain so it is fair to say that, as well as place, the orientation of the head
is encoded within hippocampal regions. However different aspects of orientation are
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encoded in hippocampal regions and somatosensory regions of the cortex. It is possible to
change the orientation of the head in the environment by, for example, changing from a
standing to a lying configuration without changing the axis-atlas joint angles. Moreover,
the cyclopean coordinates (r, θ, ϕ) for any point in the environment are determined by both
the angles of the eyes in the head and the orientation of the head in the environment. Thus
the orientation of the head can be absorbed into the cyclopean coordinates (r, θ, ϕ).

To illustrate, think of a mannequin in a fixed posture being carried about. The cy-
clopean coordinates referenced from the point midway between the mannequin’s eyes to
points on its body do not change as it is moved about regardless of the fixed joint-angles of
its head. In contrast, the cyclopean coordinates referenced from the point midway between
the mannequin’s eyes to points on objects in the environment do change as the mannequin
is carried from place to place. Regardless of the angle at which the mannequin’s head is set
relative to its body the place of its head in the environment can be changed independently
of its posture (including the set angle of its head).

The fact that the visual consequences of changes in posture differ from those of
changes in place gives rise to the prediction that two streams of visual processing exist
independently of each other in parallel. One stream associates image points and image-
point vectors for points on the surface of the body with proprioceptive patterns of activity
in the somatosensory cortex encoding different body postures. The other stream associates
image points and image-point vectors for points on the surfaces of objects (other than the
body) in the environment with patterns of activity in the hippocampal region of the brain
encoding the place of the head in the 3D environment.

2.8. A Riemannian Metric Encodes the Intrinsic Geometry of Visual Space

Having set out intuitively in previous sections the concept of image points and image-
point vectors, we call on this to revisit the notion of an invariant visual space introduced
in Section 2.1. This time we use some basic equations that underlie the mathematical
description of that space. These are a fundamental springboard to the derivations later in
the paper.

The relationship between the Euclidean distance r and the size of the retinal-hyperfield
image stored at the image point (r, θ, ϕ) in the appropriate visuospatial submemory is
represented by a symmetrical, positive definite, 3× 3 matrix g(r, θ, ϕ) at each site (r, θ, ϕ)
in the submemory. The matrix g(r, θ, ϕ) at each site (r, θ, ϕ), known as a Riemannian metric
(see A.11), varies smoothly from image point to image point in the submemory. Using the
mathematics of Riemannian geometry we can determine the curved (warped) geometry of
the 3D visual space encoded by the Riemannian metric and the way it changes from image
point to image point.

The matrix

g(r, θ, ϕ) =


1
r2 0 0

0
1
r2 0

0 0
1
r2

 (1)

at each image point (r, θ, ϕ) in each submemory describes the warped geometry associated
with the images of objects decreasing in size in inverse proportion to the Euclidean distance
r between the object and the egocentre. Without going into detail the Riemannian geometry
works like this. Suppose the image point (r, θ, ϕ) happens to be a point on the outline of a
2D curved image of an object embedded in the 3D intrinsically-warped visual space seen
from a fixed place. Suppose there exists a 3D direction vector v in visual space tangent to
the boundary curve at that point in 3D visual space. The length (norm) |v| of that vector in
the warped visual space equals the square root of the metric inner product of v, given by
the equation

|v| = 〈g(r, θ, ϕ)v, v〉1/2. (2)
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with g(r, θ, ϕ) set equal to the matrix in Equation (1) at each image point (r, θ, ϕ) in the
submemory, the length |v| varies from image point to image point along the boundary
curve in inverse proportion to the Euclidean distance r of that point from the egocentre at
the origin. The length L between any two points a and b along the boundary curve in the
warped 3D visual space (i.e., the arc length L between points a and b in 3D visual space) is
given by the integral of the norm |v| of the direction vector, i.e.,

L =
∫ b

a
〈g(r, θ, ϕ)v, v〉1/2ds (3)

thus distances and directions along curves and the sizes of objects in the warped 3D visual
space vary as an inverse function of the Euclidean distance r in the outside world. This
causes a profound warping of 3D visual space affecting the representation of position, size,
shape, curvature, outline, velocity and acceleration of objects and of the body in the outside
world (see Section 3.1).

A smooth, one-to-one, onto, invertible map (i.e., a diffeomorphism) between the 3D
outside world and the 3D warped visual space allows the actual size of an object to be
related to its apparent size in warped visual space. Because the size-distance relationship
and hence the metric g(r, θ, ϕ) is derived in our proposal directly from vestibular, proprio-
ceptive and visual afferent signals before perception is modified by top-down cognitive
mechanisms of depth perception we refer to it as the intrinsic geometry of 3D visual space.
The set of all cyclopean vectors (r, θ, ϕ) span all the points in the 3D Euclidean environment.
They also span the 3D warped visual space but the existence of the matrix g(r, θ, ϕ) at
each image point (r, θ, ϕ) implies that the visual system anticipates the change in size of
retinal images associated with change in Euclidean distance r in the outside world. If the
distance r is incorrectly estimated, or the geometry of visual space is modified by top-down
cognitive mechanisms based on learned experience, such as the expectation that faces are
convex in shape or that rooms are rectangular and do not change size as we move about
within them, then the one-to-one mapping between the outside world and the warped
representation of it is lost and unrealistic visual perceptions (i.e., illusions) result.

We trust that the information in this section can serve to introduce Riemannian
geometry as a beautiful and elegant branch of mathematics concerned with the calculus of
nonlinear dynamical processes taking place in curved (or warped) manifolds. We believe it
is the only existing mathematical framework able to handle the computational complexities
underlying visually-guided movement. We now proceed to a full account of the theory.

3. Background
3.1. The Intrinsically-Warped Geometry of 3D Visual Space

Modern schematic models of the eye employ multiple refractory surfaces to emulate
the full range of optical characteristics. However, as set out by Katz and Kruger ([46],
Chapter 33), object-image relationships can be determined by simple calculations using the
optics of the reduced model of the eye due to Listing. The geometry of the eye determines
that the size of the retinal image varies in proportion to the angle subtended by the object at
the nodal point of the eye. Or stated equivalently, the geometry of the eye determines that
the size of the image changes in inverse proportion to the Euclidean distance between the
object in the environment and the nodal point of the eye. Since the image on the retina is
encoded by photoreceptors and signaled by retinal ganglion cells via the lateral geniculate
nucleus to the primary visual cortex it follows that sizes of images on the retina are encoded
within the visual afferent signals.

Proprioceptive and vestibular afferent signals combined with visual afferent signals
allow binocular stereopsis, retinal-image disparity and focus control to be used to obtain
an absolute measure of the Euclidean distance between the egocentre and points in the
environment during each interval of fixed gaze. Thus information encoded within visual,
proprioceptive and vestibular afferent signals is sufficient for the nervous system to com-
pute the relationship between the size of the image on the retina and the Euclidean distance
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between the egocentre and points in the environment. This size-distance relationship
can be represented by a Riemannian metric g(r, θ, ϕ) at each image point (r, θ, ϕ) in a
representation of 3D visual space [6] in each partition of visuospatial memory.

Using Riemannian geometry to compute the effect that the size-distance relationship
introduced by the eye has on the geometry of 3D visual space, we found it to have a
profound influence [6]. The geometry of the computed 3D visual space corresponds to
a Riemannian manifold with the egocentre at the origin and with a Riemannian metric
that varies on the manifold in inverse proportion to the square of the Euclidean distance
between the egocentre and the observed point in the environment as in Equation (1).
Because this Riemannian geometry is computed directly from information encoded in
afferent signals, before any possible modification by top-down cognitive estimates of depth,
we refer to it as the intrinsic geometry of 3D visual space.

We showed that, with the head at a fixed place, the intrinsic Riemannian geometry
of 3D visual space creates a conformal mapping between points in the outside world and
their positions in the computed 3D warped visual space. Angles between coordinate lines
in the outside world are preserved but the lengths and curvatures of lines are transformed.
We found that every plane in the outside world passing through the egocentre is warped in
3D visual space in the same way. Concentric circles about the egocentre in the plane, radial
lines emanating outward from the egocentre in the plane, and logarithmic spirals deviating
inwards or outwards from circles in the plane in the outside world are represented by
straight lines (known as geodesics, discussed in Section 3.7) in the intrinsically-warped
3D visual space. Radial lines (i.e., lines of gaze) are the only lines that are straight in both
the outside world and in visual space but their lengths are foreshortened in visual space
by the logarithm of their lengths in Euclidean space. Every other straight line joining any
two points in the outside world is represented by a curved line in intrinsically-warped
visual space. The arc lengths of segments on concentric circles about the egocentre in the
outside world are represented in visual space by straight lines with lengths proportional to
the angles between the radial lines spanning the segment. Thus the sizes of objects in the
environment are represented by the angles they subtend at the egocentre or, equivalently,
the represented size of an object decreases in inverse proportion to its Euclidean distance
from the egocentre. In other words, objects appear to shrink in size without changing their
shape as they recede without rotation along radial lines [6].

The intrinsic warping of the geometry of 3D visual space causes the represented
position, size, outline, occlusions, curvature, velocity and acceleration of objects in visual
space to change as a function of the position of the object in the outside world relative
to the egocentre or, equivalently, their positions relative to the egocentre as the person
moves about in the local environment. Clearly, this intrinsic warping of the geometry of
3D visual space attributable to the size-distance relationship of retinal images introduced
by the anatomy and physiology of the eye has to be taken into account when making
sensory-motor decisions about the coordinated movements (i.e., movement synergies)
required to achieve visual goals.

3.2. The Need for Movement Synergies

We have addressed the need for synergies extensively in previous work [47,48]. To
summarize and as introduced in Section 2.2, the human body has some 110 elemental
movements (ball-park estimate) that can be controlled voluntarily independently of each
other one at a time. In other words, there are no anatomical or physiological constraints
that prevent the independent implementation of these 110 elemental movements. However,
the nervous system has insufficient central processing resources to plan and execute
independently-varying trajectories for all 110 elemental movements simultaneously. We
contend that this limitation is overcome by the nervous system, at the same time solving
the problem of redundancy in the neuro-musculo-skeletal system, by introducing task-
dependent constraining relationships between groups of elemental movements so they
move together in nonlinear dynamically-related ways. Each set of coupled elemental
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movements can then be controlled as a unit [47,48]. More than one set of coupled elemental
movements can be controlled independently simultaneously but this number has to be
small, say ≤ 10, because of limited central processing resources. To distinguish between
biomechanical DOFs of the human body and the greatly reduced number of DOFs for
elemental movement trajectories constrained by the nervous system to move together in
a related fashion we use the term control degrees of freedom (CDOFs) to describe the latter.
The number of CDOFs in the muscle synergy and in the descending alpha and gamma
motor-command synergies is the same as the number of CDOFs in the movement synergy.
Movement synergies greatly reduce the number of DOFs (i.e., the number of independently
varying movements to be planned and executed in parallel in order to achieve a specified
visual goal).

The duration for which a selected movement synergy can be maintained and the
number of goal-oriented submovements that can be performed in sequence within it
depend on the task. Consider the task of steering an automobile with both hands in a fixed
grip on the steering wheel. This requires a coordination of the elemental movements of
the shoulders, elbows, forearms and wrists of both arms to turn the wheel. Provided the
grip on the wheel is not changed, this movement synergy can be maintained for hours
despite that fact that many different visually-guided submovements are required within
that synergy to steer the car along the road. On the other hand, a visually-guided task
such as picking up and drinking from a glass requires the sequential selection of different
movement synergies such as reach and grasp, pickup, transport with horizontal stability,
place against lips, tilt and swallow, tilt, transport, place on table, and so on. The nervous
system not only has to be able to generate differing sets of constraining relationships
between elemental movements corresponding to different movement synergies but it also
has to be able to switch quickly and smoothly from one synergy to the next in accordance
with the actions chosen to achieve sequences of behavioural goals.

By coupling elemental movements together and controlling them as a unit the central
workload involved in planning and executing task-dependent multi-joint coordinated
movements is greatly reduced. Rather than planning and controlling trajectories for 110
elemental movements in parallel, a central response planning system has only to plan
and control a small number N of independently varying coupled-movement trajectories.
The price to be paid for this large reduction in demand on central processing resources
is a requirement for the nervous system to have (i) neural circuitry able to generate task-
dependent nonlinear dynamical constraining relationships between elemental movements
and (ii) neural circuitry able to select and switch quickly and smoothly from a set of
constraining relationships appropriate for one perceptual goal to another set of constraining
relationships appropriate for the next goal in a changing sequence of goal-directed actions.

We have dealt with the first requirement previously [47,48] where we formally defined
a set of task-dependent nonlinear dynamical constraining relationships between elemental
movements to be a movement synergy, and referred to a neural circuit able to generate
constraining relationships between descending drives to pools of alpha and gamma motor
neurons of functional muscles as a synergy generator. We have also shown [47] that this
involves both task-dependent synergy generators and wired-in (i.e., task-independent)
synergy generators. The second requirement, provision of a neural basis for selecting and
switching between synergies geared to behavioural goals, is addressed in the latter sections
of this paper.

3.3. The Configuration Space of the Human Body Moving in 3D Euclidean Space

In Section 2.2 and in [5] we defined the 116-dimensional configuration space of the
human body moving in the 3D Euclidean outside world to be the Cartesian product
C = Θ× P×O of posture space Θ, place space P and orientation space O. Impossible
postures and no-go places impose a boundary on the configuration space C. For example,
there is an anatomical limitation on the range of each elemental movement and, in certain
configurations, this range is further limited by parts of the body bumping into each other
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and/or bumping into objects in the environment. It is not possible to float into the air or to
walk through a brick wall; in other words, possible configurations of the body are confined
to the configuration space with boundary while impossible configurations are outside the
configuration space with boundary. Thus whenever we mention configuration space (or
configuration manifold) subsequently we mean only possible configurations within the
configuration space with boundary.

Unstable postures leading to a fall can also be considered to be no-go postures outside
the boundary. We have previously discussed [5] the issue of controlled falling and the
inclusion of unstable configurations in functional movements such as walking jumping
and running. We suggested that just as a person travelling in a bus or a train is able to
shift his/her allocentric reference frame from the stationary outside world to (X, Y, Z)
coordinates attached to the inside of the moving vehicle, a high-diver doing a double
somersault with half twist, for example, can shift his/her external reference frame to a
point on his/her own body and thus plan somersault and twisting movements in free fall.
We also find it reasonable to suppose that flexibility in changing the external reference
frame may underlie ability to plan movements that include controlled falling such as
walking, running and jumping.

3.4. The Mass-Inertia Matrix of the Body Changes with Configuration

The mass-inertia matrix J of the human body is a 110 × 110 symmetrical, positive-
definite matrix. It is the kinetic-energy Riemannian metric (as in [49] and A.11) on the
110D posture manifold (Θ, J). Given a learned model of the relationships between changes
in the angles and positions of the elemental movements of the body and the associated
changes in the lengths of functional muscles (see [47]), the mass-inertia loads on functional
muscles can be computed from muscle-length and muscle-tension afferent signals. Because
the support forces distributed across the body surface constrain movement (e.g., it is not
possible to kick the leg you are standing on), and because the size and distribution of the
support forces can change with configuration, it follows that the mass-inertia load about
each elemental movement depends not only on the posture of the body but also on the
place and orientation of the head. Think, for example, of the differences between standing
and lying. In other words, the mass-inertia matrix J(c) of the body can change as a function
of the configuration c ∈ C = Θ× P×O.

This leads to a novel definition of the Riemannian metric on the configuration man-
ifold C. Rather than the usual block-diagonal Riemannian-metric matrix on a product
manifold we have a metric J(c) on the posture manifold (Θ, J) that is defined at every
configuration c ∈ C in the configuration manifold C. For configurations outside the bound-
ary in configuration space C we set J(c) = ∞ with a smooth transition in the vicinity of
the boundary. As we will see this prevents the planning of minimum-effort movement
trajectories from entering no-go places and impossible postures and from colliding with
objects in the environment. We do not define a metric on the place space P or the orientation
space O because these metrics are not required in our ensuing formulation.

3.5. Minimum Effort Movement Trajectories to Achieve Specified Visual Outcomes

Because there is a large number of elemental movements spanning the posture mani-
fold (Θ, J) it follows that many different coordinated movement trajectories in the posture
manifold can achieve a specified visual outcome. We have proposed previously [5,47,48]
that this problem of redundancy is overcome by selecting the unique coordinated move-
ment trajectory that is able to achieve a specified goal with minimal demand by the muscles
for metabolic energy. Since the amount of muscle force required to accelerate the body
depends on the mass-inertia loads on the muscles, as described in Section 2.2, the fact that
the mass-inertia matrix J(c) of the body changes with configuration must be taken into
account in computing a goal-directed minimum-effort coordinated movement trajectory.

However in computing a minimum-effort movement trajectory to achieve a specified
visual outcome a further complication arises because, as addressed in Section 3.1, visual
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representations of objects in the intrinsically-warped 3D visual space change profoundly
with changes in the place and orientation of the head in the environment. Thus the
determination of trajectories planned to achieve specified visual goals must include precise
specification of the position and orientation of the head as well as other required changes
in posture. Apart from being transported about by a vehicle of some kind the only way a
person can control the place and orientation of the head in the environment is by changing
the posture of the body. But the relationship between body posture and the position
and orientation of the head is ill-defined. The relationship changes depending on the
configuration of the body. For example, changing the joint angles of the arms when doing
push-ups changes the place and orientation of the head in the environment but if this is
done when standing it does not do so. In general the relationship between changes in body
posture and changes in the position and orientation of the head, and hence changes in
visual images of objects in the environment, depends on the distribution of support forces
on the body. This distribution can change with changes in configuration of the body.

How then is a minimum-energy trajectory to a visual goal achieved, given that the
specification of the goal depends on the place and orientation of the head which in turn
has an ill-defined dependence on the trajectory in posture-and-place space? This question
is addressed in the section below. The answer plays an important role in the Riemannian
theory of visually-guided movement synergies and will be referred to again in Section 5.

3.6. Movement Trajectories Confined to Local Regions in Configuration Space

To achieve a specified visual outcome a planned minimum-effort coordinated move-
ment trajectory has to be confined to a local region in configuration space where there is
a fixed smooth mapping between posture and the place and orientation of the head in
the environment. Such a trajectory will be geodesic as explained in Section 3.7. Figure 1
illustrates this local control which can be described geometrically using Riemannian graphs
of submanifolds theory, (A.12 and ([50], p.100)).

As depicted in Figure 1, Γ( f ) ⊆ C = Θ× P×O denotes the graph of f : U → P×O .
To restate what is shown in Figure 1, we can write:

Γ( f ) = {(θ, (p, o)) ∈ C = Θ× P×O : θ ∈ U, (p, o) = f (θ)} (4)

where Γ( f ) is a 110D submanifold embedded in C = Θ× P×O diffeomorphic to U ⊆ Θ,
θ is a posture in the open subset U ⊆ Θ, (p, o) is a place and orientation of the head in a
local region of P×O, and f : U → P×O is a local smooth map between posture and the
place and orientation of the head. Importantly, the map f can change with changes in the
distribution of support forces acting on the body and hence with configuration. Some local
changes in body posture confined to U ⊆ Θ leave the place and orientation of the head
unchanged while other changes in U ⊆ Θ carry the place and orientation of the head along
with them in a smooth one-to-one fashion. For example, moving the arms might leave
the place and orientation of the head in the environment unchanged while bending at the
waist might carry the place and orientation of the head in the environment along with it.
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Figure 1. A schematic diagram illustrating the Riemannian theory of graphs of submanifolds. Θ
designates the smooth 110D posture manifold spanned by the 110 elemental movements of the body.
P×O designates the smooth 6D place-and-orientation manifold spanning the place and orientation
space of the head in the 3D environment. U designates a neighbourhood in the posture manifold Θ
about a given initial posture θi ∈ Θ where there exists a fixed mapping f : U → P×O between the
open subset U ⊆ Θ in posture space and the position and orientation of the head in a local region
of P×O. The graph of the map f : U → P×O is designated by Γ( f ). Γ( f ) is a 110D submanifold
embedded in the configuration manifold C = Θ× P×O that is diffeomorphic to the 110D open
subset U ⊆ Θ in the posture manifold Θ. Different mappings f between posture and the place and
orientation of the head are represented by different submanifolds Γ( f ).

