
  

  

Abstract— In this paper, an anti-swing controller for a double 

pendulum payload system is proposed using the method of 

backstepping based on dynamic models. Lagrange equations are 

used to derive the dynamic equations of the overhead crane 

payload system in a 2-dimensional plane, which provides an 

elegant clean form for developing the controller. The anti-swing 

control system, as well as the simulations, is implemented in 

real-time via the software tool MATLAB/Simulink. The results 

prove that the proposed controller can effectively help the 

system eliminate the induced swing of the payload system in a 

short period.  

I. INTRODUCTION 

Cranes are widely used as important equipment to handle 
and transfer objects in various occasions and fields such as 
factories, harbors, and offshore. Crane operation is vital to the 
performance of cranes, which has attracted increasing 
attention from various fields. Today, the development of 
technology and industrialization has accelerated the evolution 
of cranes in the direction of more automation, digitalization, 
and intelligence [1]. 

To maximize efficiency, the crane is required to move as 
fast as possible in most cases. However, during its starting and 
stopping, the swing of the payload will be induced inevitably 
due to all kinds of interferences such as friction, system 
vibration caused by payload inertia and cable flexibility [2]. 
This kind of swing can be approximately regarded as 
undamped vibration. The system can only rely solely on the 
resistance of the air to eliminate the swing of the payload if no 
other external force is applied, which has an adverse impact on 
the crane efficiency [3] and also increases the possibility of 
accidents, especially for vulnerable or dangerous surroundings 
[4]. 

The last decades have seen an increasing improvement in 
developing anti-swing control strategies for different kinds of 
cranes [5]. Due to the complicated dynamics and 
underactuated characteristics of the crane system [6], the 
control strategy is gradually developing towards the trend of 
intelligent control. Compared with traditional control 
methods, artificial intelligence-based control methods such as 
fuzzy control [7, 8], neural network control [9, 10] can better 
incorporate the human experience to improve control 
performance. Also, traditional control methods tend to be 
combined with intelligent control. For example, as a classic 
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method to design closed-loop system controllers in the field of 
engineering, PID now is mostly applied combined with 
intelligent control methods such as fuzzy control [11, 12]. In 
parallel, some advanced control methods are considered as 
effective methods to solve anti-swing problems such as sliding 
mode control [13] and optimal control [14]. 

Generally speaking, the swing of the payload presents the 
characteristics of a single pendulum. However, in engineering 
practice, the payload system of the crane is going to show the 
characteristics of a double pendulum as the mass of the hook is 
not negligible compared with the mass of the payload [15]. 

An anti-swing controller is proposed in this paper, using 
the method of backstepping which is for designing stabilizing 
controls for a special class of dynamical systems. 
Backstepping has obvious advantages in designing robust or 
adaptive controllers for uncertain systems, especially when 
disturbances or uncertainties do not satisfy matching 
conditions. Now it has received extensive attention and has 
been extended to more fields, such as output regulation, 
adaptive control. 

This paper develops an effective control approach for 
overhead crane operations that provides anti-swing combined 
functionalities. The rest of the paper is organized as follows. 
In Section II, the overhead crane and Lagrange equations are 
briefly introduced, which enables the derivation of the 
dynamic equations of the double pendulum payload system. In 
Section III, two influence factors are taken into consideration 
analyzing in different conditions. Section IV describes the 
process of the proposed controller in detail. In Section V, 
simulations are implemented in real-time to verify the 
effectiveness of the control system. The conclusion and future 
works are outlined in Section VI. 

II. DYNAMIC MODELING 

A. The Overhead Crane  

An overhead crane, commonly referred to as a bridge 
crane, is a type of crane found in industrial environments, 
which allows you to lift and move heavy payloads from one 
location to another in a precise manner. There are various 
types of overhead cranes, but their structures are generally not 
significantly varied. One general overhead crane is shown in 
Fig. 1. It is normally comprised of two parallel tracks that sit 
on longitudinal I-beams and are bolted to opposing steel 
columns using brackets. The two parallel tracks are called the 
bridge, more often referred to as a single girder or double 
girder design. The payload is supported by a hook that 
connects to the hoist. A trolley supports the payload system 
and moves horizontally along the bridge to position before 
picking up or lowering a load.  
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B. Lagrange Equations 

Various approaches enable the derivation of dynamical 
equations for mechanical systems. All of them result in 
equivalent sets of equations. However, they are presented in 
different forms suitable for different purposes of computation 
and interpretation. As one of the best-known methods to solve 
dynamic problems with constraints, Lagrange equations are 
the ones of motion of any complete system expressed in 
generalized coordinates, which are established from the 
viewpoint of energy with the kinetic energy, potential energy, 
and generalized forces of the system to be analyzed together. 
A general and comprehensive description of the Lagrange 
method for computing robot dynamics is given in [16]. 

