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ABSTRACT Case-based reasoning (CBR) is a problem-solving methodology in artificial intelligence that
attempts to solve new problems using past experiences known as cases. Experiences collected in a single case
base from an institution or geographical region are seldom sufficient to solve diverse problems, especially
in rare situations. Additionally, many institutions do not promote peer-to-peer (p2p) communication
or encourage data sharing through such networks to retain autonomy. The paper proposes a federated
CBR (F-CBR) architecture to address these challenges. F-CBR enables solving new problems based on
similar cases from multiple autonomous CBR systems without p2p communication. We also designed an
algorithm to minimize (irrelevant or unsolicited) data sharing in an F-CBR system. We extend the F-CBR
design to support institutions with organizational or geographical hierarchies. The F-CBR architecture was
implemented and evaluated on two public datasets and a private real-world (non-specific musculoskeletal
disorder patient) dataset. The findings demonstrate that the retrieval quality of F-CBR systems is comparable
to or better than a single CBR system that persists all the cases on a centralized case base. F-CBR systems
address data privacy by incorporating the data minimization principle. We foresee F-CBR as a viable
real-world design that can aid in federating legacy CBR systems with minimal or no changes. The CBR
systems used in this study are shared on GitHub to support reproducibility.

INDEX TERMS Case-based reasoning, data minimization, data privacy, data silos, decision support systems,
federated architecture, federated case-based reasoning.

I. INTRODUCTION
In recent years artificial intelligence (AI) has been recognized
to be used in decision making in real life, even when the
decisions may have a vital impact on people’s life [1], [2].
This led to enormous interest in AI-based decision or decision
support systems. With the surge of commonplace use of
AI, the ethical concerns related to AI are triggered by
the enforcement of regulations, such as the General Data
Protection Regulation (GDPR) [3] in Europe. Explainability,
transparency, and privacy are a few primary concerns in
adapting AI to everyday use [4], [5].

A branch of AI, the so-called ‘‘black-box’’ approach
in machine learning (ML), attempts to solve the privacy
problem using federated learning. Each autonomous member
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black-box system in the federation learns a model using own
data locally and shares the learned model to the federator.
As such no raw data in the process is sent or shared at all.
However, explainability and transparency problems pertinent
to such black-box AI systems highlight the need for AI
systems that align with GDPR’s privacy and explainability
regulations [3].

Case-based reasoning (CBR), a problem-solving method-
ology in AI that emerged from work in cognitive science [6],
is considered to mimic the human reasoning process and
possess explainability and transparency traits [7]. Because
it explicitly assesses similarity between the new problem
and the previously solved problems. CBR being transparent,
easily understood by users, and explainable up to a large
extent make it an easily adaptable AI methodology in various
domains such as healthcare, law, planning, designing, process
control, etc. [8]–[11].
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The premise of CBR is that similar problems have
similar solutions and are likely to recur in the future [7].
Therefore, in CBR, a new problem is solved by retrieving
and reusing similar previously-solved problem(s) referred
to as experiences or cases [12]. A case typically consists
of structured description of a problem situation in terms of
relevant features and its solution. In CBR, cases are persisted
in a case base, and a reasoning engine performs the reasoning
task. The learning in a CBR system happens by adding new
cases in its case base. CBR does not involve training a model
as in main stream ML approaches; rather, it incorporates
continuous learning by dynamically adding new cases to the
case base as new problems are solved [13].

The competency of a CBR system relies primarily
upon the solved cases it has collected or solved, and the
ability to retrieve the relevant case(s) similar to a new
problem. However, experiences collected in one institution,
or geographical region are seldom sufficient to solve diverse
problems, especially for rare conditions. Yet, vast amount of
data collected across institutions remain in silos where they
are collected [14]–[16].

In addition to the desire to have the autonomy over con-
trolling their systems and data, institutions are often skeptical
or unwilling to share their data for centralized persistence
or participate in peer-to-peer1 (p2p) networks [19] due to
privacy concerns, especially in the healthcare domain [20].
Apart from the challenges due to fear of losing autonomy
and jeopardizing data privacy, strict regulations such as
the GDPR also started to play a key role in creating data
silos.

We distinguish autonomous CBR systems that can benefit
from experiences collected in other institutions into two
types: one that support p2p communication and the second
that does not. Comprehensive studies have been performed
on the first type in the CBR research community, discussed
in detail under section II. On the contrary, to the best of our
knowledge the second type is neglected mostly due to some
of the challenges mentioned above.

This paper proposes a simple yet effective system
architecture, federated case-based reasoning (F-CBR),
that aims to improve decision support systems’ overall
competence through multiple CBR systems deployed in
different institutions. The architecture is generic in the sense
that it can be used for different application domains and
is developed following the principles of federated system
design [21]. The architecture would allow CBR systems
to leverage the benefits of heterogeneous cases acquired
locally by various CBR systems in numerous institutions and
geographical locations while minimizing the amount of data
to be shared. F-CBR mitigates the disadvantages of data silos
without involving p2p communication between the member
CBR systems, hence preserving the data owners’ privacy, and

1We refer to p2p communication in the context of networks and
decentralized systems with three defining properties: self-organization,
symmetric communication, and distributed control [17], [18].

minimizes the amount of data to be shared through a tailored
algorithm while ensuring the autonomy of the member CBR
systems. The key contributions of this paper are as follows:

1) A generic F-CBR methodology and architecture to
federate autonomous CBR systems without p2p com-
munication.

2) Algorithms that minimize the sharing of cases in the
proposed F-CBR system using a two-stage federated
retrieval.

3) The F-CBR methodology is further enhanced to fed-
erate institutions with organizational or geographical
hierarchies.

Besides F-CBR being a generic design and independent of
any domain, it can help homogeneous legacy CBR systems
to participate in a federation with minimal to no adaptation of
the existing system.We hypothesize that the proposed F-CBR
approach would encourage institutions and data owners to
participate in federated CBR research and applications.