At every point c = (θ, (p, o)) in the 110D submanifold Γ( f ) ⊆ C = Θ × P × O
there exists a 110 × 110 mass-inertia matrix J(c). As explained in Section 3.7 this means
that a minimum-effort (geodesic) natural free-motion trajectory determined by the mass-
inertia characteristics of the body can be computed from anywhere to anywhere within the
local 110D submanifold Γ( f ) (see A.12 and A.17). Any such computed minimum-effort
geodesic movement trajectory in Γ( f ) maps in a smooth, one-to-one, onto, invertible (i.e.,
diffeomorphic) fashion onto a smooth minimum-effort movement geodesic trajectory in
U ⊆ Θ. In turn this trajectory in U ⊆ Θ maps smoothly via the map f : U → P×O to a
smooth minimum-effort geodesic trajectory in the place-and-orientation space P×O of
the head in the environment. Thus minimum-effort movement trajectories that include
precise control over the place and orientation of the head can be generated locally in a 110D
submanifold Γ( f ) centred about a specified initial configuration ci derived from f (θi) in
the configuration manifold C (i.e., in a local region of the configuration manifold C where
there exists a fixed relationship between the local posture of the body and the local place
and orientation of the head in the environment).

In essence, because the mass-inertia matrix J(c) is the kinetic-energy Riemannian
metric on the posture manifold Θ, all geodesics computed using J(c) will be confined to the
110D posture manifold Θ. However, because the local map f : U → P×O between U ⊆ Θ
and P×O is either a constant map or a smooth one-to-one map it follows that, locally
at least, the geodesic in posture space either leaves the place and orientation of the head
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unchanged or it carries the place and orientation of the head along with it in a one-to-one
fashion. Thus a geodesic trajectory in U ⊆ Θ maps diffeomorphically onto a geodesic in
the submanifold Γ( f ). Locally at least, where the map f : U → P×O between posture
and the place and orientation of the head is fixed, the geodesic in the posture manifold and
the geodesic in the submanifold Γ( f ) are equivalent (i.e., they map diffeomorphically onto
each other).

Similar local computations of minimum-effort movement trajectories apply in dif-
ferent local regions of configuration space C (i.e., in different embedded submanifolds
Γ( f )) when the smooth fixed map f : U → P×O is different because of changes in the
distribution of support forces acting on the body (e.g., standing, sitting, lying). It follows
that minimum-effort movement trajectories to achieve specified visual outcomes have
to be planned in appropriate local regions of the posture-and-place manifold where the
movement trajectories carry the place and orientation of the head along with them in a
one-to-one fashion. We will return to this in Section 5.

3.7. Geodesics in Configuration Space

Suppose the body is given an initial configuration ci ∈ C and an initial velocity
.
c ∈ Tci Γ, where Tci Γ is the vector space tangent to the submanifold Γ( f ) at ci ∈ C. Re-
member Tci Γ is isomorphic to the tangent space Tci Θ as described in Section 3.6. Then,
because the body has mass and rotational inertia (i.e., mass-inertia) about each elemental
movement, in the absence of all external forces (including muscle forces) the body will
follow a natural free motion trajectory c(t) parameterized by time t in the configuration
manifold C confined to the 110D submanifold Γ( f ). Natural free-motion trajectories are a
property of all mechanical systems with mass-inertia as expressed by Newton’s first law,
a body will remain in a state of rest or uniform motion in a straight line unless acted on by an
external force. In other words, in the absence of all external forces (including muscle forces),
the body will move along a trajectory c(t) in the configuration manifold C in such a way
as to conserve its kinetic energy (think of a body moving in a gravity-free environment).
However, in the curved 110D submanifold Γ( f ) described above the mass-inertia matrix
J(c) changes with configuration and consequently the corresponding motion in Euclidean
space has to accelerate and/or decelerate in order to preserve the kinetic energy of the
body. In 3D Euclidean space the natural free-motion geodesic trajectory of the body is
a curved accelerating and/or decelerating one. For a detailed description of a geodesic
trajectory generator (GTG) able to generate geodesic trajectories from anywhere to anywhere
in the configuration manifold C see ([5] Section 5) and ([6] Section 4).

Our proposal that humans use the mass-inertial properties of the body efficiently
when planning goal-directed movements is not without experimental support. In ([5]
Section 2.2) we reviewed studies showing experimentally that rotations of the eyes, hand
and limb movements, swinging movements of the leg during walking, movements of
the head-eye system, multi-joint arm movements, and reaching movements involving
coordinated rotations of the head, clavicles, shoulders, elbows, wrists and bending of the
vertebral column all correspond to geodesic trajectories of a Riemannian manifold defined
by a coordinate system based on the DOFs of the movement.

In considering movement of the body there always exist (i) visco-elastic forces at-
tributable to connective tissue and to the tension-length-velocity characteristics of muscles,
(ii) posture-dependent gravitational forces and torques acting about each elemental move-
ment and (iii) configuration-dependent support forces distributed over the surface of the
body that constrain movement. To hold the body in a fixed equilibrium posture or to
follow a geodesic movement trajectory these ever-present but changing external forces
have to be balanced by muscle forces. Nevertheless, since mass-inertial loads on muscles
and gravitational torques dominate other forces, the unique geodesic pathway connecting
a specified initial configuration to a specified final configuration (i.e., c(ti) to c(t f )) remains
the most energy-efficient pathway despite the existence of other ever-present visco-elastic
external forces [5]. Gravitational forces are conservative forces so the same amount of
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energy is required to overcome gravity in moving between c(ti) and c(t f ) no matter which
pathway between them is chosen.

4. Posture-and-Place-Encoded Visual Images
4.1. Image Points, Image-Point Vectors and Visual Space

In this section we extend the previous place-encoded theory of visuospatial memory [6]
to a posture-and-place-encoded theory (outlined in Section 2.4). Each posture-and-place
partition of visuospatial memory consists of an association memory network that associates
image-point vectors with their corresponding image points as seen from each posture
and place during each fixed-gaze interval. Over time, through visual scanning, as the
person moves about in the environment, each posture-and-place associated partition
of visuospatial memory accumulates an encoded visual image of all the objects in the
environment and of the body in that environment as seen from that place and with the
body in that posture. We refer to these accumulated images of the environment and of the
body in that environment as posture-and-place-encoded visual images. Every partition of
visuospatial memory is spanned by the cyclopean coordinates (r, θ, ϕ) that parameterize
3D visual space. Orientation of the head is absorbed into the cyclopean coordinates (r, θ, ϕ).
Thus each partition of visuospatial memory provides an internal egocentric representation
of the 3D environment and of the body in that environment as seen when the head is at
that place and the body is in that posture.

4.2. Visual Scanning of Objects and of the Body

To relate vision with action the nervous system has not only to encode 3D visual
images of objects in the environment along with the way they appear to change from place
to place (i.e., perceived optical flow), but it must also encode 3D visual images of the body
in that environment along with the way those images change with posture.

When moving in a local 3D Euclidean environment a person is able to visually scan
not only objects in the environment and their surrounds but also the visible surfaces of
his/her own body. This is how a person becomes familiar with a local environment and
with visual and proprioceptive images of the body in that environment. We propose that
“snapshots” of the encoded retinal-hyperfield images for each gaze point are processed
and accumulated in visuospatial memory just as described in [6] Section 3 except that now
we partition that memory according to both posture and place.

Because our focus here is on visually-guided movement we restrict attention to those
movements of the body that can be sensed visually. While all 110 elemental movements of
the body spanning posture space Θ can be sensed proprioceptively some cannot be sensed
visually regardless of which posture the body assumes. For example, it is not possible
to see one’s own head or the angles of one’s eyes in the head (reflections in a mirror do
not count). Again as a ball-park estimate, 73 can be detected visually, these being the
elemental movements (joint-angles) of the shoulders, arms, hands, fingers, trunk, hips, legs,
feet and toes. We therefore introduce the notation Ψ to represent the 73D visible-posture
space spanned by the 73 joint-angles that can be sensed both proprioceptively and visually.
Accordingly a point ψi, i = 1, 2, · · · , ∞, represents one of the infinite number of possible
postures in the 73D visible-posture space Ψ. Because the orientation of the head in the
environment and the angles of the eyes in the head are excluded from Ψ these can be varied
while a visually-perceived posture ψi in Ψ is held constant. It is possible therefore, over
time, within the possible configuration space of the body, to accumulate in visuospatial
memory encoded visual images of all the points on the surface of the body that can be seen
when the body is in all the possible visible postures ψi, i = 1, 2, · · · , ∞, in Ψ ⊆ Θ.

Analogous to our previous proposal [6] of a visuospatial memory with partitions(
Gpi , g

)
associated with a place pi ∈ P we can now construct a visuospatial memory with

partitions of posture ψi ∈ Ψ and place pi ∈ P rather than just place. Each
(

G(ψi ,pi)
, g
)

in each partition of visuospatial memory is associated with a posture ψi ∈ Ψ of the
body and a place pi ∈ P of the head as given by the location of the egocentre in the 3D
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environment. All encoded retinal images associated with different points of gaze made
whenever the body is in posture ψi and the head is at place pi are accumulated for detail see
([6] Section 3.1) in the memory partition

(
G(ψi ,pi)

, g
)

. Encoded retinal-hyperfield images
are associated with the cyclopean coordinates (r, θ, ϕ) for points in the 3D Euclidean
environment projecting onto retinal hyperfields during intervals of fixed gaze when the
body is in posture ψi and the head is at place pi. These retinal images include objects
that are moving independently in the environment but such images are transient and do
not accumulate over time in visuospatial memory. The symbol g within each memory
partition represents the Riemannian metric on the egocentric 3D visual space

(
G(ψi ,pi)

, g
)

that quantifies the intrinsically-warped Riemannian geometry of visual space introduced by
the size of the image on the retina varying in inverse proportion to the Euclidean distance
to the object in the environment [6]. This warping is determined by the anatomy and
physiology of the eye and is the same in every posture-and-place partition

(
G(ψi ,pi)

, g
)

of
visuospatial memory.

As previewed in Section 2.7 if the place pi of the head is held fixed while the posture
ψi is changed, only the visual image points and image-point vectors associated with
points on the surface of the body change while visual image points and image-point
vectors associated with points on the surfaces of objects fixed in the environment remain
unchanged. Conversely, if the posture ψi of the body is held fixed while the place pi of
the head in the environment is changed (think of the mannequin analogy), only the visual
image points and image-point vectors associated with points on the surfaces of objects
in the environment change. Of course, changes in the orientation of the head relative to
the external reference frame (X,Y,Z) will change the direction (θ, ϕ) of the cyclopean gaze
coordinates (r, θ, ϕ) measured relative to the external reference frame (X,Y,Z) for all image
points on the surface of the body. But this is easily taken into account by simply adding the
orientation of the head relative to (X,Y,Z) encoded within the hippocampus to the gaze
coordinates for image points on the surface of the body measured relative to the egocentre.
Remember, the orientation of the head is absorbed into the cyclopean coordinates (r, θ, ϕ).

With posture ψi held fixed, image points and image-point vectors associated with
different points on the surface of the body are located at different depths in the egocentric
visual space

(
G(ψi ,pi)

, g
)

. The images change with depth in the same way as do image
points and image-point vectors associated with points on the surfaces of objects in the
environment. In other words, the body is sensed visually in the same egocentric visual
space

(
G(ψi ,pi)

, g
)

with the same intrinsically-warped geometry as are environmental
objects. However, as the posture ψi of the body changes, the cyclopean coordinates (r, θ, ϕ)

in each
(

G(ψi ,pi)
, g
)

of each image point on the surface of the body change. Consequently,

because of the intrinsically-warped geometry of the 3D egocentric visual space
(

G(ψi ,pi)
, g
)

,
the visual representation of the outline and of the position, size, curvature and orientation
of visual patches on the surface of the body in visual space all change in a systematic way
with changes in their cyclopean coordinates (r, θ, ϕ). For example, think of the change in
the visual image of the hand as it is moved from being close to the face to a position with
the arm outstretched.

We hold that it is biologically feasible to develop a partitioned visuospatial memory
based on posture-and-place-encoded visual images of the local environment and of the
body in that environment as seen with the body in every possible posture ψi and from
every possible place pi of the egocentre in that environment. Again, as introduced in
Section 2.7, we suggest that this partitioning involves two streams of visual processing, one
for posture-encoded images of the body associated with activity in the somatosensory cor-
tex encoding each posture proprioceptively, the other for place-encoded images of objects
in the environment associated with activity in the hippocampus encoding the place of the
head. We propose that both streams come together in control of visually-guided movement
and, as will be taken up in Section 8.7, this is independent of conscious perception.
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4.3. The Geometric Structure of Posture-and-Place Encoding

We now extend our earlier place-encoded structure ([6] Section 7, Figures 10 and 11)
to include posture-and-place-encoded 3D visual images not only of objects in the envi-
ronment seen in the correct perspective from every place in the environment but also
of the body in every possible visually-perceivable posture ψi in that environment. As
in the previous paper, we introduce the concept of a vector bundle, a common structure
in differential geometry (see A.13). In the present context a vector bundle is formed by
collecting together all the image-point vectors (i.e., encodings of retinal-hyperfield images)
at all the image points (i.e., cyclopean coordinates of the retinal-hyperfield images) in the
manifold

(
G(ψi ,pi)

, g
)

(i.e., representation of 3D curved visual space, seen from a given
posture and place (ψi, pi), spanned by cyclopean coordinates q = (r, θ, ϕ) and endowed
with Riemannian metric g). This combined object represents a partition of visuospatial
memory. We illustrate this in Figure 2.

In Figure 2 a point (ψi, pi) in the 76D posture-and-place base-manifold (Ψ, P) rep-
resents the posture ψi of the body in the 73D posture space Ψ and the place pi of the
head in the 3D Euclidean environment. At each posture-and-place (ψi, pi) in (Ψ, P) there
exists a fibre (i.e., an association) containing a vector bundle Ei. This type of geometrical
structure is known in differential geometry as a fibre-bundle. Each Ei corresponds to a
partition of visuospatial memory. Each partition of visuospatial memory corresponds to
a gaze-based association memory network in which each image-point vector (i.e., each
encoded retinal-hyperfield image seen from (ψi, pi)) is associated with its image point (i.e.,
its cyclopean coordinates q = (r, θ, ϕ) for each retinal-hyperfield image seen from (ψi, pi)).
Encoded visual images of the body and of objects in the environment are accumulated in
each partition of visuospatial memory over time through visual scanning when the body
passes through posture ψi and the head passes through place pi. This gradually acquired
encoding is represented geometrically in Figure 2 by the 3D gaze-based base manifold(

G(ψi ,pi)
, g
)

spanned by cyclopean coordinates (or cyclopean vectors) q = (r, θ, ϕ) with the
egocentre at the origin.

The metric g and hence the intrinsic curved geometry of each gaze-based manifold(
G(ψi ,pi)

, g
)

is the same in each memory partition. However, the image points q = (r, θ, ϕ)

and the encoded image-point vectors Σ(q) for each point on the visible surface of the body
and for each point on the visible surface of a fixed object in the environment change from
one vector bundle Ei to another Ej because of changes in occlusions and changes in per-
spective associated with changes in posture and place. Since image points qψi = (r, θ, ϕ) for
points on the surface of the body and image points qpi = (r, θ, ϕ) for points on the surfaces
of objects in the environment are always located at different points in each egocentric 3D
visual space

(
G(ψi ,pi)

, g
)

they can be processed and stored in each
(

G(ψi ,pi)
, g
)

separately.
With a change in posture from ψi to ψj the image point qψi and its encoded image-point

vector Σ
(
qψi

)
for a single visible body point represented in vector bundle Ei change to

qψj and Σ
(

qψj

)
for the same visible body point represented in vector bundle Ej (i.e., for

the same point on the surface of the body but seen with the body in a different posture).
Similarly, with a change in place from pi to pj the image point qpi and its encoded image-
point vector Σ

(
qpi

)
for a single point on a fixed object represented in vector bundle Ei

change to qψj and Σ
(

qψj

)
for the same point on the same fixed object represented in vector

bundle Ej but seen from a different place (Figure 2). Some image points that can be seen in
vector bundle Ei are occluded from view in vector bundle Ej and vice versa. Some image
points are occluded in both Ei and Ej but can be seen from other places and/or postures.
Some points on the surface of the body such as those on the head and some points on the
surfaces of objects such as those on surfaces permanently pushed together cannot be seen
from any place and/or posture and so are not encoded visually.
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Figure 2. A schematic diagram of visuospatial memory illustrating the geometric fibre-bundle
structure of place-and-posture-encoded visual images of objects in the environment and of the body
in that environment as seen from each posture and place (ψi, pi). Posture is coloured red and place is
coloured blue. At each point (ψi, pi) there exists a fibre containing a vector bundle Ei corresponding
to a partition of visuospatial memory. Only two such vector bundles, Ei and Ej, are illustrated.(

G(ψi ,pi), g
)

represents the 3D perceived visual space encoded within each vector bundle. H1

(
pi, pj

)
,

H2

(
qpi , qpj

)
, HB1

(
ψi, ψj

)
, and HB2

(
qψi , qψj

)
represent adaptively-tuned and wired-in maps (vector

bundle morphisms) between each and every partition of visuospatial memory. When a change
occurs in the place pi of the head and/or the posture ψi of the body, these vector bundle morphisms
map the corresponding changes in the retinal-hyperfield image points q (cyclopean vector) and
image-point vectors Σ(q) for fixed points in the environment and/or on the surface of the body.
Further description follows in the text.

While Figure 2 illustrates a change in the position of the image point and image-
point vector for single points it is to be understood that through visual scanning the same
encoding occurs for all points seen on the surface of the body and on the surfaces of objects
as a person moves about in the local environment. In each

(
G(ψi ,pi)

, g
)

the collection
of image points qψi encode the visible surface of the body seen when in posture ψi and
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the collection of image points qpi encode the visible surfaces of all objects fixed in the
environment seen from place pi. The union of all the image-point vectors Σ

(
qψi

)
in vector

bundle Ei over all the image points qψi forms a vector field Vψi over
(

G(ψi ,pi)
, g
)

encoding
the images of all visible body surfaces that can be seen when in posture ψi. The union
of all the image-point vectors Σ

(
qpi

)
in vector bundle Ei over all the image points qpi

forms a vector field Vpi over
(

G(ψi ,pi)
, g
)

encoding images of all the visible objects in the
environment seen from place pi (Figure 2). This is simply the mathematical expression
of the idea that through visual scanning a person can build up in memory an image of
the entire local environment and of the body in that environment as seen from each fixed
posture and place.

As shown in Figure 2 the vector bundle Ei consisting of base manifold
(

G(ψi ,pi)
, g
)

together with a vector space ΓE(ψi ,pi)
containing vector fields Vψi and Vpi over

(
G(ψi ,pi)

, g
)

can be mapped to another vector bundle Ej. A map between two vector bundles is known
as a vector bundle morphism (see A.14). This too is a common mathematical structure in dif-
ferential geometry. The maps [HB1

(
ψi, ψj

)
, HB2

(
qψi , qψj

)
] and [H1

(
pi, pj

)
, H2

(
qpi , qpj

)
] in

Figure 2 are vector bundle morphisms for posture-encoded images of the body (subscripts
B1 and B2 for body) and place-encoded images of objects in the environment, respectively.
Vector bundle morphisms between all the image points and image-point vectors in each
and every partition of visuospatial memory can be formed adaptively to transform image
points and image-point vectors between each and every vector bundle {Ei} (i.e., between
each and every partition of visuospatial memory).