The general form of the ideal complete Lagrange equation 
which is the so-call Lagrange equations of the first kind is: 

 , 1,2,3...,s
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where T  is the kinetic energy; Q  is the generalized inertia 

force; q  is the generalized coordinate; q  is the generalized 

velocity;   is the number of system variables. 

For the crane payload system, Lagrange equations of the 
second kind can be used to solve the problem. The equations 
do not include constraint forces at all, only non-constraint 
forces need to be accounted for, which is also called 
Euler–Lagrange equations: 
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And L  is the Lagrangian expressed as: 

 L(q,q)=T(q,q)-V(q,q)  (3) 

where V  is the potential energy of the system. 

C. Dynamic Equations 

During the operation of the overhead crane, the payload 
will present a kind of spherical movement, which takes the 
connection point between the trolley and the main cable as the 
center and takes the length of the cable as the radius, as shown 
in Fig. 2. This kind of pendulum happens in three-dimensional 
space, but it can be regarded as the result of the coupling of 
two kinds of pendulum in two-dimensional planes [17]. 

 

Considering that the crane will be subject to various 
disturbances in practical operation, the following assumptions 
must be assumed for modeling the dynamics in the 
simplification process. 

(1) The bridge and the trolley work separately.  

(2) The deformation of the crane support and girders, as 
well as the height difference of the track is negligible. 

(3) The friction between the trolley and the track is 
negligible.  

(4) All cables feature sufficient strength and stiffness, the 
mass of the cable is neglected, and changes in cable length due 
to force are negligible. 

(5) The payload has a regular shape and can be regarded as 
a particle, and the torsional motion of the payload with the 
cable as the axis can be neglected.  

(6) The damping from the air and the wind is negligible. 

Table I lists the physical properties used during the 
modeling.  

TABLE I.  PHYSICAL PROPERTIES 

Property Symbol Value Unit 

Hook mass 1m  constant kg 

Payload mass 2m  constant kg 

Trolley displacement x  variable m 

Trolley velocity x  variable m/s 

Trolley acceleration x  variable m/s2 

Cable length l  variable m 

Cable velocity l  variable m/s 

Cable acceleration l  variable m/s2 

Payload angle   variable deg 

Payload angular velocity   variable deg/s 

Payload angular acceleration   variable deg/s2 

Gravity g  9.80 m/s2 

 

According to the assumption, when the overhead crane 
carries a payload, the payload system presents the 
characteristics of a double pendulum. In this case, the hook 

 
Figure 2.  Simplified 3D model of overhead crane 

 

Figure 1.  Overhead crane 



  

and the payload can be treated as a first-order pendulum and a 
second-order pendulum respectively, the model of which can 
be shown in Fig. 3. 

It can be seen that the coordinate of the trolley position is 

(0, )tx , and the coordinates of the first-order pendulum 

1 1( , )x y and the second-order pendulum 2 2( , )x y  are 

expressed as: 
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The total kinetic energy T  of the crane payload system 
can be calculated as: 
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The horizontal plane of the trolley is assumed to be the 
zero potential energy plane of the system, then the total 
potential energy V  of the system is: 

 ( )1 1 1 2 1 1 2 2cos cos cosV gl m gm l l  − + −= −  (7) 

Using Lagrange equations to solve the model of the entire 
system, the dynamic expression of the system can be obtained 
after linearization, where the Lagrange equation with the 
pendulum angle of the first-order pendulum as the generalized 

coordinate 1q =  is: 
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where Lagrange equation with the pendulum angle of the 

second-order pendulum as the generalized coordinate 
2q =  

is: 
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III. DYNAMIC ANALYSIS 

Compared with the single pendulum system, the double 
pendulum system has an additional impact on the 
second-order pendulum. For this reason, the impact of the 
first-order pendulum amplitude and the length of the 
second-order pendulum cable on the swing of the double 
pendulum system are analyzed separately based on the single 
pendulum system. The following figures show the plotting of 
both orders’ pendulum angles in different cases. 

A. The Amplitude of the First-order Pendulum  

Fig. 4 shows the swing angles of the double pendulum for 
different amplitudes of the first-order pendulum, where the 
cable lengths are set as 1 m and 0.25 m. It can be seen that the 
amplitude and frequency of the second-order pendulum are 
more severe than those of the first-order pendulum when the 
cable length of the double pendulum is a constant. The 
maximum value of the second-order pendulum is about 
1.6-1.7 times the initial swing angle of the first-order 
pendulum. 

B. The Cable Length of the Second-order Pendulum  

Fig. 5 shows the swing angles of the double pendulum 
with different cable lengths of the second-order pendulum, 
where the cable length and the amplitude of the first-order 
pendulum are respectively set as 1m and 10 degrees.  