The paper is structured as follows: section II provides
the background of this research, followed by section III,
which presents the proposed F-CBR architecture on two-
stage retrieval algorithm, and hierarchical F-CBR design.
Section IV is devoted to experiments, results, and discussions.
The recommendations for deploying a F-CBR system is
discussed in section V. Finally, the conclusion of this paper
is presented in section VI.

II. BACKGROUND
This section describes a number of concepts that relate to
the notion of ‘‘federated’’ either as defining characteristic
or a contrast because these key notions are at times mixed
up or interchangeably used without highlighting possible
differences.

A. DE/CENTRALIZED, DISTRIBUTED, AND FEDERATED
The concepts of centralized, decentralized, and distributed
systems were first defined in Baran’s legacy paper in
1964 [22]. Centralized and decentralized system designs are
mostly referred to in the context of network control. In a
centralized approach, a single system controls the entire
network, contrary to a decentralized approach.

Distributed and federated architectures are sometimes
mistaken for one another and used interchangeably in
certain situations. Nevertheless, they are two distinct archi-
tectural styles [23], [24]. A distributed design is adopted
primarily to address the issues of parallelism, scalability,
and availability. This term is often used at an enterprise
level when the resources are distributed over multiple
geographical locations [25]. In contrast, A federated design
helps perform computation on data locally without needing
p2p communication while retaining autonomy to a large
extent [26].

The term federation is mainly used in the context of
autonomy and privacy preservation [27]. Authors in [21] have
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presented in-depth concepts, terminologies, and architectures
for federated information systems.

B. FEDERATED DATABASE, SEARCH, AND LEARNING
To understand and scope out how the various approaches
associated with ‘‘federated’’ design differ from our proposed
federated CBR, we discuss here the three most common
approaches among them:
Federated database [28] is a collection of autonomous

heterogeneous yet cooperating database systems to achieve
interoperability. It focused primarily on the basic data
operations in data management systems like insert, delete,
search, and merge.
Federated Search [29] is linked to the field of web search

engines, where multiple searches are executed on numerous
local autonomous systems. The primary task of a federator
in these systems is to coordinate and re-rank local search
results. From an end-user point of view, there might not be
a significant difference in whether a search is performed as a
federated search or not.
Federated Learning [26], Contrary to federated database

and search, members in federated learning share only the
locally trained model parameters to a federator and not
the raw data. Thus, user data permanently resides locally
with its owners. Google’s research coined the term federated
learning. The primary obstacle federated learning addresses
is real-world data privacy [30].

C. RELATED CBR LITERATURE
Various terminologies linked to distributed CBR systems
might seem similar to the proposed federated CBR design,
which we argue are not. We attempt to clarify this in the
remaining parts of this section.
Collaborative CBR [31]–[33] architectures and designs

have been extensively explored and were confined to a
specific domain such as route planning, recommender sys-
tem, and elderly health assessment. The CBR systems used
for collaboration leverage p2p communication capabilities to
solve problems.
Distributed CBR [34] by Plaza and McGinty presented

how distributed CBR strategies can improve the performance
and maintainability of CBR systems with several additional
benefits. However, these systems do not incorporate principle
of federated design.
Ensembled CBRwas proposed by Plaza and Ontanón [35];

they studied the ‘‘ensemble effect’’ where a collection of
agents with uncorrelated case bases improves the accuracy
of any individual system. Nevertheless, their design does not
aim to avoid p2p communications.
Multi-Agent System (MAS) based CBR designs are well

discussed in detail in the survey paper [36]. It is one of the
most common techniques that has achieved promising results.
MAS is a computerized system of multiple intelligent agents
interacting with each other to solve a specific problem based
on p2p communication.

TABLE 1. Literature comparison table.

Table 1 shows in a structured way the differences between
our proposed F-CBR (in bold) against the relevant reviewed
literature to the best of our knowledge. Apart from the
federated collaboration, other main pillar in the approach is
the degree of application domain independence.

D. CONVENTIONAL AND FEDERATED CBR CYCLES
We refer to a conventional CBR as a CBR system which has
a single case base, thus all the experiences of that system
is centrally persisted. The critical difference between the
conventional CBR (Fig. 1a) and the proposed federated CBR
(Fig. 1b) design at an abstract level is at the center block of
the CBR cycle, where the ‘‘F-CBR’’ replaces the ‘‘General
Knowledge’’ block. The ‘‘General Knowledge’’ block is
depicted as a case base persisting experiences/cases.Whereas
in Fig. 1b, the F-CBR block is a federation of multiple
autonomous CBR systems, thus the cases are distributed.
The primary difference in the process is how the two CBR
variants (conventional and federated) serve a retrieval request.
Similar cases are retrieved from a case base in a conventional
CBR, whereas similar cases are retrieved from a federation
of multiple CBR systems in federated CBR. However, from
an end-user’s perspective, whether the cases retrieved from a
conventional, or a federated system are not different.

The learning in both designs happens in the retain phase.
A learned case, in a conventional CBR, is persisted in the case
bases of a CBR system accessible by the user. In F-CBR,
a learned case is persisted in the case base of a local CBR
system, and the federator would not play any role in this,
as shown in Fig. 1b. Thus a member has complete autonomy
over the reuse, revise, and retain phases in an F-CBR process
cycle.

Our approach may possess some similarities with the fed-
erated search approach. However, in the proposed federated
CBR, not all the locally retrieved results are shared with a
federator or an end-user, contrary to the federated search.
F-CBR minimizes the exposure of more than required cases
to a federation, with the effect to improve data privacy by the
‘‘data minimization’’ (Article 5(1)(c) of the GDPR). Through
this paper, we propose a generic architecture where legacy
systems also could easily be ported into a federation.

III. FEDERATED CASE-BASED REASONING (F-CBR)
This section describes requirements and assumptions for F-
CBR, the proposed federated CBR architecture, the proposed
two-stage retrieval algorithm supported with an exemplified
retrieval, and the proposed hierarchical F-CBR design.
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FIGURE 1. Comparison of CBR process cycle between the conventional and federated CBR approach.