We have shown previously ([6] Section 7.5) that when an image point qpi on the surface
of an object can be seen in vector bundle Ei but qpj is occluded from view in vector bundle

Ej the transformation [H1
(

pi, pj
)
, H2

(
qpi , qpj

)
] still applies. Likewise we show below that

when an image point qψi on the surface of the body can be seen in vector bundle Ei but qψj

is occluded from view in vector bundle Ej the transformation [HB1
(
ψi, ψj

)
, HB2

(
qψi , qψj

)
]

still applies. Thus when vector bundle morphisms are applied for all the image points and
image-point vectors between each and every vector bundle (i.e., between each and every
memory partition) the resulting transformations form 3D images of the environment and
of the body in that environment seen in the correct perspective from every posture and
place with occlusions filled in. More on occlusions can be found in our description ([6]
Section 8.7) of the layer 1, layer 2 and layer 3 structure of visuospatial memory.

4.4. Redundancy in Posture-to-Vision Maps

By definition the vector bundle morphisms [HB1
(
ψi, ψj

)
, HB2

(
qψi , qψj

)
] transform

the image point and the image-point vector for a single point on the surface of the body
between vector bundle Ei and vector bundle Ej associated with posture ψi and ψj, respec-
tively. While the vector bundle morphism HB1

(
ψi, ψj

)
is an isomorphic map between 3D

visual spaces (Figure 2), the map HB1
(
ψi, ψj

)
itself depends on postures ψi and ψj that are

both vectors in a 73D visible-posture space Ψ. Thus the change in position in 3D visual
space of a single image point on the surface of the body associated with a change in posture
from ψi ∈ Ψ to ψj ∈ Ψ involves a transformation between a 73D visible-posture space

Ψ sensed proprioceptively and a map HB1
(
ψi, ψj

)
between 3D visual spaces

(
G(ψi ,pi)

, g
)

and
(

G(ψj ,pj)
, g
)

. In other words, the proprioceptive-to-vision maps Ψ→ HB1
(
ψi, ψj

)
for

single image points on the surface of the body are redundant. Many different visible
postures ψi ∈ Ψ in proprioceptive space can locate a given point on the surface of the body
at the same point qpi = (r, θ, ϕ) in 3D visual space

(
G(ψi ,pi)

, g
)

(think of all the visible
postures the body can assume with the head and the tip of a finger both at fixed posi-
tions). Nevertheless, in order to remove occlusions, we require vector bundle morphisms
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[HB1
(
ψi, ψj

)
, HB2

(
qψi , qψj

)
] (as in Figure 2) for individual image points on the surface of

the body in all visible postures {ψi},
{

ψj
}
∈ Ψ. These maps can serve to anticipate changes

in the visual image of the body in the environment associated with changes in posture
experienced proprioceptively. They can also play a role in learning to match one’s own
body posture with that of another when learning movement skills through imitation.

Our ability to plan and execute goal-directed movements such as reaching to catch a
ball without actually having to look at the present location of the hand (i.e., the relevant
body part) implies that, despite redundancy in posture-to-vision maps for individual
image points, the nervous system does possess one-to-one proprioception-to-vision and
vision-to-proprioception maps. Indeed, it is easy to convince oneself that one-to-one
maps are possible by noting the one-to-one relation between changes in body posture
sensed proprioceptively with changes in the visual reflection of the whole body in a mirror.
Moreover we have observed informally but repeatedly during the extensive tracking
experimentation conducted in our own laboratory that hiding the hand and joystick from
view during a visual pursuit task has no effect on performance. In fact subjects choose
to look only at the display and do not pay any visual attention to the hand even if it is
possible to do so. The nervous system seems to “know” the position of the hand and
thus of the joystick in space without having to look directly at them. It would seem that
perceiving the posture of the body proprioceptively is sufficient to locate where parts of
the body are in 3D visual space. The question is, how does the nervous system achieve
proprioception-to-vision and vision-to-proprioception transformations given the high level
of redundancy in the warped proprioception-to-vision maps Ψ→ HB1

(
ψi, ψj

)
?

4.5. Overcoming Redundancy in Posture-to-Vision Maps

The task is to determine the cyclopean coordinates (r, θ, ϕ) of a sufficient number
of visible image points on body segments to specify the position and orientation of each
segment and so give a unique posture. We showed previously ([6] Sections 2.9 and 2.10)
how binocular triangulation and retinal image disparity provide sufficient information for
the cyclopean coordinates (r, θ, ϕ) to be computed for both foveal and peripheral hyperfield
images across the retinas of both left and right eyes during a fixed gaze interval. As set out
in ([6] Section 6.3), computing the partial derivatives (or covariant derivatives) of depth r
as a function of θ and ϕ at each point on a visible surface seen from a fixed posture and
place is part of the computation required to compute the shape (curvature) of the surface
(i.e., to “see” the shape of the surface). The visible surface of the body in each posture
ψi ∈ Ψ is a connected space containing an infinite number of image points. There is no
shortage of visible image points on each body segment that can be tracked across changes
in posture. According to our Riemannian formulation, all the image points visible on the
surface of the body in each posture ψi are stored into an appropriate partition

(
G(ψi ,pi)

, g
)

of visuospatial memory. For a particular posture ψi ∈ Ψ there exists a unique visual image
in the 3D visual manifold

(
G(ψi ,pi)

, g
)

of all the parts of the body that can be seen with the
body in that posture. That image is represented by the vector field Vψi in Figure 2.

As posture changes, the cyclopean coordinates r, θ and ϕ of individual image points
on the body surface change. But they do not change independently of each other! For
example, all the image points on any one body segment are constrained to move so that the
actual Euclidean distance between them remains fixed. Similarly, changes in a proximal
elemental movement cause related movement changes of image points on all the rigid-
body segments distal to that elemental movement. Certainly, as the posture changes
from ψi to ψj in Ψ sensed proprioceptively, image points on the body surface change

their cyclopean coordinates (r, θ, ϕ) between the 3D egocentric visual spaces
(

G(ψi ,pi)
, g
)

and
(

G(ψj ,pj)
, g
)

depicted in Figure 2. Some image points visible in
(

G(ψi ,pi)
, g
)

become

occluded in
(

G(ψj ,pj)
, g
)

but there are always multiple image points visible on each body
segment in each posture. The fact that the cyclopean coordinates r, θ and ϕ for image
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points on the surface of the body do not change independently of each other with changes
in posture can be used to overcome redundancy associated with modeling HB1

(
ψi, ψj

)
for individual image points. In other words the posture-and-place-encoded images of
all the visible parts of the body accumulated in visuospatial memory contain sufficient
information to enable that redundancy to be removed.

Let us illustrate with the simplified example of a 7-DOF arm (3 rotations at the
shoulder, 1 rotation at the elbow, 1 rotation of the forearm, and 2 rotations at the wrist)
moving in 3D Euclidean space. How can the 7D proprioceptive space of the arm be
mapped into a 3D visual space in a one-to-one, invertible fashion? This cannot be done if
we consider the position of only a single point on the arm. It can be done, however, if we
consider the positions of a grid of image points on the surface of the arm with multiple
points on each segment. Take the following illustration. Three numbers are required to
specify the position of a single point in 3D space. Six numbers are required to specify the
positions of two points in 3D space. But alternatively we can think of two points moving
independently in 3D space as equivalent to a single point moving in 6D space. Thus for the
7-DOF arm, if we orthogonalize the r, θ and ϕ cyclopean coordinates in 3D Euclidean space
for multiple surface points on the entire arm as the arm moves from posture to posture
in its 7D proprioceptive space, we will obtain seven independently changing orthogonal
coordinates. Conceptually these seven orthogonal coordinates describing the position of
the arm in 3D Euclidean space are equivalent to a single point moving in a 7D visual space.
Thus a non-redundant, one-to-one, invertible map can be constructed between the 7D
proprioceptive space and the equivalent 7D visual space. We can think of this as a map
between the posture of the arm in joint-angle space and a visual image of the entire arm
(multiple image points) in 3D visual space. Redundancy has been removed!

We return now to the case of the entire body moving in a 73D visible-posture space Ψ.
To remove redundancy from the relationships between the r, θ and ϕ cyclopean coordinates
of multiple visible image points on the surface of the body we use a novel procedure based
on the nonlinear Gram-Schmidt orthogonalization process given in [47]. We have detailed
the verification of this procedure for a variety of nonlinear dynamical relationships using
data with various non-Gaussian amplitude probability distributions and non-white power-
spectral distributions ([47] Sections 4.2 and 7.3). The method is implemented via a network
of nonlinear adaptive filters and it is the adaptive parameters in these filters that tune the
Gram-Schmidt algorithm. We have long held that such networks are ubiquitous throughout
sensory and motor systems of the nervous system [47,51–54]. It can also be noted that
whatever the posture the body ψi ∈ Ψ, the relationships between the r, θ and ϕ coordinates
for image points on its surface are nonlinear but algebraic rather than dynamic. These are
therefore relatively easy to model adaptively using the nonlinear Gram-Schmidt algorithm.

In every posture ψi some of the image points will be occluded from view but there
will always exist many other image points on each body segment that are visible and
can be tracked across a subset of changing postures. Within the nonlinear Gram-Schmidt
orthogonalizing algorithm the relationships between the coordinates r, θ and ϕ of pairs of
image points are estimated only for those postures in which both image points are visible.
The parameters describing the relationship are held unchanged whenever one or other of
the image points is occluded from view. The orthogonalizing algorithm is not disrupted by
such sections of missing data (discontinuities are smoothed out by the modeling algorithm).
There is always a sufficiently large number of visible image points on each body segment to
remove redundancy and to estimate the position and orientation of each segment. With a
sufficiently long sequence of changing postures ψi ∈ Ψ included in the adaptive modeling
process, relationships between most of the image points on the surface of the body are
included (i.e., most but not all pairs of image points can be seen together in one or other
subset of postures).

The Gram-Schmidt algorithm generates a set of 73 orthogonalized signals (Q1, · · · , Q73)
that uniquely encodes the positions in 3D visual space of all the image points on the surface
of the body with redundancy removed. We can think of this equivalently as a point moving
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in a 73D visual space. Then there exists a one-to-one, onto, invertible, smooth map between
the orthogonalized representation (Q1, · · · , Q73) of the non-redundant position of the body
in the equivalent 73D visual space and the posture of the body in the 73D visible-posture
space Ψ sensed proprioceptively. This provides an invertible vision-to-proprioceptive
and proprioceptive-to-vision map (independent of place) for every joint-angle of the body
spanning the visible-posture space Ψ. Once the parameters of the adaptive filters in the
nonlinear Gram-Schmidt algorithm have tuned, the time required to transform vision into
proprioception or vice versa is negligible, no more than the time taken for neural signals to
flow through the orthogonalizing network.

An important fact about the adaptive nonlinear Gram-Schmidt orthogonalization
algorithm is that it works equally well in the reverse direction without needing to re-
compute nonlinear relationships. This is done simply by changing certain minus signs
in the orthogonalizing network to plus signs as shown in ([47] Section 4.2 and Figure 3).
The orthogonalized visual signals (Q1, · · · , Q73) encoding the position of the body in 3D
visual space with redundancy removed are easily transformed back through the tuned
deorthogonalizing network of nonlinear adaptive filters into the set of interrelated cyclo-
pean coordinates (r, θ, ϕ) for the positions of individual image points on the surface of
the body associated with any posture ψi ∈ Ψ sensed proprioceptively. This allows the
transformation HB1

(
ψi, ψj

)
of individual image points qψi in vector bundle Ei in Figure 2

to be transformed into the image points qψj in Ej even when qψj is occluded from view in
vector bundle Ej.

5. The Geometry of Synergistic Movement to a Visual Goal
5.1. The Visual Task Space and Minimum-Effort Synergies

We use the term visual task space to mean all the visually-perceived images of (i) objects
in the environment and (ii) parts of the body in that environment that are relevant to the
performance of the task. All such visually-perceived images depend on the posture of the
body and/or the place of the head in the environment. Consequently, we propose that the
visual goal for a movement synergy is specified by a collage of posture-and-place-encoded
visual images of the body (or parts of the body) in the environment sufficient to span
the task space for that synergy. In the case of reaching and grasping a glass for example,
a posture-and-place-encoded image of the body in its initial configuration ci ∈ C and a
posture-and-place-encoded image of the hand grasping the glass in its final configuration
are sufficient to span the visual task space. If the reaching movement has to avoid other
objects in the environment (such as a tabletop when the hand is initially located beneath it)
then additional posture-and-place-encoded images are required to specify the via points.
This will increase the number of CDOFs in the movement synergy compatible with the
collage of visual images but that number will remain small, say≤ 10, because of limitations
in central processing resources. In the case of a task such as writing with a pencil on a
sheet of paper, a collage of posture-and-place-encoded visual images of the hand holding
the pencil in the required extreme x- and y-positions on the paper (and perhaps in the
z-direction if the pencil lifts off the paper) is sufficient to specify the task space.

If the task involves objects moving independently in the environment, such as walking
without bumping into an oncoming pedestrian, the specification of the task space will
require not only visual images of the body in the environment from visuospatial memory
but also immediate information about the independently moving object. This will be
acquired in short-term memory by appropriately directing the gaze to track the moving
object. As we have shown previously, time series of visual observations can be used for
stochastic prediction, in this case to estimate future positions of the moving object [55,56].
These predictions can be used to form future visual goals spanning the required movement
synergy in both space and time. Indeed in general it can be argued that forming visual
goals for movement synergies will depend on a varying mixture of predictions based on
immediate visual information and posture-and-place-encoded visual images stored in
visuospatial memory.



Vision 2021, 5, 26 25 of 59

Many different criteria can be involved in specifying task goals for submovements.
Some might minimize demand for metabolic energy, some might achieve goals in minimum
time, some might maximize accuracy of the final configuration, some might maximize a
performance criterion such as the height of a jump, some might require accuracy in both
space and time, some might maximize comfort, some might require the movement to
look smooth and elegant, while some might require weighted combinations of all of these,
among many other options. It is also possible to introduce a tradeoff between the number
of cascaded movement synergies required to achieve a task goal and the number of CDOFs
in each synergy.

While a variety of criteria are possible for individual goal-oriented submovements, we
propose that underlying these in general the nervous system forms movement synergies
to achieve task goals in the most muscle-energy efficient manner [5,57,58]. For example, a
person might decide to move from A to B by crawling. This might not be the most energy-
efficient way of getting from A to B but nevertheless, once decided, the nervous system will
find the best coordinated joint-angle trajectories and the best patterns of muscle activations
to achieve those crawling movements with minimum demand for muscular effort. Running
as fast as possible to catch a departing bus may not be the most energy-efficient way to
reach the bus stop but again, once decided, the nervous system will ensure that the joint-
angle trajectories and muscle activation patterns chosen are the most energy-efficient that
are compatible with running fast. This is what we mean by minimum-effort movement
synergies compatible with task goals.

5.2. Visually-Guided Movements Planned in a Local Region of the Configuration Space

For a person moving about in a local environment, say a room, the configuration
of the body is different when at different locations in the room even though the posture
θi ∈ Θ might be the same (e.g., standing). The configuration is also different when the
posture differs (e.g., leaning on the elbows, sitting in a chair, lying on a couch, and so
on) and it is different again if the orientation changes (e.g., standing facing the door vs
facing the window). In other words, all 116 variables spanning the configuration manifold
C = Θ × P ×O are required to specify uniquely the configuration of the body in the
local environment. In regard to selecting synergies to accomplish visuomotor goals it is
necessary to consider all 116 dimensions of the configuration manifold C = Θ× P×O
and not just the 110D posture space Θ. As introduced in Section 3.6, specified visual
outcomes can only be generated in local regions of the configuration manifold. This is
because the relationship between the posture of the body and the place and orientation of
the head changes from one region of configuration space to another due to change in the
distribution of support forces acting on the body and also because the mass-inertia matrix
J(c) of the body changes with configuration and not just posture. To obtain precise control
of the place and orientation of the head in the environment, as well as of other required
changes in posture, geodesic trajectories have to be generated in the local submanifold
Γ( f ) where there is a fixed relation between posture and place. Remember Γ( f ) maps
diffeomorphically onto a local open subset U in posture space Θ as illustrated in Figure 1.

To generate a minimum-effort one-CDOF movement synergy to achieve a specified
visual goal it is necessary to specify an initial configuration ci ∈ C in the configuration
manifold C and an initial direction-of-movement vector e1 in the space Tci Γ tangent to the
submanifold Γ( f ) at the initial configuration ci. As shown below, this ensures that the
geodesic movement trajectory is confined to the required local 110D submanifold Γ( f )
in configuration space where there is a fixed map between posture and the place (and
orientation) of the head in the environment. If the initial direction-of-movement vector
e1 is confined to the subspace of Tci Γ isomorphic to Tci Ψ then the resulting minimum-
effort movement trajectory is still contained in the required submanifold in configuration
space because the visible-posture space Ψ is a subspace of Θ. The problem becomes one
of selecting the initial configuration ci and the initial direction-of-movement vector e1
for the geodesic trajectory to achieve the place-and-posture-encoded visual image that
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specifies the final goal. As mentioned in Section 2.6 and fully developed in Section 7 our
proposal is that people circumvent this complex two-point boundary-value problem by
using reinforcement learning to select the appropriate (ci, e1).

5.3. A Simplified Description of Riemannian Graph Theory

In the following sections we refer repeatedly to minimum-effort submanifolds in the
posture-and-place manifold (Ψ, P). This is a shorthand way of describing the geometric
construction based on Riemannian graph theory of the submanifold Γ( f ) in configuration
space C (Section 3.6 & Figure 1). Such control is important if the minimum-effort geodesic
movement trajectory is to achieve a specified visual outcome. For example, suppose a glass
is sufficiently far away that one has to lean forward to grasp it. This requires a change
in the place and orientation of the head as part of the coordinated reaching movement.
Since the encoded visual images of objects in the environment change with a change in
the place and orientation of the head it follows that the leaning-forward movement is
encoded within the specified collage of visual images spanning the required visual task
space. Thus the minimum effort movement synergy (geodesic submanifold) has to be
selected so that the place and orientation of the head together with the position of the hand
are appropriately coordinated to achieve the specified visual reach and grasp outcome with
minimal muscular effort. This defines what is meant by our subsequent reference to a local
minimum-effort trajectory in the posture-and-place manifold (Ψ, P), or to a local minimum-effort
submanifold in the case of a movement synergy with more than one CDOF.

Given an initial configuration ci ∈ C associated with a distribution of support forces
acting on the body that constrain movement it is possible to generate, consistent with
those constraints, a geodesic trajectory in posture space Ψ that moves the posture outside
the open subset U ⊆ Ψ and consequently outside the submanifold Γ( f ) described in
Section 3.6. Lifting the head from a pillow or standing up from a chair, for example,
changes the distribution of support forces acting on the body and changes the mapping
between body posture and the place and orientation of the head in the environment. Thus
movements that transition from one local region Γ( f ) to another in the configuration
manifold C are possible.

5.4. Constructing a Local Minimum-Effort Movement Synergy Compatible with a Specified
Visual Goal

Given a visual goal specified by a collage of posture-and-place-encoded visual images
defining a visual task space with more than one dimension, the most energy-efficient
movement synergy compatible with that visual goal corresponds to a unique geodesic
submanifold spanned by geodesic trajectories embedded in the posture-and-place manifold
(Ψ, P) centred about a specified initial configuration ci ∈ C.