 

 

(a) initial 1 =6   

 

(b) initial 1 =8   

 

(c) initial 1 =10   

 

(d) initial 1 =12   

Figure 4.  The impact of the amplitude of the first-order pendulum on the 
swing of the double pendulum 

 

 

Figure 3.  Simplified model of overhead crane double pendulum system 



  

 

It can be seen that when the cable length of the first-order 
pendulum is a constant, the swing amplitude of the 
second-order pendulum decreases as the cable length of the 
second-order pendulum increases, while the varying swing 
amplitude of the second-order pendulum changes the swing 
amplitude and frequency of the first-order pendulum. 

IV. CONTROLLER DESIGN 

To eliminate the swing of the double pendulum of the 
crane payload system, an anti-swing controller was developed 
by applying the method of backstepping. 

State variables of the system are chosen as: 
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where 3X  can be written in another form if the input is written 

like tu x= : 

 
3 u= +X f(x) b(x)  (11) 

where  
T
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all elements can be calculated: 
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Then the state space equations of the double pendulum can 
be obtained as: 
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The system errors are defined as: 
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where dX  is the vector of the desired state, and 1 2, ,d d dx    are 

all constant. 

The differential equations about system errors are defined 
as: 
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According to the Lyapunov method, the first backstepping 

error 1 1=δ e  is expected to converge and 
1 1( )V δ  is expected as: 
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so the system error 3e  is expected to reach its virtual value 
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According to the system equation: 
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The controller can be calculated as:  
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V. SIMULATION RESULTS 

The double pendulum model is simulated with the 
designed controller using software MATLAB/Simulink to 
verify its effectiveness, as shown in Fig. 6, where the system 

parameters are set as 1m =3kg, 2m =7kg, 1l =1m, 2l =0.5m, 

g =9.8m/s2. 

 

(a) 2 0.25ml =  

 

(b) 2 0.5ml =  

 

(c) 2 0.75ml =  

 

(d) 2 1.0ml =  

Figure 5.  The impact of the cable length of the second-order pendulum on 
the swing of the double pendulum 



  

 

Fig. 6 shows the model of the double pendulum in 
Simulink. Initial states of the system are set in s-function 

module ‘plant’ as 1 1 2 2[ ] [0 0 /18 0 0 0]x x     = =x , 

which means the first-order pendulum has a 10-degree initial 
angle. The parameters of the controller are set in module 

‘controller’ as ( )1 0.92, 4, 122K diag= , ( )2 0.84, 2, 310K diag= .  

All the variables in the model can be plotted during the 
real-time simulation run. The responses with and without the 
controller of the system are compared in Fig. 7. It can be seen 
from the response results of the system that the swing angle of 
the double pendulum gradually decreases and stabilizes in 
about 10s. The overall swing trend of both orders is similar, 

 

the residual swing of both orders almost disappears after about 
15s. 

Based on the above response, different main cable lengths 

are considered, i.e.,
1l =0.5m, 1.0m and 1.5m, respectively; 

2l =0.5m. The system response is as shown in Fig. 8. The 

swing of both orders of the pendulum becomes more severe as 
the length of the main cable increases; the amplitude of the 
second-order pendulum reaches about 15 degrees at its 
maximum. The stabilization time increases a little overall, 
while the displacement overshoot of the trolley decreases 
significantly. This means that less trolley motion is needed to 
balance the instabilities caused by the interference. 

VI. CONCLUSION 

In the previous chapters, the overhead crane is introduced. 
The dynamic modeling derivation using Lagrange equations 
for the double pendulum payload system of the overhead crane 
is described. The amplitude of the first-order pendulum and 
the cable length of the second-order pendulum are varied in 
different cases to discuss the impact on the double pendulum. 
Simulations for the anti-swing control system with the 
backstepping controller are implemented in software 
MATLAB/Simulink. The results show that the backstepping 
controller can effectively eliminate the swing induced by 
interference. 

 

 
(a) Response of second-order pendulum swing angle 

 
(b) Response of first-order pendulum swing angle 

 
(c) Response of trolley displacement 

Figure 8.  Response of anti-swing control system using different 
cable lengths 

 

Figure 6.  Simulation model of anti-swing control system based on 
backstepping controller 

 
(a) Response of second-order pendulum swing angle 

 
(b) Response of first-order pendulum swing angle 

 
(c) Response of trolley motion 

Figure 7.  Response comparisons of anti-swing control system with 
and without backstepping controller 



  

As future works, the crane anti-swing research can also be 
extended to another important industrial field--offshore cranes. 
To derive the dynamics, Lagrange's equation can be an 
effective means to solve the rigid multi-body problems. 
However, the crane is not the product of a single discipline, 
but the coupling of multiple disciplines, such as hydraulics, 
kinematics. Further modeling approaches are yet to be 
discussed. In addition, the control algorithm for the double 
pendulum system can be more optimized according to diverse 
practical demands, which can also be applied to the research of 
offshore cranes. At this level, the real-time operation of the 
simulation will be considered insufficient. Field studies will 
be conducted based on simulation results. 
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