A. REQUIREMENTS AND ASSUMPTIONS FOR F-CBR
Although institutions may make better decisions when they
benefit from each other’s experiences, institutions owning
autonomous CBR systems are often averse to sharing
their cases for centralized consolidation and persistence,
and participating in p2p communication networks. The
aimed F-CBR architecture should address these challenges,
requirement 1.

The autonomous member CBR systems are assumed
not to rely on p2p communication among themselves,
requirement 2. Since the reasoning process in CBR relies
on the retrieval of cases, the architecture should ensure
that not more than necessary cases are shared with an
end-user or the federation, requirement 3. The identity of
subjects and data owners are potentially sensitive information
and thus should not be disclosed to a federated member
or an end-user, requirement 4. The member CBR systems
have local case bases, and they can use different similarity
measures, requirement 5. However, they must adhere to
a standard range of similarity scores, recommended to be
between 0 and 1, requirement 6. The federator (controller) is
assumed not to possess learning capabilities from the cases
or its owners, requirement 7. We assume that end-to-end
encryption is in place for request and response exchanges
over a network for real-world applications. We also rely on
the respective institutions for data masking, de-identification,
anonymization, and adequate security and privacy measures.

B. PROPOSED F-CBR ARCHITECTURE
We describe federated case-based reasoning (F-CBR) as a
method that enables solving new problems based on similar
past cases retrieved from multiple autonomous CBR systems
without peer-to-peer communication and centralized case

FIGURE 2. Two-layer F-CBR architecture.

persistence. The reasoning in F-CBR is performed by a
loose federation of participating local CBR systems, known
as members and is coordinated by a central server, the
federator. The F-CBR architecture is inspired by the paper
on design patterns for federated architectures [23].

Fig. 2 presents a two-layered generic architecture for
an F-CBR system. The federator layer is not available
for direct access by an end-user, while only the members
from the member layer can access it. The member layer
holds several autonomous CBR systems with their local case
bases. It is critical to note that the members do not have
p2p communication capability; thus, they would be ignorant
of each other’s identity and capabilities. Additionally, they
expect the federation to limit data sharing to the greatest
degree possible.

Therefor, we propose two variants of F-CBR for data
minimization, one that performs data minimization at the
federator layer, and the other performs additional data
minimization at the member layer. We start with retrieval
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process description in an F-CBR system, using the first
variant due to its simple yet effective approach.

An end-user interacts with the F-CBR system by sub-
mitting a query (new problem) to their local CBR system.
The member who receives a query from an end-user will
be referred to as initiator in the process until the end-user
receives a response to the query.

The retrieval process in an F-CBR system starts upon a
query being submitted to a local CBR system to retrieve
the desired k number of most similar cases, where k > 0.
The initiator then delegates the end-user’s request to the
federator. The federator further delegates the retrieval query
to all its members, including the initiator. The federation has
M members (CBR1 to CBRM ) at the member layer, as shown
in the Fig. 2. Upon receival of request from the federator,
each member performs a retrieval in their local case bases
and returns (at most) the k most similar cases to the federator.
Consequently, the federator receives a maximum of M × k
cases if everymember has at least k number of cases in its case
base. Else, suppose all members have less than k cases in their
case base, then the maximum number of cases a federator can

receive is calculated using the formula
M∑
i=1
|mi|, where |mi| is

the total number of cases in the case base of a member mi.
Based on similarity scores of all received cases, the federator
filters out cases other than the top k similar cases from the
receivedM×k cases. The federator then re-orders the k cases
in descending order of their similarity scores and returns them
to the initiator as a response, concluding the F-CBR retrieval
process.

The filtering of more than k cases (redundant) by the
federator directly relates to the data minimization principle of
GDPR for privacy preservation. However, the minimization
did not happen in the member but in the federator layer. Thus,
(M − 1)× k unnecessary cases were shared (exposed) to the
federator which should be avoided to the extent possible for
further enhancing the data privacy. This case redundancy can
be mitigated at the member layer itself, by incorporating the
proposed two-stage federated retrieval, as discussed in detail
below.

C. TWO-STAGE FEDERATED RETRIEVAL
Fig. 3 depicts the two-stage retrieval process visually using
sub-figures in chronological order. Further, the two-stage
retrieval process (Algorithm 1), runs at the federator and
depends on two other algorithms to be executed in each
member locally, Algorithm 2 and Algorithm 3.

Stage 1 is about similarity threshold computation. After
receiving a request from an initiator, the federator sends
the query to all the members which in parallel find the k
most similar cases, (Fig. 3c). Each member runs the received
query locally to retrieve the desired k most similar cases
from its case base and stores them ephemerally (short-
lived) for a query id , (see Algorithm 2 for more details).
After that, each member returns only the similarity scores
of the k most similar cases to the federator in descending

Algorithm 1 Federated Retrieval
(Executed by the federator) - Performs Two-Stage Federated
Retrieval.
id : A Unique Identifier for a Query.
q: The Query, That Is, the Problem to Be Solved.
k: The Desired Number of Similar Cases.
M : Number of Federated Members.
retrievedCases: List of kMost Similar Cases, Retrieved From
All theM Members

FederatedRetrieval(id, q, k):

// size of list_of_lists = |M|, total
members

1 list_of_lists[ ]

2 for each member m ∈ M in parallel do
3 sim_list ← SimilarityScores(id, q, k) list_of_lists

← append(sim_list)
4 end

// threshold = k th largest similarity
score

5 threshold← getThreshold(list_of _lists, k)

6 for each member m ∈ M in parallel do
7 cases← EphemeralCases(id, threshold) retrieved-

Cases← append(cases)
8 end

9 sortedCases ← reverseSort(retrievedCases)
sortedCases ← (select top k cases) retrievedCases
← anonymize(sortedCases)

return retrievedCases

Algorithm 2Member Similarity Scores
(Executed by all the member)