An N-dimensional submanifold will be centred about the specified initial configuration
ci ∈ C and spanned by N geodesic coordinate axes given by a set of specified orthonormal,
initial velocity vectors (e1, · · · , eN) in the 73D tangent space Tci Ψ. While each unit metric-
speed geodesic trajectory has zero metric-acceleration (i.e., zero covariant derivative of
velocity) and is a straight line in warped posture space Ψ, it is a curved accelerating
trajectory in the outside Euclidean world. Only an initial configuration ci and an initial
unit velocity vector e is needed to generate each unit speed geodesic in the manifold (A.17).
These N geodesic trajectories emanating from ci ∈ C in the orthonormal directions specified
by (e1, · · · , eN) correspond to natural free-motion trajectories of the body attributable
to its mass-inertia characteristics confined to the 73D submanifold Γ( f ) embedded in
configuration space passing through the initial configuration ci ∈ C. Every point (ψi, pi)
in this submanifold is a point in the posture-and-place manifold (Ψ, P) and is associated
with a posture-and-place 3D visual image of the environment and of the body in that
environment as seen from that posture and place. The submanifold must be such that the
posture-and-place-encoded visual images associated with each and every posture and place (ψi, pi)
within the submanifold include the collage of visual images specifying the visual task
space. We now address its construction.
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Unfortunately, Riemannian geometry provides no guarantee that there will always
exist a totally geodesic low-dimensional submanifold centred about a specified initial con-
figuration ci ∈ C in a 116D configuration manifold C compatible with a specified collage
of place-and-posture-encoded visual images. A totally geodesic submanifold requires all
the coordinate axes and coordinate grid lines to be geodesics and is a true minimum-effort
submanifold [6]. In that previous paper we described a procedure using a combination
of parallel translation (see A.17) and Jacobi lifts (see Appendix B) able to test whether or
not a totally geodesic submanifold exists. We also described a procedure for constructing
a totally geodesic submanifold when one does exist. If a totally geodesic submanifold
compatible with the specified visual goal does not exist, there nevertheless will be a unique
low-dimensional submanifold, centred about the specified initial configuration ci ∈ C
compatible with the specified collage of visual images, that closely approximates a totally
geodesic submanifold. This does always exist and can always be constructed. As shown below,
the cost of this approximation is that some coordinate grid lines (e.g., the vertical coordinate
grid lines in Figure 3) deviate slightly from a natural geodesic free-motion of the body.
Consequently additional muscle effort is required for movement along these coordinate
grid lines. However, if the submanifold is confined to a sufficiently small region about the
specified initial configuration ci ∈ C then the deviation is small and little additional muscle
effort is required. Moreover, within the realm of all the physically-possible movement
synergies compatible with the specified visual goal, the approximation described gives the
synergy amongst them that requires the minimum effort.

The procedure for constructing such a submanifold is based on a procedure in Rie-
mannian geometry known as variation through geodesics (see A.18 for definition and Ap-
pendix B for detail). This still depends on generating geodesics by means of the GTG
([5] Sections 4 and 5). We now outline the application of the procedure in constructing
submanifolds with one-, two-, and N-CDOFs, respectively in the 76D posture-and-place
manifold (Ψ, P).

5.4.1. One-Dimensional Submanifold

Given initial vectors (ci, e1) specifying a selected one-CDOF movement synergy the
corresponding 1D submanifold embedded in the configuration manifold (C, J) is con-
structed just as set out in [5] Section 5.2. The one-dimensional submanifold is simply the
geodesic trajectory α0

(
x1) in the posture-and-place manifold (Ψ, P) in C passing through

the point ci ∈ C generated with initial position and velocity for the array of double inte-
grators in the GTG set to (ci, e1). The initial velocity vector e1 is in the tangent space Tci Ψ
(remember Tci Ψ is isomorphic to Tci Γ). Submovements confined to such a 1D submanifold
(i.e., confined to the geodesic pathway) induce a set of nonlinear dynamical constraining
relationships (including any constant relationships) between the 73 visible elemental move-
ments of the body. Thus the geodesic pathway provides a geometric representation of a
selected one-CDOF movement synergy. For a full account of similar procedures see ([5]
Sections 4.4, 5.1, 5.2 and 8).

5.4.2. Two-Dimensional Submanifold

Given a set of initial vectors (ci, e1, e2) specifying a selected two-CDOF movement
synergy the corresponding 2D variation through geodesics Γ

(
x1, x2) embedded in C is

illustrated in Figure 3. Since the configuration space C is a 116-dimensional space it follows
that the 2D variation through geodesics Γ

(
x1, x2) illustrated in Figure 3 is a 2D submanifold

embedded in the high dimensional configuration space C. In general, this prevents the
coordinate grid lines spanning the 2D submanifold from being totally geodesic and leads to
a compromise in which only the horizontal coordinate grid lines are geodesics while the
vertical coordinate grid lines are not geodesics.
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Figure 3. A schematic diagram illustrating the generation of a 2D geodesic submanifold Γ
(

x1, x2)
corresponding to a selected two-CDOF minimum-effort movement synergy embedded in the 116D
configuration manifold (C, J) of the body moving in a local 3D environment. The coordinate axes
α0
(

x1) and β0
(

x2) and all the horizontal coordinate grid lines αx2
(

x1) are geodesics (coloured red)
in the posture-and-place manifold (Ψ, P) while all the vertical coordinate grid lines βx1

(
x2) are not

geodesics (coloured blue). Detailed description in text.

The embedded submanifold Γ
(
x1, x2) is constructed as follows: The initial vectors

(ci, e1) and (ci, e2) are used as initial conditions in the GTG to generate unit speed geodesic
coordinate axes α0

(
x1) and β0

(
x2) in the posture-and-place manifold (Ψ, P). The initial or-

thonormal vectors (e1, e2) are confined to the tangent space Tci Ψ. Using parallel translations
(see A.17) of Pe1 and Pe2 along β0

(
x2) to obtain the initial positions and velocities for the

GTG, all the horizontal geodesic coordinate grid lines αx2
(

x1) can also be generated by the
GTG. All the horizontal unit-speed geodesics αx2

(
x1) are parameterized by metric-distance

x1 (i.e., arc length) along the horizontal geodesic curves. The vertical unit-speed geodesic
corresponding to the vertical geodesic coordinate axis β0

(
x2) is parameterized by metric-

distance x2 (i.e., arc length) along the vertical geodesic coordinate axis. Arc lengths x1

and x2 along the geodesic coordinate axes α0
(
x1) and β0

(
x2), respectively, are measured

from the initial configuration ci ∈ C. As described below, temporal planning of submove-
ment trajectories within the submanifold Γ

(
x1, x2) requires only specification of minimum

metric-acceleration trajectories x1(t) and x2(t) along the geodesic coordinate axes α0
(

x1)
and β0

(
x2), so the synergy greatly reduces the demand for central processing resources

even though multiple coupled joint-angle changes can be involved. Variations in metric-
distances x1 and x2 along the geodesic coordinate axes α0

(
x1) and β0

(
x2) correspond to

the two CDOFs of the movement synergy.
As an approximation to a totally geodesic 2D submanifold embedded in the config-

uration manifold C we construct vertical coordinate grid lines βx1
(

x2) not as geodesic
trajectories as required for a totally geodesic submanifold but simply by connecting points
that are equal metric-distances (arc lengths) x1 along the horizontal geodesic coordinate
grid lines αx2

(
x1), as shown in Figure 3. Remember, every point Γ

(
x1, x2) in the subman-

ifold is a point (ψi, pi) in the posture-and-place manifold (Ψ, P) and is associated with a
posture-and-place 3D visual image of the environment and of the body in that environ-
ment as seen from that posture and place. Movement confined to such a 2D submanifold
Γ
(

x1, x2) embedded in the high dimensional posture-and-place manifold (Ψ, P) implies a
set of nonlinear dynamical constraining relationships with two CDOFs between the elemen-
tal movements of the body. Thus in keeping with our definition of movement synergy, this
provides a geometric representation of a selected two-CDOF movement synergy. Providing
the arc-length x1 along the horizontal geodesic coordinate axis α0

(
x1) is kept small the

deviation from a totally geodesic submanifold will be minimal.
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To provide an intuitive illustration of a 2D variation through geodesics, if we were to
consider this construction procedure applied to the surface of the planet Earth (idealized
as a sphere) we would obtain a set of geodesic longitude lines (analogous to the horizontal
geodesic coordinate grid lines) and a set of latitude lines (analogous to the vertical coordi-
nate grid lines). Longitude lines on a spherical Earth are geodesics (great circle pathways)
but latitude lines are not geodesics just as the horizontal coordinate grid lines αx2

(
x1) in a

variation through geodesics are geodesics but the vertical coordinate grid lines βx1
(

x2) are
not geodesics. However, the equator on the spherical Earth is a geodesic just as the vertical
coordinate axis β0

(
x2) in the variation through geodesics is a geodesic. Indeed it is this

conceptualization of Earth that originally gave us the name “geodesic”.

5.4.3. N-Dimensional Submanifold

Given a set of initial vectors (ci, e1, · · · , eN) with orthonormal vectors (e1, · · · , eN)
confined to the tangent space Tci Ψ the same procedure as above can be iterated to construct
an N-dimensional submanifold in (Ψ, P) using variation through geodesics. Firstly the
initial vectors (ci, e1), (ci, e2), · · · , (ci, eN) are used as initial conditions in the GTG to
generate N geodesic coordinate axes. Then, using parallel translation and the GTG, multiple
copies of the N-1 dimensional submanifold are generated inductively and the coordinate
grid points are connected together to give non-geodesic coordinate grid lines.

5.4.4. The Two-Point Boundary Value Problem

Importantly, each of the geodesic coordinate axes in the procedures above is uniquely
specified by a pair of initial condition vectors (ci, e) (see A.17). But each geodesic trajectory
has to connect the specified initial configuration ci with a specified final posture-and-
place-encoded visual image for that CDOF. Thus the task is to find the initial condition
vectors (ci, e) for each geodesic coordinate axis compatible with the specified posture-
and-place-encoded visual image for that CDOF. This is a nonlinear, multi-dimensional,
two-point boundary value problem that is difficult to solve. Our proposed solution involves
reinforcement learning explained in Section 7.

5.5. Temporal Response Planning in a Submanifold

In detailing the construction of a local minimum-effort submanifold the sections
above provide an account of the spatial response planning of visually-guided movement.
We have previously written extensively on the temporal response planning of movement
tasks [47,59–61] so we provide only a brief description here.

A submovement with a specified duration (t f − ti) confined to a selected move-
ment synergy (i.e., selected submanifold) can be generated by independently planning a
minimum metric-acceleration (i.e., minimum covariant derivative of the velocity vector)
trajectory parameterized by time t between specified initial and final positions and veloc-
ities at times ti and t f , respectively, predicted ahead in time along each of the geodesic
coordinate axes spanning the submanifold. We use metric-acceleration rather than metric-
jerk trajectories because the latter require position, velocity and acceleration to be predicted
ahead, introducing excessive prediction-error variance. Besides, metric-acceleration takes
into account the local curvature of the submanifold in configuration space C and a mini-
mum metric-acceleration trajectory along the geodesic pathway corresponds to a minimum
muscle-force trajectory. Each trajectory is generated by a parallel-processing neural circuit
referred to as an optimum trajectory generator (OTG) first described in [51] and further
detailed in [59,60]. To take the curvature of Riemannian manifolds into account the original
OTG requires only the simple modification of replacing ordinary derivatives with covariant
(metric) derivatives (see A.15). Like the original, each modified OTG operates with a fixed
time interval to read in high-level sensory information, generate a required minimum
metric-acceleration trajectory along each specified geodesic coordinate axis, and write this
into working memory ready for execution in real time.



Vision 2021, 5, 26 30 of 59

The trajectory along each geodesic coordinate axis corresponds to a single independent
performance variable (i.e., CDOF) in a multi-CDOF task and can be specified and generated
independently. When these independently planned minimum metric-acceleration trajecto-
ries along each of the geodesic-coordinate-axis pathways are executed together the result is
a minimum-effort movement trajectory within the selected submanifold (i.e., within the
selected movement synergy). As described elsewhere [47,54] the feedforward–feedback
motor control system that executes these planned submovements is a multivariable adap-
tive optimal control system capable of controlling a small number N ≤ 10 CDOFs in
parallel. This movement controller has a key role in the implementation of synergies but
will not be discussed further in the current context of synergy selection.

5.6. Synergy Submanifolds Are Confined to Local Regions in Configuration Space

In a small enough region in the posture manifold Ψ about the specified initial con-
figuration ci ∈ C a geodesic trajectory in posture space Ψ either leaves the place of the
head in the environment unchanged or carries it along in a one-to-one fashion. In other
words, as outlined in Sections 3.6 and 5.3, it generates a geodesic trajectory in a local
73D submanifold Γ( f ) of the configuration manifold C diffeomorphic to an open subset
U ⊆ Ψ in the posture space Ψ. As the distance x1 of a non-geodesic vertical coordinate
grid line (e.g., βx1

(
x2) in Figure 3) from the vertical geodesic coordinate axis (i.e., β0

(
x2)

in Figure 3) increases, deviation of the non-geodesic vertical coordinate grid line from a
geodesic increases. The amount of deviation depends on the sectional curvatures of the
submanifold in the vicinity of the initial configuration ci ∈ C which in turn depends on
the double covariant derivatives of the metric J(c) in that region of C (see equations for
Γi

jk and Rijkl in Appendix B). Thus for configurations where the mass-inertia matrix J(c)
changes rapidly (accelerates) with configuration, such as foot landing and foot take-off in a
walking cycle, the submanifold has to be small (local) to maintain a good approximation to
a totally geodesic submanifold.

We have already seen, however, that the submanifold must be confined to a local
region about the initial configuration ci ∈ C to maintain a fixed smooth one-to-one rela-
tionship between posture and the place and orientation of the head in the environment.
We have also seen that the submanifold must be confined to a small neighbourhood of
the initial configuration to ensure that the horizontal geodesic coordinate grid lines do
not converge and cross each other, as can happen if C is locally positively curved (see
Appendix B). In all cases, the greater the local curvature of C the smaller the submanifold
has to be to approximate a totally geodesic submanifold. This can be seen in Figure 3 where
greater local deviation of the horizontal geodesic grid lines αx2

(
x1) corresponds to greater

local curvature of the configuration manifold. Thus in general, because of nonlinearities,
geodesic submanifolds corresponding to minimum-effort movement synergies have to be
confined to small neighbourhoods U ⊆ Ψ of the specified initial configuration ci ∈ C in
posture space Ψ. This implies that, because of nonlinearities, frequent switching between
movement synergies is required as a person moves about in a local environment. To
maintain smooth movement despite frequent switches of synergy the submanifold for each
synergy must intersect with the submanifold of the next synergy in the sequence. We do
not explore this further here but these intersections of geodesic submanifolds in (Ψ, P)
determine the laws of transition between movement synergies and provide a basis for
future work.

6. Proprioceptive-to-Vision and Vision-to-Proprioceptive Maps
6.1. The Synergy Submanifold in Visual Space

As described in Section 5 and illustrated in Figure 2 every point (ψi, pi) in the subspace
(Ψ, P) of the configuration manifold C = Θ× P×O corresponding to a given posture and
place is associated with a partition

(
G(ψi ,pi)

, g
)

of visuospatial memory. Consequently,
every point in the selected geodesic submanifold embedded in the posture-and-place
manifold (Ψ, P) is associated with a posture-and-place-encoded visual image of the en-
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vironment and of the body in that environment as seen from that posture and place. In
other words, the selected synergy submanifold embedded in (Ψ, P) can be mapped into a
submanifold of posture-and-place-encoded visual images of the environment and of the
body in that environment confined to points (ψi, pi) within the selected submanifold (i.e.,
selected movement synergy).

Using the simplified example of a two-DOF arm we will now illustrate that, despite
the nonlinear warping of both posture space and visual space, the position of the hand in
the 3D outside world as the arm moves along geodesic pathways in joint-angle space can be
mapped in a one-to-one, onto, invertible, smooth fashion into the warped 3D visual space.

6.2. Simulation of a Proprioceptive-to-Visual Map for a Two-DOF Arm

In this section we use a MATLAB/Simulink simulator to compute the nonlinear
mapping between the 2D proprioceptive warped geodesic submanifold and the position
of the hand in the intrinsically-warped 3D visual space for a two-DOF arm moving in
the horizontal plane. It is important to appreciate that a 2D submanifold embedded in a
2D space can be totally geodesic. Thus, unlike the 2D submanifold embedded in a high
dimensional space illustrated in Figure 3, for the two-DOF arm both the horizontal and
vertical coordinate grid lines as well as the horizontal and vertical coordinate axes in
the simulation shown in Figure 4a are geodesics and the submanifold is totally geodesic.
The simulation builds on the earlier simulation ([5] Section 8, Figures 4–6) where we
computed the two-CDOF totally geodesic proprioceptive submanifold for the two-DOF
arm moving in the horizontal plane at shoulder height. The purpose of the new simulation
is to demonstrate that, despite the intrinsic warping of 3D visual space, there is a one-to-
one, onto invertible map between the position of the hand in the 3D Euclidean outside
world and the perceived position of the hand in 3D warped visual space. This remains true
regardless of the dimension of the proprioceptive space.

The 2D proprioceptive submanifold for the arm is spanned by the shoulder angle θ1

and the elbow angle θ2. The velocity vector at (θ1, θ2) is (
.
θ1,

.
θ2). The mass-inertia matrix

(i.e., kinetic-energy metric) is:

J(θ2) =

[
J11(θ2) J12(θ2)
J12(θ2) J22(θ2)

]
=

[
I1 + I3 + 2I5 cos θ2 I3 + I5 cos θ2

I3 + I5 cos θ2 I3

]
, (5)

where constants are: I1 = I1,x + m1a2
1 + m2l2

1 ; I3 = I2,x + m2a2
2; I5 = m2l1a2; I1,x = moment

of inertia of upper arm; I2,x = moment of inertia of forearm; l1 = length of upper arm;
l2 = length of forearm; m1 = mass of upper arm; m2 = mass of forearm; a1 = distance to
centre of mass of upper arm; a2 = distance to centre of mass of forearm. In the simulation
these parameters are set to l1 = 0.30 m, l2 = 0.345 m, m1 = 2.52 kg, m2 = 2.07 kg,
a1 = 0.142 m, a2 = 0.225 m, I1,x = 0.019 kg m2, and I2,x = 0.021 kg m2.
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Figure 4. Results of MATLAB/Simulink simulation of a two-DOF arm moving in the horizontal
plane through the shoulder depicting the transformation of geodesic trajectories in the 2D curved
proprioceptive joint-angle space into the 3D curved visual space (G, g). (a) shows a totally geodesic
grid in joint-angle space (θ1–θ2) of the two-DOF arm moving along natural free-motion geodesic
trajectories in the horizontal plane attributable to its mass-inertia characteristics. (b) shows the
corresponding (x-y)-positions of the hand in the Euclidean (x-y) horizontal plane for corresponding
points along the geodesic grid lines in (a). These were computed trigonometrically using Equation (4).
The line drawing in Figure (b) illustrates the θ1 and θ2 angles of the arm when the hand is located at
the centre of the grid. (c) shows the corresponding grid of visually-perceived positions of the hand in
the 3D warped visual space (G, g) spanned by the cyclopean coordinates (ln r, θ, ϕ) as described in
the text. Equivalent example trajectories in (a–c) are indicated by lines of similar colour and thickness.
Arrows on these lines indicate the directions in which joint angles θ1 and θ2 are increasing.

The inertial constants in Equation (5) are derived assuming the arm to be rigidly
supported at the shoulder girdle. The mass-inertia matrix J(θ2) changes as a function
of elbow angle θ2 and the proprioceptive submanifold ((θ1, θ2), J(θ2)) is a Riemannian
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manifold with J(θ2) equal to the kinetic-energy metric tensor. Using these data we derived
expressions for the acceleration geodesic spray vector f2:

f 1
2

(
θ2,

.
θ1,

.
θ2

)
=

J12

det[J]
m2l1a2 sin(θ2)

( .
θ1

)2
+

J22

det[J]
2m2l1a2 sin(θ2)

( .
θ1

.
θ2

)
+

J22

det[J]
m2l1a2 sin(θ2)

( .
θ2

)2
,

f 2
2

(
θ2,

.
θ1,

.
θ2

)
= − J11

det[J]
m2l1a2 sin(θ2)

( .
θ1

)2
− J12

det[J]
2m2l1a2 sin(θ2)

( .
θ1

.
θ2

)
− J12

det[J]
m2l1a2 sin(θ2)

( .
θ2

)2
,


(6)

where det[J] = J11 J22 − J12 J12.
These expressions for the components of f2 were incorporated into a MATLAB/

Simulink GTG simulator as in ([5] Figure 5) and used to generate the geodesic coordinate
axes and the geodesic coordinate grid lines for the totally geodesic warped joint-angle
manifold (remember a totally geodesic submanifold always exists when the dimension of
the submanifold equals the dimension of the manifold).

Using equations
x = l1 cos θ1 + l2 cos(θ1 + θ2)
y = l1 sin θ1 + l2 sin(θ1 + θ2)

(7)

and with the origin (0,0) located at the shoulder, we computed the positions of the hand in
the Euclidean horizontal (x-y)-plane corresponding to points along each of the geodesic
coordinate axes and geodesic coordinate grid lines in the (θ1–θ2)-joint-angle manifold
in Figure 4a. These (x-y)-positions are shown in Figure 4b. The corresponding visually-
perceived positions of the hand are shown in Figure 4c. Remember that the perceived posi-
tions of objects in the intrinsically-warped 3D perceived visual manifold (G, g) are not the
same as their positions in the Euclidean outside world. As outlined in Sections 3.1 and 4.2
and fully demonstrated in ([6] Section 50) depth is foreshortened to ln r in (G, g) relative
to its depth r in the Euclidean outside world and the angles θ and ϕ giving the direction of
cyclopean gaze in the 3D Euclidean outside world are plotted as distances along straight
lines in 3D visual space (G, g). Consequently, any two radial lines with a fixed angle ∆θ
between them in Euclidean space are plotted as parallel straight lines in visual space ([6]
Figure 8).

To produce Figure 4c the MATLAB/Simulink program was extended to compute the
transformation of hand position in the Euclidean horizontal (x-y)-plane into its position
in the intrinsically-warped 3D visual manifold (G, g) as the two-DOF arm moved along
geodesic pathways in joint-angle space. We use the notation (G, g) to represent the Rie-
mannian geometry common to all the visual spaces

(
G(ψi ,pi)

, g
)

. First we computed the
cyclopean gaze coordinates (r, θ, ϕ) in Euclidean space for the position of the hand at each
point along the geodesic coordinate axes and coordinate grid lines in Figure 4b as seen
by a cyclopean eye located at a distance of 0.18 m above the horizontal plane and 0.21 m
to the left of the shoulder (i.e., to an estimated position of the cyclopean eye relative to
the right arm in the horizontal plane). Next we foreshortened the Euclidean depth r by
computing the logarithm ln r for each point. We then used the 3D plot command (plot3) to
plot ln r as a function of the direction of gaze (θ, ϕ) at each point with θ and ϕ plotted not
as angles but as equally-spaced distances along orthogonal straight-line axes. This implies
that the position of the cyclopean eye is located at the position (0,0,0) in Figure 4c. The
plot3 command allows the 3D plot to be rotated so it can be seen from the most informative
perspective. The resulting rotated 3D plot is shown in Figure 4c. The important thing to
notice in Figure 4c is that the coordinate axes and coordinate grid lines spanning a 2D space
in both Figure 4a,b map in a one-to-one, onto and invertible fashion onto a 2D submanifold
in warped 3D visual space.
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The simulation results in Figure 4 demonstrate that, despite warping of the propriocep-
tion manifold due to nonlinear inertial interactions between joints in the two-DOF arm as
well as intrinsic warping of the 3D visual manifold (G, g) attributable to the size of images
on the retina changing in inverse proportion to Euclidean depth, there exists a smooth, one-
to-one, onto, invertible mapping between positions of the hand in the Euclidean outside
world and a 2D submanifold of hand positions embedded in the intrinsically-warped 3D
visual space (G, g). In other words, for the warped intrinsic geometry of 3D visual space
based on stereopsis, retinal-image disparity and focus control mechanisms of depth percep-
tion there exists a smooth, one-to-one, onto and invertible map between the position of the
hand in the 3D outside world and its position in the intrinsically warped 3D visual space.

This result can be extended to a 7-DOF arm moving in 3D Euclidean space. If the 7× 7
mass-inertia matrix of the arm is known for every configuration of the arm then a system
of geodesic coordinate axes and geodesic coordinate grid lines can be generated that span
the warped 7D joint-angle (proprioceptive) manifold of the arm just as for the two-DOF
arm in Figure 4a. For any position of the arm in the 7D joint-angle space the hand is located
at some point (x, y, z) in 3D Euclidean space. There is redundancy in this map. However,
using the same procedure as described above for the two-DOF arm, the position (x, y, z) of
the hand in 3D Euclidean space can be mapped in a one-to-one, onto, invertible and smooth
fashion into the intrinsically-warped 3D visual space spanned by coordinates (r, θ, ϕ).
While many different postures of the arm in joint-angle space can locate the hand at the
same point (x, y, z) in 3D Euclidean space the map between hand position in 3D Euclidean
space and its position in the intrinsically-warped 3D visual space is smooth, one-to-one,
onto and invertible. The redundancy is in the relationship between the 7D joint-angle
space and the position of the hand in 3D Euclidean space and not in the mapping between
3D Euclidean space and the intrinsically-warped 3D visual space. To create a one-to-one,
onto, invertible proprioceptive-to-vision map we need only to revert to using multiple
image points on the arm along with the orthogonalizing procedure described in Section 4.5.
Using that procedure every point in the 7D joint-angle space can be mapped smoothly,
one-to-one, onto and invertibly onto a visual image of the entire arm in the equivalent 7D
warped visual space.

7. Task-Related Synergy Selection

Having established that geodesic submanifolds embedded in local regions of the
posture-and-place manifold (Ψ, P) compatible with a specified collage of posture-and-place-
encoded visual images can be constructed we now turn to the selection of the appropriate
movement synergy to achieve a specified visuomotor goal.

7.1. Transforming Visuomotor Goals into Movement Synergies

It has long been known that animals can, through trial and error, learn to execute
behaviours that lead eventually to required outcomes. Investigations of the mechanisms
of animal learning, beginning with the classic works of Thorndike, of Pavlov, and later
of Skinner, have been set out by Shah [62] and more recently by Sutton and Barto ([63]
Chapters 14 and 15) in extensive accounts of the psychological and neuroscientific bases of
reinforcement learning (RL). These demonstrate that behavioural and theoretical research into
animal learning relates directly to the fundamental concepts of RL where typically agents
are employed to learn specific tasks based on predefined rewards and/or punishments.

We propose that through imitation, trial and error, and/or coaching, a type of RL
mechanism is involved in selecting a minimum-effort movement synergy compatible with a
specified collage of posture-and-place-encoded visual images. The mechanism does not use
external rewards such as fruit juice or money but depends on intrinsic rewards generated by
a reduction in error between specified required visual outcomes and model-based feedback
of actual visual outcomes (see [64] for a review of model-based RL in the human brain).
While the complex processes of motor control are mostly not available to consciousness it
is important that feedback of actual movement outcomes match as closely as possible the
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intended ones. It is aversive when actual movement outcomes do not match what was
intended. Think of the frustration experienced by those suffering a movement disorder that
leaves them able to plan a desired action but unable to execute it appropriately.

When visual feedback does not match the intended visual feedback a strong reaction
can ensue. This has been demonstrated in our own work with the observation that, in
the face of uncertainty about the control-display relationship in a visual pursuit track-
ing task, rapid switching between different movement synergies occurs accompanied by
slowing and stiffening of movement due to increased gains of tonic stretch reflex loops
and increased co-contractions of muscles about elemental movements [65]. This reaction
resembles the observed behaviour of people severely disabled with cerebral palsy [66,67]
attempting to perform a visual pursuit tracking task [68,69], suggesting difficulty in trans-
forming sequential behavioural goals into appropriately coordinated movements to achieve
those goals.

Evidence is ample elsewhere for reactions in the nervous system that facilitate alert
and readjustment, a simple example being the alarm experienced on putting a foot on
the step that isn’t there. Event-related potentials (P3a and P3b) and fMRI findings reveal
frontal lobe dopaminergic activity related to the detection of physically alerting stimuli
governing neural responsivity to novelty [70]. Responses involve changes in heart rate
and breathing [71], increased climbing fibre activity in the cerebellum (see [72] for review)
as well as increased activity of dopamine releasing neurons in the substantia nigra pars
compacta and the neighbouring tegmental area [64]. For a comprehensive discussion of
dopamine in relation to RL see [62] and ([63] Chapter 15).

An increasing accumulation of data indicates a role for the basal ganglia and the re-
lease of dopamine in the planning and execution of short-duration coordinated movements
to achieve sequential behavioural goals. From a review of literature Jin and Costa [73] point
to increasing evidence for the cortico-basal ganglia-cortical circuits, including the mesen-
cephalic dopamine system, playing a crucial role in generating, shaping, and executing
action sequences. They underscore the importance of plasticity in these circuits and suggest
its importance in the selection of the neuronal activity patterns underlying the shaping
of sequential action. This is further supported in work of Markowitz and colleagues [74]
who have shown in mice that the striatum organizes 3D behaviour via moment-to-moment
action selection. And in a major review of vision and action Hayhoe states that “in the
context of normal behavior humans make continuous sequences of sensory-motor decisions
to satisfy behavioral goals and the role of vision is to provide relevant information for
making good decisions to achieve those goals” [3] p. 390. Included in this making of good
decisions is the brain’s internal reward mechanism and of dopaminergic cells signaling the
reward expected from an action.

7.2. Model-Based Reinforcement Learning Using an Error-Reducing Association Memory Network

Neuroimaging studies have identified a role for a number of prefrontal cortical areas
thought to be involved in high-level response planning including the encoding of rewarding
and punishing outcomes. These include the orbitofrontal cortex, medial prefrontal cortex,
ventral striatum, anterior insular, and anterior cingulate [75]. Neuroimaging studies have
also identified correlates of temporal difference prediction error signals in target areas of
dopamine neurons, including ventral and dorsal striatum and in midbrain dopaminergic
nuclei. In addition RL value signals have been found in the ventromedial prefrontal cortex
and in intra-parietal and supplementary motor cortices (for review see [64]).

In keeping with the above we propose that the prefrontal cortex is involved in specifying
visual goals for movement synergies required to perform visually-guided actions (Section 5.1).
As set out in Section 4, we propose that these visual goals consist of collages of posture-and-
place-encoded visual images of key parts of the environment and key parts of the body in
that environment sufficient to span the visual task space for the required movement synergy.
Given a visuomotor goal specified this way, we illustrate in Figure 5 a reinforcement learning
mechanism able to select a movement synergy compatible with that goal.
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Figure 5. A block diagram illustrating response planning processes involved in selecting a movement
synergy compatible with a specified visual goal. The central feature is the recursive reinforcement
loop coloured in red. A block-by-block description of the figure follows in the text.

Each collage of visual images spanning task space is transformed by an error-reducing
association memory network (see Appendix C) into neural activity representing a set of
vectors (ci, e1, · · · , eN). This can be thought of as a temporospatial pattern of neural activity
representing the unique minimum-effort N-CDOF movement synergy. As described in
Section 5.4, the vectors specify the required initial conditions for a family of N GTGs,
labelled GTG submanifold generator in the figure. The GTGs generate N unit-metric-speed
geodesics in the posture-and-place manifold (Ψ, P) emanating in orthogonal directions from
the initial configuration specified by ci ∈ C with initial directions specified by orthonormal
vectors (e1, · · · , eN) in the tangent space Tci Γ isomorphic to Tci Ψ as in Section 5.4. These
geodesic pathways form geodesic coordinate axes spanning an N-dimensional geodesic
submanifold embedded in (Ψ, P) (Section 5.4). As explained in Sections 3 and 5 the posture-
and-place geodesic submanifold corresponds to a minimum-effort movement synergy
compatible with the specified visual goal. The posture-and-place submanifold and the visual
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submanifold are illustrated schematically in the block at bottom right in the figure labelled
partitioned visuospatial memory.

Every posture and place (ψi, pi) within the posture-and-place submanifold (i.e., every
(ψi, pi) that can be reached by movements confined to the selected movement synergy) is
associated with a partition of visuospatial memory in which a posture-and-place-encoded
visual image of objects fixed in the environment and of the body in that environment
as seen from that posture and place have been accumulated over time through visual
scanning (Section 4). Thus the geodesic posture-and-place submanifold embedded in (Ψ, P)
together with its associated posture-and-place-encoded visual-images submanifold act
as a model of the relationship between the synergistic movement and its visual outcome.
Using visuospatial memory in this way enables the visual outcome to be predicted ahead
in time. The associated posture-and-place-encoded visual images form a submanifold of
visual images of the environment and of the body in that environment corresponding to
posture-and-place points (ψi, pi) in the selected geodesic submanifold in (Ψ, P).

To achieve selection of an appropriate movement synergy the visual images in the
collage of images specifying the goal for the required movement synergy must match
images in the visual submanifold retrieved from the partitioned visuospatial memory.
A quantitative measure of the extent of mismatch between retrieved visual images and
images in the collage is obtained within the block labelled visual image comparator. Detailed
measures of mismatch between two encoded visual images based on differences between
positions of image points in

(
G(ψi ,pi)

, g
)

, differences between image-point vectors, and
differences between curvature (shape) at every image point can be computed using Rie-
mannian geometry as described in [6]. However a measure of mismatch between visual
images that is simple and adequate for the job can be obtained as follows: The outline of a
key object (e.g., a glass in a reach-and-grasp task) and a key part of the body (e.g., the hand
grasping the glass) in the retrieved posture-and-place-encoded image can be superimposed
on the corresponding outline of the same key object and the same key body part in each of
the collaged posture-and-place-encoded images specifying the visual goal. Such outlines
correspond to curves in the warped 3D visual space

(
G(ψi ,pi)

, g
)

as described in ([6] Section
6 and Appendix B). The mean of the metric norm of vectors connecting corresponding
image points along the outline of the object and the outline of the body part in the two
images provides an adequate measure of visual-image mismatch. This error signal can be
appreciated intuitively by looking at the outline of a hand and seeing how this changes
when the posture of the hand changes and by looking at the outline of a fixed object and
seeing how this changes with changes in the place of the head.

The error signal computed by the visual image comparator is used in the block labelled
error-reducing reinforcement system. This system involves cortico-basal ganglia-cortical loops
that release a reinforcer transmitter (e.g., dopamine) onto neurons in the error-reducing
association memory network whenever the error signal decreases from one learning cycle
to the next. In other words a negative temporal difference of error is rewarded by secretion
of dopamine. As explained in Appendix C it is hypothesized that modification of synaptic
weights in the network only happens when a reinforcer is present. In trial-and-error
learning random variations can be added to (ci, e1, · · · , eN) at the beginning of the learning
sequence. Variance of this random noise can be reduced as the network converges (actually
this randomness is inherent in the learning algorithm). The vectors (ci, e1, · · · , eN) at the
output of the error-reducing association memory network specify uniquely a geodesic
submanifold embedded in (Ψ, P) as explained in Section 5. From one learning cycle to the
next the error-reducing association memory network tunes its synaptic weights to minimize
the mismatch error between visual images specifying the visual task space and the visual
images reachable from within the selected movement synergy. As the visual mismatch
error reduces the movement synergy selected by the vectors (ci, e1, · · · , eN) approaches
closer and closer to the movement synergy compatible with the specified visual goal.
Such a learning mechanism is consistent with the decrease in motor variability commonly
observed during skill learning [73]. In this way, over time and through experience, the
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individual accumulates in memory a repertoire of associations between visual goals and
compatible minimum-effort movement synergies.

As illustrated at top right in Figure 5 the vectors of initial conditions (ci, e1, · · · , eN)
at the output of the error-reducing association memory network have an additional role
to play in transforming planned submovements within the selected movement synergy
into appropriately coordinated motor commands to the hundreds of functional muscles
of the body. Much of our previous work has been concerned with this transformation
(see [47] for review). We will not pursue that aspect here other than to say that the vectors
(ci, e1, · · · , eN) act as an accession code to retrieve from another association memory network
(top right in Figure 5) previously stored adaptive parameters that preset the tuning of
synergy-dependent neural adaptive filters in both sensory and motor systems in readiness
to execute submovements planned within the selected movement synergy.

The partitioned visuospatial memory of posture-and-place-encoded visual images of
the environment and of the body in that environment plays the role of the model in model-
based RL [64]. As explained by Hester and Stone [76], there are advantages for using model-
based RL. It can be used to explore configurations where there is uncertainty in the model
so as to improve the model’s accuracy as quickly as possible. Existence of a model allows
speeded up RL convergence without having to wait for feedback from actions in the outside
world. Indeed, just as geodesic trajectories in a Riemannian manifold can be easily time-
scaled, model-based feedback in RL can be time-scaled to run in fast-time. Moreover, model-
based RL convergence can occur during mental rehearsal without actually performing the
movement. Of course, this assumes an accurate representation of the environment and
of the body in visuospatial memory. However, as set out in Sections 4 and 5, the posture-
and-place-encoded visual images associated with each posture and place (ψi, pi) in the
posture-and-place manifold (Ψ, P) are being continuously updated as the person moves
about in the local environment. This updating occurs independently of the partitioned
visuospatial memory acting as a model in model-based RL.

8. Discussion
8.1. Why Pursue a Theory?

The Riemannian geometry theory developed in this paper concerns the computational
processes required to select minimum-effort movement synergies compatible with specified
visual goals during performance of natural behaviours. Constructing such a theory involves
building bridges between well-established elements of visuomotor science and the abstract
but deductively logical structure of Riemannian geometry. These bridges can be taken to
be definitions of terminology and notation. They are crafted to facilitate a Riemannian
geometry explanation of the computational processes needed to link perception with
action in visually-guided behavior. Manifolds, embedded submanifolds, vector fields,
metrics, curvature tensors, vector bundles, fibre bundles and so forth are constructs from
Riemannian geometry that are of value in a geometrical theory of synergy selection able to
handle the complex nonlinearities of both visual and motor systems. There is, however,
a caveat. Our theory should not be taken as implying that the visual system actually
performs geometric computations. The nervous system has evolved its own methods
of processing and transforming visual and motor signals (e.g., by means of feedforward
and feedback networks with adaptive synaptic connections [47,77]). The value of the
Riemannian theory is its ability to reveal the computational issues involved in transforming
perception into action and in its ability to demonstrate the logical feasibility that such
computational issues, as complicated as they are, can be resolved. As foreseen long ago by
Marr [78], how neural circuits actually implement these computational processes requires
a second stage of analysis beyond the computational theory.

We believe that incorporation of Riemannian geometry may eventually mark a Kuh-
nian paradigm shift [79] in analysis of visually-guided movement. The following parable
illustrates the point. In the late 1500s when Galileo was studying gravity he showed
experimentally that heavy objects rolled down an inclined plane at the same rate as light
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objects. He is supposed to have suggested that a cannon ball and a feather dropped from
the Leaning Tower of Pisa would hit the ground together. But we had to wait another
100 years before the concepts of force, mass, velocity and acceleration used in modern day
explanations of falling objects were defined within the mathematical theory of differential
calculus. In Galileo’s day those formal notions did not exist. Today such abstract ideas have
become commonly accepted and their measurement is pursued in experimental data. We
believe that concepts and notions defined within differential geometry (Appendix A) can
provide explanations for a long list of visual and motor phenomena including, for example,
ability to (i) separate sensory and cognitive components of perception, (ii) construct a 3D
perception of the world from a sequence of 2D retinal images, (iii) explain and compute
optical flow, (iv) explain illusions of size associated with after images, (v) reconcile contra-
dictory minimum-jerk and minimum-torque-change theories of movement, (vi) explain
phenomena independently of the arbitrary coordinate systems chosen for experimental
data, (vii) link perception and action taking warping of both visual space and proprio-
ceptive space into account, (viii) learn motor skills through imitation and to visualize the
world from another person’s perspective, and (ix) explain dissociation between perception
and action in illusions.

8.2. A Recap of the Major Features of the Theory

Because of limited central processing resources and redundancy in the neuro-musculo-
skeletal system we propose that a movement synergy (i.e., a multi-joint coordination)
defined by a set of dynamical constraining relationships between the elemental move-
ments of the body has to be selected before actions can be planned and executed within
that synergy.

According to the Riemannian theory, at any given moment the person uses visual
gaze and/or visuospatial memory to obtain information in order to specify a collage of
posture-and-place-encoded visual images of key objects in the environment and of key
parts of the body that span the visual task space for the required movement synergy. Given
an initial configuration ci and an appropriate initial unit velocity vector e of all the joint-
angle velocities of the body at that initial configuration there exists a unique free-motion
trajectory attributable to the mass-inertia properties of the body (i.e., a geodesic trajectory)
able to reach any specified target visual-image associated with a target posture-and-place.
Such a geodesic trajectory is not only the shortest pathway (i.e., shortest arc length) in
curved posture-and-place space between any two points along the pathway but it is also
the minimum muscular-effort pathway. Moreover, movement along the pathway can be
time scaled (i.e., the metric speed along the pathway can be increased or decreased simply
by changing the initial velocity vector e).