SimilarityScores(id, query, k):
cases← cbrRetrieval(query, k)
saveEphemeralCases(id , cases) // save for id

10 scores← getSimScores(cases, k)

return scores // descending order

Algorithm 3Member Ephemeral Cases
(Executed by all the members)

EphemeralCases(id, threshold):
cases← fetchEphemeralCases(id)
adequateCases← discard(cases, threshold)

return adequateCases // similarity ≥
threshold

order, (Fig. 3d). Note that the cases themselves are not
shared. The federator might receive similarity scores from
the members asynchronously. After receiving the scores from
all the members, the federator finds the k th highest similarity
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FIGURE 3. Two-stage retrieval in F-CBR. Non-activated components are faded out in each step. The sub-figures depict the retrieval process in
chronological order from (a) to (h).

score among the scores delivered by all the members, which
will later be used as the similarity threshold. This concludes
stage 1.

The reason for choosing the k th similarity score as the
threshold is based on the user’s request for k most similar
cases to solve a query (problem). A similarity score is not
merely a number but a representative of an ephemeral case
held locally by a member. Thus, when these are arranged
in descending order, the k th similarity score would serves as
a filter for discarding the ephemeral cases whose similarity
scores are below it by each member. The threshold will be
used in stage 2.

Stage 2 is for retrieving only adequate ephemeral cases
from amember. Once the threshold is computed, the federator
sends the query id and the threshold value to all the members
once again for selection of the adequate similar cases
(Fig. 3e). The members serve this request as described in
Algorithm 3. Consequently, the federator receives only cases
with similarity scores above or equal to the threshold. The
members discard the rest of the ephemeral cases for the given
query id (Fig. 3f). The federator further reorders the retrieved
cases in descending order of their similarity scores, selects (at
most) the top k cases to share with the initiator, and discards
the rest (Fig. 3g). This concludes stage 2. Finally, the user
receives the desired k most similar cases from the F-CBR sys-
tem (Fig. 3h), which concludes the overall retrieval process.

The two-stage federator retrieval process minimizes the
number of cases that need to be shared with the federator for
a query at the member layer itself. However, the extent of
data minimization is essentially dependent on the similarity
measures used by a member for a retrieval. For instance,
if all locally retrieved cases from all members have identical
similarity scores, no data minimization will occur at any
member. To illustrate this, in a worst-case scenario, assume
that all the top k similar cases in all the members have
identical similarity score of 0.9 for a query. Thus, each

member will send a list of size k of which all elements
are equal to 0.9 in stage 1. The threshold similarity score
will then be 0.9. Since all ephemeral case similarity scores
are 0.9, each member in stage 2 delivers k cases to the
federator without discarding any case. Hence, we emphasize
that similarity measures play a vital role in data minimization
in an F-CBR system and must be diligently designed. Our
paper [37] presents a method for creating multiple similarity
measures, including feature selection, based on a data-driven
approach. The paper also showcases the effects of numerous
similarity measures on a few public datasets. It emphasizes
building a baseline similarity measure for the incremental
assessment of the quality of retrievals.

D. EXEMPLIFIED TWO-STAGE F-CBR RETRIEVAL
In Fig. 4, we illustrate the two-stage federated retrieval pro-
cesses using an exemplified F-CBR system with 3 federated
members: CBR_1, CBR_2, and CBR_3.

The retrieval process in an F-CBR commences when a user
sends a request to its local CBR system, say CBR_1. For this
illustration, we assume that k is equal to 5. CBR_1 delegates
the request to the Federator with a unique request identifier,
as shown with a yellow circle numbered 1 in Fig. 4a. The
Federator forwards the request to all the members, in parallel,
as shown with yellow circles numbered 2 in Fig. 4a. Each
member retrieves 5most similar cases from its respective case
base and ephemerally stores them with the unique request
identifier (id) as a reference. The vital point to note here
is that the members do not share the retrieved similar cases
with the Federator at this stage, merely sends the similarity
scores of only 5 most similar cases, sorted in descending
order, as shown with yellow circles 3 in Fig. 4a.

Thus, the Federator receives a total of 15 similarity scores.
Sharing the similarity scores does not threaten data privacy as
no case data is shared with the Federator at this stage. After
that, the Federator finds the 5th highest similarity score, which
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FIGURE 4. Exemplified federator’s two-stage retrieval process. Yellow circles with numbers are cues for the chronological order of the retrieval
process. The red circles in (b) indicate ephemeral cases which are not shared with the federator in stage 2.

acts as a threshold for filtering the locally stored ephemeral
cases by all the members. In our example the 5th highest
similarity score is 0.86 (yellow circle 4).

In stage 2, the Federator sends a second request, in parallel,
to all the members with the query id and the threshold
similarity score of 0.86, (yellow circles 5 in Fig. 4b). Each
member retrieves ephemerally stored cases for the respective
id and discards the ephemeral cases whose similarity scores
are below the threshold value. The discarded cases are shown
in red color in Fig. 4b.

As a result, CBR_1 and CBR_2 share only one case each
(case_1_1, and case_2_1 respectively) butCBR_3 shares four
cases (case_3_1, case_3_2, case_3_3, case_3_4) with the
Federator, shown with yellow circles 6 in Fig. 4b. In this
way, the F-CBR addresses data privacy by reducing the
exposure of more than adequate cases to the federation.
The case labeling is just for an illustration and is based on
the pattern: ‘‘case_<member>_<rank>,’’ that is, if a case is
from CBR_2 and is at rank 3 in the retrieval list, then its
label is case_2_3. After receiving the similar cases from all
members, the Federator rearranges all the cases in descending
order of their similarity scores, shown by the yellow circle 7 in
Fig. 4b. The Federator then picks only the top k = 5 cases and
discards the rest, which in our example is case_3_4. Selecting
only k cases preserves the data privacy by not exposing
redundant cases to the end-user. Also, the Federator erases
any further information related to identifying a member in
the federation from the final k = 5 cases, such as member
identifiers: case_1_1, case_3_1, case_2_1, case_3_2, and
case_3_3. This de-identification ensures that the end-user
would not identify a member from a retrieved case directly.
As a result, de-identification would preserve the identity of
members in the federation.