For N-CDOF movement synergies learned associations in an error-reducing association
memory network retrieve a unique set of initial-condition vectors (ci, e1, · · · , eN) associated
with a specified collage of posture-and-place-encoded visual images that span the visual
task space. The initial-condition vectors (ci, e1, · · · , eN) preset geodesic trajectory genera-
tors (GTGs) to generate N geodesic coordinate axes emanating from the specified initial
configuration ci in the specified orthonormal directions (e1, · · · , eN) tangent to the posture-
and-place manifold (Ψ, P) at the initial configuration ci. Thus the learned associations
within the error-reducing association memory network establishes links between vision
and proprioception. Each unit speed geodesic trajectory corresponds to a minimum-effort
natural free-motion movement of the body attributable to its mass-inertia characteris-
tics taking gravity and mechanical (mass-inertia) interactions within and between the
body and the environment into account. In the outside world it appears as an acceler-
ating and/or decelerating curved trajectory. The N geodesics form coordinate axes for
an N-dimensional geodesic submanifold embedded in the 76D posture-and-place man-
ifold (Ψ, P). This geodesic submanifold defines the unique minimum-effort movement
synergy with N-CDOFs compatible with achieving the specified visual goal. With this
process having specified the spatial plan for the movement (i.e., the required movement
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synergy), temporal response planning processes then specify a sequence of concatenated
goal-directed minimum-metric-acceleration (i.e., minimum-effort) submovements that are
executed within the selected movement synergy (i.e., with the same coordination or pattern
of constraining relationships between the joint-angle trajectories).

8.3. Sequences of Movement Synergies in Natural Behaviour

While the so-called “ballistic” tasks often used in experiments are achieved with a
single movement within a synergy, natural behaviour typically consists of concatenated
submovements. If carried out within the same synergy they will proceed as described
above, but in many cases one or more changes of synergy is necessary to complete the action.
The chunking of movement into movement synergies marked by changes in coordination
has been extensively observed and described by others [1,3,73,74]. An important feature
of movement synergies is that a change from one pattern of multi-joint coordination to
another is relatively easy to detect, especially with modern motion analysis technology.
Such boundaries between movement synergies can be used to parse movements into
movement categories for detailed descriptions of movement during dance, sport, work,
rehabilitation, etc. We see selection of goal-directed movement synergies that switch
quickly and smoothly from one to the next during natural behaviour as relating to the
movement repertoire of monkeys studied by Graziano who states:

“We filmed a range of primates · · · [and] were able to film complex behavior including
climbing, playing, grooming, foraging, fighting and so on. Much of the video footage was
analyzed frame by frame in an attempt to construct a general, qualitative description of
the normal movement repertoire of monkeys. · · · Perhaps the most striking feature of the
movement repertoire of monkeys, or of any animal that we observed, was its breakdown
into action modes and submodes between which the animal frequently switched with
minimal overlap. · · · Typically an animal switched rapidly among these different action
modes. · · · The episodes of each action mode were brief. · · · The impression was of a
constant changing from one mode to the next” ([80] pp. 2–5)

This description of monkeys switching quickly between action categories within a
repertoire of coordinated multi-joint actions is consistent with the proposal that visually-
guided actions involve an ongoing sequence of decisions to select, from a repertoire of
learned movement synergies, minimum-effort movement synergies compatible with the
evolving visual goals of the visuomotor task.

8.4. Other Accounts of Movement Synergy

In their recent review of coordination synergies Bruton and O’Dwyer [81] claim
that there are so many different operational definitions of the term “synergy” in the
literature that it becomes difficult to use as either a descriptive or explanatory concept.
We disagree. We see the various definitions of “synergy” in the wide literature covered
in that review as representing different aspects of the comprehensive description given
in this paper of movement synergy and its role in movement control. For example, the
Riemannian geometry theory predicts (i) a coherent activation in space and time of groups
of muscles, (ii) a modular theory of movement control that includes both wired-in and task-
dependent synergy generators that switch from one subtask to the next, (iii) that positions
along a geodesic pathway in the place-and-posture manifold correspond to single neural
commands and reflect translation between task-level goals and execution-level motor
commands, (iv) the existence of low-dimensional task-dependent submanifolds embedded
in the posture-and-place manifold together with associated submanifolds in 3D visual
space that can be related to submanifolds in the uncontrolled manifold hypothesis [82] and
(v) that mathematical concepts of nonlinear dynamics are needed to describe and interpret
coordination. Apart from (vi) the abundance theory of synergy in which synergies do
not eliminate redundant DOFs but instead use “abundant” DOFs to minimize errors [83]
and (vii) the notions of “direct perception” and “affordances” emerging from a nonlinear
dynamical self-organization within the perception-action cycle proposed in the ecological-
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dynamical perspective [84], all the above points predicted by the Riemannian geometry
theory cover the various operational descriptions of “synergy” reviewed by Bruton and
O’Dwyer. Moreover, with the exception of the notion of direct perception, the last two
points are not inconsistent with and could be incorporated into the Riemannian theory.

8.5. Relationship to Robotic Multi-Joint Movement

We have shown previously [85] that a set of dynamically-coupled elemental move-
ments (i.e., a movement synergy) can be equated to a nonlinear dynamical version of the
linear transposed matrix AT in a right pseudo-inverse AT[AAT]−1 of the rectangular
matrix A. The right pseudo-inverse is a mathematical tool used frequently in the field of
robotics to compute the relationship between the position of the endpoint of a robot arm
in 3D space and the several joint angles of the arm. However, the right pseudo-inverse is
a linear tool that does not take the nonlinear gravitational and mass-inertial interaction
forces between elemental movements into account. In our Riemannian theory of synergy
we replace the transposed matrix AT in the right pseudo-inverse with a nonlinear dynamic
movement synergy able to take the curvature of posture space into account. The square
matrix

[
AAT]−1 is absorbed by synergy-dependent nonlinear dynamical inverse models

in the feedforward-feedback motor control system mentioned in Section 5.5. Thus our pro-
posal adds the effects of nonlinear mass-inertial interactions to the positions and joint-angle
formulations commonly used in robotics.

8.6. Optical Flow Is Determined by the Intrinsic Riemannian Geometry of 3D Visual Space

As described by Glennerster [86], throughout the animal kingdom a similar pattern of
eye movement dominates in creatures as they move. Based on the work of Land [87], he
observes that animals fixate while moving, then make a saccade and fixate a new target
as they continue to move. He proposes that, when navigating through an environment,
animals do this because it leads to special optical flow fields on the retina. For example, as
the observer approaches a fixated object the retinal flow is approximately radial expansion
outward from the fovea. There are many neurons in the dorsal part of the medial superior
temporal cortex sensitive to flow of this type [88,89]. Glennerster goes on to explain that
when an observer moves laterally, staying the same distance from the fixation point, there
is a pattern of retinal flow in which objects that are closer than the fixation point move one
way on the retina while more distant objects move in the opposite direction. Again, there
are neurons ideally suited to signaling this type of flow [90]. Glennerster proposes that the
two flow components can be detected independently and can be used to signal progress
toward the goal with neurons sensitive to lateral motion signaling error. The simplicity of
this control strategy relies on the observer fixating on a point during movement.

Moving towards a fixated object causes its image on the retina to expand because of
the size-distance relationship introduced by the eye. As noted by Glennerster this is often
called retinal optical flow. But it is this size-distance relationship introduced by the eye
that underlies the intrinsic warping of 3D visual space described in this paper. If binocular
stereopsis, retinal-image disparity and focus control are taken into account as a way of
sensing absolute depth, then the approaching object not only appears to loom in size but
the rate of looming appears to accelerate. This perceived apparent motion in 3D visual
space of a fixated object when moving towards it can likewise be referred to as optical flow
(see [91]).

Such optical flow is determined by the intrinsically-warped Riemannian geometry of
3D visual space. While 3D optical flow is generated by motion of the egocentre in the 3D
Euclidean outside world it can also be thought of as the apparent motion of points fixed in
the environment relative to the egocentre. For example, if the egocentre is moved from A
to B in the Euclidean outside world with respect to an external reference frame (X, Y, Z)
then, equivalently, every fixed point in the environment can be represented as moving by
the same distance but in the opposite direction in the 3D Euclidean outside world relative
to the moving egocentre. When mapped into the intrinsically-warped geometry of 3D
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visual space the changing cyclopean coordinates (r, θ, ϕ) of all the image points on all the
objects fixed in the outside world define an optical flow field in the intrinsically-warped
3D visual space.

The length of a path in the intrinsically-warped 3D visual space is computed by
integrating the metric-speed along the path (A.11). But the Riemannian metric g(r, θ, ϕ)
defining the warping of the 3D visual space varies inversely with the square of the Eu-
clidean distance r from the egocentre [6]. So metric-speed and hence metric-length in visual
space vary depending on the Euclidean distance r from the egocentre. Thus while the
relative distance moved by each fixed point in the outside world is the same, the distance
moved by each point in the intrinsically-warped 3D visual space varies depending on its
distance from the egocentre. Because of this warping of distances along curves in 3D visual
space relative to distances in the Euclidean outside world a point moving with constant
relative velocity in the outside world will appear to accelerate and/or decelerate in the
intrinsically-warped 3D visual space. In other words, the intrinsic warping of 3D visual
space introduces illusory changes in size and illusory accelerations and decelerations into
3D optical flow fields. We have quantified the intrinsic warping of 3D visual space by
computing the illusory acceleration field (known in Riemannian geometry as the geodesic
spray field) for every position and velocity in 3D visual space [6].

Given the proprioceptive-to-vision and vision-to-proprioceptive maps between sub-
manifolds described in Section 6 and illustrated by simulation studies in Figure 4, move-
ment trajectories can be planned in proprioceptive space or in visual space despite nonlinear
warping of both spaces. Indeed, images can be transformed back and forth between propri-
oceptive and visual submanifolds. For example, when juggling three balls in the air [92] a
juggler might fix his/her gaze on a point near the apex of the flight path of the balls [93]
while, at the same time and without looking at the hands, plan and execute a movement in
posture space sensed proprioceptively to throw a ball along a path in visual space from
one hand to the other, and to plan a movement of the other hand in proprioceptive space
to catch the descending ball in visual space.

8.7. Dissociation of Perception and Action

These phenomena raise questions related to the notion of blind sight or sight unseen
described by Goodale and Milner [94,95]. They explored the case of a young woman (DF)
who was unable to recognize objects or tell one simple geometric shape from another as
a result of brain damage. They showed that she could reach out and grasp objects with
dexterity despite being unable to perceive their shape, size, or orientation. As described
in their paper entitled “one brain–two visual systems”, even though DF was very poor
at describing or demonstrating the orientation of a slot she could still reach out and post
a card into the same slot without error. Despite being unable to report the width of a
rectangular block, she could still adjust her finger-thumb grip size perfectly in advance
of picking it up. She could guide her movements using visual cues of which she seemed
completely unaware. From this and their related work they claim, “ours is a distinction
between vision for perception and vision for action” ([96], p. 660, italics added).

We have addressed how the cyclopean Euclidean distance r can be estimated within
the nervous system using stereopsis, retinal-image disparity and focus control mechanisms
of depth perception [6]. But in addition the nervous system has many other computational
modules able to estimate depth [78]. These employ information derived from occlusions,
relative size, texture gradients, shading, height in the visual field, aerial perspective and
perspective [97]. The ubiquity of cognitive depth perception is demonstrated by perceived
depth in pictures (e.g., television images) and in monocular vision where stereopsis and
retinal-image disparity mechanisms are not available. Automatic focus control may provide
the means for absolute monocular depth perception. Of the various mechanisms of depth
perception, only stereopsis, retinal-image disparity and focus control provide an absolute
measure of Euclidean depth. These are based directly on sensory information encoded
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within afferent signals. The others depend on memorized experience [98], hence the term
top-down cognitive mechanisms.

Whenever an estimate of depth derived from one or more of the top-down cognitive
mechanisms overrules an estimate of depth obtained through stereopsis, retinal image
disparity and/or focus control the geometry of the perceived 3D visual space is altered.
Consequently the perceived geometry no longer matches the Riemannian metric g derived
directly from afferent signals that encode retinal images changing size in inverse proportion
to Euclidean depth. Conscious perception almost certainly includes variations in geometry
attributable to cognitive estimates of depth based on past experience and expectations
overriding stereopsis, retinal-image disparity and focus control estimates of absolute
Euclidean depth. This gives rise to a variety of visual illusions such as the Ames room
where a trapezoidal-shaped room is perceived to be shaped like a normal room with parallel
walls, horizontal floor and rectangular windows [99–102]. Similarly, in the expanding
virtual room experiment [103], estimates of depth derived from stereopsis and parallax
are overruled in favour of a cognitive perception based on the experience that rooms do
not expand as we walk about within them. The hollow-mask illusion [104,105] where a
concave face mask is seen as being convex most likely occurs because experience tells us
that faces are convex. Some top-down cognitive perceptions such as seeing the floor and
walls of a normal room as being flat and seeing straight lines as being straight may seem
surprising. After all they can hardly be called illusions if floors and walls actually are flat
and straight lines actually are straight. Nevertheless, the intrinsic warping of 3D visual
space encoded within afferent signals indicates that they should appear curved.

Hatfield [40] described a structure of visual space that takes seeing straight lines as
straight into account. In this account visual space is compressed in a Euclidean 3D to 3D
projection that allows for railway tracks to converge as they recede in depth while still
remaining straight. Similarly, Erkelens [106] described a linear perspective theory that
allows perception of slanting planar surfaces as flat surfaces. But such cognitively-modified
perceptions introduce paradoxes. For example, despite the fact that by definition a straight
line is the only path along which a point can move with zero acceleration, equal increments
of distances along a wall appear to change length with depth (e.g., bricks appear to change
size) and it is not possible for a point to appear to move along such an apparently straight
line in warped 3D visual space with zero perceived acceleration. Conscious perception of a
3D world full of illusions created by top-down cognitive mechanisms of depth perception
hardly provides a suitable visual space for the planning and execution of visually-guided
movement! Nevertheless, accurate visually-guided movement is possible despite the
presence of illusions as shown by the demonstration that, despite observers being unable
to resist the compelling “hollow face” illusion, the actions that they direct at the face are
not corrupted and arrive at the correct point in the concave hollow mask [105].

We suggest that the dissociation observed experimentally between perception and
action in the hollow face illusion, the Ponzo illusion, the Wundt-Jastrow illusion and
the Sander parallelogram illusion [105,107–109] can be accounted for in terms of the
Riemannian theory. Consider, for example, the bimanual grasping experiment recently
reported by Ozana and Ganel [109]. Participants grasped rectangular plastic rods placed
on a flat background depicting the standard or inverted Ponzo illusion. According to the
Riemannian theory, depth perception based on stereopsis, retinal-image disparity and focus
control provide estimates of actual Euclidean distance between the person’s egocentre and
points on the objects and on the illusory background. Top-down cognitive mechanisms of
depth perception, on the other hand, use a variety of cues to generate illusory perceptions
of depth. This is analogous to seeing depth in pictures while simultaneously seeing the
plane of the picture. As described in Section 6 and verified by simulation of a two-DOF
arm, there exists a smooth, one-to-one, onto, invertible relation between the position of
the body in the actual 3D Euclidean world and its position in the intrinsically warped 3D
visual space. Thus if bimanual movements to grasp the plastic rods are planned within
the intrinsically warped 3D visual space derived from sensory inputs before it is modified
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by top-down cognitive mechanisms, as proposed in the Riemannian theory, then those
grasping movements would be accurate and uninfluenced by the illusory perceptions
induced by the Ponzo background. The theory therefore predicts the dissociation between
action and perception observed in that study. For the same reason we predict that the
size of an after image projected onto a picture will not be affected by perceived depth in
the picture.

We have shown in Section 6 and Figure 4 that the 3D Riemannian geometry of what
we could call pre-conscious visual space does provide a smooth, one-to-one, onto, invertible
mapping between the actual Euclidean 3D outside world and the place-and-posture-
encoded visual images of the body in the intrinsically-warped 3D visual space. We strongly
suggest that it is the pre-conscious visual space, derived from afferent signals before its
intrinsic geometry is modified by top-down cognitive expectations, that is used for the
planning and control of visually-guided movement. We believe that experiments concerned
with the dissociation between perception and action in illusions have an important role to
play not only in terms of testing the two visual systems theory of Goodale and Milner but
also as the first experimental tool with the potential to distinguish between sensory and
cognitive components of perception.

8.8. Future Directions

Thus far our development of the Riemannian theory of synergy selection has neces-
sarily been limited to the case of visually-guided movement. We are nevertheless aware
that an individual’s intention to act may often be based on an assemblage of multimodal
sensory cues. Clearly the theory can be developed further to include the integration of
posture and place not only with 3D visual space but also with the space of other sensory
modalities, in particular tactile space and auditory space. Just as Figure 2 illustrates visual
space as a vector bundle representation tied to the configuration of the body in the local
environment, so too could a similar representation be constructed for tactile space and
auditory space.

This would require the determination of Riemannian metrics to account for the known
nonlinear warping of both 3D tactile space [23,110] and 3D auditory space [111]. It would
also require a representation of tactile and auditory sensory signals within local clusters
(hypercolumns) of tactile and auditory cortical neurons, respectively, as projections onto
stochastic tactile and auditory temporospatial features encoded by spatial patterns of
synaptic weights on tactile and auditory cortical columns within hypercolumns (analogous
to the representation of visual signals in [6]. We see no reason why this cannot be achieved.
Thus we envisage the vector-bundle structure illustrated in Figure 2 extended to include
parallel representations of 3D visual space, 3D tactile space and 3D auditory space over
each posture and place (ψi, pi) of the body in the base posture-and-place manifold (Ψ, P).
Vector-bundle morphisms similar to those of Figure 2 can then be formed adaptively not
only between each and every posture-and-place-encoded partition within visual, tactile
and auditory 3D spatial memories but also between the visual, tactile and auditory 3D
spaces within each posture-and-place memory partition.

Such a network of multiple vector-bundle morphisms within and between posture-
and-place-based partitions of visuospatial, tactuospatial and audiospatial memory would
have the capability to provide a multisensory internal representation of moving about
within a local 3D environment. This capability allows multimodal perceptions and selection
of movement synergies to achieve multimodal sensory goals that would otherwise be
unachievable. For example, we cannot see the back of our head yet when it is in contact
with a pillow we know its exact location. Likewise we can plan very precise movements
to accurately place food into the mouth despite the absence of the mouth from our visual
space. The existence of sensory-sensory and sensory motor adaptive maps operating within
our Riemannian framework provides a neural mechanism able to account for many such
everyday phenomena.
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Meanwhile the precise neurophysiological underpinning of such associative maps is a
work in progress. As set out by Rizzolatti and colleagues [112] the classical idea of a single
multimodal association area in the parietal cortex is now being modified by the notion of
there being many maps each encoding space in terms of different effector movements. They
offer the view that the sense of space arises from our motor interactions with the world and
speak of two types of space, “peripersonal space” within arm reach and “extrapersonal
space” beyond. In particular, they cite from monkey studies known overlaps of tactile and
visual receptive fields within the inferior premotor cortex that in some cases overlap an
auditory field as well. Ultimately a theory such as ours, in present form or extended, must
accord with established neurobiology. In that sense it too is a work in progress. It does,
however, offer a cohesive mechanism that we have taken care to ensure is neurally feasible,
that is consistent with much evidence on visually-guided movement and that offers a clear
basis for further test and development.
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Appendix A. Riemannian Geometry: A Tutorial

Like most of modern mathematics the theorems, lemmas and propositions of Rie-
mannian geometry are deduced logically from the nine basic axioms of set theory (viz.,
the Zermelo-Fraenkel axioms plus the axiom of choice). The axioms are taken to be self-
evidently true. For example, ‘sets exist and x ∈ X’ means the element x is in the set X.
Riemannian geometry develops in layers from set theory through the mathematical fields
of topology, topological manifolds, smooth manifolds, and finally Riemannian manifolds.
Aspects of all these fields are incorporated in differential geometry. In essence, this concerns
the calculus of processes taking place in curved spaces. The curvature of space can repre-
sent nonlinearity in dynamic processes playing out in that space. Detailed descriptions of
differential geometry can be found in many texts [49,50,113–125]. In this tutorial we focus
on the notions from Riemannian geometry most pertinent to this paper.

A.1. Set Theory

The notation U ⊆ X means U is a subset of the set X, X = X1 ∪ X2 means that the
set X is the union of the sets X1 and X2, and X = X1 ∩ X2 means that the set X is the
intersection of the sets X1 and X2.

A.2. Topology

Topology is a mathematical field concerned with the shape of space(s). In topology
there is no metric (i.e., no measure of size). Size and shape are seen as independent
properties. Topology has been called “elastic sheet geometry”. Space can be stretched,
compressed or molded by any amount without cutting, tearing or puncturing into a variety
of different shapes. It has been proven (i.e., logically deduced from the basic axioms) that
2D space has different topological structures equivalent to (i) an unbounded plane, (ii) a
sphere, (iii) a torus (like the surface of a doughnut), (iv) tori with multiple holes and (v) the
connected sum of projective planes (the geometry of a projective plane underlies the theory
of perspective and projection of 3D space onto 2D space.) A torus, for example, can be
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molded (without cutting, tearing or puncturing) into many 2D shapes including the 2D
surface of a coffee mug with a handle. The hole associated with the handle corresponds to
the hole in the torus. It took over 100 years for topologists to determine all the possible
topological structures of 3D space. When it comes to classifying topological structures of
spaces with dimension four or greater things become more difficult. It has been proven that
there is no algorithm able to classify all the possible topological structures of spaces with
dimension four or greater. The best we can do for high dimensional spaces is to recognize
that a large number of different topological structures are possible.

A.3. Topological Spaces

A topological space (X, T ) is a set X endowed with a collection T of open subsets
that cover X (i.e., the union of all the open subsets equals X). The open subsets in the
topology T satisfy three conditions (i) the set X and the empty set (denoted by ∅) belong
to T , (ii) the intersection of any finite number of open subsets in T is an open subset in T ,
(iii) the union of any number of open subsets in T is an open subset in T . There exists a
basis topology B on X consisting of a collection of basis open subsets Bi ∈ B such that any
other open subset U ⊆ X can be constructed from a union of basis open subsets Bi ∈ B.

A.3.1. Useful Definitions

An open subset U ⊆ X containing a point p in a topological space X is called a
neighbourhood of p. An open subset U ⊆ X containing an arbitrary subset S in a topological
space X is called a neighbourhood of S. The interior of a subset S, denoted by Int S, consists
of the union of all the open subsets in X contained in S. Int S is therefore an open subset in
X. The exterior of a subset S, denoted by Ext S, consists of the union of all the open subsets
in X with S removed, denoted by X\S. Ext S is an open subset in X\S. The closure of S,
denoted by S, is the intersection of all the closed subsets in X that contain S. A subset S is
closed in X if its complement X\S is open in X. The boundary of a subset S in X, denoted by
∂S, is equal to the difference between the closure of S and the interior of S. The boundary
∂S of S is a closed subset in X. A limit point p of a subset S in X has a neighbourhood
U ⊆ X that contains at least one other point q ∈ S. An isolated point p of a subset S in X has
a neighbourhood U ⊆ X that contains no other point in S. A topological space X is compact
if every open cover of X has a finite subcover. An open subset U ⊆ X is precompact if its
closure U is compact.

A.3.2. Maps between Topological Spaces

A map F : X → Y between two topological spaces X and Y is a rule for assigning
every point x ∈ X to a point or points in Y. A map F : X → Y is a continuous map if for
every open subset V ⊆ Y its preimage F−1(V) (i.e., all points in X that map into V) is an
open subset U in X. If F : X → Y is one-to-one (i.e., F(x1) = F(x2) implies x1 = x2) it
is called injective. If F : X → Y is onto (i.e., each y ∈ Y receives a mapping from at least
one point in X) it is called surjective. If F : X → Y is both one-to-one and onto it is called
bijective. A continuous map F : X → Y that is one-to-one and onto (i.e., bijective) and has a
continuous inverse map F−1 : Y → X is known as a homeomorphism. Homeomorphisms
preserve topological properties. By definition topological properties are those properties of
topological spaces that are preserved by homeomorphisms.

A.3.3. Open and Closed Maps

A map F : X → Y is an open map if for every open subset U ⊆ X the image set F(U) is
open in Y and it is a closed map if for every closed subset K ⊆ X the image set F(K) is closed
in Y. If F : X → Y is a continuous, injective, open or closed map then it is a topological
embedding. If F : X → Y is a continuous, surjective, open or closed map then it is a quotient
map. If F : X → Y is a continuous, bijective, open or closed map then it is a homeomorphism.



Vision 2021, 5, 26 47 of 59

A.4. Topological Manifolds

A topological manifold M is a topological space endowed with the following set of
topological properties preserved by homeomorphic maps.

(i) M is Hausdorff which means that for any two points q, p ∈ M there exist disjoint open
subsets U and V in M such that U contains q and V contains p.

(ii) M is second countable which means that its basis open subsets Bi ∈ B can be mapped
bijectively onto the set of positive integers (i.e., the Bi ∈ B can be counted). Being
second countable implies being first countable which means that for every point
p ∈ M there is a neighbourhood basis consisting of a countable collection of nested
neighbourhoods of p such that any other arbitrary neighbourhood of p contains at
least one of the neighbourhoods in the neighbourhood basis of p.

(iii) M is locally Euclidean which means that for every point p ∈ M there exists a coordinate
chart (U, ϕ) where U is an open subset of M containing the point p known as a coor-
dinate domain and ϕ is a homeomorphic map between U ⊆ M and ϕ(U) ⊆ Rn in an
n-dimensional Euclidean space Rn. This defines the manifold M to be n-dimensional.
The component functions ϕi of the homeomorphic map ϕ : U → Rn define a set of
orthogonal Cartesian coordinates

(
u1, · · · , un) on Û = ϕ(U) ⊆ Rn and a set of curvi-

linear coordinates
(
x1, · · · , xn) on U ⊆ M such that ui = ϕ

(
xi) and xi = ϕ−1(ui). A

collection of coordinate charts (Ui, ϕi) i = 1, 2, · · · , that cover M is called an atlas.
(iv) M is locally path-connected (i.e., its basis open subsets Bi ∈ B are path-connected).
(v) M is locally compact (i.e., its basis open subsets Bi ∈ B are precompact).
(vi) The combination of being second countable, locally compact and Hausdorff means

that a topological manifold M is paracompact (i.e., every open cover of M has a locally
finite refinement Bi ∈ B (i.e., every open subset U ⊆ M can be constructed from a
union of a finite number of basis open subsets Bi)).

A.5. Smooth Manifolds

Smooth manifolds are topological manifolds endowed with a differentiable structure
that allows differentiation of continuous real-valued functions f : M→ R on M and dif-
ferentiation of continuous maps F : M1 → M2 between smooth manifolds M1 and M2.
A continuous map F : U ⊆ Rn → Rk between Euclidean spaces Rn and Rk is said to be
smooth (i.e., class C∞ or infinitely continuously differentiable) if all of its component func-
tions have continuous partial derivatives of all orders. A diffeomorphism is a bijective
smooth map whose inverse is also smooth.

Two coordinate charts (U, ϕ) and (V, ψ) on a n-manifold M are said to be smoothly
compatible if (i) either the coordinate domains U and V do not overlap or, (ii) if they do
overlap, then the transition functions

(
ψ ◦ ϕ−1) and

(
ϕ ◦ ψ−1) (notice the order) between

ϕ(U ∩V) and ψ(U ∩V) in Euclidean spaces Rn, respectively, are smooth (i.e., diffeomor-
phisms). The symbol ◦ in these equations denotes “composition” or one map followed by
the other in reverse order. These transition functions between coordinate charts correspond
to coordinate transformations. Smooth manifold theory is coordinate independent. The
maps ϕ : U → Rn and ψ : V → Rn are diffeomorphisms.

An atlas for M is said to be smoothly compatible if all of its coordinate charts are smoothly
compatible. A differentiable structure on M is a maximal smooth atlas that contains all possi-
ble smoothly compatible coordinate charts on M. We usually just say that a manifold M is
a smooth manifold with all its topological properties and differentiable structure understood.
It is often the case that the geometry of a smooth manifold is described in terms of a single
coordinate chart with its smooth differentiable structure understood.

At each point ϕ(p) ∈ Rn in a coordinate chart ϕ : U → Rn on a smooth manifold M
there exists an n-dimensional tangent vector space Tϕ(p)Rn spanned by a set of orthonormal
coordinate basis vectors ( ∂

∂u1
, · · · , ∂

∂un
). At each point p ∈ M in U ⊆ M there exists an

n-dimensional tangent vector space Tp M spanned by linearly independent basis coordinate
vectors ( ∂

∂x1
, · · · , ∂

∂xn
). Because the coordinates

(
x1, · · · , xn) on U ⊆ M are curvilinear the
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coordinate basis vectors ( ∂
∂x1

, · · · , ∂
∂xn

) spanning the tangent space Tp M are not orthonor-

mal. The angles between the coordinate basis vectors ( ∂
∂x1

= ∂1, · · · , ∂
∂xn

= ∂n) change
from point to point in the coordinate domain U.

A.6. Smooth Maps between Smooth Manifolds

If M and N are smooth manifolds a continuous map F : M→ N is said to be smooth
if for every p ∈ M there exist smooth coordinate charts (U, ϕ) for M containing p and
(V, ψ) for N containing F(p) such that F(U) ⊆ V and the composite map F̂ = ψ ◦ F ◦ ϕ−1

(notice the order) is smooth between the Euclidean spaces ϕ(U) and ψ(V). The composite
map F̂ = ψ ◦ F ◦ ϕ−1 is called a coordinate representation of F. If F̂ is smooth then F : M→ N
is said to be smooth. The set of all smooth maps between smooth manifolds M and N is
denoted by C∞(M, N) and the vector space of all smooth real-valued functions f : M→ R
is denoted by C∞(M).

A.7. Tangent Vectors and Cotangent Vectors

Let M be a smooth manifold. For every point p ∈ M a tangent vector v at p is a
linear map v : C∞(M)→ R known as a derivation at p, meaning that for f , g ∈ C∞(M) the
map v satisfies the product rule v( f g) = f (p)(vg) + (v f )g(p). (Notice this is equivalent
to the Leibnitz derivation for the partial derivative of a product of continuous functions
f g given by ∂

∂x f g = f
(

∂
∂x g
)
+
(

∂
∂x f
)

g). The set of all tangent vectors at p is denoted

by Tp M and called the tangent vector space at p. The vectors ∂
∂xi = ∂i for i = 1, · · · , n

form a basis of coordinate vectors spanning the tangent vector space Tp M. Once a smooth
chart (U, ϕ) has been chosen then any tangent vector v ∈ Tp M at the point p ∈ M can
be written as v = vi∂i p = v1∂1 p + · · · + vn∂n p where the components vi are computed
by vi = v

(
xi) = dxi(v). (Notice the equality v = vi∂i p uses the summation convention,

when an index i appears as both a superscript and a subscript in the same expression it
implies summation over all values of i.) For every p ∈ M the dual covector space T∗p M is

spanned by coordinate basis covectors
(
dx1, · · · , dxn) where 〈dxi, ∂j〉 = δi

j =

{
1 i f i = j
0 i f i 6= j

.

For every f ∈ C∞(M) and p ∈ M there is a covector d fp ∈ T∗p M called the differential of f
at p defined by d fp(v) = v f for all v ∈ Tp M

A.8. Smooth Submanifolds

A smooth map F : M→ N between smooth manifolds M and N is said to have
constant rank if the linear tangent map dFp (i.e., the differential of the map F : M→ N
at the point p) between the tangent spaces Tp M and TF(p)N has the same rank at every
p ∈ M.

F is called a submersion if its differential dFp is surjective at each point p, or equivalently,
if dFp has constant rank equal to the dimension of N denoted dim N. F is called an immersion
if its differential dFp is injective at each point p, or equivalently, if dFp has constant rank
equal to dim M.

If F : M→ N is an immersion then F(M) is an immersed submanifold in N. Because
of the large number of possible topological structures of M and N an immersed submanifold
F(M) can fold on itself and can intersect with itself. This prevents an open subset U ⊆ F(M)
from intersecting with an open subset V ⊆ N. In this case we say that an immersed
submanifold cannot inherit a subspace topology from the ambient manifold although if an
open subset in an immersed submanifold is small enough so that it does not fold on itself
then it can inherit a subspace topology. An immersed submanifold F(M) can be endowed
with a topology T other than a subspace topology inherited from the ambient manifold
in which it is immersed. A smooth map F : M→ N is called a smooth embedding if it is an
injective immersion that is also a diffeomorphism onto its image F(M) in N and has the
subspace topology inherited from the ambient manifold N. In other words, it does not fold
on itself.
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A.9. Smoothly Embedded Submanifolds

Suppose M is a smooth n-dimensional manifold. A smoothly immersed m-dimensional
submanifold M̃ of M is an m-dimensional topological submanifold endowed with a smooth
structure such that the inclusion map ιM̃ : M̃→ M is a smooth immersion. M̃ is called a
smoothly embedded submanifold of M if the inclusion map ιM̃ : M̃→ M is a smooth embed-
ding (i.e., the topology on M̃ is the subspace topology inherited from the ambient manifold
M). The codimension of a smoothly embedded submanifold M̃ is the difference between
dim M and dim M̃. A submanifold of codimension 1 is known as a hypersurface. The
word “submanifold” always means an immersed submanifold; an embedded submanifold
is a special case.

A.10. Slice Coordinates

Let M be a smooth n-dimensional manifold and let M̃ be a smoothly embedded m-
dimensional submanifold in M. Then for each p ∈ M̃ there exists a neighbourhood U of
p in M with smooth coordinates

(
x1, · · · , xn) for U ⊆ M such that the first m coordinates(

x1, · · · , xm) span the subspace U ∩ M̃ in the smoothly embedded submanifold M̃.

A.11. Riemannian Manifolds

A Riemannian manifold (M, g) is a smooth manifold M endowed with a Riemannian
metric g(p) at every p ∈ M. A Riemannian metric g(p) is a symmetrical, positive definite,
nonsingular, 2-tensor field that varies smoothly on the manifold (M, g). Such a 2-tensor
field is equivalent to defining a metric inner product g(X, Y) = 〈X, Y〉g between any two
vectors X and Y in the tangent space Tp M at every point p ∈ (M, g). The metric g(p)
at each point p ∈ (M, g) allows the metric norm (length) ‖ X ‖ = 〈X, X〉1/2

g of any vector

X ∈ Tp M and the angle cos θ =
〈X,Y〉g
‖X‖·‖Y‖ between any two vectors X and Y in Tp M to be

computed. Because g(p) is nonsingular at every point p ∈ (M, g) the inverse metric g−1(p)
also exists at each point p ∈ (M, g).

In any coordinate chart (U, ϕ) on (M, g) with coordinates
(
x1, · · · , xn) on the coor-

dinate domain U the metric g = gijdxidxj where the gij are the components of the metric.
Thus g is an n× n, symmetric, positive definite, nonsingular matrix that varies smoothly
with p ∈ (M, g). The arc length S between any two points a and b along any unit-speed
curve γ(s) in (M, g) is given by S =

∫ b
a 〈

.
γ,

.
γ〉1/2

g ds. This equation provides a type of “tape
measure” that allows distances between points along curves and the sizes of submanifolds
in (M, g) to be measured.

For a mechanical system (like the human body) the kinetic energy of motion is given
by 1/2〈Jv, v〉 = 1/2〈gv, v〉 where v is velocity, J is mass-inertia, and g is the kinetic-energy
Riemannian metric. Thus, for a mechanical system, the mass-inertia J is the kinetic-energy
Riemannian metric.

A.12. Graphs of Submanifolds

Suppose M is a smooth m-dimensional manifold, and N is a smooth n-dimensional
manifold. Then the Cartesian product space M× N is a (m + n)-dimensional smooth man-
ifold. Let U ⊆ M be an open subset of M, and let f : U → N be a smooth map. Let Γ( f ) ⊆
M× N denote the graph of f : U → N (i.e., Γ( f ) = {(x, y) ∈ M× N : x ∈ U, y ∈ f (x)}).
Then Γ( f ) is a smoothly embedded submanifold of M× N diffeomorphic to U ⊆ M.

A.13. Vector Bundles

The tangent bundle of M, denoted by TM, is the disjoint union ä of the all the tangent
vector spaces Tp M at all points p ∈ M, (i.e., TM = äp∈M Tp M). The tangent bundle TM
is both a union of vector spaces Tp M and a smooth manifold TM. This kind of structure,
called a vector bundle, is extremely common in differential geometry. For any positive integer
k, a smooth vector bundle of rank-k is a pair of smooth manifolds E and M together with
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a smooth surjective map π : E→ M . For each p ∈ M, the set Ep = π−1(p) is endowed
with the structure of a k-dimensional real vector space Rk. The manifold M is called the
base of the vector bundle, E is called the total space (it includes both M and the disjoint union
of all the k-dimensional vector spaces Ep), and π : E→ M is its projection onto M. Each
vector space Ep = π−1(p) is called the fibre of E overp. In other words, at each point p
in the smooth base manifold M there is attached a k-dimensional vector space Ep.The
base manifold M and the collection of k-dimensional vector spaces Ep over M together
form a vector bundle E. The map π : E→ M takes each element of the vector space Ep to
the point p ∈ M. E has a unique smooth structure making it a smooth vector bundle of
rank-k over M with π : E→ M a smooth surjective projection. A smooth section of E (i.e.,
a smooth vector field V over M) is a smooth map σ : M→ E such that π ◦ ϕ = IdM the
identity map on M, or equivalently, ϕ(p) ∈ Ep for every p ∈ M.

If π : E→ M is a smooth vector bundle then the set of smooth sections of E (i.e., all
the possible vector fields V over M), denoted by ΓE, is a vector space under point-wise
addition and multiplication by constants. The zero section of ΓE defined by ζ(p) = 0 ∈ Ep
for all p ∈ M is diffeomorphic to M.

Suppose M is a smooth manifold and M̃ ⊆ M is a smoothly immersed or a smoothly
embedded submanifold of M. If π : E→ M is any smooth rank-k vector bundle over M,
then we obtain a smooth vector bundle πM̃ : EM̃ → M̃ of rank-k over M̃ whose total space

is EM̃ = π−1
(

M̃
)

. The fibre of πM̃ : EM̃ → M at each p ∈ M̃ is exactly the fibre of E.
Every smooth section of Erestricts to a smooth section of EM̃ and, in most cases, smooth
sections of EM̃extend to smooth sections of E, at least locally near M̃.

A.14. Vector Bundle Morphisms

Suppose πi : Ei → Mi and πj : Ej → Mj are two vector bundles and suppose
H : Ei → Ej is a vector bundle morphism (i.e., a smooth map between the vector bundles).
Then (i) H preserves the zero section H : Ei0 → Ej0 . (Since the zero section is diffeomor-
phic to the base manifold it follows that H : Mi → Mj ). (ii) H : Ei → Ej induces a unique
mapping H1 : Mi → Mj such that πj ◦ H2 = H1 ◦ πi where H2 : ΓEi → ΓEj .

A.15. Covariant Derivatives

Consider a curve γ(t) parameterized by time t in a manifold (M, g). A velocity vector
.
γ(t) tangent to the curve γ(t) can be computed at every point along the curve. A prob-
lem that does not occur in flat Euclidean space occurs when we attempt to compute the
acceleration

..
γ(t) at every point along the curve. Computing the acceleration

..
γ(t0) at each

point γ(t0) along the curve γ(t) in Euclidean space involves computing the difference
.
γ(t0 + ∆t)− .

γ(t0), dividing by ∆t and taking the limit as ∆t→ 0 . However in a Rieman-
nian manifold (M, g) the velocity vectors

.
γ(t0 + ∆t) and

.
γ(t0) are in completely different

disjoint tangent vector spaces T .
γ(t0+∆t)M and T .