Finally, the initiator will receive k = 5 most similar cases,
as marked by the yellow circle 8 in Fig. 4b; this ends stage 2
of the Federator. Subsequently, the initiator member system

could share the federated retrieval result with the end-user or
perform post-processing such as adaptation.

E. PROPOSED HIERARCHICAL F-CBR
In this paper, we have discussed single-layer federating CBR
systems, where there is a single federator with multiple
local CBR systems. This can be seen as a limitation for
implementing a federated CBR design for hierarchically
structured organizations or data owners. Therefore, we make
a further attempt to propose amultilayered federation through
this paper, where multiple federators can be arranged in
a hierarchical structure to perform as an F-CBR system,
as shown in Fig. 5. The design of such a system can be
understood as follows: the root federator will be responsible
for federating sub-federators under it. This can be viewed
as a network of federators with intermediate nodes as
sub-federators and leaf nodes as local CBR systems. All
the federators and local CBR systems immediately below a
parent federator are referred to as its members. The remaining
design is similar to a single federator F-CBR system.

The retrieval process in a hierarchical F-CBR is as follows:
a query is posed at a local CBR system which delegates it
upwards to its parent node, a federator. If this federator is
not the root federator, the query is further delegated to the
parent of the current federator till it reaches the root federator.
Once the root federator receives the query, it delegates it to
all its sub-federators. This delegation continues further in a
downward direction until a leaf node, a local CBR system,
has reached where every local CBR system performs a local
retrieval and persists the retrieval result ephemerally. After
that, the members send only the similarity scores to their
immediate federator. These immediate federators find their
respective thresholds and perform the second stage retrieval
as shown in Algorithm 1. Once a federator has retrieved the
ephemeral cases, it sends the similarity scores of these cases
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FIGURE 5. Hierarchical F-CBR design. A member CBR is assigned the color
of its federator to improve clarity.

to its parent instead of the initiator, as in the case of single-
layer federator.

All the child federators must accomplish the stage
2 retrieval process before a parent initiates its second stage
retrieval. This process continues until the root federator
finishes its two-stage retrieval process. Once the root
federator has completed stage 2, it passes the result of
hierarchical federated retrieval to the member who sent the
request to the root federator. This process continued until a
leaf member, the local CBR system, gets its retrieved results.
The retrieval request might also come from a local CBR
system (the third CBR from the right in Fig. 5) directly to
a root federator.

The retrieval process in hierarchical F-CBR is similar to
the single-layer federation but cascaded. The only difference
is that sub-federators, once they compute their final result,
only send the similarity scores and ephemerally persist their
two-stage retrieval results for their parent’s second stage
retrieval. Sub-federators are unaware whether the retrieved
results came from a sub-sub-federator or a member CBR
system. From a federator’s perspective, it abstracts the
underneath hierarchical structure of the entire federation.
Once the whole retrieval cycle is complete, no federator holds
any cases, not even ephemerally. The cases always reside in
the local case bases of their respective CBR systems or leaf
nodes. It is critical to observe that a federator may become a
leaf node if all its members have left; therefore, a federator
should be capable of handling such scenarios.

IV. EXPERIMENTS, RESULTS, AND DISCUSSION
The proposed F-CBR method has been implemented and
validated for a prototypical F-CBR system, which was
applied to two public Lymphography [38] and Zoo [39]
datasets. These datasets are meant for the classification
task. We have further applied the F-CBR approach on a
real-world patient dataset, musculoskeletal disorder (MSD)
patient dataset, described in details in paper [40], and
the task performed on this dataset is patient similarity

search [41], [42] using CBR system. More details about these
datasets are provided in their respective experiment sections.

To classify a test sample we used the top three
(k = 3) most similar cases’ target labels retrieved by an F-
CBR system. We chose k based on the dataset size and the
target label distribution in the datasets. Further, we consider
a correct (true) classification if the top k retrieved cases have
the same class as the test sample. Else, the classification is
considered incorrect (false), instead of selecting a majority
class label as the predicted class for a test sample. This was
so done to have a strict criterion for evaluating the F-CBR
systems in this paper.

The primary goal of the experiments is to demonstrate that
the retrieval quality of an F-CBR system is same compared to
a conventional CBR system where all the cases from all the
members are persisted in a centralized case base.

A. COMMON EXPERIMENTAL SETUP
For each dataset, multiple CBR systems with local case
bases were built to implement an F-CBR system where the
case bases of these CBR systems were disjoint. This design
choice helps to capture the ‘‘worst case’’ scenario where each
member CBR system has unique experiences (cases) in their
case base that other members have never gained (learned).

We also built a conventional CBR system for each dataset
with a centralized case base (a case base containing all the
cases built in the respective datasets).2

The similarity measures used in this paper are based on
the local-global principle [44]. A global similarity function
is the weighted sum of all the local feature level similarity
scores. The similarity function used in this paper is shown
by equation 1. The sim(q, c) produces a similarity score for a
query q against a case c. For an ith feature, a local similarity
function is defined as simi(qi, ci), where qi and ci are the
feature values of a query (q) and a case (c), respectively.
The similarity score range is [0, 1]; the reader can refer to
our previous paper [37] for more details about the similarity
measures. To build a ‘‘baseline’’ similarity measure for each
dataset, all the feature weights wi are assigned a value equal
to 1.

sim(q, c) =

n∑
i=1

wi × simi(qi, ci)

n∑
i=1

wi

(1)

where,

i : ith feature

n : total number of features

wi : weight for ith feature

2Tools used for creating the CBR system are myCBR-sdk, myCBR-
rest, and myCBR-workbench, whose details can be found in our work-
shop paper [43]. The built CBR systems are shared, except the MSD
dataset, in a public repository for reproducibility and benchmarking
purposes under the GitHub link: https://github.com/amardj/cbr-benchmark-
projects/tree/master/f-cbr
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The CBR systems were built on microservices architec-
ture [45], and run as an independent process to emulate
member CBR systems running in silos with their local case
bases. None of the CBR systems was aware of any other CBR
system, and hence no peer-to-peer communication between
the members.