γ(t0)
M with completely different coordinate

basis vectors (∂1, · · · , ∂n) and so cannot be subtracted!
A new type of metric-acceleration vector ∇ .

γ

.
γ known as a covariant derivative is re-

quired that takes the changing coordinate basis vectors (∂1, · · · , ∂n) of the tangent vector
spaces along the curve γ(t) in the curved Riemannian manifold (M, g) into account. This
gives rise to the notion of a connection ∇ between tangent spaces on the manifold (M, g).

A connection ∇ is not an inherent property of a manifold. It has to be imposed
on the manifold. The covariant derivative ∇∂k

∂j giving the change in the basis vector
∂j for movement in the direction ∂k at each point p ∈ (M, g) is defined to be ∇∂k

∂j =

Γ1
jk∂1 + · · ·+ Γn

jk∂n. The coefficients of the connection Γi
jk for i, j, k = 1, · · · , n at each point

p ∈ (M, g) are known as the Christoffel symbols for the metric g(p). Together they define
the connection ∇ on the manifold (M, g).

In a Riemannian manifold (M, g) the Christoffel symbols at each p ∈ (M, g) can

be computed from the equation Γi
jk = 1

2 gim
(

∂gmj

∂xk + ∂gmk
∂xj −

∂gjk
∂xm

)
. The covariant deriva-
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tive ∇ .
γ

.
γ at each point γ(t0) along the curve γ(t) in the manifold (M, g) is then given

by the equation ∇ .
γ

.
γ =

..
γ − f2

(
γ,

.
γ
)

where f2
(
γ,

.
γ
)
= − dxk

dt
dxj

dt Γi
jk∂i summed over all

i, j, k = 1, · · · , n.
f2(p, v) is an acceleration vector known as the acceleration component of the geodesic

spray field that can be pre-computed for every point p ∈ (M, g) and every vector v in the
tangent vector space Tp M. Thus, given the Riemannian metric g(p) at every point p on
the manifold (M, g), all the Christoffel symbols Γi

jk can be computed and knowing the
Christoffel symbols at every p ∈ (M, g) the geodesic-spray acceleration vector field f2(p, v)
can be computed for every p ∈ (M, g) and for every tangent vector v ∈ Tp M in every
tangent vector space Tp M.

A.16. Curvature

The curvature of a Riemannian manifold at each point p ∈ (M, g) provides a measure
of the failure of second covariant derivatives ∇X∇Y to commute at that point where X
and Y are arbitrary tangent vectors. It also provides a measure of the fact that in a curved
manifold parallel translation (described below) is path dependent. Even in a flat Euclidean
space, given arbitrary tangent vectors X and Y, we obtain∇X∇Y −∇Y∇X = ∇[X,Y] where
[X, Y] = XY − YX is known as the commutator bracket or Lie bracket. If X and Y are
tangent vectors then the Lie bracket [X, Y] is also a tangent vector. Thus, for a flat Euclidean
space, we can write ∇X∇Y −∇Y∇X −∇[X,Y] = 0. This provides a criterion for flatness.

We define a curvature operator at each point p ∈ (M, g) on a manifold (M, g) to be
R(X, Y) = ∇X∇Y −∇Y∇X −∇[X,Y]. It operates on any vector Z in the tangent space
Tp M and transforms it to another vector in Tp M. The curvature operator R(X, Y) is
therefore an endomorphism. If a manifold (M, g) is isomorphic to a flat Euclidean space then
R(X, Y)Z = 0 at every point p ∈ (M, g) and we can say that the manifold (M, g) is flat
and totally parallel. However, if R(X, Y)Z 6= 0 at the point p ∈ (M, g) then we say that the
manifold (M, g) is curved (or warped) at the point p ∈ (M, g) and parallel translation is
path dependent.

The Riemann curvature tensor Rm(X, Y, Z, W) operates on four vectors X, Y, Z, W ∈ Tp M
and transforms them into a real number. That number provides a measure of the curvature
at p ∈ (M, g). It is defined by the metric inner product Rm(X, Y, Z, W) = R(X, Y)Z, Wg and
so depends on the Riemannian metric g and the way g changes from point to point in the
manifold. Rm(X, Y, Z, W) has important symmetries:

(i) Rm(X, Y, Z, W) = −Rm(X, Y, W, Z),
(ii) Rm(X, Y, Z, W) = −Rm(Y, X, Z, W),
(iii) Rm(X, Y, Z, W) = Rm(Z, W, X, Y), and
(iv) Rm(X, Y, Z, W) + Rm(Y, Z, X, W) + Rm(Z, X, Y, W) = 0.

A.17. Geodesics and Parallel Translation

We have seen that the covariant derivative at each point γ(t0) along a curve γ(t) in a
curved Riemannian manifold (M, g) is given by the equation ∇ .

γ

.
γ =

..
γ− f2

(
γ,

.
γ
)
. If this

covariant derivative (metric-acceleration) equals zero (i.e., ∇ .
γ

.
γ =

..
γ− f2

(
γ,

.
γ
)
= 0) then

the curve γ(t) is called a geodesic of the manifold (M, g) and the tangent velocity vector
.
γ(t)

is said to be parallel translated along the curve γ(t). Since the metric-acceleration is zero at ev-
ery point along the curve it follows that a geodesic corresponds to a constant speed straight
line pathway in the curved manifold (M, g). If∇ .

γX = 0 and∇ .
γY = 0 for any other vector

fields X and Y along the geodesic curve γ(t) then the vectors X and Y are also said to be
parallel translated along γ(t). The metric inner products 〈 .

γ, X〉g, 〈 .
γ, Y〉g, 〈X, X〉g, 〈Y, Y〉g,

and 〈X, Y〉g are preserved by parallel translation along a geodesic γ(t). In other words, the
lengths (norms) of the vectors

.
γ, X and Y and the angles between them are preserved by

parallel translation along a geodesic γ(t). Equivalently, any orthonormal frame of parallel
translated vectors (e1, e2, · · · , em) along a geodesic γ(t) remains orthonormal at all points
along the geodesic.
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We have also seen that for a geodesic γ(t) in (M, g) the covariant derivative ∇ .
γ

.
γ =

..
γ − f2

(
γ,

.
γ
)
= 0 for every point along the curve. It follows that for a geodesic γ(t),

..
γ = f2

(
γ,

.
γ
)
. Thus the acceleration

..
γ for a geodesic γ can be generated at the input to an

array of double integrators by nonlinear feedback f2
(
γ,

.
γ
)

of position γ and velocity
.
γ from

the outputs of the integrators. Given an initial position γ(t0) and an initial velocity
.
γ(t0)

the corresponding geodesic trajectory γ(t) is generated by the array of double integrators.
We refer to such an array of double integrators as a geodesic trajectory generator (GTG). Notice
that only the initial position γ(t0) and an initial velocity

.
γ(t0) are required to generate a

geodesic trajectory in a Riemannian manifold (M, g).

A.18. Variation through Geodesics

A variation of an arbitrary curve α
(

x1) parameterized by arc length x1 in a Rieman-
nian manifold (M, g) (i.e., variation of a unit speed curve) is a smooth map Γ: R2 → M
between a 2-dimensional Euclidean space R2 and the Riemannian manifold (M, g) (i.e.,
Γ: [a, b]× J → M where [a, b] is a closed interval between a and b on a real-number line
R and J is some interval on an orthogonal real-number line R containing 0). For all x1

in the closed interval [a, b] the map Γ
(
x1, 0

)
= α0

(
x1). Such a variation is well known in

differential geometry. It is used, for example, to compute minimum length pathways and
minimum energy pathways in curved spaces using the calculus of variations. The map
Γ
(

x1, x2) = αx2
(

x1) where x2 is held constant at different values in the interval J gives a
family of curves

{
αx2
(
x1)} defined on the closed interval [a, b]. If all the curves αx2

(
x1)

are geodesics then Γ
(

x1, x2) is called a variation through geodesics.

A.18.1. Variation at the Beginning Point

Let α0
(

x1) be a geodesic in (M, g) with initial values α0(0) = p and
.

α0(0) = v ∈ Tp M.

Let z, w ∈ Tp M. Let β0
(
x2) be a curve such that β0(0) = p and

.
β0(0) = z. This is

not necessarily a geodesic but it can be. Let ζ
(
x2) = Px2

0,β0
(v) + x2Px2

0,β0
(w) where Px2

0,β0

represents parallel transport along β0 from 0 to x2. Then Γ
(
x1, x2) equals a family of

geodesics
{

αx2
(

x1)} with initial conditions αx2(0) = β0
(

x2) and
.

αx2(0) = ζ
(

x2). Γ
(

x1, x2)
is then called a variation of the geodesic α0

(
x1) through the family of geodesics

{
αx2
(

x1)} and
each geodesic αx2

(
x1) is the unique geodesic such that αx2(0) = β0

(
x2) and

.
αx2(0) = ζ

(
x2).

In particular, if w = 0, then
.

αx2(0) = Px2

0,β0
(v).

A.18.2. Properties of Variation through Geodesics Γ
(
x1, x2)

Let X =
∂Γx2

(
x1)

∂x1 and Y =
∂Γx1

(
x2)

∂x2 be vector fields tangent to Γ
(
x1, x2) such

that X is tangent to the horizontal geodesic coordinate grid lines and Y is tangent to the
vertical coordinate grid lines. Then the variation through geodesics Γ

(
x1, x2) has the

following properties: (i) ∇XY = ∇YX, (ii) ∇Y〈X, X〉g = 2〈∇YX, X〉 = 2〈∇XY, X〉, (iii)

∇X∇Y −∇Y∇X = R(X, Y), (iv)
∂Γ(x1,0)

∂x2 = Y
(
x1) = Jacobi lift at each point x1 along the

geodesic α0
(

x1) (see Appendix B for more detail). The theory of Jacobi lifts is well known in
Riemannian geometry. Jacobi lifts quantify the deviation or convergence of local geodesics
in a variation through geodesics. They are used amongst other things to compute tidal
forces acting on the oceans of the world.

Appendix B. Mathematical Properties of Variations through Geodesics

Much is known in Riemannian geometry about the geometrical properties of variations
through geodesics. We set out some of these properties here. For proofs and more detail see
Lee [118], Lang [119] and Szekeres [122].

The map Γ
(

x1, x2) shown in Figure 3 is a smooth, one-to-one, onto, invertible map
between the 2D Euclidean space with Cartesian coordinates

(
x1, x2) and the 2D subman-

ifold Γ
(

x1, x2) embedded in the configuration manifold C. It maps coordinate axes x1
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and x2 to curved horizontal and vertical geodesic coordinate axes α0
(
x1) and β0

(
x2),

respectively. The metric-distance x2 is constant along each of the horizontal geodesic
coordinate grid lines Γx2

(
x1) = αx2

(
x1) while the metric-distance x1 is constant along each

of the vertical coordinate grid lines Γx1
(
x2) = βx1

(
x2). X =

∂Γx2
(
x1)

∂x1 and Y =
∂Γx1

(
x2)

∂x2
are vector fields tangent to the horizontal and vertical coordinate grid lines, respectively.
Because they are tangent to coordinate grid lines on the submanifold their Lie bracket
[X, Y] = ∇XY−∇YX equals zero; that is, ∇XY = ∇YX. Taking a second tensorial differ-
ential we obtain ∇2

XY = ∇X∇YX. From the equation for the curvature endomorphism
R(X, Y) we have R(X, Y)X = ∇X∇YX−∇Y∇XX = ∇X∇YX because ∇XX = 0 along all
horizontal geodesicss αx2

(
x1). Combining these two equations we obtain the Jacobi equa-

tion for the Jacobi vector field Y (i.e., Jacobi lift) along the horizontal geodesic coordinate
axis α0

(
x1)

∇2
XY = R(X, Y)X

The Jacobi equation is a second-order ordinary differential equation so, to obtain a unique
solution for the Jacobi vector field Y

(
x1), two initial conditions z = Y(0) and w = ∇XY(0)

are required. The initial vectors z and w together with the initial velocity vector
.

α0 = e1
specify the submanifold Γ

(
x1, x2). It follows that 1163 different submanifolds Γ

(
x1, x2)

centred about the specified initial configuration ci are possible depending on the selection
of z, w and e1. If the mass-inertia matrix J(c) is known, the Riemannian geometry equations
Γi

jk = 1
2 Jim

(
Jmj,k + Jmk,j − Jjk,m

)
and Rijkl = JlpRp

ijk = Jlp

(
Γp

kj,i − Γp
ki,j + Γm

kjΓ
p
mi − Γm

kiΓ
p
mj

)
can be used to obtain the curvature endomorphism R(X, Y)X. Hence knowing the mass-
inertia matrix J(c) allows the Jacobi equation to be solved to obtain the Jacobi vector field
Y
(

x1) along the geodesic α0
(
x1). In fact, since the orthonormal vectors (e1, e2) can be parallel

translated along the vertical geodesic coordinate axis β0
(

x2) as illustrated in Figure 3, the
vector field Y

(
x1) can be computed along each of the horizontal geodesic coordinate grid

lines αx2
(

x1).
An insight into the properties of Γ

(
x1, x2) comes from the fact that the inner product

〈X, Y〉J varies linearly with distance x1 along the geodesic α0
(
x1). The intercept with the

〈X, Y〉J axis at x1 = 0 is given by 〈z, e1〉J and the slope of the linear graph is given by 〈w, e1〉J .
This follows from the observation that ∇2

X〈Y, X〉J = 〈∇2
XY, X〉J = 〈R(X, Y)X, X〉J =

Rm(X, Y, X, X) = 0. The last equality follows from the symmetry properties of Rm. Since
the acceleration∇2

X〈Y, X〉J of 〈Y, X〉J along α0
(
x1) is zero it follows that the velocity (slope)

of 〈Y, X〉J along α0
(
x1) is constant and equal everywhere to its value 〈w, e1〉J at x1 = 0.

Thus if we set z =e2 and w = 0 (as described in the text and illustrated in Figure 3), the
Jacobi vector Y will be J-orthogonal to the vector X at every point x1 along α0

(
x1). Indeed

Y will be J-orthogonal to the vector X everywhere on Γ
(
x1, x2). Setting z =e2 and w = 0

restricts the number of possible submanifolds Γ
(

x1, x2) that can be generated but there still
exist 1162 submanifolds Γ

(
x1, x2) to choose from, depending on the specified orthonormal

e1 and e2.
Since the horizontal geodesic coordinate grid lines are unit metric-speed geodesics

it follows that the vector field X tangent to the horizontal geodesic coordinate grid lines
αx2
(

x1) is a unit vector at every point
(
x1, x2) in Γ

(
x1, x2). The vector Y tangent to the

vertical coordinate grid lines βx1
(
x2) in the submanifold is not a unit vector. Its norm

‖ Y ‖J= 〈Y, Y〉1/2
J is determined by the local deviation of the horizontal geodesic coordinate

grid lines from each other.
The norm ‖ Y ‖J= 〈Y,Y〉1/2

J of the Jacobi vector Y and the way it varies with x1 along

the geodesic coordinate grid lines αx2
(
x1) can be obtained by setting f

(
x1) =〈Y

(
x1),Y(x1)〉1/2

J
and computing the first and second derivatives f ′

(
x1) and f ′′

(
x1) as a function of x1. We obtain

f ′
(
x1) = 1

‖Y‖J
〈∇XY,Y〉J and f ′′

(
x1) = 1

‖Y‖J3

[
(∇XY)2(Y)2−〈∇XY,Y〉J2

]
+ 1
‖Y‖J

[Rm(X,Y, X,Y)].

From these expressions it can be seen that if Rm(X, Y, Y, X) is negative (i.e., curvature is
negative) the norm ‖ Y ‖J= 〈Y, Y〉1/2

J of the Jacobi vector Y increases with x1 and the local
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horizontal geodesics diverge. On the other hand, if Rm(X, Y, Y, X) is sufficiently positive
(i.e., curvature is sufficiently positive) for f ′′

(
x1) to be negative, the norm ‖ Y ‖J= 〈Y, Y〉1/2

J
of the Jacobi vector Y along x1 can initially increase, reach a maximum, and then decrease
causing the horizontal geodesics to converge and eventually to cross. Thus by setting the
initial conditions to z =e2 and w = 0 and limiting the arc length of the geodesics αx2

(
x1) so

they do not cross, we obtain a submanifold Γ
(

x1, x2) that approaches as closely as possible
to a Cartesian submanifold in Euclidean space given the curvature of the configuration
manifold (C, J). As can be seen from the equations for Γi

jk and Rijkl above, the curvature

Rm(X, Y, Y, X) of the submanifold Γ
(

x1, x2) is determined by covariant derivatives of the
mass-inertia matrix J(c).

Appendix C. Error-Reducing Association Memory Network

A remarkable property of the brain is its ability to form associations between all types
of mental images. While a single synapse can act as a memory storage element, its response
is too ambiguous for it to serve as an association memory on its own. A storage concept
in which associations are stored in a way that is distributed over many synapses is more
reliable ([126], p. 32).

Various proposals for association memory networks capable of storing associations
between multiple temporospatial patterns of neural activity have been explored. Basically
these employ correlation-based learning algorithms similar to the stabilized Hebbian
synaptic learning rule at each learning step, although recently this has been augmented
using Bayesian optimization [127–132]. Feedback is almost always present in real nervous
systems. As foreseen in the pioneering work of Marr [133] and Hopfield [134] an important
property of networks with feedback is that if an incomplete input pattern is applied to
an association memory network in which a set of input-output associations has been
stored, the intact pattern may be sufficient for reconstruction of the missing data. Such
a recurrently interconnected association memory network can recall the complete input
pattern on the basis of an incomplete fragment [126] (p. 45). This capability is a prominent
feature of biological nervous systems.

We propose the following hypothetical association memory network in the human
brain. A large number of cortical neurons of different types and sizes are interconnected
both vertically and horizontally in both forward and backward directions by adaptive
excitatory and inhibitory interconnections. Vertical connections dominate, forming mini
cortical columns across the six layers of the cortex. The cortical columns are reciprocally
interconnected both locally and across different regions of the cortex through association
fibre tracts. There also exist cortical-subcortical-cortical connections through parts of the
basal ganglia and cerebellum. Multiple recurrent pathways have different loop transmis-
sion time delays caused by varying numbers of synapses in the loops. Such loops produce
a filtering action and can introduce lightly-damped oscillations.

Within this proposed association memory network the individual neurons have
correlation-based stabilized Hebbian-like molecular mechanisms of synaptic plasticity.
The key property that enables this arrangement to function as an error-reducing network
in reinforcement learning is that modification of the component synaptic weights happens
only when a modulating transmitter such as dopamine is present. As set out in Section 7
and illustrated in Figure 5 an error signal is obtained elsewhere in the nervous system
and a reduction in the error from one learning cycle to the next (i.e., a negative temporal
difference in error) is rewarded by release of a burst of dopamine into the association
memory network. Thus synaptic modification within the network occurs only when the
error reduces.

To elaborate, input and output working memory buffers (formed by ensembles of
neurons that can hold spatial patterns of activity on-line) are reciprocally interconnected in
the network. These provide the main source of network activity. Sustained activity held
within these buffers gives rise to propagating waves that induce interference patterns on
synapses distributed throughout the network. If dopamine is present this interference
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changes the synaptic weights, thereby changing the pattern of activity in the network. This
in turn changes the synaptic weights in an iterative fashion and the process converges to
a stable limit cycle pattern of activity in the network [135–137]. Convergence to a stable
limit cycle has been demonstrated in a Ph.D. project in our lab using simulated networks of
randomly interconnected model neurons [138,139]. Similar networks that evolve towards
stable stored states known as attractors have been proposed for the hippocampal formation
(for review see [44]).

The converged synaptic weights distributed throughout the network effectively asso-
ciate the sustained patterns of neural activity held on-line in the input and output working
memory buffers. If an incomplete pattern of neural activity is held on-line in the working
memory buffers the induced limit cycle pattern of activity in the network completes the
pattern of activity. Unsupervised learning within the network modulated by dopamine
thus effectively associates a pattern of activity held on-line in an input working memory
buffer with a pattern of activity held on-line in an output working memory buffer.
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