B. EXPERIMENT WITH LYMPHOGRAPHY DATASET
The Lymphography dataset is meant for multi-class clas-
sification tasks with four classes, fibrosis, malign lymph,
metastases, and normal. A total of 5 CBR systems were
built where one is a conventional CBR (C-CBR) system
containing all 148 cases built form the dataset in a centralized
case base. The other four CBR systems were designed to
be used for federation with similarity measures identical
to the one used in the C-CBR system. The 4 member
CBR systems (CBR-1, CBR-2, CBR-3, and CBR-4) contain
exclusively 4, 61, 81, and 2 patient cases, respectively. Each
CBR system contains cases of one class only. This was
done to represent the heterogeneity of different member
CBR systems in terms of the experiences/cases. The retrieval
results presented in Table 2 are based on ‘‘baseline’’ similarity
measures. The table results from a test query with the target
class as fibrosis, and the query was executed in F-CBR
and C-CBR systems. The retrieval results from F-CBR, and
C-CBR appeared to be the same regarding similarity scores
and ranking of the retrieved cases. For the two-stage F-
CBR system, the threshold similarity score for k = 5 was
0.667, rounded to three decimal places. At first glance,
the target class, at rank 4 in the table, are different, that
is, fibrosis versus malign_lymph, in F-CBR and C-CBR,
respectively. However, with careful observation, we found out
that it happened because the federator delegates the retrieval
requests to its members in parallel, and reorders the cases
received from them. Hence, the order of the cases with
identical similarity scores may differ depending on when a
member delivers its results.

The retrieved cases from the members for the F-CBR
system were as follows: 1st and 2nd rank cases were from
CBR-1, 3rd rank casewas fromCBR-3, 4th rank casewas from
CBR-1, and the 5th rank case was from CBR-2.

We have performed the query for all the 148 cases in
F-CBR and C-CBR systems and have found that the retrieval
quality is identical for both the system for a given query. The
experiments demonstrated that the F-CBR system is invariant
to the distribution of cases among the member CBR systems.

A detailed retrieval comparison based on similarity scores
is presented in the form of self-similarity matrix (SSM) plots
as shown in Fig. 6. The SSM has been well explored in
music for better comparison and visualization [46], [47].
We describe a SSM, in CBR, as a square matrix of similarity
scores, where similarity scores are computed for all the cases
against each other in a CBR system, that is, every case is used
as a query to retrieve similarity scores of all the cases in CBR
system. The row represents the query cases and the column
represents the retrieved cases.

SSM for C-CBR and F-CBR is computed for all the
148 cases of the Lymphography dataset. In C-CBR, all the
cases are retrieved from a single case base, while in F-CBR,
the cases are retrieved from the 4 autonomous CBR systems’
case bases. The labels are shown for every 3rd case on the
rows and columns without dropping any query and case
similarity scores for visualization. The color bar corresponds
to the similarity scores ranging between [0, 1].

The SSM plot depicts that the F-CBR system identically
match the C-CBR system’s retrieval quality. However,
we observe that a few case labels in the F-CBR plot (Fig. 6b)
are not in the same order as in the C-CBR plot (Fig. 6a).
This is due to the fact that many cases have resulted in
identical similarity scores based on the similarity measure
being used, the baseline. Additionally, retrievals in F-CBR
from its members happen in parallel which also affects the
retrieval order of the cases with identical similarity scores,
as discussed earlier in this section.

Hence, an F-CBR design mitigates the need for centralized
data persistence. However, the key aspect we demonstrate is
that the member CBR systems being heterogeneous in their
populated case bases preserve the patient data and member
identity. Thus we have managed to achieve the performance
level of a centralized CBR system in terms of retrieving cases
using an F-CBR design without peer-to-peer communication
between members.

C. EXPERIMENT WITH ZOO DATASET
The zoo dataset is also meant for multi-class classification
tasks with 7 classes. A total of 8 CBR systems were built
where one is a conventional CBR (C-CBR) system containing
all 101 cases built form the dataset in a centralized case
base. The other 7 CBR systems were designed to be used
for federation with similarity measures identical to the one
used in the C-CBR system. The 7 member CBR systems
(CBR-1, CBR-2, CBR-3, CBR-4, CBR-5, CBR-6, and
CBR-7) contain exclusively 4, 20, 13, 8, 10, 41, and
5 animal cases as amphibians, birds, fish, insect, invertebrate,
mammal, and reptile species, respectively. This was done
to represent the heterogeneity of different member CBR
systems in terms of the experiences/cases similar to the
Lymphography experiment previously discussed in this
paper.

The retrieval results based on ‘‘baseline’’ similarity
measures from C-CBR and F-CBR were identical with
few cases having identical similarity scores were being
ordered differently. The results were in accordance with
our expectation of an F-CBR system’s retrieval results are
indifferent compared to a C-CBR system, as observed in the
Lymphography experiment.

The experiment described below for the zoo data set is
to demonstrate that for some domains F-CBR with member
specific similarity measures can outperform a conventional
CBR system in terms of the retrieval quality. To demonstrate
this, we developed a new similarity measure, which we term
as a regional similarity. The proposed similarity measure is

75466 VOLUME 10, 2022



A. Jaiswal et al.: F-CBR: An Architecture for Federated Case-Based Reasoning

TABLE 2. Lymph dataset, retrieval results from F-CBR, C-CBR, member CBR-1, member CBR-2, member CBR-3, and member CBR-4. F-CBR is a federated
CBR with CBR-[1 to 4] as members. C-CBR is a conventional CBR with all the cases in a single case base.

FIGURE 6. Lymphography self-similarity matrix plots for C-CBR and F-CBR.

also based on the local-global similarity function as shown
in equation 1. However, the feature selection was based on
candidate-elimination algorithm [48] for every CBR system,
where feature was selected to participate in the similarity
measure if its value did not change for a given target class
label. For instance, in the CBR-2, which contains only bird
cases, the feature ‘‘feathers’’ and ‘‘fins’’ are among the
selected features because all the cases have identical values
as ‘‘Yes’’ and ‘‘No’’, respectively. The selected features
contributing to the similarity measure were assigned with
identical weights which is equal to 1. It is to be noted that
the regional similarity measure in one CBR system could be
different from the other CBR systems.3

Fig. 7 shows the obtained test results in a confusion
matrix for both the baseline (Fig. 7a) and regional (Fig. 7b)
similarity measures. The numbers in the cells correspond
to the classification of a test sample. For instance, in the
F-CBR system based on baseline similaritymeasure (Fig. 7a),
one test query was miss-classified as a ‘‘bird’’ by the
system, whereas, its true class was ‘‘reptile’’. Therefore, the
intersection of ‘‘reptile’’ row and ‘‘bird’’ column of thematrix
is populated by value 1. The major diagonal of the confusion
matrix represents the count of correct classifications for
the experiment. The numbers appearing other than the

3The exact similarity measures used can be obtained frommyCBR project
files with the help of myCBR-workbench tool, mentioned in the experiment
setup section of this paper.

major diagonal are the miss-classified samples. The F-CBR
systems based on the baseline and regional similarity
measures demonstrated a total of 4 and 0miss-classifications,
respectively. Using the F-CBR design, regional similarity,
and members representative for an individual species class,
we have achieved 100% classification accuracy for a test set
of size 101. The test set contained all the 101 animal samples
from the zoo dataset. The classification and evaluation criteria
are precisely the same as described in the experimental setup
section IV-A.

The proposed regional similarity measures showcase
promising results, but we do not claim that this to be
applicable for all data sets. The proposed similarity measure
might not be universally applicable since a CBR system is
developed for a specific domain. However, if the domain
and data support the proposed regional similarity measure,
promising results might be achieved. We also clarify that
the regional similarity approach might not be feasible for a
conventional CBR design with a single case base.

D. EXPERIMENT WITH MSD DATASET
The MSD patients’ dataset was collected under a research
project SupportPrim,4 which is a spin-off project from
FYSIOPRIM5 research.

4https://www.ntnu.edu/supportprim
5https://www.med.uio.no/helsam/english/research/groups/fysioprim/

index.html
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FIGURE 7. Confusion matrix from classification results obtained using two F-CBR systems (a) and (b) with baseline and regional similarity
measures, respectively, for the zoo dataset. The color bars provides a reference to the number of cases shown in each cell of the matrix.

Prototypical-experiments done on the MSD dataset for the
paper includes a subset of 50 patient records fromfive distinct
clinics called support2, support5, support9, support15, and
support70 including 2, 25, 12, 1, and 10 patient cases,
respectively. A total of 6 CBR systems were developed,
one of which is a conventional CBR (C-CBR) system
with a centralized case base that contains all 50 cases.
Other 5 CBR systems were built for federation using the
same baseline similarity measures as the C-CBR system.
The 5 CBR systems (CBR-02, CBR-05, CBR-09, CBR-
15, and CBR-70) each include solely 2, 25, 12, 1, and
10 cases. Each member’s CBR system corresponds to a
clinic, simulating a real-world scenario in which members
have varying degrees of MSD competence. Using two of
our previous papers, [49] for developing case representation
and [37], for designing the baseline similarity measures.
Domain experts from FYSIOPRIM and SupportPrim assisted
us in the development of baseline similarity measures.

As seen in Fig. 8, the retrieval outcomes based on
‘‘baseline’’ similarity measures from C-CBR and F-CBR
were equal. The graph displays an average of the top
3 retrieved cases’ similarity scores against all the 50 patient
cases queried in both systems. These average similarity
scores are represented by the y-axis for each patient. The
patient IDs along the x-axis are arranged based on the highest
to the lowest average similarity scores.

To determine how much data minimization can be
accomplished with the present experimental configuration,
we queried the F-CBR system for all 50 cases. Each query
was executed to retrieve the top k most similar cases, with
the value of k varying from 1 to 10 to simulate the sharing
of unsolicited/redundant cases with the federator. The results
of these experiments were encouraging since just two out of
500 (50× 10) queries with varied k had exposed unsolicited
cases (only 2 cases) to the federator.

The first incident of unsolicited case sharing was noticed
using the patient45 case as a querywith k = 7, which resulted
in the sharing of unsolicited case patient27 out of a maximum
of 17 potential cases for the given experimental setup. The

number 17 is the result of summation of maximum number
of cases from each member for k = 7 and subtracting 7 from
the summation, that is, 17 = (2+ 7+ 7+ 1+ 7)− 7 which
is based on the total number of cases (2, 25, 12, 1, 10)
each member has in its case bases, respectively. Similarly,
the second incidence was noticed with patient5 for k = 8;
again, just one patient case out of a maximum of 19 potential
cases was shared as unsolicited.Multiple factors, such as poor
similarity measures, multiple cases with identical coverage,
inadequate case representation, insufficient system testing,
poor or erroneous similarity computation algorithm, rounding
of similarity score values, missing values in a query or a case,
etc., can contribute to such incidents.

The queried case patient45, with k = 7 and the
baseline similarity measure, yielded equal similarity score
of 0.768966 for cases patient21 and patient13. Similarly,
patient18 and patient28 cases have the same similarity score
of 0.689655 for the queried case patient5 for k = 8 with
the baseline similarity measure. Consequently, out of 6950,
that is, (50 × 139), possible redundant/unsolicited cases for
values of k ranging from 1 to 10, merely 2 cases were
shared to the federator in the entire experiment. The value
50 corresponds to the number of queries (cases) executed
for each k value. And the number 139 results from the
summation of all potential redundant cases in a worst-case
scenario that might have been shared with the federator, that
is, 4 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 = 139,
where each term in the summation corresponds to k values
from 1 to 10.

An essential aspect of the two-stage F-CBR is that the
case redundancy is not directly dependent on the number
of members participating in the federation. Therefore, the
increased number of federated members may not impose a
significant risk of increasing case redundancy to the federator.

E. HOW MUCH DATA CAN BE MINIMIZED?
Consider a medical F-CBR system with 50 federated
members, where each member system is accessible by only
one clinician. Also, assume that each clinician, on average,
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FIGURE 8. C-CBR and F-CBR retrieval result comparison based on the average of the top (k = 3) retrieved cases’ similarity scores for each
query, contributing to the y-axis. All the 50 MSD patient cases were used as a query for this experiment and their IDs contribute to the x-axis.

encounters 10 patients in a day and would execute only one
query per patient. Let us consider that a clinician needs only
3 most similar patient cases from the F-CBR system to assess
or diagnose a new patient. In such a scenario, the federator,
in the worst case, would receive 150 patient cases, that is,
3 most similar patients from all the 50 members. However,
compared to the best-case scenario with two-stage retrieval
as proposed in this paper, the F-CBR system would preserve
((50−1)×10×3×50)= 73, 500 cases being unintentionally
exposed each day to the federator. Whereas, adequately, only
(1×10×3×50)= 1, 500 patient cases are required in a day
for the given scenario.

The above effect can be visualized in Fig. 9, which shows
the number of cases that can be preserved from exposure
to a federator of an F-CBR system with 50 members in a
day. It also showcases the variability of case preservation
for increasing the number of desired similar cases required
for problem-solving. In principle, the proposed two-stage
F-CBR design helps minimize sharing unsolicited cases at the
member layer (Fig. 2).

V. DEPLOYMENT OF A F-CBR SYSTEM
First, one needs to find existing CBR system(s) owners who
are willing to participate in a federation without facilitating
p2p communication and without losing their anonymity with
the aim to improve their decision-making. Then, all the
members (the CBR systems available for the federation)
need to facilitate the two-stage retrieval as described in in
section III-C. When the owner of a legacy system wants
to federate their CBR system, they would need to create a
wrapper for the legacy CBR system, which implements the
Algorithms 2 and 3. The organization or interested vendor,
responsible for creating a federation, needs to support a web
service that implements the Algorithm 1 and performs the
role of a federator. It is desirable that the federator facilitates
parallel processing.

Once all the members and the federator are realized, each
member needs to register themselves with the federator’s
member registry. The registry can be dynamic, where
members may be free to participate or leave the federation

at their will. However, a federator facilitator may impose
obligatory rules or guidelines for participating or leaving the
federation, which is currently out of the scope of the current
work. All the members need to implement an additional
service that can send and receive retrieval requests and
responses to and from a federator. In the worst-case scenario,
there might be only one member, the initiator itself.

The architecture itself does not impose any specific
similarity metric to be followed except that all the members
produce the same range of similarity values. A CBR engineer
on the member CBR side can build similarity measures to
meet domain needs by either imposing standard similarity
measures across all federated members or by allowing them
to develop their own. However, it is expected that all
the members put their due diligence while designing their
exclusive similarity measures.

A federator may impose that only members can commu-
nicate with a federator service. A federator service may not
be exposed to a non-member system or to public access for
avoiding unsolicited data exposure and access. The federator
might also be prohibited from disclosing a member’s identity
to the others. Additional constraints could be imposed on a
federator to verify if a request originated from a legitimate
member.

For comparative analysis of the retrieval quality of
an F-CBR, a CBR engineer can configure a member
to retrieve two sets of retrieval results; one from the
federator and the other from its local system using the local
case base.

Possible limitations for an F-CBR are that it relies on
the internet availability, assumes the similarity measures are
relevant and optimal, multiple CBR systems with relevant
exclusive experiences without p2p communication exist and
are willing to federate. The user of a federator system’s
retrieval results would be accountable for the decision
making, and should use the system as an assistance unless
proven to operate independently. The reason is that there
can be a scenario that a federation might not have or is
with limited prior experience to solve a new problem. Every
member might be responsible for their similarity measures
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FIGURE 9. Data preservation per day for a best-case scenario with
respect to the number of member CBR systems and a varying number of
cases (k) adequately needed to solve a problem.

until mandated by the federation. Also, members may have
different or conflicting case representations that must be
resolved before registering to a federator. Fine grained
requirement details are beyond the scope of this study.

VI. CONCLUSION
Case-based reasoning, a problem-solvingmethodology in AI,
drives its competence mostly from the cases it has amassed
or learned. Therefore, cases gathered from a single institution
or geographical region are seldom adequate to solve diverse
problems, especially in rare situations. Moreover, to preserve
their autonomy, these institutions often do not promote
peer-to-peer communication between their CBR systems nor
encourage data consolidation and persistence in a centralized
location. The proposed two-stage F-CBR architecture design,
extensible to hierarchical institutional structures, mitigates
these challenges while collaborating such CBR systems
into a federation. In this approach, the members are not
required to possess peer-to-peer communication capabilities.
The suggested design also contributes to compliance with
the data minimization principle of the GDPR, the European
privacy and security regulation. We have demonstrated in this
research that prototype F-CBR systems implemented for two
public datasets and a private real-world dataset can attain the
same retrieval quality as a conventional CBR system built on
the same datasets. Consequently, we anticipate that the two-
stage F-CBR design will be a viable approach for federating
CBR systems for real-world applications. The developed
CBR systems are made available on GitHub public repository
for reproducibility and further study.
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